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Abstract

How much of a loan should a lender dynamically retain and how does retention affect

loan performance? We address these questions in a model in which a lender originates

loans that it can sell to investors. The lender reduces default risk through screening at

origination and monitoring after origination, but is subject to moral hazard. We show

that the optimal lender-investor contract can be implemented by having the lender

sell its stake in the loan over time, rationalizing loan sales after origination, and use

the model to generate predictions linking loan characteristics to initial retention, sales

dynamics, and loan performance.
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Over the past 20 years, outstanding corporate debt in the U.S. has nearly tripled. This

increase has been fueled by the emergence of an active and liquid secondary market for

corporate loans (Saunders, Spina, Steffen, and Streitz (2021)), in particular for syndicated

corporate loans,1 as well as by the growth of collateralized loan obligations (CLOs),2 in

which a broad array of nonbank financial institutions invest (Cordell, Roberts, and Schwert

(2021)).3 These developments have given loan originators the possibility to reduce their

exposure to borrowers’ default risk by selling their stake over the loan’s life (Blickle, Fleck-

enstein, Hillenbrand, and Saunders (2022)). As a result, concerns have been expressed that

problems in the corporate debt markets are building up in a similar way as they did in the

run-up to the subprime mortgage market crisis.

A key difference between mortgages and corporate loans is that in addition to the screen-

ing that takes place prior to origination, lenders (e.g. banks) reduce risk and add value to

corporate loans through frequent monitoring over the life of the loans. However, if a lender

sells (part of) the loans it has originated, it may not have sufficient incentives to screen and

monitor borrowers (Pennacchi (1988) or Gorton and Pennacchi (1995)). While loan sales and

their consequences for the mortgage market have been the subject of considerable research,

much less is known about the relation between skin in the game (i.e., the share retained by

originators) and screening, monitoring, and default risk in corporate loan markets.

In this paper, we develop a tractable, unifying framework to study optimal incentive

provision for screening and monitoring in credit markets. Our model applies to corporate

loans and, in particular, to syndicated lending, but is sufficiently general to apply to other

markets. We then derive implications for the dynamically optimal originator share and its

1Syndicated loans are loans issued to a borrower jointly by multiple financial institutions under one
contract. The syndicated loan market is one of the most important sources of private debt for corporations
with an annual primary market issuance volume in the U.S. that exceeded that of public debt and equity as
early as 2005 (see Sufi (2007)).

2CLOs operate as special purpose vehicles that issue tranched asset-backed securities or notes to investors,
and use the proceeds to finance the purchase of leveraged loans. See Kundu (2021) for an analysis of CLOs.

3As documented for instance in Benmelech, Dlugosz, and Ivashina (2012), the securitization of corporate
loans is fundamentally different from the securitization of other asset classes. Corporate loans are significantly
larger than mortgages and are typically syndicated. The bank that originated the loan generally retains a
fraction of the loan on its balance sheet. Fractions of the same underlying loan are simultaneously held by
CLOs as well as by other institutional investors and banks. In addition, each loan included in CLOs is rated.
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effects on credit risk. This allows us to (i) shed light on existing empirical findings and

(ii) generate new implications regarding the effects of loan and lender characteristics on

screening, monitoring, and default risk.

We start our analysis by formulating a dynamic agency model in which a lender (the

agent, e.g., the lead bank in a loan syndicate) originates a loan and sells this loan to com-

petitive investors (the principal; e.g., other financial institutions in the syndicate). The loan

generates coupon payments up to default or maturity. When originating the loan, the lender

may undertake costly screening effort that results in a lower expected default rate. It may

also monitor the loan at a cost afterward to further reduce default risk. The loan default

intensity is thus endogenous and decreases with the agent’s screening and monitoring efforts.

Because screening and monitoring are not observable, there is moral hazard and the lender’s

screening and monitoring incentives pin down the respective effort levels. The lender has

a lower valuation for the loan than investors due to a higher discount rate arising from,

e.g., regulatory or capital constraints. There are therefore gains from selling the loan to in-

vestors. Loan sales however reduce the lender’s exposure to loan performance and undermine

its incentives, thereby increasing credit risk and reducing the loan value.

We derive the optimal contract between the lender (loan originator) and outside investors

that implements costly screening and monitoring. We do not impose any restriction on the

form of the contract and include all possible payment schedules, so long as they provide

limited liability to both the lender and investors. Incentive provision for screening and

monitoring requires exposing the lender to loan performance. As the lender is protected by

limited liability, this is achieved by delaying its payouts so that it loses its expected future

payments upon default. Delaying payments, however, is costly due to the lender’s higher

discount rate. Based on this trade-off, the paper derives an incentive compatible contract

that maximizes total surplus. This contract takes a simple form: The lender retains a share

of the loan at origination that it gradually sells over time. In addition, under this optimal

contract, the selloff speed decreases over time, so most of the loan sales occur relatively

shortly after origination, in line with observed practice (Blickle et al., 2022).
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The structure of the optimal contract arises from positive spillovers between screening

and monitoring. Notably, the exposure to loan performance that is necessary to provide

monitoring incentives after origination generates additional screening incentives at origina-

tion by increasing the agent’s skin in the game, leading to synergies between screening and

monitoring. These synergies also imply that the optimal contract provides high monitoring

incentives due to moral hazard over screening. As screening only occurs at origination, the

optimal contract front-loads incentives, so that the agent’s incentives by means of delayed

payouts are especially strong at origination and decrease over time. Accordingly, monitoring

incentives decrease, and hence default risk increases over time. To achieve this reduction in

deferred compensation and monitoring incentives, the optimal contract mandates smooth,

time-decreasing payments to the agent. Therefore, the optimal contract can be implemented

by requiring the loan originator (the lead bank in the case of syndicated loans) to retain a

stake in the loan that it gradually sells to investors.

The model predicts that the loan originator initially retains a significant fraction of

the loan, in line with the evidence in Benmelech et al. (2012) and Gustafson, Ivanov, and

Meisenzahl (2021). Initial retention is lower when intrinsic (pre-screening) credit risk is high

(due, e.g. to a risky collateral), when the cost of screening is high (due to, e.g., a higher

fraction of soft information), when loan maturity is short, or when the originator’s cost of

capital is large. In addition, and also in line with the findings in Blickle et al. (2022), our

model predicts (i) that the originator’s share in the loan should decrease over time and the

originator may sell (nearly) all of its stake shortly after origination and that (ii) the selloff

speed is greater when intrinsic credit risk or the lender’s cost of capital are larger.

We also show that screening and monitoring are complements, in that an increase in the

cost of screening or monitoring leads to a decrease in the optimal levels of both screening

and monitoring. The reason is that when, for instance, monitoring is costly, it is optimal to

reduce monitoring incentives. As screening and monitoring incentives exhibit synergies, the

reduction in monitoring incentives reduces screening incentives. In addition, both screen-

ing and monitoring are negatively associated with credit risk, in line with the evidence on
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screening in Ivashina (2009) and on monitoring in Wang and Xia (2014) and Gustafson et al.

(2021). Interestingly, our results point to a two-way causality: Not only do screening and

monitoring reduce credit risk, but intrinsic credit risk (pre-screening) also dampens moni-

toring and screening efforts. Through this mechanism, our model provides a rationale for

the segmentation observed in credit markets, whereby banks (lenders) that exert high (low)

screening and monitoring typically finance high (low) quality borrowers.4

An important question is whether the share of the originator (the lead arranger’s share

in a loan syndicate) can proxy for screening or monitoring incentives and therefore predict

loan performance. We show that while initial originator retention is monotonic in the cost

of screening and the level of screening effort, it is non-monotonic in the cost of monitoring

and the level of monitoring effort. This suggests that the initial share of the originator can

serve as a proxy for screening effort, but not for monitoring effort because subsequent loan

sales imply that monitoring incentives decrease over time. We additionally show that while

selloff speed is monotonic in the cost of monitoring and the level of monitoring effort, it is

non-monotonic in the cost of screening and the level of screening effort. The non-monotonic

relationships between selloff speed and screening as well as between initial retention and

monitoring imply that neither initial retention nor a measure of selloff speed can (on their

own) proxy for both screening and monitoring, which helps explain the finding of Blickle

et al. (2022) that initial retention or selloff speed need not predict loan performance.

Next, we study how debt maturity affects the incentives to screen and monitor. A

shorter loan maturity reduces the length of time over which the lender is exposed to loan

performance, which weakens its incentives to screen and raises credit risk. To counteract this

effect, the optimal contract front-loads and concentrates incentives in the early stages of the

contract, which implies higher monitoring incentives initially. Relative to long maturity debt,

short maturity debt thus features less screening but more monitoring early on in the lending

period, which is implemented by lowering initial retention and increasing the selloff speed.

However, because monitoring has less persistent effects than screening and the initially high-

4Relatedly, Ivashina and Vallée (2021) find in recent research that weakening clauses in loan contracts
(i.e., clauses that weaken covenants) are particularly common when banks retain a smaller share of the loan.
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powered monitoring incentives taper off over time as the lender sells off her stake, we find

that loans with shorter maturity have (everything else equal) higher default risk in our model

with endogenous default intensity.

One way for loan originators to reduce their skin in the game is to use securitization,

for example by including CLOs in the loan syndicate. As discussed in Daley, Green, and

Vanasco (2020), the development of markets for securitized products has been facilitated in

part by credit rating agencies, “which allow issuers access to a large pool of investors who

would otherwise have perceived these securities as opaque and complex.” Indeed, a feature

that CLOs share is that each loan included in the deal gets rated. By providing information

about initial credit quality, credit ratings at origination generate screening incentives, as lax

screening induces a low rating, but do not generate incentives for monitoring which occurs

after origination. This implies that screening incentives no longer need to be provided so

that loans that are rated are characterized both by lower initial retention by originators and

by weaker monitoring incentives. That is, the model predicts that monitoring should be less

intensive for syndicated loans with CLOs.

In some applications of credit securitization (e.g., for mortgages), screening and moni-

toring of loans are generally undertaken by separate entities: An originator responsible for

screening and a servicing company in charge of monitoring (Demiroglu and James (2012)).

In other settings (e.g., for corporate loans), they are typically undertaken by the same entity.

To understand whether bundling affects incentives and credit risk, we consider a model vari-

ant in which two otherwise identical agents, called screener and monitor, respectively screen

and monitor loans and are both subject to moral hazard. For the screener and monitor to

have adequate incentives, they must retain a stake in the securitized loan. However, raising

one agent’s incentives and stake in the loan necessarily limits the other agent’s stake and

incentives, leading to negative spillovers between the monitor’s and the screener’s incentives.

By contrast, when screening and monitoring are undertaken by the same agent, there are

positive spillovers between screening and monitoring incentives, making it optimal to bundle

the two tasks to exploit these incentive synergies and reduce credit risk.
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The model predicts relatively low levels of screening and monitoring in credit markets

where these two tasks are separated, as is common for mortgages. According to our model,

bundling is particularly beneficial for high quality borrowers—providing a rationale for banks’

focus on this segment of credit markets—and when the benefits of screening and monitoring

are high relative to their cost, which is the case for corporate loans whose default risk strongly

depends on screening and monitoring.

Our paper relates to the large banking literature on screening and monitoring. Most

models in this literature are static; see e.g. Diamond (1984), Gorton and Pennacchi (1995),

Holmstrom (1989), or Parlour and Plantin (2008). As a result, they do not explicitly dis-

tinguish between monitoring after loan origination and screening of loans at origination and

cannot investigate the dynamics of incentives and loan sales and their effects on credit risk.

Following early contributions by Sufi (2007) and Ivashina (2009), a growing empirical lit-

erature examines the effects of the loan stake of the lead arranger in syndicated loans on

screening and monitoring (see e.g. Benmelech et al. (2012), Wang and Xia (2014), Bord and

Santos (2015), or Gustafson et al. (2021)). Most of these studies proxy skin in the game

by the originator’s initial stake in the loan. This literature has recently focused on loan

sales after origination and their effects on incentives and credit risk (see e.g. Lee, Liu, and

Stebunovs (2022) or Blickle et al. (2022)).

Our paper contributes to this literature mainly in two ways. First, it highlights the

key role of the lender’s stake for screening and monitoring incentives, and rationalizes sales

after origination as part of an optimal contract between originators and outside investors.

Second, it sheds light on the complex relationship between screening and monitoring and

the originator’s stake. In particular, it demonstrates that both initial retention and selloff

speed determine incentives. Notably, our results have direct implications for the empirical

measurement of screening and monitoring as well as their cost which are typically not ob-

served by empiricists. Our findings suggest that initial retention by the loan originator is a

good measure for screening at origination but not for monitoring after origination. Instead,

empirical measures for monitoring should take into account the selloff dynamics after origi-
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nation. Notably, monitoring should increase with the lead bank’s incentives, as captured by

the contemporaneous lead share, in line with the evidence in Gustafson et al. (2021).

From a modeling perspective, our paper builds on the literature that studies dynamic con-

tracts in continuous time, starting with DeMarzo and Sannikov (2006) and Biais, Mariotti,

Plantin, and Rochet (2007). In this literature, Piskorski and Westerfield (2016), Malenko

(2019), Orlov (2022), and Gryglewicz and Mayer (2022) analyze incentive provision with

optimal dynamic contracts and monitoring. Halac and Prat (2016), Varas, Marinovic, and

Skrzypacz (2020), and Hu and Varas (2021) characterize optimal monitoring in dynamic

settings but do not focus on optimal contracts. In a related paper, Hartman-Glaser, Pisko-

rski, and Tchistyi (2012) study optimal securitization and screening of mortgages under

moral hazard. In their model, the optimal contract features a single payout to the agent

when sufficient time has elapsed after origination. Malamud, Rui, and Whinston (2013) and

Hoffmann, Inderst, and Opp (2021) generalize Hartman-Glaser et al. (2012) by allowing for

more general preferences and sources of uncertainty, respectively. Hoffmann, Inderst, and

Opp (2022) study optimal regulation of compensation in a similar framework.

Our paper advances this literature mainly in two ways. First, unlike ours, these papers

do not model screening and monitoring and, as a result, cannot study optimal dynamic

incentive provision in corporate loans. Second, we show that the combination of screening

and monitoring moral hazard implies that the optimal contract can be implemented by

requiring the lender to retain a time decreasing stake in the loan, a result that does not

obtain in Hartman-Glaser et al. (2012) or Hoffmann et al. (2021, 2022). That is, with moral

hazard over both screening and monitoring, the optimal contract is both about when the

loan originator gets paid and what piece of the loans it retains. This implementation of

the optimal contract rationalizes recent empirical findings (such as those in Gustafson et al.

(2021) or Blickle et al. (2022)) and allows us to generate unique and novel predictions on

the effects of loan characteristics and moral hazard on the lender’s initial retention level as

well as the sell-off dynamics. Existing theories cannot generate such predictions.
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1 Model setup

Time t is continuous and defined over [0,∞). A lender (the agent or “she”) originates a loan

that can be sold to competitive outside investors (the principal or “they”). In the baseline

model, we assume for simplicity that the loan has infinite maturity. Section 4 extends the

baseline model by introducing loans with finite maturity and shows that the model’s key

implications are robust to the level of maturity. The loan promises a constant flow payoff

(coupon payments) normalized to 1 up to its default, which occurs at the random time τ .

The default time τ arrives according to a jump process dNt ∈ {0, 1} with (endogenous)

intensity λt > 0 at time t, where τ := inf{t ≥ 0 : dNt = 1}. That is, over a short period of

time [t, t+ dt), the loan defaults with probability EdNt = λtdt.

The default rate λt depends on the agent’s screening effort q at time t = 0 and monitoring

effort at at time t ≥ 0. Specifically, the default intensity at time t is given by

λt = Λ− at − q, (1)

where Λ > 0 captures the intrinsic quality (default intensity) of the loan. Screening and

monitoring efforts are bounded, in that q ∈ [0, q̄] and at ∈ [0, ā] with Λ > ā+ q̄. The bounds

ā and q̄ are necessary to ensure that the instantaneous default probability λt is well-defined

and positive. Unless otherwise mentioned, we focus on parameter configurations that lead

to optimal interior efforts at ∈ (0, ā) and q ∈ (0, q̄), so that the upper bound does not bind.

The expected time to default at time t is given by

τ̄t =

∫ ∞
t

e−
∫ s
t λududs. (2)

A high (low) value of τ̄ := τ̄0 at time t = 0 corresponds to low (high) credit risk.

Screening entails a cost 1
2
κq2 at time zero. Monitoring entails a flow cost 1

2
φa2

t at time t ≥

0. Screening and monitoring efforts are unobservable to the principal and not contractible,

giving rise to moral hazard. We do not impose any restrictions on the relation between

screening and monitoring. Notably, we do not make any assumptions on whether screening
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and monitoring efforts are substitutes or complements. According to equation (1) screening

and monitoring affect the instantaneous default rate λt in a symmetric and independent way.

If the lender decides to shirk on either task, the loan will have a higher default rate. Also

notice that while they both reduce default risk, monitoring and screening differ in two ways.

First, screening occurs once when the loan is originated at time t = 0, whereas monitoring

occurs frequently, specifically at any point in time t ≥ 0 up to default. Second, the effect of

screening is more persistent than that of monitoring, where we consider for tractability that

monitoring at has a purely transitory impact.

Both the principal (e.g., investors in the syndicate) and the agent (e.g., the lead bank) are

risk neutral.5 The principal discounts cash flows at rate r ≥ 0. The agent is more impatient

and discounts cash flows at rate γ > r. The difference in discount rates may reflect the

credit constraints or regulatory capital requirements, as in DeMarzo and Duffie (1999), or

differences in financial constraints or risk-aversion, as in DeMarzo and Sannikov (2006).

Due to the discount rate differential γ − r > 0, there are gains from selling the loan—or

a security whose payoff depends on loan performance—to outside investors, a process that

works as follows. At inception, the lender designs a financial contract or, equivalently, a

security C that is sold to competitive investors at price P0. The contract C = {dCt, ât, q̂}

represents a claim on the loan originated by the lender and stipulates a profit-sharing rule

dCt of the overall loan payments 1dt, so that the lender receives dCt and investors receive

1dt−dCt dollars over each time interval [t, t+dt]. The contract C also stipulates monitoring

efforts ât (for all t ≥ 0) and screening effort q̂. We focus on incentive compatible contracts

that induce actual monitoring (screening) effort at (q) to coincide with contracted monitoring

effort ât (q̂) and screening efforts, that is, ât = at and q̂ = q. Unless necessary, we do not

explicitly distinguish between contracted and actual effort levels.

Both the principal and the agent are protected by limited liability. That is, the continu-

ation payoff of the principal and the agent from following the contract C must at any time

exceed their outside option, which we normalize to zero. Finally, while we do not impose

5Alternatively, one can interpret payoffs and probabilities as evaluated under the risk-neutral measure, in
which case the default probability λt can be seen is the risk-neutral or “risk-adjusted” default probability.
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any explicit constraints on the transfers dCt, we show later that optimal transfers satisfy

dCt ≥ 0 for t > 0, so the agent, i.e., lender, receives positive payouts dCt ≥ 0 over each time

interval [t, t+ dt] after time zero.

Contracting problem

In what follows, t = 0− denotes the time just before screening effort is chosen, and t = 0 is

the time just after screening effort is chosen. At time t = 0−, the principal and the agent

sign a contract C, after which the agent chooses her screening effort q. Given contract C, the

agent chooses screening effort q and monitoring effort {at} to maximize the expected present

value of private profits

W0− = max
q,{at}

E
[∫ ∞

0

e−γt
(
dCt −

φa2
t

2
dt

)]
− κq2

2
, (3)

where the subscript 0− denotes values before screening effort is chosen. When buying the

security from the lender (loan originator), outside investors have rational expectations re-

garding the lender’s incentives to exert screening and monitoring efforts.

It is natural to conjecture that the lender should not be rewarded for default in the

optimal contract because this outcome indicates either poor monitoring, poor screening, or

both. Hence, no positive payments should be made to the lender after time τ ; that is, we

should have dCt ≤ 0 for t ≥ τ . In addition, limited liability rules out penalties for default,

i.e., negative payments dCt < 0 for t ≥ τ . Altogether, we thus have that dCt = 0 for t ≥ τ .

We additionally conjecture (and later verify) that after time t = 0−, payouts to the lender

are smooth in that dCt = ctdt for a compensation stream ct at time t > 0.

The price that outside investors pay for a contract C at time t = 0− is given by P0− = P0

where the time-t price of the security is

Pt = Et
[∫ τ

t

e−r(s−t)(1− cs)ds
]

=

∫ ∞
t

e−r(s−t)−
∫ s
t λudu(1− cs)ds. (4)

In equation (4), the second equality integrates the default intensity λs over the relevant time
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interval. The lender receives P0 dollars at time t = 0− from selling the security to investors, in

that dC0− = P0. As outside investors are competitive, the lender can extract all the surplus

and therefore chooses the security that maximizes total initial surplus F0− := W0− + P0 at

time t = 0−. That is, the lender solves

max
C

F0− , (5)

taking into account her own moral hazard problem and the limited liability constraints.

Under the contract C, the agent’s continuation payoff at time t ≥ 0 is

Wt := E
[∫ τ

t

e−γ(s−t)
(
cs −

φa2
s

2

)
ds

]
=

∫ ∞
t

e−γ(s−t)−
∫ s
t λudu

(
cs −

φa2
s

2

)
ds, (6)

where the second equality integrates the default intensity λs over the relevant time interval.

Wt is the present value of the future payments to the lender, adjusted for the cost of effort.

As such, Wt captures the value of the lender’s deferred payouts. Because Pt in (4) and Wt

in (6) can be expressed as deterministic integrals after integrating out the random default

event and because the optimal contract dynamically maximizes total surplus Ft = Wt + Pt,

the dynamic optimization problem (5) can be formulated as a deterministic problem. Unless

otherwise mentioned, we adopt the deterministic formulation of problem (5).

2 Model solution

2.1 Incentives for screening and monitoring

We now turn to characterizing the lender’s incentives for screening and monitoring and,

hence, the resulting effort levels q and {at}. To begin with, let us fix screening effort at q

and analyze monitoring incentives given q. Limited liability requires thatWt ≥ 0 for all t ≥ 0,

as otherwise, the lender would be better off leaving the contractual relationship. Owing to

limited liability, outside investors do not receive payments from the agent in default. As a

consequence, the agent only loses her claim to future payments, i.e., her continuation payoff
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Wt, at the time of default. With her monitoring activity, the agent controls the probability of

default or, equivalently, the probability of losing future payments Wt over the next instant,

which is given by λtdt = (Λ− at − q)dt. Thus, the agent’s optimal monitoring effort is

at = arg max
a∈[0,ā]

{
−(Λ− a− q)Wt −

φa2

2

}
= arg max

a∈[0,ā]

{
aWt −

φa2

2

}
.

As we focus on monitoring effort satisfying at ∈ [0, ā) and Wt ≥ 0 (limited liability), the

lender’s optimal monitoring effort is

at =
Wt

φ
. (7)

Equation (7) describes the incentive constraint for monitoring effort, in that incentive com-

patibility requires ât = at = Wt

φ
for all t ≥ 0. According to equation (7), higher deferred

payments Wt increase the agent’s exposure to default risk and induce higher monitoring effort

at. Therefore, deferred payments offer a trade-off. On the one hand, they provide monitoring

incentives. On the other hand, they are costly due to the agent’s relative impatience (γ > r).

While monitoring at impacts the default intensity λt at a single point in time t, screening

q affects all future default intensities {λt}t≥0 and thus the entire sequence of expected pay-

ments, encapsulated in W0 = W0(q). Note that we now explicitly recognize the dependence

of W0 on screening effort q that is chosen “just before” time t = 0 at time t = 0−. The agent

chooses q to maximize W0− which is the value of her claim after screening is chosen, W0(q),

net of the screening effort cost, κq2

2
:

max
q

(
W0(q)− κq2

2

)
. (8)

Let Vt denote the agent’s gain from a marginal increase in q measured from time t onward,

i.e.,

Vt =
∂

∂q
Wt(q). (9)

We can use V0 to write the first-order condition solving (8) for the optimal screening effort:

q =
V0

κ
. (10)
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Vt captures the agent’s screening incentives at time t and, because screening effort is chosen

at time t = 0−, V0 determines the amount of screening q exerted by the agent. Lemma 1

below derives a condition such that the first-order approach is valid. Under that condition,

equation (10) describes incentive compatibility for screening effort, in that q = q̂ = V0
κ

.

While the initial value V0 determines screening effort, the optimal contract will depend

on the whole path of Vt beyond t = 0. To characterize Vt, we differentiate the integral

representation of Wt in equation (6) under the optimal control at. When differentiating Wt,

we can ignore the effect on at due to the envelope theorem. Note also that because screening

effort q is neither observable nor contractible, an unobserved change in screening effort q

cannot affect contracted flow payments ct. Accounting only for the direct effect of q on Wt,

we get that6

Vt =

∫ ∞
t

(s− t)e−γ(s−t)−
∫ s
t λudu

(
cs −

φa2
s

2

)
ds =

∫ ∞
t

e−γ(s−t)−
∫ s
t λuduWsds. (11)

Equation (11) reveals a simple interpretation of Vt and of screening incentives in our model.

Specifically, as a derivative of the lender’s continuation value with respect q, which is a

persistent component of the discount rate, Vt is closely related to the notion of duration. To

obtain the duration of the lender’s exposure to the loan, one needs to scale Vt by the value of

the exposure, that is, the duration measured in units of time is equal to Dt = Vt
Wt

. It follows

that screening incentives Vt are equal to the product of the duration and value of the lender’s

exposure, i.e., Vt = DtWt. The duration Dt measures how long it takes on average for the

lender to receive payments from the loan (see the middle part of (11) in which dates are

6To see that the last part of the equation holds, note that∫ ∞
t

e−γ(s−t)−
∫ s
t
λuduWsds =

∫ ∞
t

e−γ(s−t)−
∫ s
t
λudu

∫ ∞
s

e−γ(v−s)−
∫ v
s
λudu

(
cv −

φa2v
2

)
dvds

=

∫ ∞
t

∫ ∞
s

e−γ(v−t)−
∫ v
t
λudu

(
cv −

φa2v
2

)
dvds =

∫ ∞
t

∫ v

t

e−γ(v−t)−
∫ v
t
λudu

(
cv −

φa2v
2

)
dsdv

=

∫ ∞
t

(v − t)e−γ(v−t)−
∫ v
t
λudu

(
cv −

φa2v
2

)
dv,

where the first line uses (6) and the second line changes the order of integration. An alternative derivation
of (11) is provided in the proof of Proposition 2 in Appendix C.
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weighed by payments). If the duration is high, payments accrue over a long period of time,

and the impact of permanent changes in default risk via q is large. At the same time, the

timing of payments to the lender affects Wt. Due to discounting and relative impatience of

the lender, late payments generate less value and provide less screening incentives than early

payments. Thus the decomposition of Vt as a product of Wt and Dt captures the intuition

that screening incentives are the strongest if the exposure to the loan is large and with high

duration. In general, late payments increase duration but decrease value. The maximization

of screening incentives must therefore resolve the tension between duration and value.

Equation (11) also shows that monitoring incentives by means of deferred payouts Ws

(for s ≥ t) pin down screening incentives Vt. That is, screening and monitoring incentives

are closely linked and interact with each other. Higher Wt exposes the agent’s compensation

more strongly to loan performance and therefore motivates screening. In addition, higher

Wt boosts monitoring at, which delays default and strengthens screening incentives.

Next, we characterize the dynamics of the agent’s monitoring and screening incentives

Wt and Vt. We can differentiate (6) with respect to time and obtain

Ẇt :=
dWt

dt
= (γ + λt)Wt +

φa2
t

2
− ct. (12)

Similarly, differentiating Vt in (11) with respect to time t, we obtain the dynamics of Vt:

V̇t :=
dVt
dt

= (γ + λt)Vt −Wt. (13)

We close this section by stating some regularity conditions that we impose on the problem.

Lemma 1. Suppose that the model parameters satisfy

κ >
2

(r + Λ− ā− q̄)(γ + Λ− ā− q̄)2
+

1

φ(r + Λ− ā− q̄)2(γ + Λ− ā− q̄)3
. (14)

Incentive conditions (7) and (10) hold and uniquely pin down monitoring and screening

efforts. Incentive conditions (7) and (10) are sufficient and the first-order approach is valid.
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Throughout the paper, we assume that condition (14) in Lemma 1 is met. In addition,

we assume that

κ >
φā

q̄(γ + Λ− ā− q̄)
, (15)

which is needed in the proof of Proposition 2.

2.2 Optimal contract

2.2.1 Benchmark: observable and contractible screening

To highlight the differences between monitoring and screening incentives more thoroughly, we

start by studying the “second-best” benchmark in which screening is not subject to moral

hazard, in that q is publicly observable and contractible. To solve the model under this

benchmark, we first fix the screening level q. We conjecture (and verify) that the optimal

contract is stationary and features constant flow payments to the manager ct = c = cB(q) > 0

until default, so that Ẇt = 0 and Wt = W = WB(q) for all t. Inserting Ẇt = 0 into equation

(12) yields

c = (γ + Λ− a− q)W +
φa2

2
. (16)

Equation (16) implies a one-to-one mapping between c and W . As a result, controlling c

is equivalent to controlling W and we can treat W as a choice variable instead of c. Given

screening effort q and constant monitoring effort a, the default rate is constant and equal to

Λ− a− q, and the price of the security becomes:

PB(q) =
1− c

r + Λ− a− q
. (17)

PB(q) is the discounted stream of flow payouts to outside investors, 1−c, where the (constant)

default rate Λ− a− q augments the discount rate r.

Next, note that given a screening level q, the optimal monitoring effort a (and equivalently

optimal deferred compensation W = φa) is chosen to maximize total surplus after screening
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is chosen, FB(q) = PB(q) +W . Using equations (16) and (17), we get that the lender solves

FB(q) = max
W∈[0,FB(q)]

(
1

r + Λ− a− q︸ ︷︷ ︸
Market value

− (γ − r)W
r + Λ− a− q︸ ︷︷ ︸

Agency cost

−
φa2

2

r + Λ− a− q︸ ︷︷ ︸
Monitoring cost

)
, (18)

where the choice of W determines monitoring effort a via equation (7), in that a = W/φ.

Limited liability requires that both the agent’s continuation payoff W and the principal’s

continuation payoff FB(q)−W exceed zero, leading to W ∈ [0, FB(q)]. Equation (18) shows

that the surplus FB(q) consists of the value of the loan repayments minus agency and direct

cost of monitoring. Because the lender is subject to moral hazard, it must retain a stake

W , which generates agency costs due to its relative impatience, γ > r. The maximization

problem in (18) yields optimal levels of monitoring effort and deferred compensation, aB(q)

and WB(q), given a fixed level of screening q, whereby WB(q) < FB(q) and the principal’s

limited liability constraint never binds. Using (11), we can also calculate

V B(q) =
WB(q)

γ + Λ− aB(q)− q
. (19)

Equation (19) characterizes the agent’s screening incentives under the second-best solution

and plays an important role in the solution with non-contractible screening.

Finally, we can optimize FB(q) over q to determine the optimal screening level in this

second-best benchmark: qB = arg maxq∈[0,q̄]

(
(FB(q)− κq2

2

)
, determining second-best mon-

itoring effort aB(qB) and deferred payouts WB(qB). We summarize our findings in the

following proposition.

Proposition 1 (Moral hazard over monitoring). Suppose that screening effort q is con-

tractible, so that there is no moral hazard with respect to screening. At the optimum, the

following holds. For any choice of q, monitoring effort aB(q), payouts cB(q), and deferred

payouts WB(q) are constant over time and are jointly characterized via (7), (16), and (18).

The continuation payoff satisfies WB(q) < FB(q). Optimal monitoring effort aB(q) increases

with q. The optimal choice of screening effort, denoted by qB, maximizes FB(q)− κq2

2
.
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2.2.2 Moral hazard over screening and monitoring

We now assume that q is unobservable to investors and consider the full contracting problem

with moral hazard over both screening and monitoring. We solve this problem in two steps.

As before, we first fix screening effort q and solve the continuation problem for t ≥ 0. We

then determine the optimal level of screening q = q∗, taking into account the solution to the

continuation problem.

Given levels of monitoring a and screening q, we can rewrite the total surplus at time t

as:7

Ft =

∫ ∞
t

e−r(s−t)−
∫ s
t λudu(1− cs)ds︸ ︷︷ ︸

=Pt

+

∫ ∞
t

e−γ(s−t)−
∫ s
t λudu

(
cs −

φa2
s

2

)
ds︸ ︷︷ ︸

=Wt

=

∫ ∞
t

e−r(s−t)−
∫ s
t λudu

(
1− φa2

s

2
− (γ − r)Ws

)
ds. (20)

As Vt and Wt characterize the agent’s incentives and there is no other source of uncertainty

than the arrival of the loan default time τ , the variables Vt and Wt summarize all payoff-

relevant information. Thus, we can express the total surplus as a function of Vt and Wt, in

that Ft = F (Vt,Wt). In what follows, we omit time-subscripts, unless necessary.

The integral expression (20) implies that the total surplus F (V,W ) solves:

rF (V,W ) = max
a,c

{
1− φa2

2
− (γ − r)W − λF (V,W ) (21)

+ FV (V,W )((γ + λ)V −W ) + FW (V,W )

(
(γ + λ)W +

φa2

2
− c
)}

,

where FV (V,W ) = ∂F (V,W )
∂V

and FW (V,W ) = ∂F (V,W )
∂W

.8 Equation (21) is solved subject to the

7For a derivation, take Ft = Pt +Wt in the first line of (20) and take the derivative with respect to time,
t, to get

Ḟt = (r + λt)Pt − 1 + ct + (γ + λt)Wt − ct +
φa2t
2

= (r + Λt)(Pt +Wt︸ ︷︷ ︸
=Ft

)− 1 +
φa2t
2
− (γ − r)Wt.

The above expression can be integrated over time, t, to arrive at the second line of (20).
8For a derivation, conjecture that Ft = F (Vt,Wt), so Ḟt = FV (Vt,Wt)V̇t + FW (Vt,Wt)Ẇt. Differentiate
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incentive condition (7), the limited liability constraints, and the conjecture that payouts to

the lender are smooth, in that dC = cdt. Note that it is always possible to stipulate that the

lender receives an incremental payout of ∆ dollars, which leaves V unchanged but changes

W by −∆ dollars.9 That is, controlling payouts to the lender is equivalent to controlling

W . As a result, we can formulate the dynamic optimization problem of the lender such that

W instead of c enters the HJB equation (21) as a control variable. Optimal payouts to the

lender are then defined as the residual that implements the optimal W ; see Section 3.2.

The optimality of payouts c requires that

∂F (V,W )

∂c
= −FW (V,W ) = 0.

Substituting FW (V,W ) = 0 back into (21), we can rewrite (21) as

rF (V ) = max
a∈[0,ā],W

{
1− φa2

2
− (γ − r)W − λF (V ) + F ′(V )

(
(γ + λ)V −W

)}
, (22)

where (with a slight abuse of notation) F is a function of V only and W is a control. Equation

(22) is solved subject to the incentive condition for monitoring effort (7), i.e., W = φa, and

the principal’s and the agent’s limited liability conditions, i.e., W ∈ [0, F (V )].

Moral hazard over screening and the provision of screening incentives distort the opti-

mal choice of monitoring incentives away from the benchmark with contractible (observable)

screening. However, because the optimal contract must provide appropriate screening in-

centives only at inception at time t = 0− and the provision of these incentives as well as

the distortion of monitoring incentives are costly due to γ > r, these distortions decrease

(20) with respect to time to get

Ḟt = (r + λt)Ft − 1 +
φa2t
2
− (γ − r)Wt,

which becomes (21) after inserting Ḟt = FV (Vt,Wt)V̇t + FW (Vt,Wt)Ẇt and Ft = F (Vt,Wt).
9If payouts to the lender are not smooth, then it follows similar to (12) that

dWt = (γ + λt)Wtdt+
φa2t
2
dt− dCt,

so a payout of dC = ∆ dollars reduces W by ∆, that is, dW = −∆.
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over time. That is, optimal monitoring at and the total surplus Ft derived under the optimal

contract from time t onward approach the respective levels of the benchmark with observable

screening as t tends to ∞, in that

lim
t→∞

(at,Wt, Vt, Ft) = (aB(q),WB(q), V B(q), FB(q)).

As time t tends to infinity, the state variable V approaches V B(q) which is defined in (19).

Expressed in terms of the state variable V , equation (22) is solved subject to the boundary

condition

lim
V→V B(q)

F (V ) = FB(q). (23)

We show in the Appendix that κq = V0 > V B(q) in optimum. Over time, V drifts down

to V B(q), in that V̇t < 0 with limt→∞ V̇t = 0. Thus, the state space can be characterized

by the interval (V B(q), V0]. The value function is downward sloping, with F ′(V ) < 0 for

V ∈ (V B(q), V0]. We also show that the value function is strictly concave.

Having characterized the model solution for t ≥ 0 and given screening effort q, we are now

in a position to endogenize screening effort. Optimal screening effort q = q∗ maximizes the

initial value of surplus net of the screening cost while satisfying the incentive compatibility

condition (10):

q∗ = arg max
q∈[0,q̄]

(
F (V0)− κq2

2

)
s.t. V0 = κq. (24)

The following proposition summarizes the properties of the optimal contract.

Proposition 2 (Moral hazard over screening and monitoring). In optimum, the state vari-

ables Wt and Vt are characterized in (6) and (11) respectively, and follow the dynamics (12)

and (13) respectively. Furthermore, the following holds:

1. For any given q, total surplus at time t is a function of V only, in that Ft = F (Vt).

The value function F (V ) solves (22) subject to boundary condition (23).

2. Optimal monitoring is characterized by the maximization in (22) subject to (7). Opti-

mal screening effort q = q∗ is characterized in (24).
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Figure 1: The quantities characterizing the optimal contract. In the upper panels, the
vertical dashed red line denotes the V0. In the lower panels, the horizontal dotted red line denotes
the benchmark levels that are attained in the limit t→∞.

3. When q = q∗ > 0, it holds that κq = V0 > V B(q), and V drifts down (i.e., V̇t < 0) to

V B(q), but never reaches V B(q) (i.e., Vt > V B(q)).

4. The value function F (V ) strictly decreases in V on [V B(q), V0) with limV→V B(q) F
′(V ) ≤

0, so that F ′(V ) < 0 for V > V B(q). The value function is strictly concave.

5. Payouts to the agent are smooth and positive.

Figure 1 provides a numerical example of the optimal contract. For the numerical anal-

ysis, we normalize r = 0 and Λ = 1 so that, without monitoring and screening, the ex-

pected time to default is 1/Λ = 1 year and the loan has a pre-effort (or intrinsic) value

1/(Λ + r) = 1.10 In addition, we set γ = 0.1 and φ = κ = 9 to generate the desired trade-

offs. Last, we pick ā = 0.125 and q̄ = 0.24 to satisfy conditions (14) and (15). Our parameter

choice implies that the constraints at ≤ ā and q ≤ q̄ never bind. The model’s qualitative

outcomes are robust to the choice of these parameters.

10Λ need not be interpreted as the actual rate of default (absent screening and monitoring), but can rather
be seen as risk-adjusted default intensity (i.e., the default intensity under the risk-neutral measure).
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The three upper panels of Figure 1 plot total surplus F (V ), monitoring a(V ), and the

agent’s flow payouts c(V ) as functions of the state variable V . The contract starts at V = V0

and V decreases with time. Observe that flow payouts c(V ) to the agent are always positive.

Likewise, as c(V ) < 1 at any time V ≤ V0, flow payouts to the principal 1−c(V ) are positive

too. As Vt is a deterministic function of time (before default), we can represent the evolution

of the contract quantities over time. This is done in the lower three panels depicting screening

incentives Vt, total surplus Ft, and monitoring effort at as functions of time t (for t < τ). As

Wt is proportional to at by Wt = φat, it is not plotted separately. Observe that Vt, Wt, and at

decrease over time with a decreasing speed. In contrast, total surplus Ft increases over time.

These dynamics of the value function Ft = F (Vt) and monitoring effort at = a(Vt) are shaped

by the optimal incentive provision for screening. As screening only occurs at time t = 0,

screening incentives and therefore the agent’s exposure to loan performance are front-loaded,

thereby inducing a monitoring effort that exceeds the benchmark level aB(q∗). Intuitively,

the provision of screening incentives distorts monitoring incentives upward, which is costly

and curbs total surplus. Over time, these distortions taper off, improving total (continuation)

surplus Ft which approaches the second-best level in the long run.

3 Incentive provision and implementation

3.1 Dynamics of incentives

We start by analyzing optimal incentives. Optimal monitoring follows from the first-order

condition in (22):

a(V ) =

Reduction of
default risk︷ ︸︸ ︷
F (V )

Screening
incentives(>0)︷ ︸︸ ︷

−F ′(V )(V + φ)−

Agency
costs︷ ︸︸ ︷

(γ − r)φ
φ︸︷︷︸

Physical cost

∧ F (V )

φ
, (25)

where a(V ) = F (V )
φ

when the limited liability constraint F (V ) = W (V ) binds and x ∧ y =

min{x, y}. Optimal monitoring a(V ) is determined by several factors. First, monitoring
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reduces default risk, but comes at physical costs. Second, monitoring incentives require

deferring the agent’s payments, which implies that W > 0 and is costly due to the discount

rate differential, generating agency costs. Third, monitoring incentives are linked to screening

incentives V0 via V0 =
∫∞

0
e−γt−

∫ t
0 λsdsWtdt, in that stronger monitoring incentives at any

time t > 0 increase screening incentives at time t = 0. This effect results from two separate

forces: (i) more monitoring at reduces the default intensity λt, increasing the expected time

to default; (ii) more monitoring incentives require exposing the agent to loan performance

by raising Wt, which also improves screening incentives. This effect is positive and, all else

equal, increases monitoring effort and incentives above the benchmark level aB = aB(q∗); see

Figure 1. As screening is only performed at t = 0, its benefits for the agent, as captured by

Vt in (11), decrease over time within the optimal contract, converging to V B = V B(q∗) (see

Figure 1). Because the strength of screening and monitoring incentives are linked, monitoring

incentives and, hence, monitoring effort also decrease over time, approaching aB(q∗) in the

limit. As a consequence, the instantaneous default rate λt increases over time. Formally,

because the value function is strictly concave, monitoring effort a(V ) decreases with V and

decreases over time due to V̇ < 0. The following corollary summarizes our findings:

Corollary 1. Suppose that W (V ) < F (V ). Then, monitoring effort a(V ) and the agent’s

deferred compensation W (V ) = φa(V ) increase with the marginal benefits of screening V , in

that a′(V ) > 0. Because V decreases over time, monitoring effort and deferred compensation

decrease over time, with limat→∞ at = aB.

To aid in the intuition of the model solution, Figure 2 plots optimal screening and mon-

itoring efforts against the cost parameters φ and κ and the baseline default intensity Λ, and

the lender’s discount rate/cost of capital γ. As monitoring effort at changes over time, we

plot it at three different times, i.e., t = 0, t = 5, and t→∞, to better capture its dynamics.

Panels A, B, E, and F of Figure 2 show that monitoring effort at and screening effort q

decrease with both the physical costs of monitoring and screening, φ and κ. That is, screen-

ing and monitoring efforts are complements. The underlying mechanism is that screening

and monitoring incentives are determined and linked by the agent’s deferred compensation.
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Figure 2: Comparative Statics. This figure plots monitoring effort at at t = 0 (solid black
line), at t = 5 (dotted red line), and t→∞ (dashed yellow line) and screening effort q∗ against the
parameters φ, κ, Λ, and γ. We use our baseline parameters.

Thus, the provision of strong screening incentives implies and requires strong monitoring

incentives, while strong monitoring incentives boost the agent’s screening incentives. As

a result, when the cost of screening κ increases, it becomes optimal to reduce contracted

screening effort, leading to lower screening incentives and, as such, to lower monitoring (in-

centives). Likewise, when the cost of monitoring φ increases, it becomes optimal to curb

contracted monitoring and monitoring incentives, leading to lower screening (incentives).

Panels C and G of Figure 2 illustrate that a decrease in the quality of the borrower (or

in the quality of the loan), as reflected by the higher baseline default intensity Λ, leads to

a decrease in monitoring and screening, due to lower marginal benefits of monitoring and

screening. That is, our paper suggests a two-way relation between credit risk and lenders’

screening and monitoring. Notably, a worsening of credit quality leads to lax monitoring and

screening, which in turn exacerbates credit risk. Our model, therefore, provides a rationale

for the segmentation observed in credit markets. According to our analysis, banks that exert

high screening and high monitoring (e.g., via loan covenants) typically finance high quality
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(low Λ) borrowers with high priority loans. By contrast, lenders who tend to screen or

monitor less (e.g., online lenders) finance lower quality borrowers. Our analysis also suggests

that when screening is more lax, monitoring should also be more lax. It is therefore consistent

with the trend observed in the leveraged loan market, in which the incidence of including

covenants is decreasing and where more than 80% of outstanding loans in 2020 are covenant

light according to S&P Global Market Intelligence.11

Finally, Panels D and H of Figure 2 show that, as the lender’s cost of capital (discount

rate) γ increases, it becomes more costly to delay payouts to the lender and to provide

incentives, so that screening and monitoring efforts decrease with γ.

3.2 Implementation

This section shows that the optimal contract can be implemented by having the lender retain

a time-decreasing share of the loan. At origination, the lender retains a fraction β0 of the

loan and sells a fraction 1 − β0 to outside investors. After origination at times t ≥ 0, the

lender smoothly sells off its stake βt so that it decreases over time. That is, the agent owns

a fraction βt of the loan at time t, where βt is adjusted to provide appropriate incentives Wt.

A per-unit claim on the loan pays the loan rate 1 up to default at time τ and therefore

has a competitive price

Lt =

∫ ∞
t

e−r(s−t)−
∫ s
t λudu1 ds, (26)

at any time t ≥ 0. Lt is linked to credit risk via the instantaneous default intensities {λs}s≥t.

Over a short period of time [t, t+ dt], the agent receives βt1dt in interest payments from

the loan. In addition, she sells the loan at rate −β̇tdt, which yields trading revenues −β̇tLtdt.

Therefore, matching the payoffs of the optimal contract requires that:

βt − β̇tLt = ct. (27)

11A similar trend can be observed in the corporate bond market in which we observe both a declining
quality of borrowers and a decrease in the usage of bond covenants. See e.g. Celik, Demirtaş, and Isaksson
(2019). Relatedly, Ivashina and Vallée (2021) find in recent research that weakening clauses in loan contracts
(i.e., clauses that weaken covenants) are particularly common when banks retain a smaller share of the loan.
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Figure 3: Implementation of the optimal contract and per unit value of the loan.

As the HJB equation (22) determines optimal monitoring incentives, and hence optimal

deferred compensation Wt = W (Vt), the agent’s payouts are implicitly characterized in (12).

That is, we can solve (12) to get

ct = (γ + λt)Wt +
φa2

t

2
− Ẇt > 0. (28)

This equation, together with equation (27), implies that

βt − β̇tLt = (γ + λt)Wt +
φa2

t

2
− Ẇt, (29)

which pins down the rate β̇t at which the agent sells off her stake (see also Appendix D.2).

Figure 3 presents a numerical example of the implementation of the optimal contract and

plots the (per-unit) value of the loan and the issuer’s stake against time t. As time passes,

the agent sells her stake βt and monitoring incentives decrease, which increases default risk

and decreases the (per unit) value of the loan Lt. Also observe that the selloff speed, as,

for instance, captured by −β̇t, decreases with time t since origination (i.e., βt is convex and

decreasing in t approaching some level βB). The interpretation is that most of the loan

sales occur (relatively) shortly after origination, consistent with (Blickle et al., 2022). The

following proposition summarizes our results:

Proposition 3 (Implementation). The optimal contract can be implemented as follows. The

agent retains a fraction βt of the originated loan at time t, whereby a unit stake pays out a

flow payoff of 1 dollars until liquidation at time τ and has a competitive time-t price given
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by (26). Over time, the agent sells its stake according to (29).

Finally, it is instructive to discuss the implementation of the optimal contract when there

is only one type of moral hazard, i.e., either over screening or monitoring but not both. First,

when there is only moral hazard over monitoring (i.e., q is observable and contractible), the

solution is characterized in Section 2.2.1, and the optimal contract is time-stationary with

constant monitoring aB(q) = WB(q)/φ and constant payouts cB(q) up to default which can

be implemented by having the agent retain a constant share of the loans βB(q) = cB(q).

Second, Appendix D.3 solves the model when there is no moral hazard over monitoring

(i.e., at is observable and contractible). As shown in Appendix D.3, the optimal contract can

then be implemented by requiring the agent to retain the entire loan until an (endogenous)

time τ 0, at which point the lender sells its entire stake to investors. This implementation

maximizes the agent’s exposure to loan performance before time τ 0, while respecting the

principal’s limited liability. Thus, quite surprisingly, less severe agency conflicts, i.e., remov-

ing moral hazard over monitoring, actually increase the lender’s optimal initial retention, as

optimal initial retention in the baseline model with moral hazard over both tasks is smaller

than one. While the setting without monitoring moral hazard resembles that of Hartman-

Glaser et al. (2012), there is one important difference in that both the agent and the principal

have limited liability. By adding a limited liability constraint on the principal’s side, we ob-

tain that the optimal contract is implementable using standard securities, a result that does

not obtain in Hartman-Glaser et al. (2012).

The following proposition summarizes these results.

Proposition 4. When there is no moral hazard over screening, the optimal contract can be

implemented by having the agent retain a constant fraction of the loan. When there is no

moral hazard over monitoring, the optimal contract can then be implemented by requiring the

agent to retain the entire loan until (endogenous) time τ 0. At time τ 0, the lender sells its

entire stake to the investors.
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3.3 Optimal retention and retention dynamics

The optimal contract between the loan originator and outside investors can be implemented

by having the loan originator retain a time-decreasing stake in the loan. As a result, both

the initial retention level and the speed at which the lender sells its stake determine the

strength of dynamic screening and monitoring incentives. We now study how intrinsic credit

risk, the costs of monitoring and screening, and the originator’s cost of capital affect initial

retention and selloff dynamics. To this end, the upper three panels of Figure 4 plot the

lender’s retention level βT for T = 0 (solid black line), T = 3 (dotted red line), and T →∞

(dashed yellow line) against κ, φ, Λ, and γ. The lower three panels of Figure 4 plot a measure

of the selloff speed, 1− βT/β0, against κ, φ, Λ, and γ. Notice that 1− βT/β0 is the fraction

of its initial stake that the lender sells up to time T ; thus, if 1 − βT/β0 is high (low), the

lender sells off its initially stake quickly (slowly).

Figure 4 reveals that, as intrinsic credit risk Λ or the lender’s discount rate γ increase,

retention decreases and selloff speed increases (see Panels C, D, G, and H), so that the lender’s

incentives to screen and monitor decrease, in line with Figure 2. The model, therefore,

predicts that originator initially retains a lower fraction of the loan and sells its stake faster

when ex-ante credit risk (Λ) is high or when it is more capital-constrained. These results are

in line with the findings in Blickle et al. (2022) that lead share sales are positively correlated

with the ex-ante riskiness of the loan and the lead arranger’s capital constraints, in Irani,

Iyer, Meisenzahl, and Peydro (2021) that less-capitalized banks reduce loan retention, and

in Adelino, Gerardi, and Hartman-Glaser (2019) that mortgage quality is positively related

to the time to sale for securitized mortgages.12 Figure 4 also shows that, when φ or γ is

large, the originator sells nearly its entire share (relatively) shortly after origination as part

of the optimal contract, rationalizing the findings of Blickle et al. (2022).

Panels A and E present the effects of the cost of screening κ on retention and selloff

speed. Initial retention decreases with κ, however, selloff speed is hump-shaped in κ.13 As κ

12Although the authors interpret their finding in the context of an adverse selection model (see, e.g., Daley
and Green (2012)), our results show that moral hazard generates similar patterns.

13These results are robust for a larger range of κ and across different parameter values.
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Figure 4: Retention and dynamics. The figure plots initial retention and selloff speed as
functions of the costs of screening and monitoring κ and φ, intrinsic credit quality Λ, and the
lender’s cost of capital γ.

increases, contracted screening and monitoring efforts decrease, due to the complementarity

of screening and monitoring, leading to a decrease in incentives and initial retention. To get

some intuition for why selloff speed is the highest for intermediate κ, note that when κ is

sufficiently low, moral hazard over screening becomes negligible and the optimal contract only

needs to incentivize monitoring. Thus, the contract comes close to that in the benchmark

with only monitoring moral hazard and a constant level of retention, that is, a zero selloff

speed (see Proposition 4). When κ is sufficiently large and screening is prohibitively costly,

there is effectively no moral hazard over screening either as the agent’s choice of screening

effort tends to zero. Again, in this case, the contract comes close to that in the benchmark

with only monitoring moral hazard and a zero selloff speed. Consequently, screening effort,

which is monotonically decreasing in κ, can be either increasing or decreasing in selloff speed.

Panels B and F of Figure 4 show the relation between the cost of monitoring φ and

the levels of retention and selloff speed. Remarkably, in contrast to the effect of κ, initial

retention is non-monotonic in φ. The intuition for why initial retention is the lowest for
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intermediate φ is related to the observation that when the cost of monitoring φ is sufficiently

low or prohibitively high, moral hazard over monitoring becomes negligible and the optimal

contract only needs to incentivize screening. According to Proposition 4, absent moral hazard

over monitoring, initial retention equals one and selloff occurs only after sufficient time has

elapsed. As a consequence, monitoring effort, which is monotonically decreasing in φ, can

be either increasing or decreasing in initial retention.

The above results have important implications for empirical research on incentives and

loan performance. First of all, our model implies that moral hazard in loan screening and

monitoring does not generate a simple relation between loan performance and initial retention

or selloff speed. As noted above, monitoring effort is non-monotonic in initial retention and

screening effort is non-monotonic in selloff speed. Because loan performance depends on

both screening and monitoring, these non-monotonic relations help rationalize the finding of

Blickle et al. (2022) that initial retention or selloff speed may not predict loan performance.

Instead, the model suggests that screening and monitoring are distinct and that screening

and monitoring levels can be separately matched with observables. Notably, we show that

while initial retention proxies for screening incentives and effort (in that both initial reten-

tion β0 and screening effort decrease with κ), it does not proxy monitoring incentives and

effort (as β0 is non-monotonic in φ but monitoring effort decreases with φ). The intuition

for this finding is that initial retention is more relevant for screening than for monitoring

because screening occurs at origination, while monitoring occurs after origination and thus

potentially after the loan originator has sold some of its stake. High initial retention β0

implies high future retention or high payoffs from loan sales after origination both of which,

ceteris paribus, raise screening incentives. In contrast, monitoring incentives after time t

depend only on the retention level βt at time t and selloff dynamics after time t, but not

directly on β0 or the loan sales up to time t. Thus, high initial retention, while stimulating

screening, may come along with low monitoring incentives when the originator quickly sells

off its share after origination.

According to our theory, proxies for monitoring should therefore take into account selloff
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dynamics. Indeed, selloff speed increases with φ and thus proxies monitoring incentives,

whereas it is non-monotonic in κ and so does not proxy screening incentives. Moreover,

Panel B of Figure 4 shows that, while initial retention β0 is U-shaped in φ, the lender’s

retention level βT at later times T decreases with the cost of monitoring φ. Interestingly,

and in line with our theory, Gustafson et al. (2021) find that monitoring in a given year is

positively related to the lead share in the same year.

3.4 The effects of credit ratings and CLOs

One way to alleviate moral hazard over screening is via a credit rating at origination of the

loans. Specifically, consider a setting in which the loan is rated once at origination, i.e., at

time t = 0 after screening effort has been chosen.14 For simplicity, we assume that the rating

agency perfectly observes the credit quality and reports it truthfully, in that the credit rating

is publicly observable and contractible. In our setting, the credit rating reveals the initial

credit quality and screening effort q that is chosen at origination.15 That is, with a credit

rating at time t = 0, screening effort becomes publicly observable and contractible (chosen

at time t = 0), which removes the moral hazard over screening at origination. Intuitively, the

credit rating at origination generates screening incentives, as lax screening would lead to a

low rating. Because the credit rating cannot condition on the actual levels of monitoring that

are chosen after the rating, it does not directly affect the originator’s monitoring incentives

after the time of the rating. As a result, the benchmark model without moral hazard over

screening described in section 2.2.1 can be seen as a model with credit ratings. Proposition

1 characterizes optimal screening and monitoring in this model.

Figure 5 illustrates the effects of credit ratings on outcome variables by plotting the

percentage change in monitoring effort (first row), screening effort (second row), and initial

retention (third row) at t = 0 due to a credit rating. As shown by the figure, the credit

14This assumption captures the feature of the market that ratings are issued relatively infrequently.
15Recall that the principal and the agent sign a contract at time t = 0−, just before screening effort is

chosen. The credit rating makes q publicly observable and contractible, so one can think of screening and
credit rating occurring simultaneously. Another way to think about credit rating is as follows. The rating
could also happen after screening effort is chosen: then, investors get their money back (and the contract is
reneged) if the bank deviates from the promised screening effort, which makes screening effort contractible.
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Figure 5: The effects of credit ratings. ∆y denotes the percentage change in the initial value
of the outcome variable y caused by a credit rating, where y ∈ {a0, q

∗, β0}. Outcome variables are
plotted as functions of the cost of monitoring κ, the cost of screening φ, the raw default intensity
Λ, and the lender’s discount rate γ.

rating increases screening at origination but reduces monitoring a0. The reason is that the

credit rating increases the agent’s incentives to screen loans at origination without requiring

increasing its skin in the game. The agent, therefore, requires lower screening incentives

through deferred payouts and hence retains a lower share in the loan, leading to lower

monitoring incentives. Intuitively, the credit rating at origination can be understood as a

complement to the lender’s screening, and as a substitute to her monitoring. Notably, Figure

5 shows that under all parameters considered, a credit rating reduces initial retention β0.

The intuition is that by removing moral hazard over screening, the credit rating allows the

bank to reduce its incentives-based exposure to the loan (and eliminate front-loading). In

addition, and as shown in Proposition 1, the credit rating affects the optimal retention level

and implies that the bank (loan originator) retains a constant stake in the loan. Thus, the

credit rating reduces both initial retention and the selloff speed.

A standard way for originators to reduce their share in the loans they originate is to use
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securitization, for example, by including CLOs in the syndicate. A salient feature of CLOs

is that each loan included in the deal gets rated. Our findings on the effects of credit ratings

imply that loans included in a CLO should feature more screening at origination and less

monitoring after origination. Moreover, our model predicts that the share retained by the

originator should be lower when the originator sells to CLOs.

4 The effects of loan maturity

In our baseline model, loans have infinite maturity. As screening and monitoring efforts have

effects of different duration, loan maturity could have different effects on these two tasks. In

fact, we do show in this section that loan maturity can have opposing effects on screening and

monitoring. To model finite maturity, we follow Chen, Xu, and Yang (2021) and consider

that the loan randomly matures with Poisson intensity δ > 0. That is, ignoring default, the

expected loan maturity is 1/δ. Up to its maturity date, the loan makes coupon payments

at rate 1. When the loan matures at t, the firm pays back the face value F δ
t . That is, at

maturity, the game ends, the lender and outside investors exit, and F δ
t represents their joint

terminal payoff. The baseline setting corresponds to the case δ = 0.

With finite maturity loans, the contracting problem is essentially the same as in the

baseline model, except that one needs to take into account the impact of finite maturity

on the value function and the state variables. With finite maturity, the total continuation

surplus satisfies

Ft =

∫ ∞
t

e−(r+δ)(s−t)−
∫ s
t λudu

(
1− φa2

s

2
− (γ − r)Ws + δF δ

s

)
ds. (30)

This expression differs from that in the baseline model in (20) as the loan matures at rate

δ, leading to the terminal payoff F δ
s when the loan matures at time s. With finite maturity,

the agent’s screening incentives at time t = 0 read

V0 =

∫ ∞
0

e−(γ+δ)t−
∫ t
0 λsdsWtdt. (31)
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Figure 6: The effects of debt maturity. We use our baseline parameters and set T = 3 for
selloff speed. The dotted red line depicts the outcomes with infinite debt maturity.

At the time of maturity, the lender exits and is no longer exposed to default risk, so its

screening incentives fall to zero; thus, the difference between (11) (for t = 0) and (31) is that

δ augments the discount rate, which reduces screening incentives V0. This is also reflected

in the law of motion of Vt which becomes

V̇t = (γ + δ + λt)Vt −Wt. (32)

That is, shorter maturity reduces the duration of the lender’s claim and thus the lender’s

exposure to loan performance, thereby undermining screening incentives. In contrast, loan

maturity has no direct effect on monitoring incentives, as the impact of monitoring at time t is

instantaneous. According to (31), screening incentives V0 decrease with δ (i.e., increase with

loan maturity 1/δ). In other words, keeping monitoring effort at and the lender’s value Wt

constant, shorter maturity reduces the duration of the lender’s incentives and thus weakens

screening incentives. The detailed model description and the remainder of the solution to

the model with finite maturity including HJB equation are contained in Appendix D.5.

We numerically solve the model for different loan maturities under our baseline parame-
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ters. We find that the contract dynamics in the model with finite maturity are qualitatively

similar to those in the baseline model. That is, V decreases over time while monitoring

incentives increase and the contract can be implemented by requiring the originator to hold

a time-decreasing share of the loan. Moreover, in Appendix D.5.2, we replicate Figures 2 and

4 for finite loan maturity and show that the results remain qualitatively similar. As such,

our key findings on retention, selloff dynamics, and screening and monitoring incentives are

robust to changing the loan maturity.

Figure 6 plots initial monitoring effort a0 (which is proportional to the initial value of the

lender’s exposure W0) (Panel A) and screening effort q∗ (Panel D) for varying loan maturities.

Recall that screening incentives V0 are a product of the value and the duration of the lender’s

exposure. As discussed above, short maturity undermines the lender’s screening incentives

by shortening the duration of the lender’s claim and its exposure to loan performance. To

counteract this adverse effect, the optimal contract stipulates a higher value of the lender’s

initial exposure W0 for short maturity loans (Panel A). The duration effect dominates, and

so screening effort decreases for short maturity loans (Panel D). At the same time, high W0

generates high initial monitoring incentives and high monitoring effort a0 for short maturity

loans. Therefore, our model predicts relatively low (high) screening but high (low) initial

monitoring for corporate loans with a short (long) maturity.

The effects of debt maturity on screening and monitoring feed back into default risk.

Notably, Panel E of Figure 6 shows that because monitoring has less persistent effects than

screening and the initially high-powered monitoring incentives taper off over time as the

lender sells off her stake, loans with shorter maturity have higher default risk (i.e. a lower

expected time to default τ̄). Thus, in our model with endogenous default intensity, credit risk

decreases as maturity increases (i.e., τ̄ increases with 1/δ).16 Panel B of Figure 6 shows that

total surplus increases with debt maturity due to lower agency costs. Our model, therefore,

16To compare credit risk across different loan maturities on a fair basis, we calculate the expected time to
default (at time t = 0) conditional on the loans not maturing. That is we use the (inverse) measure of credit
risk

τ :=

∫ ∞
0

e−
∫ t
0
λududt

which eliminates the effect of maturity on the duration over which the loan is exposed to credit risk.
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provides a rationale for the use of long-term debt in the presence of agency frictions at the

loan originator level. Figure 6 also plots the initial share retained by the originator and the

selloff speed against loan maturity in Panels C and F.17 The optimal contract implements

high initial monitoring for short maturity loans by frontloading the agent’s compensation.

Interestingly, this is achieved by increasing the selloff speed for shorter maturity loans (see

Panel F), while initial retention β0 decreases (Panel C).

5 Is it optimal to bundle monitoring and screening?

We have so far assumed that the loan originator is responsible for both screening and moni-

toring. In practice, screening and monitoring may be undertaken by separate entities. Some

securitized loans are serviced by a third-party serving company and, depending on the spe-

cific arrangements, servicing can subsume monitoring activities. In these cases, the originator

is in charge of screening and the servicer in charge of monitoring. An important question is

therefore whether bundling screening and monitoring affects incentives and credit risk.

To address this question, we consider a setting in which monitoring and screening are

conducted by two different agents (called the monitor and screener). To make the comparison

with the baseline model sensible, we assume that the monitor and the screener have identical

preferences; monitoring effort (screening effort) is only and privately observed by the monitor

(screener). Appendix D.6 provides the detailed description and solution to the model with

separated screening and monitoring tasks. Below, we describe the intuition for the optimal

contract, its dynamics, and present numerical results related to key outcome variables under

the baseline and this model variant.

Screening and monitoring incentives are provided by having the screener and monitor

retain a share of the loan. The screener’s and monitor’s shares add up to one until sufficient

time has elapsed and the screener sells off its entire stake at once to investors; the monitor

continues to maintain (time-varying) exposure to the loans. Notably, monitoring incentives

17When calculating the retention level βt, one must also calculate the market value of debt Lt, as β̇tLt +
βtµ = ct holds. We impose “value-matching” when calculating the market value of debt in that the value of
debt Lt is the same “just before” and at maturity. This implies Lt =

∫∞
t
e−r(s−t)−

∫ s
t
λududs.
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Figure 7: The effects of bundling screening and monitoring. ∆a0 denotes the percentage
change in monitoring effort at t = 0 due to bundling. ∆q∗ denotes the percentage change in screening effort
due to bundling. ∆F0− denotes the percentage change in total surplus at t = 0− caused by bundling. ∆τ
denotes the percentage change in the expected time to default due to bundling. Outcome variables are
plotted as functions of the cost of monitoring κ, the cost of screening φ, the raw default intensity Λ, and
loan maturity 1/δ under the baseline parameters.

(provided to the monitor) have two opposing effects on screening incentives. On the one hand,

monitoring reduces the likelihood of default, leading to a longer lasting impact of screening

and therefore to stronger screening incentives. On the other hand, stronger monitoring

incentives require raising the monitor’s stake, which, in turn, requires lowering the screener’s

stake as their shares add up to one. This second effect leads to negative spillovers between

monitoring and screening incentives. In contrast, when one agent is responsible for both

monitoring and screening, monitoring unambiguously boosts screening incentives, leading to

positive spillovers between monitoring and screening incentives.

As a result, while bundling monitoring and screening leads to positive synergies, sepa-

rating these two tasks can lead to negative synergies. Accordingly, bundling screening and

monitoring leads to higher screening and monitoring efforts, increases total surplus, and

reduces credit risk (i.e., increases the expected time to default). Figure 7 illustrates these

findings and shows that they are robust to changes in the κ, φ, Λ, and 1/δ. Under all param-
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eters considered, bundling increases (initial) monitoring (i.e., ∆a0 > 0), screening (∆q∗ > 0),

and total surplus (∆F0− > 0). Our model therefore predicts relatively low levels of monitor-

ing and screening in the mortgage market, where screening and monitoring tasks are often

separated (Demiroglu and James, 2012).

Also notice that according to Figure 7, bundling screening and monitoring increases total

surplus and reduces credit relatively less, the larger the cost of screening or monitoring, the

larger intrinsic credit Λ, or the longer the loan maturity. One interpretation of this result

is that when, for instance, monitoring borrowers is difficult after origination in that φ is

large, bundling of separating and monitoring is less likely to occur. According to our model,

bundling is more likely to occur in credit markets in which screening and monitoring are

important for credit risk (i.e., the effects of screening/monitoring are large relative to the

cost), such as the market for corporate loans.

6 Conclusion

We study a dynamic moral hazard problem in which a lender (e.g., the lead bank in a

syndicate) originates a loan to sell it to investors (e.g., other financial institutions in the

syndicate). The lender controls the loan’s default risk through screening at origination

and monitoring after origination, both of which are subject to moral hazard. Screening

and monitoring incentives are provided by exposing the lender to loan performance. As

screening occurs only once at the origination of the loan, incentives are front-loaded and

stronger shortly after origination. The optimal contract can be implemented by requiring the

loan originator to retain a time-decreasing stake in the loan so that its incentives to monitor

decrease and credit default risk increases over time. The model implies that there are positive

synergies between screening and monitoring incentives, making screening and monitoring

complements. The optimal contract also implies that screening and monitoring decrease

with intrinsic (pre-screening) credit risk, suggesting that lenders specializing in financing

high-quality borrowers (such as banks) exert higher levels of screening and monitoring.

The unique and novel feature of our paper is that it allows us to analyze how loan and
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originator characteristics affect initial retention and subsequent loan sales, thereby ratio-

nalizing a number of empirical findings and providing new testable empirical hypotheses.

For instance, we show that initial retention decreases while the selloff speed increases with

borrowers’ intrinsic credit risk, the lender’s cost of capital, or loan maturity. Moreover, our

model implies that while initial retention increases with the cost of screening, which maps

one-to-one to hidden screening effort, it is non-monotonic in the cost of monitoring, which

maps one-to-one to hidden monitoring effort. In contrast, the speed at which the lender sells

off its stake in the loan increases with the cost of screening, but is non-monotonic in the

cost of monitoring. Our model, therefore, suggests that the originator’s initial retention can

serve as a proxy for screening but not for monitoring incentives, whereas the selloff speed

can serve as a proxy for monitoring but not screening incentives.

Our model is simple and general enough that it can be used to analyze a wide range

of credit markets. For example, we extend our model to analyze the provision of incentives

when screening and monitoring are performed by separate entities, which is often the case for

mortgages: An originator that selects loans initially and a servicer that monitors them later.

We show that such a separation of monitoring and screening tasks reduces both monitoring

and screening effort, thereby increasing credit risk.

Finally, the moral hazard problem we study also has applications in contexts other than

credit securitization and syndicated lending. In particular, screening before funding an

investment and monitoring afterward is also common in venture capital financing (see Bern-

stein, Giroud, and Townsend (2016) for evidence on monitoring and Abuzov (2022) for evi-

dence on screening). Our theory could be easily modified to study venture capital financing

with moral hazard over screening and monitoring. We leave this for future research.
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Appendix

A Proof of Lemma 1

We first characterize the agent’s monitoring incentives. By the dynamic programming principle

and the arguments presented in the main text, the agent chooses monitoring effort at to solve

max
at∈[0,ā]

(
atWt −

φa2
t

2

)
, (A.1)

which yields

at = min

{
Wt

φ
, ā

}
.

Observe that when optimal monitoring effort is interior and at < ā, the above condition simplifies to

(7), i.e., at = Wt
φ , which is the first order condition to (A.1). The second order condition to (A.1),

i.e., ∂2

∂a2t

(
atWt − φa2t

2

)
= −φ < 0, is satisfied. Thus, contracted effort level within an incentive

compatible contract satisfies ât = Wt/φ.

Second, we characterize the agent’s screening incentives. Note that the agent chooses her

screening effort to solve

max
q∈[0,q̄]

(
W0(q)− κq2

2

)
, (A.2)

where we make the dependence of W0 on q explicit. Define

V0(q) =
∂

∂q
W0(q).

The integral expression (11) and the fact that Wt ≥ 0 (with strict inequality on a set with positive

measure) imply that V0(0) > 0. Thus, the solution q to (A.2) satisfies q > 0.

Now observe that

q = min

{
V0(q)

κ
, q̄

}
(A.3)

is the unique solution to (A.2) if

∂2

∂q2

(
W0(q)− κq2

2

)
=

∂

∂q
V0(q)− κ < 0 (A.4)

holds for any q ∈ [0, q̄], in which case the objective in (A.2) is strictly concave over the entire interval

[0, q̄] and the first order approach is valid. When optimal screening effort is interior, condition (A.3)

simplifies to (10), i.e., q = V0/κ, which is the first order condition to (A.2).

In what follows, we provide a sufficient condition for (A.4) to hold for all q ∈ [0, q̄], which

concludes the proof. Define

Yt(q) =
∂

∂q
Vt(q),
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and note that (A.4) can be rewritten as Y0(q) < κ. Next, insert at = Wt(q)/φ into (13) to obtain

V̇t =
dVt(q)

dt
=

(
γ + Λ− Wt(q)

φ
− q
)
Vt(q)−Wt(q), (A.5)

bearing in mind λt = Λ−Wt(q)/φ− q. We now differentiate (A.5) with respect to q to obtain

Ẏt =
dYt(q)

dt
= (γ + λt)Yt(q)− 2Vt(q)−

(Vt(q))
2

φ
.

We can integrate the above ODE over time to obtain

Yt(q) =

∫ ∞
t

e−γ(s−t)−
∫ s
t λudu

(
2Vs(q) +

(Vs(q))
2

φ

)
ds (A.6)

for all t ≥ 0. In addition, (11) implies

Vt(q) =

∫ ∞
t

e−γ(s−t)−
∫ s
t λuduWs(q)ds (A.7)

for all t ≥ 0. Note now that (owing to at ≤ ā and q ≤ q̄)

λt = Λ− at − q ≥ Λ− ā− q̄. (A.8)

Next, observe that the agent’s continuation value is bounded from above by

Wt ≤ Ft =

∫ ∞
t

e−r(s−t)−
∫ s
t λudu

(
1− φa2

s

2
− (γ − r)Ws

)
ds

<

∫ ∞
t

e−(r+Λ−ā−q̄)(s−t)1ds =
1

r + Λ− ā− q̄
=: Wmax (A.9)

where the first inequality follows from outside investors’ limited liability, i.e., Pt = Ft −Wt ≥ 0.

Using these two relations (A.8) and (A.9) as well as (A.7), we obtain that

Vt(q) <

∫ ∞
t

e−γ(s−t)−
∫ s
t λuduWmaxds ≤

∫ ∞
t

e−(γ+Λ−ā−q̄)(s−t)Wmaxds

≤ Wmax

γ + Λ− ā− q̄
<

1

(r + Λ− ā− q̄)(γ + Λ− ā− q̄)
(A.10)

Using this inequality (A.10) and the integral representation in (A.6), we obtain that

Yt(q) =

∫ ∞
t

e−γ(s−t)−
∫ s
t λudu

(
2Vs(q) +

(Vs(q))
2

φ

)
ds

≤
∫ ∞
t

e−(γ+Λ−ā−q̄)(s−t)
(

2Vs(q) +
(Vs(q))

2

φ

)
ds

<
1

(γ + Λ− ā− q̄)

(
2

(r + Λ− ā− q̄)(γ + Λ− ā− q̄)
+

1

φ(r + Λ− ā− q̄)2(γ + Λ− ā− q̄)2

)
.
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As a result, a sufficient condition for (A.4), i.e., for

Y0(q) < κ,

to hold for any q ∈ [0, q̄] is given by

κ >
2

(r + Λ− ā− q̄)(γ + Λ− ā− q̄)2
+

1

φ(r + Λ− ā− q̄)2(γ + Λ− ā− q̄)3
. (A.11)

That is, when (A.11) holds, the first order approach is valid and (A.3) or, equivalenty, (10) (due

to q < q̄) pins down screening effort. Note that (A.11) is equivalent to condition (14) (Lemma 1).

Also notice that (14) but not per-se necessary.

B Proof of Proposition 1

To characterize the model solution when screening q is observable and contractible, we proceed in

several steps. We first fix q and solve the continuation problem for times t > 0. We then determine

optimal screening effort, q = qB.

At any time t > 0, total surplus, Ft = Pt +Wt, can be written as

Ft =

∫ ∞
t

e−r(s−t)−
∫ s
t λudu(1ds− dCs)︸ ︷︷ ︸
=Pt

+

∫ ∞
t

e−γ(s−t)−
∫ s
t λudu

(
dCs −

φa2
s

2
ds

)
︸ ︷︷ ︸

=Wt

,

where

Pt =

∫ ∞
t

e−r(s−t)−
∫ s
t λudu(1ds− dCs)

is the principal’s continuation payoff and

Wt =

∫ ∞
t

e−γ(s−t)−
∫ s
t λudu

(
dCs −

φa2
s

2
ds

)
is the agent’s continuation payoff from time t onward. We can differentiate the expressions for Wt

and Pt with respect to time, t, to get

dPt = (r + λt)Ptdt− 1dt+ dCt (B.12)

dWt = (γ + λt)Wtdt+
φa2

t

2
dt− dCt. (B.13)

As a result, the dynamics of total surplus are given by

dFt = dPt + dWt (B.14)

= (r + λt)Ptdt− 1dt+ dCt + (γ + λt)Wtdt− dCt +
φa2

t

2
dt

= (r + λt)(Pt +Wt︸ ︷︷ ︸
=Ft

)dt− 1dt+
φa2

t

2
dt− (γ − r)Wtdt. (B.15)
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We can integrate (B.14) over time, t, to get

Ft =

∫ ∞
t

e−r(s−t)−
∫ s
t λudu

(
1− φa2

s

2
− (γ − r)Ws

)
ds, (B.16)

which is (20) from the main text.

Recall that the agent chooses the payout agreement C to maximize total surplus at time zero

F0 −
κq2

2
, (B.17)

where F0 is characterized in (B.16). Note that it is always possible to stipulate payouts dCt to

the agent, which decreases Wt by amount dCt. As such, controlling payouts to the agent dCt is

equivalent to controlling the agent’s continuation payoff Wt. In the following, we take Wt rather

than dCt as control variable for the dynamic optimization, and we drop the control variable dCt.

By the dynamic programming principle, total surplus Ft must solve at any time t > 0 the HJB

equation

rFt = max
Wt∈[0,Ft],at≥0

(
1− φa2

t

2
− (γ − r)Wt + Ḟt − λtFt

)
,

which is solved subject to the monitoring incentive condition (7) and where Ḟt = dFt
dt . As default

is the only source of uncertainty and as there are no relevant state variables for this dynamic

optimization problem, the solution is stationary, so that Ḟt = 0 and we can omit time sub-scripts

(i.e., we write Ft = FB(q)). In turn, the HJB equation simplifies to

rFB(q) = max
W∈[0,FB(q)],a∈[0,ā]

(
1− φa2

2
− (γ − r)W − λFB(q)

)
(B.18)

subject to the monitoring incentive constraint (7), which can be rewritten as (18).

The maximization in the above HJB equation yields that, if interior, optimal monitoring effort

reads

aB(q) =
FB(q)− φ(γ − r)

φ
, (B.19)

and the optimal lender continuation value is WB(q) = φaB(q), due to (7). With a slight abuse

of notation, if the above expression for aB(q) is negative, then optimal monitoring effort aB(q) is

zero. If the above expression for aB(q) exceeds ā, then optimal monitoring effort aB(q) is ā. Note

that the first order condition (B.19) implies φaB(q) = WB(q) < FB(q), so the principal’s limited

liability constraint does not bind in optimum. Since, clearly, FB(q) increases with q, it follows that

aB(q) increases with q, i.e., ∂
∂qa

B(q)

Optimal monitoring effort implies the instantaneous default probability λ = λB(q) = Λ − q −
aB(q). The law of motion (B.12) and dWt = 0 imply then that payouts to the agent take the form

dCt = cB(q)dt with

cB(q) = (γ + λB(q))WB(q) +
φ(aB(q)2

2
. (B.20)

That is, payouts to the agent are smooth and positive.
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The objective (B.17) can be rewritten as

max
q∈[0,q̄]

(
FB(q)− κq2

2

)
. (B.21)

At time t = 0, the agent chooses screening effort q ∈ [0, q̄] to maximize (B.21), leading to optimal

screening effort qB.

C Proof of Proposition 2

C.1 Preliminaries

To begin with, we derive the dynamics of Wt, i.e., (12), the dynamics of Vt (defined in (9)), and the

integral expression (11). Now, recall the definition of Wt in (6) and differentiate (6) with respect

to time, t, to obtain

Ẇt :=
dWt

dt
= (γ + λt)Wt +

φa2
t

2
− ct,

which is (12). Using (12), we can write the intermediary’s optimization with respect to monitoring

effort at at time t as

γWt = max
at∈[0,ā]

(
− (Λ− at − q)︸ ︷︷ ︸

=λt

Wt −
φa2

t

2
+ ct + Ẇt

)
, (C.22)

which yields optimal at = min
{
Wt
φ , a

}
(as in (7)) and, as we focus on interior levels, at = Wt/φ.

Next, note that because screening effort q is neither observable nor contractible, an unobserved

change in screening effort q cannot affect contracted flow payments ct. We now use the envelope

theorem to differentiate both sides of (C.22) under optimal at with respect to q so that

γVt = Wt − λtVt + V̇t ⇐⇒ V̇t = (γ + λt)Vt −Wt,

which is (13) as desired. Note that we used ∂
∂qẆt = ∂

∂q
d
dtWt = d

dt
∂
∂qWt = dVt

dt = V̇t as well as
∂
∂q

∂Wt
∂at

= 0 (envelope theorem) and ∂ct
∂q = 0.18 We can integrate V̇t = (γ + λt)Vt −Wt over time t

to obtain the integral expression (11), that is, Vt =
∫∞
t e−γ(s−t)−

∫ s
t λuduWsds.

The remainder of the proof is split in six parts. Part I characterizes total surplus as a function

of the agent’s screening incentives Vt = V and shows that in optimum, total surplus (i.e., the value

18In more detail, note that

d

dq
Wt =

∂Wt

∂q
+
∂Wt

∂at

∂at
∂q

+
∂Wt

∂ct

∂ct
∂q

=
∂

∂q
Wt.

as ∂Wt

∂at
= 0 and ∂ct

∂q = 0. An alternative derivation (not relying explicitly on envelope theorem) simply

rewrites (12) by inserting monitoring incentive compatibility, at = Wt/φ, to obtain

Ẇt =

(
γ + Λ− Wt

φ
− q
)
Wt +

W 2
t

2φ
− ct.
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function F (V )) solves the HJB equation (22). Part II demonstrates that limt→∞ Vt = V B(q). Part

III characterizes the agent’s initial choice of optimal screening effort q = q∗. Part IV verifies that

κq∗ = V0 > V B(q∗), and shows that V̇t < 0 at all times t ≥ 0. Part V proves that total surplus

(i.e., the value function) decreases in V and is concave. Part VI shows that payouts to the agent

are smooth and positive. As stated in the main text, we focus (unless otherwise mentioned) on

optimal interior effort levels, at ∈ (0, ā) and q ∈ (0, q̄). As in the main text, we characterize the

solution for t ≥ 0 given screening effort q, and then determine the optimal screening effort q = q∗;

unless necessary we do not distinguish notation-wise between q and the optimally chosen screening

effort q∗.

We make the following regularity assumption. Throughout, we assume that there exists a

unique solution F (V ) to the HJB equation (22) which is continuously differentiable. Further, we

assume that the second derivative F ′′(V ) exists almost everywhere in the state space (V B(q), V0)

(i.e., the set of points at which F ′(V ) is not differentiable is not dense).

C.2 Part I

Our aim is to characterize the model solution when screening effort q is neither observable nor

contractible. As in the proof of Proposition 1, we first fix the choice of q made at time t = 0 and

solve the continuation problem for times t > 0. Recall that according to Lemma 1, the incentive

condition (10) holds at time t = 0 so that V0 = κq.

The optimal contract maximizes total surplus characterized in (B.16):

Ft =

∫ ∞
t

e−r(s−t)−
∫ s
t λudu

(
1− φa2

s

2
− (γ − r)Ws

)
ds.

Note that it is always possible to stipulate payouts dCt to the agent, which decreases Wt by

amount dCt and leaves Vt unchanged. As such, controlling payouts to the agent dCt is equivalent

to controlling the agent’s continuation payoff Wt. In the following, we take Wt rather than dCt
as control variable. Thus, the agent’s optimization problem only depends on the state variable Vt
summarizing the agent’s screening incentives. As a consequence, we can express total surplus as

function of Vt, in that Ft = F (Vt). In what follows, we omit time-subscripts whenever possible.

Recall that screening incentives V evolve according to (13), i.e., V̇ = (γ + λ)V −W. By the

dynamic programming principle, total surplus F (V ) solves in any state V the HJB equation

rF (V ) = max
W∈[0,F (V )],a∈[0,ā]

(
1− φa2

2
− (γ − r)W

)
− λF (V ) + F ′(V )((γ + λ)V −W ),

which is solved subject to the monitoring incentive constraint (7). Recall that both the principal

and the agent are subject to limited liability, so that W ∈ [0, F (V )] and the principal’s payoff

Differentiating both sides with respect to q and using ∂ct
∂q = 0, we obtain

V̇t = (γ + λt)Vt −Wt −
VtWt

φ
+
VtWt

φ
,

which simplifies to (13), as desired.
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F (V )−W satisfies F (V )−W ∈ [0, F (V )] too. The above HJB equation coincides with (22). The

maximization in the above HJB equation yields that, if interior, optimal monitoring effort is

a(V ) =
F (V )− F ′(V )(V + φ)− (γ − r)φ

φ
∧ W (C), (C.23)

which is (25).

Under the benchmark solution from Proposition 1 (for given q), all model quantities are con-

stant, monitoring is aB(q), and the agent’s continuation value is WB(q) = φaB(q). As such,

screening incentives are constant at level V B(q) and by inserting V̇ = 0 and the optimal levels of

effort aB(q) and continuation value WB(q) = φaB(q) into (13), we can solve for

V B(q) =
WB(q)

γ + Λ− aB(q)− q
. (C.24)

It follows that when V = V B(q), the continuation surplus is FB(q). That is, the surplus function

F (V ) satisfies

F (V B(q)) = FB(q). (C.25)

Also note that optimal effort a(V ) satisfies a(V B(q)) = aB(q). In the next Part (i.e., Part II) of

the proof, we show that limt→∞ Vt = V B(q), which then—together with (C.25)—implies

lim
V→V B(q)

F (V ) = FB(q),

as well as limV→V B(q) a(V ) = aB(q).

C.3 Part II

As a next step, we prove that limt→∞ Vt = V B(q). To do so, we set up the Lagrangian for the total

surplus maximization at time t = 0

L =

∫ ∞
0

e−rt−
∫ t
0 λudu

(
1− (γ − r)Wt −

φa2
t

2

)
dt︸ ︷︷ ︸

=F0

+`
(
κq −

∫ ∞
0

e−γt−
∫ t
0 λuduWtdt︸ ︷︷ ︸

=V0

)

= F0 + `(κq − V0). (C.26)

where ` is the Lagrange multiplier with respect to the screening incentive constraint (10) and

Wt = φat is the effort incentive constraint which we directly insert into the objective function.

Next, we rewrite (B.14) as

dFt = rFtdt− 1dt+ (γ − r)Wtdt−
φa2

t

2
dt+ λFtdt,

which can be integrated over time to obtain

Ft =

∫ ∞
t

e−r(s−t)
(

1− φa2
s

2
− (γ − r)Ws − λsFs

)
ds. (C.27)
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Likewise, we can rewrite (13) as

dVt = γVtdt−Wtdt+ λtVtdt,

which can be integrated over time to get

Vt =

∫ ∞
t

e−γ(s−t) (Ws − λsVs) ds. (C.28)

Using (C.27) and (C.28), we can rewrite the Lagrangian (C.26) as

L =

∫ ∞
0

e−rt
(

1− (γ − r)Wt −
φa2

t

2
− λtFt

)
dt+ `

(
κq −

∫ ∞
0

e−γt(Wt − λtVt)dt
)
. (C.29)

We can maximize the Lagrangian point-wise (that is, for each time t) with respect to at, taking

into account the monitoring incentive constraint (7), i.e., at = Wt/φ. If interior, optimal effort at
satisfies the first order condition:

e−rt(Ft − (γ − r)φ− φat)− `e−γt(φ+ Vt) = 0 (C.30)

Multiplying both sides of (C.30) by ert, we obtain

Ft − (γ − r)φ− φat − `e−(γ−r)t(φ+ Vt) = 0. (C.31)

We can solve (C.31) for

at =
Ft − (γ − r)φ− `e−(γ−r)t(Vt + φ)

φ
. (C.32)

Taking the limit t→∞ in (C.32) leads to

lim
t→∞

at = lim
t→∞

(
Ft − (γ − r)φ

φ

)
, (C.33)

as Vt is bounded (see inequality (A.10) in the proof of Lemma 1 and note that by definition, Vt ≥ 0).

We conjecture (and verify) that, in the limit t → ∞, the solution becomes stationary and Ft
and at become constant, in that

lim
t→∞

Ft = F̂ and lim
t→∞

at = â

for (endogenous) constants F̂ and â.19 Note that by (C.33),

â =
F̂ − (γ − r)φ

φ
. (C.34)

19Equivalently,
lim
t→∞

Ḟt = 0 and lim
t→∞

ȧt = 0.
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Using that Wt → φâ and λt → Λ− â− q as t→∞, we can use (20) to calculate that

F̂ =
1− (γ − r)φâ− φâ2

2

r + Λ− â− q
, (C.35)

which confirms that limt→∞ Ft = F̂ . As

â = arg max
a∈[0,ā]

(
1− (γ − r)φa− φa2

2

r + Λ− a− q

)
, (C.36)

it follows that optimal effort satisfies limt→∞ at = â for an endogenous constant â.

Recall the definition of FB(q) from (B.18). Now note that (C.34) and (C.35) as well as (C.36)

jointly imply that F̂ = FB(q) and âA = aB(q), so that Ŵ = WB(q). As a result, it also follows

that

lim
t→∞

Vt = lim
t→∞

∫ ∞
t

e−γ(s−t)−
∫ s
t λuduWsds =

φâ

γ + Λ− â− q
= V B(q) and lim

t→∞
V̇t = 0. (C.37)

As Vt is the only relevant state variable for the dynamic optimization problem, it follows that Vt
cannot have a stationary point Vt 6= V B(q) with V̇t = 0, as otherwise (C.37) would not hold.

That is, when V0 = κq > V B(q), it follows that V̇t < 0, with convergence according to (C.37).

Likewise, when V0 = κq < V B(q), it follows that V̇t > 0, with convergence according to (C.37). In

the knife-edge case V0 = κq = V B(q), it holds that Vt = V B(q) and V̇t = 0.

Last, we characterize the limit limV→V B(q) F
′(V ). Note that due to (C.25), that is, F (V B(q)) =

FB(q), and limt→∞ Vt = V B(q), it follows that limV→V B(q) F (V ) = FB(q) and limV→V B(q) a(V ) =

aB(q). We know from Proposition 1 thatWB(q) < FB(q), so that limV→V B(q)W (V ) < limV→V B(q) F (V ).

Thus, for V close to V B(q), the principal’s limited liability constraint does not bind. Using (C.23),

limV→V B(q) a(V ) = aB(q) becomes equivalent to

lim
V→V B(q)

F ′(V ) = 0, (C.38)

when aB(q) > 0. In the case that aB(q) = V B(q) = 0, we have

lim
V→V B(q)

F ′(V ) =
(FB(q)− (γ − r)φ)

φ
≤ 0, (C.39)

so that a(V ) from (C.23) converges to aB(q) = 0 as V → V B(q) = 0.

C.4 Part III

At time t = 0, initial screening incentive V0 pins down screening effort q by means of the screening

incentive constraint (10). The agent picks the amount of initial screening incentives V0 to maximize

max
q∈[0,q̄]

(
F (V0)− κq2

2

)
s.t. V0 = κq. (C.40)

A9



Even if optimal screening is not interior and satisfies q∗ = q̄, it would be optimal to set V0 = κq∗,

as F (V ) decreases in V > V B(q) and the screening incentive condition (10) is optimally tight.

The first order condition to (C.40) is

∂F (V0)

∂q
|q=q∗ + F ′(V0)κ = κq∗, (C.41)

which holds if q = q∗ ∈ (0, q̄).

C.5 Part IV

We now explicitly distinguish between q∗ (optimal screening level) and q (potentially different

screening). This part of the proof shows that in optimum (i.e., for q = q∗), we have κq∗ = V0 >

V B(q∗). Because limt→∞ Vt = V B(q∗) and because there is no stationary point with V̇t = 0,

V0 > V B(q∗) implies V̇t < 0 at all times t ≥ 0. It suffices to consider q∗ > 0 and aB(q∗) > 0.

Suppose to the contrary that

κq∗ = V0 ≤ V B(q∗) =
WB(q∗)

γ + Λ− aB(q∗)− q∗
, (C.42)

where the last equality follows (C.24). Note that Wt ≤ Ft at all times t ≥ 0 and, in particular,

WB(q∗) ≤ FB(q∗). We then obtain

κq∗ = V0 ≤
WB(q∗)

γ + Λ− aB(q∗)− q∗
<

FB(q∗)

r + Λ− aB(q∗)− q∗
, (C.43)

where the first inequality follows (C.42) and the second inequality uses γ > r andWB(q∗) ≤ FB(q∗).

Next, define the following (continuous) function (of q):

G(q) := FB(q)− κq2

2
.

For any screening effort q ∈ (0, q̄), recall the HJB equation for V = V B(q), that is, (B.18) or

rFB(q) = max
W∈[0,FB(q)],a∈[0,ā]

(
1− φa2

2
− (γ − r)W − λFB(q)

)
.

We can use the envelope theorem and differentiate both sides of (B.18) with respect to q to obtain

under the optimal controls (WB(q), aB(q)):

(r + λ)
∂FB(q)

∂q
= FB(q) ⇐⇒ ∂FB(q)

∂q
=

FB(q)

r + Λ− aB(q)− q
> 0. (C.44)

As aB(q) increases with q (see Proposition 1), above relation implies that ∂2FB(q)
∂q2

> 0 and ∂3FB(q)
∂q3

>

0. Using (C.44), we obtain

G′(q) =
FB(q)

r + Λ− aB(q)− q
− κq. (C.45)
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We also calculate

G′′(q) =
∂2

∂q2
FB(q)− κ and G′′′(q) =

∂3

∂q3
FB(q) > 0.

Due to G′′′(q) > 0, the function G(q) is either concave on the entire interval [0, q̄] or concave on an

interval [0, q′] and convex on the interval [q′, q̄] for q′ < q̄. This observation implies that G(q) has

at most one local maximum on [0, q̄].

We focus on interior optimal levels of q. Therefore, the maximum of G(q) on the interval [0, q̄]

is denoted by

qB = arg max
q∈[0,q̄]

G(q) = arg max
q∈[0,q̄]

(
FB(q)− κq2

2

)
,

and satisfies G′(qB) = 0 (first order condition) as well as G′′(qB) < 0 (second order condition).

Thus, qB < q̄ holds by assumption, and q = qB is the unique maximum of G(q) on [0, q̄]. Hence, on

[0, qB), G′(q) 6= 0, and G′(qB) = 0. As G′′(qB) < 0 and G′′′(q) > 0, it follows that G′′(q) < 0 on the

interval [0, qB). Furthermore, G(q) must strictly increase on the interval [0, qB), in that G′(q) > 0

and G′′(q) < 0 for q ∈ [0, qB).

Next, define the (continuous) function of q:

K(q) := V B(q)− κq, (C.46)

with V B(q) from (C.24), that is,

V B(q) =
WB(q)

γ + Λ− aB(q)− q
=

φaB(q)

γ + Λ− aB(q)− q
.

Recall that aB(q) and WB(q) = φaB(q) increase with q (see Proposition 1). Thus, the function

V B(q) is strictly convex, implying that K(q) is strictly convex too. Observe that

K(q) = V B(q)− κq =
WB(q)

γ + Λ− aB(q)− q
− κq < FB(q)

r + Λ− aB(q)− q
− κq = G′(q), (C.47)

where the first inequality uses that r < γ and WB(q) ≤ FB(q) and the last equality uses (C.45).

Because i) G′(q) has a unique root on [0, qB], ii) because K(q) < G′(q), iii) because K(q) is convex,

and iv) because K(0) ≥ 0, K(q) has a unique root q̂ < qB on [0, qB] so that K(q̂) = 0, K(q) > 0

for q < q̂, and K(q) < 0 for q ∈ (q̂, qB]. If K(q) had a second root q2 with qB ≥ q2 > q̂, then it

must be due to convexity that K ′(q) > 0 for q ≥ q2 and thus K(qB) ≥ G′(qB) = 0, a contradiction

to (C.47).

Next, note that for q = q̄:

K(q̄) =
WB(q̄)

γ + Λ− aB(q̄)− q̄
− κq̄ =

aB(q̄)φ

γ + Λ− aB(q̄)− q̄
− κq̄ ≤ āφ

γ + Λ− ā− q̄
− κq̄ < 0,

where the second equality uses (7) and that the incentive constraint for monitoring effort binds, the

first inequality uses aB(q̄) ≤ ā, and the second inequality uses parameter condition (15). Because

K(q) is strictly convex on [0, q̄], K(q) has precisely one root on [0, q̄), which is denoted q̂ and
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satisfies q̂ < qB. Suppose now κq∗ = V0 < V B(q∗), which implies K(q∗) > 0. Because K(q) has a

unique root on [0, q̄], denoted q̂, it follows that q∗ < q̂ < qB.

Total initial surplus can now be written as

F0− = F0 −
κ(q∗)2

2
≤ FB(q∗)− κ(q∗)2

2
< FB(q̂)− κ(q̂)2

2
,

where the first inequality uses F0− ≤ FB(q) (which holds for any q) and the second inequality uses

that G(q) = FB(q)− κq2

2 strictly increases on [0, qB) as well as 0 < q∗ < q̂ < qB. As a result, total

surplus is higher under a stationary contract that implements screening q̂ and Vt = V B(q̂) = κq̂ at

all times t ≥ 0, which contradicts the optimality of q∗. Thus, V0 < V B(q∗) cannot be optimal.

Now consider the case V0 = V B(q∗) = κq∗, so that q∗ = q̂ < qB. Take ε > 0 and set qε = q∗+ ε

so that qε < qB. Because of q∗ < qB, it follows that

∂

∂q∗

(
FB(q∗)− κ(q∗)2

2

)
= G′(q∗) > 0, (C.48)

where G(q∗) = FB(q∗)− κ(q∗)2

2 is total surplus under the optimal choice of q, i.e., q = q∗ = q̂.

Under the screening level qε = q∗ + ε, it follows that κqε = V0 > V B(qε). Denote the value

function under screening level qε by F (V ). The total surplus under screening level qε is

F (V0)− κ(qε)2

2
= FB(qε) + F ′(V B(qε))ε+ o(ε2)− κ(qε)2

2
= FB(qε) + o(ε2)− κ(qε)2

2
,

=

(
FB(q∗)− κ(q∗)2

2

)
+

∂

∂q∗

(
FB(q∗)− κ(q∗)2

2

)
ε+ o(ε2), (C.49)

which — by (C.48) — exceeds FB(q∗)− κ(q∗)2

2 for ε > 0 sufficiently small. The second equality uses

that given screening level qε, limV→V B(qε) F
′(V ) = 0 (see (C.38)) which holds because of aB(qε) > 0

which in turn follows from aB(q∗) > 0 by continuity for small ε. However, this contradicts the

optimality of q = q∗. Thus, V0 = κq∗ > V B(q∗) holds under the optimal choice of q = q∗.

C.6 Part V

In this part, we show F ′(V ) < 0 in all accessible states and, in particular, verify our conjecture

that F ′(V0) ≤ 0.

First, consider F (V ) = W (V ), in that the principal’s limited liability constraint binds. The

expression for effort a(V ) = W (V )/φ in (C.23) implies that F ′(V ) < 0, because F ′(V ) ≥ 0 would

imply a(V ) < F (V )/φ and W (V ) < F (V ). Next, take F (V ) = W (V ) = φa(V ) and insert this

relation into the HJB equation (22) to obtain

γF (V ) = 1− F (V )2

2φ
−
(

Λ− q − F (V )

φ

)
F (V ) + F ′(V )

[(
γ + Λ− q − F (V )

φ

)
V − F (V )

]
.

At points V at which F ′(V ) is differentiable, we can differentiate above ODE with respect to V to
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calculate

F ′′(V ) =
(F ′(V ))2 − F ′(V )F (V )/φ+ (F ′(V ))2V/φ

(γ + λ)V − F (V )
< 0,

as we have shown that V̇ = (γ + λ)V −W < 0 as well as F ′(V ) < 0 for V > V B(q).

Second, suppose that F (V ) > W (V ) and the principal’s limited liability constraint does not

bind, and consider V > V B(q). To start with, note that because the principal’s limited liability

constraint does not bind, optimal effort a(V ) solves the first order condition ∂F (V )
∂a = 0 provided

a ∈ (0, ā). For any points V at which F ′(V ) is differentiable, we can then invoke the envelope

theorem and totally differentiate the HJB equation (22) under the optimal controls with respect to

V ,which yields

F ′′(V ) =
−(γ − r)F ′(V )

(γ + λ)V −W
. (C.50)

First, note that as shown in Part II of the proof, V̇ = (γ+λ)V −W < 0 for V > V B(q). Thus, F ′′(V )

has the same sign as F ′(V ). It follows by (C.50) that either F ′(V ), F ′′(V ) < 0 or F ′(V ), F ′′(V ) ≥ 0

must hold for all V ∈ (V B(q), V0].

Next, let us consider V = V B(q) (or the limit V → V B(q)). When aB(q) = 0, then (C.39)

implies limV→V B(q) F
′(V ) ≤ 0. Otherwise, when aB(q) > 0, theN (C.38) implies F ′(V B(q)) = 0

and — according to the expression for effort (C.23):

a(V B(q)) =
F (V B(q))− (γ − r)φ

φ
⇒ W (V B(q)) < F (V B(q)),

owing to γ > r.

If it were F ′(V ), F ′′(V ) ≥ 0 in a right-neigbhourhood of V B(q) (i.e., for V ∈ (V B(q), V B(q)+ε),

then F (V ) ≥ FB(q) for V ∈ (V B(q), V B(q) + ε) However, it must be that F (V ) < FB(q) for

V > V B(q), as providing higher screening incentive V > V B(q) than under the benchmark without

screening moral hazard for a given level of q necessarily reduces surplus. As a result, as F ′(V ) is

continuous, it follows that F ′(V ), F ′′(V ) < 0 in a right-neighbourhood of V B(q).

Note that when F ′(V ) is differentiable, then

sign(F ′′(V )) =

{
= −1 if W (V ) = F (V )

= sign(F ′(V )) if W (V ) < F (V ).

Combined with the fact that F ′(V ), F ′′(V ) < 0 in a right-neighbourhood of V B(q), it follows that

F ′′(V ) < 0 at all V ∈ (V B(q), V0) at which F ′(V ) is differentiable (and F ′′(V ) exists). As such,

the value function is strictly concave on (V B(q), V0).

C.7 Part VI

In this part, we show that payouts to the agent are smooth and positive.

We can solve (12) to get the payout rate

ct = (γ + λt)Wt +
φa2

t

2
− Ẇt. (C.51)
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If Ft = Wt, note that according to (B.14), Ḟt = (γ + λt)Ft − 1 +
φa2t

2 . Inserting the law of motion

Ḟt = Ẇt into (C.51) yields ct = 1 > 0.

Next, consider V = Vt with Wt < Ft. Then, according to (C.23):

a(V ) =
F (V )− F ′(V )[V + φ]− (γ − r)φ

φ
,

and, provided a(V ) is differentiable, then a′(V ) = −F ′′(V )[V+φ]
φ > 0, as F ′′(V ) < 0 when W < F (V ).

Thus, ȧt = a′(Vt)V̇t < 0 and, by (7), Ẇt < 0. Inserting Ẇt < 0 into (C.51) implies ct > 0.

D Additional results

D.1 Proof of Corollary 1

As the incentive constraint (7) implies W (V ) = φa(V ), it suffices to prove the claims for monitoring

effort a(V ) for any given q. Recall that by (C.23), optimal monitoring effort (if interior) satisfies

a(V ) =
F (V )− F ′(V )[V + φ]− (γ − r)φ

φ
,

so that (provided that a(V ) is differentiable)

a′(V ) =
−F ′′(V )[V + φ]

φ
.

As F ′′(V ) < 0 for V > V B(q), it follows that a′(V ) > 0 for V > V B(q).

Next, note that

lim
V→V B(q)

F ′(V ) = 0,

which implies limV→V B(q) a(V ) = aB(q).

D.2 Proof of Proposition 3 and details on the implementation

The proof of Proposition 3 follows from the arguments presented in the main text.

Next, we show how to calculate βt = β(Vt), given the optimal contract from Proposition 2

which yields a(V ), W (V ) = φa(V ), c(V ), and V̇ as functions of V as well as optimal screening q.

Recall that λt = Λ− at − q, where at = a(Vt).

First, observe that

Lt =

∫ ∞
t

e−r(s−t)−
∫ s
t λududs,

solves the ODE

(r + Λ− a(V )− q)L(V ) = 1 + L′(V )V̇
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subject to the boundary condition

lim
V→V B(q)

L′(V ) = 0 ⇐⇒ lim
V→V B(q)

L(V ) =
1

r + Λ− aB(q)− q
.

Second, calculate

Ẇt = W ′(Vt)V̇t and β̇(V ) = β′(Vt)V̇t,

where β(V ) is the agent’s retention level in state V under the proposed implementation of the

optimal contract. Third, insert these relations into (29) to obtain the following ODE in state V

β(V )− β′(V )V̇ L(V ) = (γ + Λ− a(V )− q)W (V ) +
φa(V )2

2
−W ′(V )V̇ , (D.52)

which is solved subject to

lim
V→V B(q)

β′(V ) = 0 ⇐⇒ lim
V→V B(q)

β(V ) = cB(q) = (γ+Λ−aB(q)−q)WB(q)+
φ(aB(q))2

2
. (D.53)

Noting there is a one-to-one mapping from time t to Vt = V , we thus obtain βt = β(Vt) by solving

(D.52), as desired. Under standard regularity conditions, well-known results imply the existence of a

solution of the ODE (D.52) subject to (D.53); throughout, we assume the existence and uniqueness

of such a solution.

D.3 Model variant with only moral hazard over screening

D.3.1 Solution

We characterize the model solution when there is no moral hazard over monitoring (i.e., monitoring

effort at is contractible), so that the incentive constraint (7) does not apply. However, there is still

moral hazard over screening, i.e., q is unobserved and not contractible. Analogous to the solution

of the baseline, we first provide the solution to the continuation problem for t ≥ 0 and a given level

of q. Then, we determine the optimal screening level q, taking into account the solution to the

continuation problem.

The agent’s continuation payoff follows20

dWt = (γ + λt)Wtdt+
φa2

t

2
dt− dCt, (D.54)

with payouts dCt. Noting that an unobserved change in q does not affect contracted monitoring

effort at (i.e., ∂at
∂q = ∂dCt

∂q = 0), we can differentiate this law of motion (D.54) with respect to

screening effort q to obtain (after simplifications) for Vt = ∂
∂qWt:

V̇t = (γ + λt)Vt −Wt,

20Since both dCt and at are contractible, one could define dĈt := dCt − φa2t
2 dt and write dWt = (γ +

λt)Wtdt− dĈt, where dĈt is a (contracted) choice variable.
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which is dynamics of the agent’s screening incentives. At time t = 0, the incentive constraint

V0 = κq pins down screening effort.

As in the baseline, the agent maximizes total surplus at time t = 0. The only relevant state

variable is V , while W is control variable. As such, total surplus (i.e., the value function) is a

function of V only and solves the HJB equation

rF (V ) = max
W∈[0,F (V )],a∈[0,ā]

{
1− φa2

2
− (γ − r)W − λF (V ) + F ′(V )((γ + λ)V −W )

}
, (D.55)

which is analogous to the baseline HJB equation (22). The key difference to the baseline (where

the incentive condition W = φa links monitoring effort and continuation value) is that without

moral hazard over monitoring (i.e., with contractible a) the monitoring incentive constraint does

not apply and W and a can be chosen independently in the optimization in (D.55). In what follows,

we assume that a unique solution to (D.55) (subject to a boundary condition specified later) exists.

The maximization with respect to monitoring effort, a, yields that, if interior, optimal moni-

toring effort is

a(V ) =
F (V )− F ′(V )V

φ
.

Note that (D.55) implies
∂rF (V )

∂W
= −(γ − r) + F ′(V ).

As such, the maximization with respect to the agent’s deferred compensation, i.e., W , in (D.55)

yields that

W (V )


= 0 if F ′(V ) > −(γ − r)
∈ [0, F (V )] if F ′(V ) = −(γ − r)
= F (V ) if F ′(V ) < −(γ − r).

(D.56)

Note now that when screening is observable and contractible (in addition to monitoring being

observable and contractible), then V B(q) = WB(q) = 0. As in the baseline, it follows that

limt→∞ Vt = V B(q) = 0, i.e., given q, the optimal contract approaches in the limit t → ∞ the

one with contractible screening. As a result, it must be that V̇t < 0 at all times t ≥ 0, in that

V̇ = (γ + λ)V −W (V ) < 0.

Owing to (D.56), this requires that W (V ) > 0 for V > 0 and so F ′(V ) ≤ −(γ − r) for V > 0.

Thus, it is (at least) weakly optimal to stipulate W (V ) = F (V ), which we can insert into the

HJB equation (D.55) to obtain

γF (V ) = max
a∈[0,ā]

{
1− φa2

2
− λF (V ) + F ′(V )((γ + λ)V − F (V ))

}
. (D.57)

Let us assume that F ′′(V ) exists and is well-defined. Using the envelope theorem, we totally

differentiate the HJB equation (D.57) (under the optimal control a = a(V )) with respect to V ,
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which yields

F ′′(V ) =
(F ′(V ))2

(γ + λ)V − F (V )
.

Due to V̇ = (γ+λ)V −F (V ) < 0, we have F ′′(V ) < 0, i.e., F (V ) is strictly concave. That is, F (V )

is strictly concave for V > 0. If there exists now V̂ > 0 with F ′(V̂ ) = −(γ − r), then there exists

0 < V ′ < V̂ with F ′(V ′) > −(γ − r), a contradiction. As a result, F ′(V ) < −(γ − r) for all V > 0,

so that — indeed — W (V ) = F (V ) is optimal for V > 0.

When V equals zero, it must be that V̇ equals zero too, as — by definition — V cannot become

negative. As such, W (0) = 0, which requires by means of (D.56) that F ′(0) ≥ −(γ − r). As

F ′(V ) < −(γ − r) and F ′(V ) is continuous for all V > 0, it follows that F ′(0) = −(γ − r) which is

the boundary condition for the ODE (D.55). Notice that this boundary condition is equivalent to

lim
V→0

F (V ) = max
a∈[0,ā]

(
1− φa2

2

r + Λ− a− q

)
, (D.58)

which—given the level of q—is total surplus absent any moral hazard. Also observe that because

W (V ) = F (V ) > W (0) for V > 0 with limV ↓0W (V ) > 0, it follows that limV ↓0 V̇ (V ) > 0 = V̇ (0);

thus, state V = 0 is reached in finite τ0 = inf{t ≥ 0 : Vt = 0}.
Finally, we can determine optimal q. As in the baseline, optimal screening effort q∗ maximizes

total initial surplus F0− = F (V0)− κq2

2 subject to the incentive constraint V0 = κq.

D.3.2 Implementation of the optimal contract

We are now in the position to characterize the implementation of the optimal contract, described

above. For this sake, note that one unit claim in the pool of loans has a payout rate 1.

Next, we characterize the payouts to the agent and, doing so, we omit time subscripts unless

confusion is likely to arise. Recall from the previous section that

F (0) = lim
V ↓0

F (V ) = lim
V ↓0

W (V ) > W (0) = 0.

Using the law of motion for the agent’s continuation payoff

dW = (γ + λ)Wdt+
φa2

2
dt− dC,

it follows that the agent receives a payout dC = F (0) at the time V reaches zero, so as to induce

F (0) = limV ↓0W (V ) > W (0) = 0. When V > 0, then F (V ) = W (V ), and according to (B.14) for

W (V ) = F (V ):

dW = (γ + λ)Wdt+
φa2

2
dt− dC = (γ + λ)Fdt+

φa(V )2

2
dt− 1dt = dF,

yielding

dC = 1dt,

which equals coupon payments over an instant dt.
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As a result, the contract is implemented by requiring the agent to fully retain the pool of loans

until time τ0 = inf{t ≥ 0 : Vt = 0} and to sell them to outside investors at the time V reaches

zero. When V = 0 at time τ0, the agent sells her entire stake to the principal (outside investors),

and she receives the fair price of F (0) dollars, implementing the desired payout dC = F (0) to the

agent.

D.4 Proof of Proposition 4

The first claim follows from Proposition 1: It readily follows that the optimal contract can be

implemented by having the agent retain constant share βt = cB(q) of the loan. The second claim

follows from the solution as well as the implementation of the optimal when there is no moral

hazard over monitoring, presented in Appendix D.3.

D.5 Model extension with finite maturity

D.5.1 Solution

We now provide additional details, the solution, and derivations for the model variant with finite

debt maturity where δ > 0. The incentive constraints with respect to monitoring and screening

effort remain unchanged relative to the baseline, i.e., Wt = φat and V0 = κq, pinning down

λt = Λ − at − q. To solve the model, one first takes q as given to characterize the solution after

time t = 0; then, taking into account the continuation solution, one maximizes initial surplus

F0− = F0 − κq2

2 over q.

To begin with, we define the agent’s continuation value (before maturity) as

Wt =

∫ ∞
t

e−(γ+δ)(s−t)−
∫ s
t λudu

(
cs −

φa2
s

2
+ δdCδs

)
ds,

where dCδs is the agent’s payoff in the form of a lump-sum payment upon maturity (which occurs

randomly at rate δ) at time s and cs the payout rate before maturity (we conjecture and verify

that payments before maturity are smooth). Observe that over [t, t + dt), the loan matures with

proability δdt in which case the agent is paid dCδt dollars (note that dCδt is not of order dt).

Differentiating above expression with respect to time, t, we obtain:

Ẇt = (γ + δ + λ)Wt +
φa2

t

2
− ct − δdCδt . (D.59)

According to the dynamic programming principle, the agent solves at any time t the optimization:

(γ + δ)Wt = max
at∈[0,ā]

(
ct − λtWt −

φa2
t

2
+ δdCδt + Ẇt

)
, (D.60)

yielding at = Wt/φ (if monitoring effort is interior).

Note also that because screening effort q is neither observable nor contractible, an unobserved

change in screening effort q cannot affect contracted flow payments ct or the lump-sum payment

dCδt upon maturity. Using the envelope theorem (i.e., ∂
∂q

∂Wt
∂at

= 0) and ∂ct
∂q =

∂dCδt
∂q = 0, we can
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differentiate both sides of above equation (D.60) with respect to q to obtain for Vt = ∂
∂qWt:

21

V̇t = (γ + δ + λt)Vt −Wt,

which is (32). Equivalently, we obtain the integral representation

Vt =

∫ ∞
t

e−(γ+δ)(s−t)−
∫ s
t λuduWsds,

which becomes (31) for t = 0.

Next, we denote the continuation surplus after maturity at a time s by F δs . Thus, the continu-

ation surplus at time t before maturity is characterized in (30), i.e.,

Ft =

∫ ∞
t

e−(r+δ)(s−t)−
∫ s
t λudu

(
1− φa2

s

2
− (γ − r)Ws + δF δs

)
ds.

By the dynamic programming principle, the value function Ft = F (Vt,Wt) solves the HJB equation

(r + δ)F (V,W ) = max
a,c

{
1− φa2

2
− (γ − r)W − λF (V,W ) + δF δ

+ FV (V,W )((γ + δ + λ)V −W ) + FW (V,W )

(
(γ + λ+ δ)W +

φa2

2
− c− δW δ

)}
.

As in the baseline, the optimality of payouts requires

∂F (V,W )

∂c
= −FW (V,W ) = 0.

Recall that ex-ante, we do not restrict c to be positive, but afterward verify that c ≥ 0.

With slight abuse of notation, we write Ft = F (Vt) (i.e., Ft is a function of Vt only) and using

FW = 0, the HJB equation simplifies to

(r + δ)F (V ) = max
a,W

{
1− φa2

2
− (γ − r)W − λF (V ) + δF δ + F ′(V )

(
(γ + δ + λ)V −W

)}
,

(D.61)

with W = φa and W ≤ F (V ) (limited liability).

21An alternative derivation (not relying explicitly on envelope theorem) simply rewrites (D.59) by inserting
monitoring incentive compatibility, at = Wt/φ, to obtain

Ẇt =

(
γ + δ + Λ− Wt

φ
− q
)
Wt +

W 2
t

2φ
− ct − δdCδt .

Differentiating both sides with respect to q and using ∂ct
∂q =

∂dCδt
∂q = 0, we obtain

V̇t = (γ + δ + λt)Vt −Wt −
VtWt

φ
+
VtWt

φ
= (γ + δ + λt)Vt −Wt.
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As in the baseline, the state variable Vt converges to a limit V B(q), i.e., limt→∞ Vt = V B(q),

whereby limt→∞ V̇t = 0.22 Then, the HJB equation (D.61) is subject to the boundary condition

lim
V→V B(q)

F (V ) = FB(q) =

max
W∈[0,FB(q)]

(
1 + δF δ

r + Λ− a− q + δ
− (γ − r)W
r + Λ− a− q + δ

−
φa2

2

r + Λ− a− q + δ

)
, (D.62)

which is analogous to (23) in the baseline model. Here,

V B(q) =
WB(q)

r + δ + Λ− aB − q
with WB(q) = W (V B(q)) and aB(q) =

WB(q)

φ
. (D.63)

We assume that a unique solution to (D.61) (subject to above boundary condition) exists.

In addition, as in the baseline model, optimal screening effort q∗ = q maximizes total initial

surplus F0− = F (V0)− κq2

2 subject to the incentive constraint V0 = κq. We numerically verify that

(under the chosen parameters) in optimum, V0 ≥ V B(q), so that V̇t < 0 and Vt drifts down over time

V B(q), as well as that the value function is strictly concave and decreases (i.e., F ′(V ), F ′′(V ) < 0).

A rigorous proof could be constructed using analogous arguments as those presented in the proof

of Proposition 2.

In what follows, we assume for simplicity that F δs = Fs (or F δ = F (V )), i.e., the stochastic

maturity event leaves the total loan value unchanged, in which case (20) and (30) coincide. At

maturity, the lender is paid Wt and outside investors are paid Ft − Wt. Therefore, there is no

value effect associated with the maturity event.23 This assumption reflects in reduced form the

fact that the value of the loan is the same just before maturity and at maturity; in a model with a

deterministic maturity date, this property would be called a value matching condition.24

Thus, using F δ = F (V ), the HJB equation (D.61) simplifies to

rF (V ) = max
a,W

{
1− φa2

2
− (γ − r)W − λF (V ) + F ′(V )

(
(γ + δ + λ)V −W

)}
,

with W = φa and W ≤ F (limited liability). The boundary condition (D.62) simplifies to

lim
V→V B(q)

F (V ) = FB(q) = max
W∈[0,FB(q)]

(
1

r + Λ− a− q
− (γ − r)W
r + Λ− a− q

−
φa2

2

r + Λ− a− q

)
.

Optimal effort becomes

a(V ) =
F (V )− F ′(V )(V + φ)− (γ − r)φ

φ
∧ W (C).

22We numerically verify that, indeed, V̇t < 0. A formal proof could be constructed using arguments
analogous to those in the proof of Proposition 2.

23This assumption has no bearings on our key findings and is for mere simplicity; our results would remain
qualitatively unchanged had we assumed different F δt , for instance, F δt = K for a constant K ≥ 0.

24In reality, loans mature deterministically and this feature naturally holds, preventing arbitrage.
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It follows that a′(V ) ≥ 0 as well as ȧ, Ẇ < 0. The exact level of dCδt (or dCδ) is payoff-irrelevant

and does not affect key equilibrium quantities, such as total surplus, credit risk, and screening or

monitoring incentives. Thus, we can without loss of generality set dCδ = W , i.e., we assume that

the maturity event does not change the agent’s continuation value just as it does not change the

value of total surplus due to F δ = F (V ).

Finally, we can calculate the retention level βt via

βt − β̇tLt = ct ⇐⇒ β(V )− c(V ) = L(V )β′(V )V̇ ,

where the market value of debt, Lt = L(Vt), is defined as

Lt =

∫ ∞
t

e−(r+δ)(s−t)−
∫ s
t λudu(1 + δLδs)ds

and payouts to the agent, ct = c(Vt), read (after using dCδt = Wt in (D.59))

ct = (γ + λ)W +
φa2

2
− Ẇ ≥ 0.

Here, Lδs is the market value of debt at the maturity event (i.e., the “face value” repaid to lenders

at maturity). For simplicity, we assume — in line with F δs = Fs and dCδs = Ws — that Lδs = Ls,

leading to Lt =
∫∞
t e−r(s−t)−

∫ s
t λudu1ds. That is, the maturity event is value neutral for total surplus

F (V ), agent continuation value W (V ), and the value of debt.

D.5.2 Main results and figures with finite maturity

We now replicate Figures 2 and 4 for finite maturity, where we choose δ = 0.1. Similar to Figure

2 in the baseline (infinite maturity) case, Figure D.1 plots screening and monitoring effort against

κ, φ, Λ, and γ. Indeed, as Figure D.1 illustrates, monitoring and screening efforts decrease with κ,

φ, Λ, and γ, producing qualitatively similar patters as Figure 2 does.

Next, similar to Figure 4 in the baseline (infinite maturity) case, Figure D.2 plots retention

levels and selloff speed against κ, φ, Λ, and γ. Again, it can be seen that Figure D.2 produces

qualitatively similar results as Figure 4 does. As such, we conclude that our model’s key results

(on effort incentives and retention dynamics) are robust to the level of loan maturity.

D.6 Model variant with separation of screening and monitoring

We now assume that screening and monitoring are undertaken by two separate agents, referred to

as the screener and monitor respectively. Both the screener and monitor have identicaly prefer-

ences, i.e., they are risk-neutral with discount rate γ. Both screening q and monitoring at are not

observable nor contractible, and affect default rate λt = Λ − at − q. That is, only the screener

(monitor) observes screening (monitoring) effort q (at). A contract to the screener Cs stipulates

recommended screening q̂ and incremental payouts dCst ; a contract to the monitor Cm stipulates

recommended monitoring {ât} and incremental payouts dCmt . The contracts are chosen to max-

imize total surplus. We focus on incentive compatible contracts, so that in optimum q = q̂ and

at = ât.
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Figure D.1: Comparative statics with finite maturity. This figure plots monitoring effort
at at t = 0 (solid black line), at t = 5 (dotted red line), and t→∞ (dashed yellow line) and screening effort
q∗ against the parameters φ, κ, Λ, and γ. We use our baseline parameters and set δ = 0.1.
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Figure D.2: Retention and dynamics with finite maturity. We use our baseline parameters
and δ = 0.1.
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D.6.1 Optimals contract and solution with separation of screening and moni-

toring

Analogous to the solution of the baseline, we first provide the solution to the continuation problem

for t ≥ 0 and a given level of q. Then, we determine the optimal screening level q, taking into

account the solution to the continuation problem. We assume that monitoring effort (screening

effort) is only and privately observed by the monitor (screener).

Define the screener’s continuation value (from time t onward) as

W s
t =

∫ ∞
t

e−(γ+δ)(s−t)−
∫ s
t λudu(δdCs,δs ds+ dCss )

and the monitor’s continuation value (from time t onward) as

Wm
t =

∫ ∞
t

e−(γ+δ)(s−t)−
∫ s
t λudu

(
δdCm,δs ds+ dCms −

φa2
s

2
ds

)
,

where at is monitoring effort and q is screening effort, leading to λt = Λ−at− q. The loan matures

randomly at rate δ, and dCs,δt and dCm,δt are the screener’s and monitor’s payoffs (lump-sum

payments) in the event of maturity respectively (note that dCs,δt and dCm,δt are not of order dt).

That is, over [t, t+ dt), the loan matures with proability δdt in which case the screener (monitor)

is paid dCδ,st (dCδ,mt ) dollars.

As such, we obtain the following dynamics for continuation values:

dW s
t = (γ + λt + δ)W s

t dt− dCst − δdC
s,δ
t dt (D.64)

dWm
t = (γ + λt + δ)Wm

t dt− dCmt +
φa2

t

2
dt− δdCm,δt dt. (D.65)

As dCst and dCmt are not sign-restricted, we can treat W s
t and Wm

t as control variables in the

dynamic optimization problem, while dropping the controls dCst and dCmt . Moreover, as will

become clear later, the exact values of the payments δdCs,δt and δdCm,δt will turn out not to be

relevant for key equilibrium quantities, such as incentives, credit risk, or total surplus.

At any point in time, the monitor chooses effort at to maximize

(γ + δ)Wm
t = max

at∈[0,ā]

(
λtW

m
t + dCmt + δdCm,δt +

dWt

dt

)
.

Thus, optimal monitoring (if interior) is pinned down by the incentive condition

at =
Wm
t

φ
,

provided that monitoring effort at is interior. Next, the screener maximizes at time t = 0:

max
q∈[0,q̄]

W0 −
κq2

2
,
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As in the baseline version of the model, optimal screening is pinned down by the incentive condition

V0 = κq,

where we define Vt := ∂
∂qW

s
t as the screener’s “screening” incentives. The remainder of the solution,

similar to the baseline, features Vt as the main state variable, and W s
t and Wm

t are control variables

in the dynamic optimization.

Noting that an unobserved change in screening effort does not affect contracted payments, so

that
∂dCst
∂q =

∂dCs,δt
∂q = 0, or the monitor’s monitoring effort, so that ∂at

∂q = 0, we can differentiate

the dynamics of W s
t in (D.64) with respect to q to obtain for the screener’s incentives Vt :=

∂W s
t

∂q :

dVt = (γ + λt + δ)Vtdt−W s
t dt. (D.66)

Thus, the screener’s “screening” incentives in integral form read

Vt =

∫ ∞
t

e−(γ+δ)(s−t)−
∫ s
t λuduW s

s ds.

The optimal contracts to both the screener and monitor are designed to dynamically maximize

total surplus Ft. Total surplus Ft can be rewritten (using arguments analogous to the ones that

lead to (B.16)) as

Ft =

∫ ∞
t

e−(r+δ)(s−t)−
∫ s
t λudu

(
1− φa2

s

2
− (γ − r)(W s

s +Wm
s ) + δF δs

)
ds,

where F δs is the (continuation) surplus “just after” maturity (which occurs at rate δ). We will

specify the exact form of F δs below.

As in the baseline version of the model, screening incentives V is the only state variable for the

dynamic optimization problem, while Wm and W s can be treated as control variables. Accordingly,

by the dynamic programming principle, total surplus F (V ) solves the HJB equation

(r + δ)F (V ) = max
a,Wm,W s

{
1− φa2

2
− (γ − r)(Wm +W s)− λF (V )

+ δF δ + F ′(V )
(
(γ + λ+ δ)V −W s

)}
. (D.67)

Note that limited liability requires that Wm ∈ [0, F (V ) − W s] and W s ∈ [0, F (V ) − Wm] and

incentive compatibility with respect to monitoring requires that Wm = aφ. Throughout, we assume

existence and uniqueness of a solution to (D.67) (subject to a boundary condition specified below).

The maximization with respect to the screener’s deferred compensation W s yields that

W s(V )


= 0 if F ′(V ) > −(γ − r)
∈ [0, F (V )−Wm(V )] if F ′(V ) = −(γ − r)
= F (V )−Wm(V ) if F ′(V ) < −(γ − r).

(D.68)

As in the baseline, it follows that limt→∞ Vt = V B(q), where V B(q) is the level of screening
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incentives in the benchmark without screening moral hazard (given q).25 It follows that V B(q) = 0,

as absent screening moral hazard it is optimal to set Vt = W s
t = 0 at all times t ≥ 0.

As a result, it must be that V̇t < 0 at all times t ≥ 0, in that

V̇ = (γ + λ+ δ)V −W s(V ) < 0.

Owing to (D.68), this requires that W s(V ) > 0 for V > 0 and therefore F ′(V ) ≤ −(γ − r) for

V > 0. Next, suppose that F ′(V ) < −(γ − r) for V > 0, so W s(V ) = F (V ) −Wm(V ). Inserting

this expression into (D.67) and simplifying leads to the ordinary differential equation

(γ + δ)F (V ) = max
a,Wm

{
1− φa2

2
− λF (V ) + δF δ + F ′(V )

(
(γ + λ+ δ)V − F (V ) +Wm

)}
, (D.69)

whereby a = Wm/φ.

As in the main text (compare Section 4), we consider F δ = F (V ), so (D.69) simplifies to

γF (V ) = max
a,Wm

{
1− φa2

2
− λF (V ) + F ′(V )

(
(γ + λ+ δ)V − F (V ) +Wm

)}
. (D.70)

Using the envelope theorem to totally differentiate the HJB equation (D.70) (under the optimal

control Wm = φa) with respect to V yields

F ′′(V ) =

(
F ′(V )

)2 − δF ′(V )

(γ + λ+ δ)V − F (V ) +Wm
=

(
F ′(V )

)2 − δF ′(V )

V̇
,

where the second equality uses W s(V ) = F (V ) −Wm(V ) and V̇ = (γ + λ + δ)V − F (V ) + Wm

(see (D.66)). It must be that F ′(V ) < 0 for V > 0, as otherwise there exists a point V ′ > 0 with

F (V ′) > FB(q) which cannot be. That is, F (V ) is strictly concave for V > 0. If there exists

now V̂ > 0 with F ′(V̂ ) = −(γ − r), then there exists 0 < V ′ < V̂ with F ′(V ′) > −(γ − r), a

contradiction. As a result, F ′(V ) < −(γ − r) for all V > 0.

The maximization in (D.69) with respect to monitoring effort yields

a(V ) =
F (V )− F ′(V )V + F ′(V )φ

φ
. (D.71)

When V approaches zero, it must be that V̇ approaches zero too, as — by definition — V cannot

become negative. As such, W s(0) approaches zero, which requires by means of (D.68) that F ′(0) ≥
−(γ − r). As F ′(V ) < −(γ − r) for all V > 0, it follows — by continuity of F ′(V ) — that

limV→0 F
′(V ) = −(γ − r). An alternative way to derive this boundary condition is as follows.

Comparing (18) with (D.69), one can see that

lim
V→0

F (V ) = FB(q) = max
a∈[0,ā]

(
1− (γ − r)φa− 0.5φa2

r + Λ− a− q

)
25We omit the formal proof of this claim which could be constructed using arguments analogous to those

presented in Part II of Proposition 2.
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is equivalent to

lim
V→0

F ′(V ) = −(γ − r),

which is then natural the boundary condition for the ODE (D.69) as V approaches zero. We assume

that a unique solution to (D.69) (subject to above boundary condition) exists.

Finally, notice that the exact values of the payoffs upon maturity, i.e., dCm,δt and dCs,δt , are

not payoff-relevant, in a sense that they do not affect monitoring or screening incentives, credit

risk, or total surplus. Thus, as in Appendix D.5, we can assume that the maturity event does not

change the agent payoff, i.e., we stipulate dCs,δt = W s
t and Wm,δ

t = Wm
t . Again, this assumption is

without loss of generality, since the exact values of dCs,δt and Wm,δ
t do not affect key equilibrium

quantities, such as total surplus, credit risk, and screening or monitoring incentives.

The screener’s continuation payoff follows then the dynamics

dW s
t = (γ + λt)W

s
t dt− dCst .

Because limV ↓0W
s(V ) ≥W s(0) = 0, the the screener receives a payout of

dCs = W s(0) = F (0)−Wm(0)

dollars at the time V reaches zero, which occurs in finite time owing to limV ↓0 V̇ (V ) > 0 = V̇ (0).

As in the baseline, optimal screening effort q∗ maximizes total initial surplus F0− = F (V0)− κq2

2

subject to the incentive constraint V0 = κq.

D.6.2 Contract dynamics with separation of screening and monitoring

We show that when screening and monitoring are separate and φ > κq̄, then monitoring effort

increases over time, i.e., a′(V ) < 0 and ȧt > 0, so that credit and default risk decrease over time,

as opposed to the baseline in which monitoring effort decreases and credit risk increases over time.

Recall the monitoring effort from (D.71), that is,

a(V ) =
F (V )− F ′(V )V + F ′(V )φ

φ
.

We can differentiate a(V ) with respect to V to obtain

a′(V ) =
−F ′′(V )V + F ′′(V )φ

φ
.

As q < q̄ and V̇t ≤ 0, we have Vt < V0 ≤ κ̄q. Moreover, the value function is strictly concave, i.e.,

F ′′(V ) < 0, and — by assumption — φ > κq̄ holds, so that

a′(V ) ≤ −F
′′(V )(κq̄ − φ)

φ
< 0.

Thus, effort at increases over time, i.e., ȧt = a′(Vt)V̇t > 0.
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