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Abstract

By assuming that short-run returns are independent and identi-
cally distributed, it is straightforward to extrapolate short-run risks
to longer horizons. However, by generalizing the variance-ratio test to
include higher co-moments, we establish a significant and sizable in-
tertemporal dependency in all higher moments of equity returns. The
intertemporal dependency is strong enough to prevent the convergence
to normally distributed returns, at least up to a five-year holding pe-
riod. We also demonstrate that the intertemporal dependency is both
horizon and portfolio-specific. Consequently, the common practice of
extrapolating the short-run risk by assuming independent and identi-
cally distributed returns will severely bias the expected long-run risk.
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A simplifying assumption in finance is that returns are independent and
identically distributed (iid). Yes, it is an approximation, but it is usually
a surprisingly good approximation, at least when fitting the mean and the
volatility. However, when we include higher moments, skewness and kur-
tosis,1 the approximation seems to break down. For example, under the
assumption of iid monthly returns, we would expect to observe a skewness
of −0.09, and excess kurtosis of 0.13 at a five-year horizon, Table 1. Instead,
we actually observe a five-year skewness and excess kurtosis of −0.69 and
0.99, respectively. Consequently, when we include the tail risk,2 it suggests
that returns are not iid, not even as an approximation.

Therefore we wonder, how are returns distributed at different horizons?
Do returns converge as if they were iid? Moreover, a considerable fraction of
the asset pricing literature is based upon the existence of a linear risk factor
structure. Since each risk factor should capture a different type of risk, each
should also exhibit a different return distribution. Hence, do we observe
heterogeneity in the return distributions between different factor mimicking
portfolios? And finally, is the seemingly innocent assumption of iid returns
reasonable when we extrapolate short-run estimates to a longer horizon?

This paper makes three contributions. First, we establish the empirical
facts concerning the return distribution over different holding periods. Under
the assumption of iid returns, skewness and kurtosis should converge to zero
as short-run log-returns are compounded to a longer horizon. In contrast,
we demonstrate that the skewness can sometimes diverge from zero as the
holding period gets longer, which is the exact opposite of what is expected
from iid returns. The kurtosis is also inflated compared to what would be
expected from continuously compounded independent returns, which implies
that even long-run portfolio returns are prone to massive shocks. Hence,

1The statistical skewness captures the tilt of the distribution; are we more likely to
observe positive or negative deviations around the mean? The statistical kurtosis captures
the probability of observing massive deviations around the mean, the “fatness” of the tails
of the distribution.

2There exist slightly different definitions of “tail risk” in the literature. Expected
shortfall? Value at Risk? Probability of a three standard deviation shock? In this paper,
“tail-risk” will refer to a non-zero skewness and excess kurtosis, which will increase the
risk of huge shocks, no matter what tail risk definition we prefer.
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we establish that there exists a term structure in the distribution of equity
returns.

Second, we generalize the variance ratio test of Lo and Mackinlay (1988)
to also test for intertemporal dependencies in higher moments, e.g., skewness
and kurtosis. The test demonstrates that there exists a significant intertem-
poral dependence in returns, no matter the portfolio, and no matter the
holding period. The intertemporal dependency also switches sign as we go
from short-run returns to long-run returns. Consequently, similar to how
there exists a mean-reversal in long-run returns, there is also a reversal pat-
tern in skewness and kurtosis as the holding period expands.

Finally, we demonstrate that the common practice of extrapolating the
short-run risk to a longer horizon by assuming independent returns will create
a severely biased long-run expectation of the risk exposure. Not just due to
the covariance as established by Wang, Yeh, and Cheng (2011), but also
due to the coskewness and cokurtosis. Hence, it is not only the volatility
that will become biased but also the expected probability of severe shocks,
the skewness and kurtosis. Similarly to Neuberger and Payne (2019), we
demonstrate that the bias is due to intertemporal dependencies, which will
dominate the unconditional higher moments of the high-frequency returns as
they are compounded to a more extended holding period.

Since several studies have documented that the expected skewness and
excess kurtosis of returns are priced in the market,3 we anticipate our results
to have a direct implication for asset pricing models. A risk-averse investor is
prepared to pay a premium to get higher return skewness, while they want to
be compensated to carry more exposure to variance and kurtosis. However,
under the common assumption of iid returns, the continuously compounded
returns should converge to a distribution with zero skewness and zero excess
kurtosis (no excess tail-risk). Therefore, we would expect that investors with
different investment horizons to perceive a different amount of risk in the

3Kraus and Litzenberger (1976), Rietz (1988), Harvey and Siddique (2000), Barro
(2006), Mitton and Vorkink (2007), Barberis et al. (2008), Boyer, Mitton, and Vorkink
(2010), Rehman and Vilkov (2012), Bali and Murray (2013), Conrad, Dittmar, and Ghysels
(2013), Kelly and Jiang (2014), Amaya et al. (2015), Ghysels, Plazzi, and Valkanov (2016),
and Schneider, Wagner, and Zechner (2019)
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market. Hence, if the tail-risk is priced in the market, it should also create a
term structure in the observed risk-premia.

The market also exhibits a seasonality pattern in company reporting,
macro events, and the tax code. These types of market events seem to pro-
duce abnormal returns (De Bondt and Thaler 1986; Sias 2007; Lucca and
Moench 2015; Umar 2017). In other words, there exist reoccurring events
that create unusually large price shocks in equities. Using a similar argu-
ment as Albuquerque (2012), that the observed negative coskewness between
firms is due to reporting seasonality,4 we argue that the clustering of market
events should create an intertemporal dependence in returns. As different
holding periods are exposed to different types of market events, it should
yield different co-moments on average, which should create a term structure
in the return distribution.

In theory, investors should only be compensated for exposure to system-
atic risk. However, empirically, there seem to exist multiple types of sys-
tematic risk, so-called risk factors, which can be approximated by creating
factor mimicking portfolios. As these risk factors capture different types of
risk, they should also exhibit different return distributions. Moreover, any
asset that loads on a specific risk factor will also inherit the tail risk of that
particular risk factor. Hence, if the linear factor model is the correct model
of risk, then the risk-premia distribution of any asset is explained by its ex-
posure to the underlying risk factors. Therefore, by characterizing the return
distribution of the risk factors, we can deduce the risk-premia distribution of
all assets in the economy.5

Fama and French (2018) also tries to characterize the long-run return
distribution of equities.6 However, they use a bootstrap procedure, which

4Harvey and Siddique (2000) show that individual firms exhibit positive return skew-
ness, while a portfolio of the same firms has a negative return skewness. They demonstrate
that this surprising pattern is due to a negative coskewness between firms, which will push
the return skewness downward as we add more assets to our portfolio.

5However, if we do not believe in this particular factor structure,
MKT,SMB,HML, and MOM , our results will not be generalizable to all assets
in the economy. However, we argue that it should still yield a reasonable approximation
of the potential risk-premia distributions of equity assets in the economy.

6For a in-depth discussion see Appendix D.b.
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removes any dependencies between the returns in the sample. In contrast,
our approach keeps the dependency structure intact, which allows us to test
for intertemporal dependencies explicitly. As our results suggest that there
is a strong intertemporal dependence in returns, no matter the holding pe-
riod, we contend that their conclusions need to be treated with skepticism.
Surprisingly though, we both reach a similar conclusion in the end. While
their results suggest that returns become normally distributed at holding pe-
riods longer than 10-years, our results demonstrate that equity returns are
not normally distributed up to a five-year horizon.

In contemporaneous work, Neuberger and Payne (2019) demonstrates
that the precision of the skewness and kurtosis estimator can be improved
by accounting for the intertemporal dependency in the returns. An essential
assumption in the improved estimator is that returns follow a Martingale
process, which implies that information today cannot be used to predict the
direction of future returns. However, our results suggest that squared and
cubed returns today actually have a strong relationship with future returns.
Hence, empirically, it seems like returns do not follow a Martingale process,
which implies that their estimator will be biased in many real-life applica-
tions. Therefore, we suggest that practitioners first estimate the intertem-
poral dependency in skewness and kurtosis before applying the Neuberger
and Payne (2019) estimator. Moreover, since our results require fewer as-
sumptions, while still being able to estimate the intertemporal dependencies
consistently, our approach is simpler to employ.7

In summary, we develop a new intertemporal dependency test, which
makes use of the information contained in the higher moments. The test
demonstrates that there exists a significant intertemporal dependency in eq-
uity returns, which is strong enough to counteract the implied convergence
by iid returns. Moreover, the intertemporal dependency is both horizon and
portfolio specific. Consequently, we cannot make a general statement about
the tail-risk as we move from a short-run return to a longer horizon. Our
results demonstrate that the common practice of extrapolating a short-run
estimate to a longer horizon by assuming iid returns will severely bias the

7For an in-depth discussion see Appendix D.a.
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long-run estimate.
In Section 1, we establish the necessary theoretical results that are needed

for the rest of the analysis, followed by an exposition of the data and empirical
findings in Section 2.

1 Theoretical Setup
All analysis is performed by using continuously compounded portfolio returns

r(h) = ln(R(h)) = ln (R1 ·R2 · · ·Rh) (1)

= ln(R1) + ln(R2) + . . .+ ln(Rh),

where R is one plus the simple return. The central limit theorem implies
that as h → ∞, a sum of well-behaved8 random variables will converge to
a normal distribution. For example, we can view the monthly return as a
sum of daily returns, which should be approximately normally distributed.
However, we show that up to five-year returns are not normally distributed,
both the skewness and excess kurtosis are significantly different from zero.

1.a Theoretical Foundation of Higher Moments

A common assumption/approximation in the literature is that returns are
independent and identically distributed (iid), which simplifies most analytical
solutions. Moreover, iid returns are also a sufficient condition for the efficient
market hypothesis to hold.

If we can assume that returns, ri, are iid, we also know the aggregation
pattern in the first four centralized moments

E
[
r

(h)
i

]
= hE [ri] , Var

[
r

(h)
i

]
= hVar [ri] , (2)

SK
[
r

(h)
i

]
= SK [ri]√

h
, KU e

[
r

(h)
i

]
= KU e [ri]

h
,

8Defined higher moments, ergodicity, stationarity, and not too dependent.
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where KUe denotes excess kurtosis. Hence, it implies that we can take the
high-frequency estimates and scale them by the horizon to get a consistent
estimate of the long-run centralized moments.

Since the skewness and kurtosis are constant under affine transformations

SK [ri] = SK [a+ bri] , KU [ri] = KU [a+ bri] , b > 0, (3)

it implies that in a one-factor model, e.g., the Capital Asset Pricing Model
(CAPM), the asset returns will exhibit the same systematic skewness and
kurtosis as the market portfolio. Accordingly, any asset that loads on a
specific risk factor will also inherit the tail risk of that specific risk factor.
Consequently, if the linear factor model is correct, the risk-premia of any asset
is given by the specific loadings on the underlying risk factors. Therefore,
the focus of this paper will be on characterizing the return distribution of
the factor mimicking portfolios, which is the same thing as characterizing the
risk-premia distribution of all assets in the economy (given the assumption
that the linear risk-factor model is the correct model of risk).

1.b Linear Combinations and Higher Moments

Most of the analysis will involve continuously compounded returns, which is
a linear combination of returns, e.g., r(2)

t = rt+rt−1. From statistical theory9

9The theory is based on statistical cumulants, which yields much simpler expressions.
However, since our focus is on the centralized higher moments, we choose to keep ev-
erything consistent throughout the paper, and express everything as centralized higher
moments instead.
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we know that

σ2
x+y = Var [X + Y ] = Var [X] + Var [Y ] + 2Cov [X, Y ] , (4)

SK [X + Y ] = 1
σ3
x+y

{
σ3
xSK [X] + 3σ2

xσySK [X,X, Y ] (5)

+3σxσ2
ySK [X, Y, Y ] + σ3

ySK [Y ]
}
,

KU [X + Y ] = 1
σ4
x+y

{
σ4
xKU [X] + 4σ3

xσyKU [X,X,X, Y ] (6)

+ 6σ2
xσ

2
yKU [X,X, Y, Y ]

+4σxσ3
yKU [X, Y, Y, Y ] + σ4

yKU [Y ]
}
,

where

SK [X, Y, Z] = E [(X − E [X])(Y − E [Y ])(Z − E [Z])]
σxσyσz

,

KU [X, Y, Z, V ] = E [(X − E [X])(Y − E [Y ])(Z − E [Z])(V − E [V ])]
σxσyσzσv

,

and X, Y, Z, and V are random variables (and by a slight abuse of notation
SK [X] = SK [X,X,X] and KU [X] = KU [X,X,X,X]).

Note that three things drive the skewness of a linear combination of two
random variables. First, under an assumption of independence, we know that
both the covariance and coskewness will be equal to zero, and the skewness
of the linear combination will be

SK [X + Y ] =
σ3
xSK [X] + σ3

ySK [Y ]
σ3
x+y

,

which means that the skewness only depends on the individual skewnesses.
Second, the covariance will adjust the skewness towards or away from

zero. Hence, everything else equal we expect the skewness to be closer to
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zero if the two variables X and Y are positively correlated.

SK [X + Y ] =
σ3
xSK [X] + σ3

ySK [Y ](
σ2
x + σ2

y + 2ρσxσy
)3/2 .

Finally, even if the two random variables are symmetric individually,
SK [X] = SK [Y ] = 0, their combination might still be skewed due to the
coskewness

SK [X + Y ] =
3σ2

xσySK [X,X, Y ] + 3σxσ2
ySK [X, Y, Y ]

σ3
x+y

.

When we consider a sum of log-returns over time, one of the coskewness
terms, SK [rt, rt+1, rt+1] < 0, is the same thing as the leverage effect, the
negative correlation between future volatility and today’s return (Engle and
Mistry 2014; Neuberger and Payne 2019).

Similarly, we can also decompose the kurtosis of a sum of random variables
into its parts. The individual kurtosises will explain the kurtosis if the returns
are independent, and a positive covariance will decrease the kurtosis, all
else equal. The difference compared to skewness, is which co-moments that
will contribute to the kurtosis. The kurtosis contains three cokurtosis terms
KU [X,X,X, Y ] ,KU [X, Y, Y, Y ] , and KU [X,X, Y, Y ].

The sum of the first two cokurtosis terms will be positive if big shocks
in one variable correlate with a move in the same direction in the other
variable, e.g., how yesterday’s cubed returns relate to today’s returns. Hence,
a positive cokurtosis would increase the fatness of the tails compared to what
we would expect from the individual kurtosises. The last cokurtosis term
depends on the covariance between the squared shocks, which is substantial
if there is persistence in variance. As it is already well-established that equity
returns exhibit a strong persistence in variance, KU [rt−1, rt−1, rt, rt] > 0,10 it
should also inflate the kurtosis as returns are compounded to a more extended
holding period.

To summarize, most of the observed patterns in skewness and kurtosis
10For example, Bollerslev (1986), Nelson (1991), Ding, Granger, and Engle (1993), and

Zakoian (1994).
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are explained by two parts; the individual return skewnesses/kurtosises and
their co-moments (coskewness/cokurtosis).

1.c The Moment-”Ratio” Test

We know that Equation 2 holds under an assumption of iid returns, which
means that we can get a consistent estimate of the long-run risk by aggregat-
ing short-run estimates. Lo and Mackinlay (1988) use this relation to create
a variance-ratio test by comparing the long-run variance against the scaled
high-frequency variance as

Jr(h) =
Var

[
r(h)

]
kVar [r(1)] − 1. (7)

We now want to generalize this test to also include intertemporal depen-
dencies of higher moments, e.g., skewness and kurtosis. However, there are
two issues. First, we cannot derive an asymptotic result of higher moments
without making some distributional assumption of the returns; different dis-
tributions can yield the same skewness and kurtosis, e.g., generalized skewed
t-distribution vs. a normal mixture distribution. Since the goal of this pa-
per is to characterize the return distribution, we do not want to set some
arbitrary restrictions on plausible distributions of the returns. Second, the
skewness and excess kurtosis can be zero, which might create a division by
zero.

However, we can create a non-parametric test in a similar vein, because
under the null of iid returns, we know that

Var
[
r(h)

]
− hVar

[
r(1)

]
= 0, “Variance-ratio” (8)

SK
[
r(h)

]
− 1√

h
SK

[
r(1)

]
= 0, “Skewness-ratio” (9)

KUe
[
r(h)

]
− 1
k
KUe

[
r(1)

]
= 0, “Kurtosis-ratio”. (10)

As the test statistics will be estimated under the null of iid returns, we
can estimate them by bootstrap, which does not require any distributional
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assumptions. Hence, to keep the number of assumptions to a minimum, we
estimate the test statistics by accelerated bias-adjusted bootstrap.

A rejection of the test implies that the returns are not iid. If we assume
that returns are well-behaved;11 covariance stationary, defined higher mo-
ments, and ergodic, a rejection of a specific moment-ratio test is the same
thing as a non-zero co-moment. More specifically,

2Cov [X, Y ] 6= 0,

3σ2
xσySK [X,X, Y ] + 3σxσ2

ySK [X, Y, Y ] 6= 0,

4σ3
xσyKU [X,X,X, Y ] + 6σ2

xσ
2
yKU [X,X, Y, Y ] + 4σxσ3

yKU [X, Y, Y, Y ] 6= 0.

Consequently, if we can assume that returns are well-behaved, the test can
be used to disentangle which type of intertemporal dependency we observe
in different assets and portfolios.

2 Empirical Results

2.a Data Sources

All estimates are based on continuously compounded daily returns of the fac-
tor mimicking portfolios, market (MKT), size (SMB), value (HML), and mo-
mentum (MOM) downloaded from AQR Capital Management (AQR 2018)
and Kenneth French homepage (French 2018). The portfolio construction
follows Fama and French (1992, 1993, 1996), Asness, Moskowitz, and Peder-
sen (2013), and Frazzini and Pedersen (2014). The SMB and HML portfolios
are re-sorted in July using the break-points from the end of the previous year,
while the MOM portfolio is re-sorted daily.

11In this paper we will assume that returns are well-behaved. However, there is probably
a related paper that could go down the other rabbit hole, similar to Carr and Wu (2003),
by assuming that the basic assumptions of time-series inference breaks down.
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2.b Term-Structure in the Distribution of Returns

Engle and Mistry (2014) demonstrates that there exists a term structure in
the higher moments in the factor mimicking portfolios. Following their setup,
we estimate the unconditional volatility, skewness, and excess kurtosis as12

σ̂ =

√√√√ 1
N − 1

N∑
i=1

(ri − r̄)2, (11)

ŜK = 1
N

N∑
i=1

(
ri − r̄
σ̂

)3
, (12)

K̂U = 1
N

∑N
i=1(ri − r̄)4

(σ̂2)2 − 3. (13)

The daily excess returns are log-transformed and continuously compounded
as in Equation 1 to get returns at different frequencies, from daily to 5-year
returns.13 Then for each observation frequency, the overlapping returns are
used to get a consistent point estimate of the mean, volatility, skewness, and
excess kurtosis of each factor mimicking portfolio, Table 1.

Since we do not know the distribution under the null, we cannot use the
asymptotic 95% confidence interval of the skewness and kurtosis. Hence,
all the 95% confidence intervals are estimated by accelerated bias-adjusted
bootstrap from the non-overlapping returns.14

12The results has been re-produced using bias adjusted skewness and kurtosis estimators,
but the results are indistinguishable from each other. And since most of the literature
are using the “biased” estimators, we use the same estimators to keep it consistent with
previous literature.

13Approximately 264 trading days a year. As a robustness check, we also reproduce the
results for pre- and post-1963 samples in Appendix A.

14If we use the overlapping returns, the confidence interval would be underestimated,
especially for more extended holding periods. When comparing the bootstrap intervals
against the null of zero skewness and kurtosis, the bootstrap confidence intervals are a bit
too wide. However, it still yields a reasonable confidence interval of the uncertainty of the
point estimates without imposing any distributional restrictions.
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Table 1: The point estimates of the first four centralized moments of each factor mimicking portfolio, from the
overlapping continuously compounded returns at different holding periods. It also includes the five-year centralized
moments under the assumption of iid daily or monthly returns.

Observation MKT SMB HML MOM
Frequency µ σ SK KUe µ σ SK KUe µ σ SK KUe µ σ SK KUe

Daily (d) 0.0002 0.01 -0.42 17.66 0.0000 0.01 -0.99 24.72 0.0001 0.01 0.59 15.24 0.0002 0.01 -1.95 34.85
Weekly (w) 0.001 0.02 -0.70 9.04 0.0002 0.01 -0.33 10.95 0.001 0.01 0.60 11.56 0.001 0.02 -1.75 15.18

Monthly (m) 0.01 0.05 -0.71 7.63 0.001 0.03 0.21 7.61 0.003 0.03 0.68 6.00 0.01 0.04 -1.73 11.81
Quarterly (q) 0.02 0.10 -0.46 5.20 0.002 0.05 0.60 4.07 0.01 0.06 0.61 5.76 0.02 0.08 -1.86 12.78
Bi-Annual (b) 0.03 0.14 -0.72 2.27 0.005 0.08 0.28 1.64 0.02 0.09 0.41 2.91 0.03 0.11 -1.97 11.55

Annual (y) 0.06 0.20 -0.97 2.53 0.01 0.11 -0.15 1.23 0.04 0.13 0.10 1.17 0.06 0.15 -1.68 6.57
Two-Year (2y) 0.12 0.29 -1.25 3.11 0.02 0.17 -0.01 0.22 0.08 0.17 -0.06 0.67 0.12 0.22 -1.12 2.25

Three-Year (3y) 0.18 0.34 -1.45 4.25 0.03 0.22 0.15 -0.31 0.12 0.19 0.10 -0.22 0.18 0.27 -0.78 1.01
Four-Year (4y) 0.23 0.39 -1.08 2.85 0.04 0.26 0.14 -0.44 0.16 0.20 0.30 0.06 0.24 0.32 -0.73 0.55
Five-Year (5y) 0.29 0.42 -0.69 0.99 0.06 0.29 0.12 -0.57 0.20 0.23 0.16 -0.21 0.30 0.35 -0.75 0.40
5y (daily iid) 0.31 0.39 -0.01 0.01 0.04 0.21 -0.03 0.02 0.19 0.21 0.02 0.01 0.32 0.27 -0.05 0.03

5y (monthly iid) 0.31 0.42 -0.09 0.13 0.04 0.23 0.03 0.13 0.19 0.26 0.09 0.10 0.31 0.35 -0.22 0.20

13
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2.b.1 Term Structure in the Tail-Risk

Under an assumption of iid returns, we expect the skewness and excess kur-
tosis to converge towards zero, towards a normal distribution, as the holding
period increases. However, empirically, this is not the case. Up to a five-year
horizon, both the skewness and excess kurtosis are significantly different from
zero in the MKT portfolio, Figure 1. At even longer horizons, the point es-
timate continues to be different from zero, but the null can no longer be
rejected due to the high uncertainty of the point estimates. Hence, we reject
the common assumption that equity returns are normally distributed in the
long-run, or at least up to a 5-year holding period.

There is also a term structure in the higher moments, especially in the
skewness. For example, as the returns are compounded to a longer horizon,
the skewness can both increase or decrease depending on the horizon. Over
some horizons, the skewness can even diverge from zero, which is in direct
contradiction to what is expected from iid returns. In Section 2.c, we show
that a significant and huge intertemporal dependency drives these unexpected
patterns in returns.

2.b.2 Tail-Risk Heterogeneity Among Factor Mimicking Portfolios

A common assumption in asset pricing is that there exist latent systematic
risk factors, which capture different types of risk in the economy. As the
centralized moments are constant under affine transformations, it implies
that any asset that loads on a specific risk factor also inherits the skewness
and kurtosis of that particular risk factor. Moreover, if risk factors capture
different types of systematic risk, they should also exhibit different return
distributions. Consequently, we want to empirically compare the return dis-
tributions, the skewness and kurtosis, of different factor mimicking portfolios.

Figure 2 suggests that different factor mimicking portfolios exhibit dif-
ferent term structures in skewness and kurtosis, at least up to an annual
observation frequency. For example, while the HML portfolio has positive
skewness no matter the holding period, the MOM portfolio has negative

14
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Figure 1: The black line is the point estimate of skewness and excess kurtosis
from the overlapping continuously compounded returns at different holding
periods, from daily to five-years. The shaded area is the 95% accelerated bias-
adjusted bootstrap confidence interval estimated from the non-overlapping
continuously compounded return.
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skewness no matter the holding period.15 In contrast, the MKT and SMB
portfolios have increasing skewness over certain holding periods, and decreas-
ing skewness over others.

The observed heterogeneity between different risk factors demonstrates
that the tail-risk is portfolio specific — any asset or portfolio that loads on
a particular risk factor will also inherit the same tail-risk. Moreover, the
tail-risk exhibits a term structure that is different between different factor
mimicking portfolios, which indicate that the tail-risk is both portfolio and
horizon specific. Consequently, we cannot generalize a short-term risk esti-
mate to a longer horizon, without making some strong assumptions about
the term structure in the particular portfolio. Hence, we expect this result
to have direct implications for risk management, asset pricing, and portfolio
optimization.

2.c Moment-Ratio Test - Application

As explained in Section 1.c, we generalize the variance-ratio test, which allows
us to test for intertemporal dependencies in returns, Figure 3. First, no mat-
ter which moment-ratio test, horizon, or portfolio we chose, we still reject the
null of iid returns at a 5% significance level. Equity returns are not iid. Sec-
ond, different portfolios exhibit different types of intertemporal dependencies.
For example, while the MKT and MOM portfolios have positive coskewness
at short holding periods, the SMB and HML have negative coskewness at
short horizons. Finally, with few exceptions, most intertemporal dependen-
cies reverse sign at longer horizons. There seem to exist reversals, not just
in expected returns, but in all higher moments.

2.c.1 Significant Intertemporal Dependency - Economic Implications

It is well established that returns are positively correlated over short hori-
zons, and negatively correlated over longer horizons, i.e., momentum in the

15The MOM portfolio stands out, it consistently has lower skewness and higher excess
kurtosis than the other factor mimicking portfolios, which confirms the momentum crash
risk observed in Barroso and Santa-Clara (2015) and Daniel and Moskowitz (2016). See
Appendix B for an in-depth discussion.
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Figure 2: The black line is the point estimate of skewness and excess kurtosis
from the overlapping continuously compounded returns at different holding
periods, from daily up to a five-year horizon. The shaded area is the 95%
accelerated bias-adjusted bootstrap confidence interval estimated from the
non-overlapping continuously compounded return.

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

d w m q h y 2y 3y 4y 5y

S
ke

w
ne

ss

Horizon

SMB
1926−2018

0
5

10
15

20
25

30
35

d w m q h y 2y 3y 4y 5y

K
ur

to
si

s

Horizon

SMB
1926−2018

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

d w m q h y 2y 3y 4y 5y

S
ke

w
ne

ss

Horizon

HML
1926−2018

0
5

10
15

20
25

30
35

d w m q h y 2y 3y 4y 5y

K
ur

to
si

s

Horizon

HML
1926−2018

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

d w m q h y 2y 3y 4y 5y

S
ke

w
ne

ss

Horizon

MOM
1926−2018

0
5

10
15

20
25

30
35

d w m q h y 2y 3y 4y 5y

K
ur

to
si

s

Horizon

MOM
1926−2018

17



Johansson (2019)

Figure 3: The accelerated bias-adjusted bootstrap estimate of the difference
between the scaled short-run estimate and the long-run point estimate. Un-
der the null hypothesis, H0 = iid returns, the difference should be equal to
zero. The x-axis is the observation frequency, from daily (d) up to three years
(3), where each marker indicates a different number of compounded returns
of that specific observation frequency. Black markers indicate a significant
difference at 5% significance level, a rejection of the null of iid returns of
that specific observation frequency. The sign of the difference also implies
the sign of the co-moment, e.g., a positive difference in the "Variance-Ratio"
implies that Cov [rt, rt−1] > 0.
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(Figure Continued)
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(Figure Continued)
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short-run and mean-reversal in the long-run.16 Our test confirms this result;
the MKT and HML portfolios have significant and positive covariance at
short horizons and significantly negative covariance at long horizons. How-
ever, both the SMB and MOM portfolios exhibit positive covariance even at
long horizons. Since the MOM portfolio is re-balanced daily and is supposed
to capture the trend, we would expect it to have positive covariance. How-
ever, it is harder to explain why the SMB portfolio also continues to exhibit
momentum at more extended holding periods.

The literature has also established that the equity returns should exhibit
a leverage effect; higher expected risk tomorrow decreases the returns today.
Hence, the leverage effect implies that Cov [r2

t , rt−1] < 0, which should induce
a negative coskewness. Consequently, if investors are risk-averse and forward-
looking, we would expect a negative coskewness, which is exactly what we
observe in the MKT and MOM portfolios over short horizons. However, in
the SMB and HML portfolio, we observe the exact opposite; higher volatility
tomorrow is associated with higher returns today, which is in direct contrast
to the leverage effect.

There are three possible explanations for this counterintuitive result.
First, the co-skewness has two terms, where one is the leverage effect, and
the other is how volatility today affects prices tomorrow. Hence, a positive
coskewness might also imply that an unusually large shock to returns today
would increase the expected returns tomorrow.17 Second, the leverage effect
is derived under the classic mean-variance trade-off, which ignores higher
moments. Therefore, it is plausible that we can get “inconsistent” patterns
in the mean-variance trade-off if investors also care about higher moments.
Finally, in this paper, we assume that returns are well-behaved, which implies
that a rejection of the null hypothesis must be due to a non-zero co-moment.
However, if returns are non-stationary, non-ergodic, or have undefined higher
moments, we would still reject the null hypothesis, but it would imply that

16Stoll and Whaley (1990), Ding, Granger, and Engle (1993), Jegadeesh and Titman
(1993), Lewellen (2002), and Jiang and Tian (2005)

17When estimating each co-moment separately, it is not clear that we can ignore one
of the terms. Hence, it is not obvious that we can ignore the second coskewness term,
Cov

[
rt, r

2
t−1
]
, as in Engle and Mistry (2014) and Neuberger and Payne (2019).
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our current interpretation is faulty.
To complicate the interpretation further, the coskewness switches sign at

longer horizons, creating a reversal pattern in skewness similar to the mean-
reversal in the variance-ratio test. However, in contrast to the variance-ratio,
the skewness-ratio shows no general pattern. At the same horizon, some
portfolios will exhibit positive coskewness, while others will have negative
coskewness. Consequently, we cannot generalize a short-run skewness esti-
mate to a longer horizon without making a strong assumption about the
intertemporal dependency in the returns of our specific portfolio.

In contrast, it seems like all equity portfolios have a positive cokurtosis at
shorter horizons, which implies that the probability of outliers is higher than
we would expect from an assumption of iid returns. There is also an extensive
literature that has demonstrated that variance is persistent,18 which implies
that Cov

[
r2
t , r

2
t−1

]
> 0. Hence, if there is persistence in variance, it should

inflate the kurtosis, which is precisely what we observe in our tests, at least
over short horizons. Similarly to how there is a reversal in variance and
skewness, the kurtosis also “reverses” in the long-run.

In summary, equity returns are strongly dependent over time;19 we re-
ject the null of iid returns up to a three-year holding period for all factor
mimicking portfolios.20 The MKT returns exhibit positive covariance, neg-
ative coskewness, and positive cokurtosis, up to a quarterly observation fre-
quency. At longer horizons, all the co-moments switch sign, similar to a
"mean-reversal" in all higher moments. Finally, there exists heterogeneity
in the co-moments between the different factor mimicking portfolios, some
demonstrate positive coskewness in the short run, SMB and HML, while
others have negative coskewness, MKT and HML.

18Bollerslev (1986), Nelson (1991), Ding, Granger, and Engle (1993), Zakoian (1994),
Harvey and Siddique (2000), and Hansen and Lunde (2005)

19For a discussion of the relative size between the co-moments and the individual cen-
tralized moments, see Appendix C.

20There seem to exist intertemporal dependencies at even longer horizons. However,
some of the estimators became unstable at horizons of six years or longer.
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3 Conclusion
Given the importance of the distribution of short- vs. long-horizon returns,
we wonder, how are the equity returns distributed over different horizons?
We make three contributions. First, we establish that there exists a term
structure in the higher moments, which is specific to each factor mimicking
portfolio. Since the skewness and kurtosis are constant under an affine trans-
formation, it implies that any asset that loads on a particular risk factor will
also inherit the tail-risk of that risk factor. Consequently, we cannot make a
general statement about the long-run tail-risk of a specific portfolio without
knowing which specific risk factors it is exposed to.

Second, to explain the observed term structure in the tail-risk, we as-
sume that there exists an intertemporal dependence in returns. To test this,
we generalize the variance-ratio test of Lo and Mackinlay (1988) to include
higher moments. By applying this new test, we can reject the assumption of
independent and identically distributed (iid) returns for all portfolios and all
observation frequencies. Returns are not iid.

Moreover, similar to how there exists a mean-reversal in returns, there is
also a significant reversal in skewness and kurtosis at longer holding periods.
It even seems like the coskewness is oscillating between positive and negative
in the SMB, HML, and MOM portfolio as the horizon expands. Even more
surprising is that the coskewness can be positive, which implies that higher
volatility tomorrow increases returns today, which is the direct opposite of
the leverage effect. A plausible reason is that this “risk-return trade-off” is
derived in a mean-variance setting, and if investors also care about higher
moments, it might show up as an inconsistent risk-return trade-off.

Finally, we show that the conventional approach of extrapolating a short-
run estimate to a longer horizon by assuming iid returns creates a biased
estimate of the long-run risk. Even if the bias is lessened by considering
a simple dependency structure, e.g., an autoregressive process, it will still
yield a bias in many situations since the dependency can switch signs. Con-
sequently, ignoring the intertemporal dependence in returns will create a
severely biased long-run estimate of the risk exposure. Hence, we expect our
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results to have a direct impact on asset prices, risk management, and optimal
portfolio allocation.
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A Split sample
As a robustness check, we split the sample into pre-1963 and post-1963 sam-
ples. The patterns in skewness and kurtosis are very similar between the full
sample and the split sample, Figure 6 and Figure 7. The MOM portfolio
has large negative skewness no matter the holding period, while the HML
portfolio is slightly positive no matter the holding period. Moreover, the
SMB portfolio skewness increases as we move from daily to quarterly obser-
vation frequency, and then flattens out. However, the MKT portfolio in the
post-1963 sample has a different pattern in skewness compared to the full
sample. There is no noticeable decrease in skewness as we go from daily to
weekly observations, and the hump in skewness around quarterly returns are
also gone.

Overall, the patterns in skewness and kurtosis seem to be robust between
different periods, and using the argument made by Albuquerque (2012), it
suggest that the seasonality patterns of market events is similar both before
and after 1963. However, there seem to be a change in how the MKT portfolio
behaves, which might indicate that the systematic risk might have changed
over time. Another possible explanation is a inefficiency story, where the
discovery of the CAPM in the early 1960s removed this pricing inefficiency,
which changes the unconditional distribution in the post 1963 sample. While
the discovery by Fama and French (1992) and Jegadeesh and Titman (1993)
is too new to have had a real impact on the unconditional estimates so far.

B Momentum Crash Risk
We observe a very distinct pattern in skewness and kurtosis of the MOM
portfolio compared to the other factor mimicking portfolios, Figure 8. The
momentum strategy is more exposed to adverse tail events, more negative
skewness and higher excess kurtosis, no matter which time frame or mar-
ket we look at. Consequently, the momentum strategy is more exposed to
massive losses, which is the same conclusion as in Barroso and Santa-Clara
(2015) and Daniel and Moskowitz (2016). However, our results expand this
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Figure 6: Split-sample estimate pre-1963. The black line is the point es-
timate of skewness and excess kurtosis from the overlapping continuously
compounded returns at different holding periods (number of trading days).
The shaded area is the 95% accelerated bias adjusted bootstrap confidence
interval estimated from the non-overlapping continuously compounded re-
turn.

0 50 100 150 200 250

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

S
ke

w
ne

ss

Holding Period

MKT
1926−1962

0 50 100 150 200 250

0
5

10
15

20
25

30
35

E
xc

es
s 

K
ur

to
si

s

Holding Period

MKT
1926−1962

0 50 100 150 200 250

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

S
ke

w
ne

ss

Holding Period

SMB
1926−1962

0 50 100 150 200 250

0
5

10
15

20
25

30
35

E
xc

es
s 

K
ur

to
si

s

Holding Period

SMB
1926−1962

0 50 100 150 200 250

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

S
ke

w
ne

ss

Holding Period

HML
1926−1962

0 50 100 150 200 250

0
5

10
15

20
25

30
35

E
xc

es
s 

K
ur

to
si

s

Holding Period

HML
1926−1962

0 50 100 150 200 250

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

S
ke

w
ne

ss

Holding Period

MOM
1926−1962

0 50 100 150 200 250

0
5

10
15

20
25

30
35

E
xc

es
s 

K
ur

to
si

s

Holding Period

MOM
1926−1962

29



Johansson (2019)
Figure 7: Split-sample estimate post-1963. The black line is the point es-
timate of skewness and excess kurtosis from the overlapping continuously
compounded returns at different holding periods (number of trading days).
The shaded area is the 95% accelerated bias adjusted bootstrap confidence
interval estimated from the non-overlapping continuously compounded re-
turn.
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notion of momentum crash risk, by establishing that the momentum strategy
is more exposed to crashes no matter which market or holding period we look
at.

C Economic Size of the Co-Moments

C.a The M3 and M4 Matrices

To simplify calculations, we can re-arrange the 3-dimensional coskewness
array into a (n, n2) matrix as described by Jondeau, Poon, and Rockinger
(2008)

M3 = E [(r − µ)(r − µ)′ ⊗ (r − µ)′] = {sijk} (14)

sijk = E [(ri − µi)(rj − µj)(rk − µk)] , for i, j, k = 1, . . . , n, (15)

where ri denotes the individual asset return i, µ is the mean, and ⊗ is
the Kronecker product. Similarly, we can also create the (n, n3) cokurtosis
matrix.

This allows us to decompose the portfolios skewness and kurtosis into its
parts since the portfolio, the linear combination of returns, can be calculated
as

SK [rp] = w′M3(w ⊗w) (16)

KU [rp] = w′M4(w ⊗w ⊗w) (17)

where the "off-diagonal" terms ofM3 andM4 will be equal to zero if the assets
are independent. Hence, we can decompose the observed portfolio skewness
and kurtosis into co-moments and individual skewnesses and kurtosises, and
compare the size of each part.

C.b The Size of the Co-Moment

The intertemporal co-moments are very large over all observation frequencies,
which implies a strong intertemporal dependency in skewness and kurtosis,
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Figure 8: Estimated skewness and excess kurtosis from overlapping continu-
ously compounded returns from weekly (w) up to an annual (y) observation
frequency. The date range above each figure is the shortest time-series avail-
able. For example, in the “Pacific” figure, the MKT portfolio is observed
from the beginning of November 1985 until the end of December 2017, while
the QMJ is only observed from the beginning of July 1993 until the end of
December 2017.
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Figure 9. Just after a couple of continuously compounded periods, most
of the skewness and kurtosis is explained by the intertemporal co-moments.
Overall, the coskewness in MKT returns are negative, at least up to a bi-
annual observation frequency, Figure 9. However, at longer horizons the
coskewness seems to turn positive, which is confirmed by the skewness-ratio
test.

In summary, most of the aggregation pattern in the expected tail-risk
is due to the coskewness and cokurtosis. Consequently, we cannot make
a general statement about the long-run tail-risk from a short-run estimate
without making strong assumptions about the intertemporal dependency.
Moreover, an assumption of independence will yield severely biased estimates
of the tail-risk as the aggregation period increases.

D Related Literature

D.a Neuberger and Payne (2019)

Neuberger (2012) derives a realized third-moment estimator, which yields
a more precise estimate of the skewness. He also establishes that the MKT
returns do not follow an iid process. Neuberger and Payne (2019) extend this
methodology to include an adjustment for the intertemporal dependency in
the high-frequency returns, which yields a more precise estimate of the higher
moments. However, their method creates a biased estimate, which suggests
that it is the classic statistical trade-off between accuracy and precision.

A necessary assumption for the Neuberger and Payne (2019) estimator,
is that the price process follows a strictly positive martingale process, which
ensures that the process has the aggregation property. However, most of
finance is interested in returns, not the prices. Therefore, to keep the aggre-
gation property intact, they use a return approximation. Using the return
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Figure 9: The black line is the point estimate of skewness, SK
[
r(h)

]
=

w′M3(w⊗w), and kurtosis KU
[
r(h)

]
= w′M4(w⊗w⊗w) (kurtosis, not ex-

cess kurtosis), where w is a vector of ones of length h. The estimates are also
decomposed into the expected skewness and kurtosis as if we would assume
independent returns over time (black dashed line), and their co-moments
(golden dashed line).
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approximation, the centralized moments can be estimated as

Var [Rt] = E
[
x2,L
t

]
, x2,L

t = 2 (Rt − 1− ln(Rt)) , (18)

x2,E
t = 2 (Rt ln(Rt) + 1−Rt) , (19)

SK [Rt] = E [x3
t ]

Var [Rt]3/2 x3
t = 6 [(Rt + 1) ln(Rt)− 2(Rt − 1)] , (20)

KU [Rt] = E [x4
t ]

Var [Rt]2
x4
t = 12

[
ln(Rt)2 + 2(Rt + 2) ln(Rt)− 6(Rt − 1)

]
.

(21)

As the estimates are based upon an approximation, there is some possible
bias present already in this step.21

To aggregate the high frequency estimates to a longer horizon, two more
estimates are needed

yt = 1
h

h−1∑
u=0

(
Pt
Pt−u

− 1
)
, zt = 1

h

h−1∑
u=0

2
[
Pt
Pt−u

− 1− ln
(
Pt
Pt−u

)]
(22)

where yt is the harmonic mean of net returns, and zt is the average of the
realized variance. However, the way these estimators are constructed, these
will depend on h. The first term is always equal to zero, which implies it is
similar to a mean where we adjust by an extra degree of freedom∑N

i=1 xi/(N+
1).

The realized moments, adjusted for the intertemporal dependency, are
given by

Var
[
R

(h)
t

]
= hVar [Rt] , (23)

SK
[
R

(h)
t

]
= 1√

h

SK [Rt] + 3
Cov

[
yt−1, x

2,E
t

]
Var [Rt]3/2

 , (24)

KU
[
R

(h)
t

]
= 1
h

KU [Rt] + 4Cov [yt−1, x
3
t ]

Var [Rt]2
+ 6

Cov
[
zt−1, x

2,L
t

]
Var [Rt]2

 . (25)

21We performed some simple simulations, and the variance approximation is very accu-
rate, while the higher moments approximations can exhibit large deviations.
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To evaluate the performance of the Neuberger and Payne (2019) esti-
mator, we simulate 10000 samples from a log-normal distribution, ln(R) ∼
N(µ, σ2). Since a sum of normally distributed random variables are still
normal, it is simple to derive the moment conditions for the compounded
returns. The population moments of the compounded gross-returns, R, are

Var
[
R(h)

]
=
(
ehσ

2 − 1
)
e2hµ+hσ2

, (26)

SK
[
R(h)

]
=
(
ehσ

2 + 2
)√

ehσ2 − 1, (27)

KU
[
R(h)

]
= e4hσ2 + 2e3hσ2 + 3e2hσ2 − 3. (28)

We compare the Neuberger and Payne (2019) estimator (NP2018 ) against
the centralized moment estimates, with non-overlapping (standard) and over-
lapping (overlapping) returns. From theory, we know that the standard, and
overlapping approach both yields consistent point estimates, but the stan-
dard errors usually become biased when using overlapping observations.

Consistent with statistical theory, both the standard and the overlap-
ping approach seem to yield a consistent estimate of the higher moments,
the center mass of the empirical distributions are close to the true popu-
lation parameters, Figure 10. In contrast, the NP2018 estimator seems to
be severely biased, no matter the sample size, moment, or aggregation hori-
zon. The result suggests that the NP2018 estimator suffers from the classic
statistical trade-off between accuracy and precision.

Moreover, in contrast to Neuberger and Payne (2019), we use statisti-
cal cumulants and a simple bootstrap approach, which simplifies the infer-
ence while requiring fewer assumptions. Hence, by invoking Occam’s ra-
zor, we argue that our approach is more straightforward while maintain-
ing the inference. For example, their Martingale assumption implies that
Cov

[
rt, r

2
t−1

]
= 0 and Cov

[
rt, r

3
t−1

]
= 0.22 However, empirically those terms

can be massive, which suggest that the Martingale assumption is inconsistent
with the observed patterns in equity returns.

22Or at least that those are very small compared to the co-skewness and co-kurtosis
terms that go in the other direction.
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Figure 10: Sample distribution of Var
[
R(h)

]
, SK

[
R(h)

]
, and KU

[
R(h)

]
from

10000 Monte Carlo simulations. The returns are generated from a log-normal
distribution, ln(R) ∼ N(µ, σ2), fitted to the daily and monthly excess returns
of the MKT portfolio. Three different estimation methods are employed.
Standard: Standard estimators with non-overlapping returns. NP2018: Neu-
berger and Payne (2019) estimators. Overlapping: Standard estimators with
overlapping returns.

Monthly: N = 600 and h = 12, ln(R) ∼ N(µ = 0.0052, σ2 = 0.0532)
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D.b Fama and French (2018)

Similar to what we are doing, Fama and French (2018) also examines the
properties of long-horizon returns. More specifically, they try to answer the
questions:

1. “How does the distribution of investment payoffs change as we extend
the horizon?”

2. “How does uncertainty about the expected return affect the distribution
of long-horizon payoffs?”

They answer these questions with a standard bootstrap approach, using (in-
dependent) re-sampling with replacement. Since this bootstrap approach will
impose independence between the observations, it destroys the intertemporal
dependency in the returns. Hence, their method of choice cannot be used
to answer their first research question. Instead, it will yield the answer to:
if returns are independent, how does the distribution of investment payoffs
change as we extend the horizon?

To demonstrate, we estimate the skewness and kurtosis for continuously
compounded monthly excess returns,23 where we use three different sampling
methods. First, we use the overlapping returns, which yields a consistent
point estimate. Second, we assume that monthly returns are iid, which im-
plies that the scaled monthly estimate will yield a consistent estimate of the
long-run skewness and kurtosis. Finally, we apply the same method as Fama
and French (2018).

The destruction of the intertemporal dependency when using a standard
bootstrap method is striking, Figure 11. Adopting the Fama and French
(2018) method yields a point estimate similar to the scaled estimates un-
der an assumption of iid returns, which is precisely what we would expect
from statistical theory. Hence, we contend that the conclusions in Fama
and French (2018) need to be treated with skepticism. Moreover, the issue
with their bootstrap procedure could have easily been averted by using a
block bootstrap method, which would have kept some of the intertemporal

23In the original paper, they use returns, not returns in excess of the risk-free rate, which
also seems to be an unorthodox choice.
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Figure 11: The black line is the point estimate of skewness and excess kurtosis
from the overlapping continuously compoundedmonthly returns. The dashed
line is the expected skewness and kurtosis under an assumption of iid returns.
The red diamonds are the estimated skewness and kurtosis following the
Fama and French (2018) bootstrap methodology.
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dependency intact.
Even if their method of choice is questionable, their conclusions are still

consistent with ours and Neuberger and Payne (2019), returns seem to be-
come normally distributed at horizons of 10-years or longer. They also show
how the uncertainty of the future get compounded as the horizon increases,
which neatly demonstrates the argument in Pástor and Stambaugh (2012)
in practice. At long horizons, it is the uncertainty about the future that
dominates, not the estimation noise.

E Optimal Portfolio Allocation
Since there exists a term structure in the tail-risk, we would expect that
the portfolio allocation of a disappointment averse investor to depend on the
expected investment horizon. To test this, we follow the setup in Dahlquist,
Farago, and Tedongap (2017) who assumes that returns follow a normal-
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exponential model defined as

rW,t = µW − σW δW + (σW δW )ε0,t +
(
σW

√
1− δ2

W

)
εW,t (29)

where

µW = rf +w′
(
µ− rf1 + 1

2σ
2
)
− 1

2w
′Σw (30)

σ2
W = w′Σw (31)

δW = w′(σ ◦ δ)
σW

(32)

εW,t ∼ N(0, 1) (33)

ε0,t ∼ exp(1) (34)

The optimal portfolio allocation of an investor who maximizes the certainty
equivalent of the portfolio gross returns is given by

w = 1
γ̃

(
wMV + χ̃wAV

)
, (35)

where γ̃ is the effective risk aversion and χ̃ is the implicit asymmetry aver-
sion.

wMV = Σ−1
(
µ− rf1 + 1

2σ
2
)

(36)

is the mean-variance optimal portfolio, and

wAV = Σ−1 (σ ◦ δ) (37)

is the asymmetry-variance portfolio, which depends on the asymmetry pa-
rameter, δ, and the variance-covariance matrix of the risky asset returns.
Hence, Equation 35 implies that the optimal allocation is captured by a
three-fund separation strategy, which can be estimated by GMM.

To test the impact on the portfolio allocation, we fit parameters con-
sistent with a conservative, moderate, and aggressive investor as defined by
Dahlquist, Farago, and Tedongap (2017). The data is from AQR, which con-
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tains monthly excess returns of bonds and the S&P500 from 1926 to 2014.
The optimal portfolio allocation is quite stable over different horizons,

Figure 12. At first this might be unexpected. However, Dahlquist, Farago,
and Tedongap (2017) argues that the weight on the risky assets should in-
crease at longer horizons since the skewness and kurtosis, the tail-risk, should
converge to zero. In contrast, our results demonstrate that the skewness and
kurtosis do not converge to zero. Hence, we also expect that the portfolio
allocation by a disappointment averse investors to be stable over different
horizons, which is precisely what we observe.

Even if the allocation is quite stable over different horizons, we observe a
slight decrease in leverage as the expected holding period increase. The ef-
fect seems to be more pronounced the more risk-averse the investor is, which
suggest that equity returns are perceived to be riskier over long horizons than
short horizons. The result is in contrast to the argument under independent
returns made by Dahlquist, Farago, and Tedongap (2017). Moreover, Camp-
bell and Viceira (2005) argues that returns are less risky in the long-run due
to the mean-reversion, but this argument ignores the tail-risk. Our results
suggest that the addition of the tail-risk might actually increase the perceived
riskiness as the holding period expands.
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Figure 12: Disappointment averse investor optimal portfolio allocation, as in
Dahlquist, Farago, and Tedongap (2017). The y-axis is the weight on Cash,
Bonds, and S&P500 portfolios over different expected holding periods.
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