

"A Production-based Economic Explanation for the Gross Pro tability Premium"

Jun Li, University of Texas at Dallas

Swedish House of Finance Conference on Financial Markets and Corporate Decisions August 19-20, 2019

A Production-based Economic Explanation for the Gross Profitability Premium

Leonid Kogan ¹ Jun Li ² Harold H. Zhang ²

^{1}MIT

²University of Texas at Dallas

Conference on Financial Markets and Corporate Decisions Swedish House of Finance, August 2019

- Recent studies document that firms with high gross profitability earn higher returns than low profitability firms (Novy-Marx, 2013);
- This finding has a substantial impact on asset pricing research and motivated the inclusion of the profitability premium as a pricing factor (Hou, Xue, and Zhang, 2015, Fama and French, 2015);
- More profitable firms look more like growth firms (low BM) and less profitable firms look more like value firms (high BM), contradicting the well-established value premium.

伺下 イヨト イヨト

In this paper, we provide a production-based explanation for the gross profitability premium:

• A novel hedging effect from intermediate inputs (variable costs):

Gross Profitability
$$(GP/A) = \frac{\text{Revenue - Variable Cost}}{\text{Total Asset}}$$

- Empirically, both price and cost of intermediate inputs are more procylical than those of the revenues;
- On average, intermediate inputs offer a hedge to business cycle variations;
- In the cross section, more profitable firms have higher revenue-to-variable-cost ratio and lower hedging effect, leading to a positive gross profitability premium.

伺 ト イ ヨ ト イ ヨ ト

Main contribution

We illustrate this mechanism in a static production-based asset pricing model;

- CES production function between capital and intermediate inputs;
- Production subject to aggregate demand shocks and idiosyncratic productivity shocks;
- Analytically, a positive gross profitability premium when
 - Elasticity of substitution b/t capital and intermediate inputs is low;
 - Price is more procyclical for intermediate inputs than output;

A dynamic extension of the model with capital accumulation and investment-specific technology shocks quantitatively generates:

- Gross profitability premium of about 3.1% (3.69% in the data) and value premium about 3.4% (5.43% in the data);
- A negative correlation of -0.27 (-0.5 in the data) between gross profitability premium and value premium;
- Gross profitability being the other side of value;
- Failure of the unconditional CAPM.

(人間) (人) (人) (人) (人) (人)

Literature

- Explanations for the profitability premium
 - Risk-based explanations:
 - Kogan and Papanikolaou (2013), Ma and Yan (2015)
 - Behavioral explanations:
 - Wang and Yu (2015), Lam, Wang, and Wei (2014), Bouchaud, Krueger, Landier, and Thesmar (2016)
- Explanations for the value premium

- Berk, Green, Naik (1999), Zhang (2005), Carlson, Fisher, and Giammarino (2004), Cooper (2006), Lettau and Wachter (2007), Kogan and Papanikolaou (2014), Choi (2013), Donangelo (2018), etc.

Operating leverage

-Novy-Marx (2010), Carlson, Fisher, and Giammarino (2004), Zhang (2005), Favilukis and Lin (2015), Favilukis, Lin, and Zhao (2017), Petrosky-Nadeau, Zhang, Kuhen (2018), Donangelo, Gourio, Kehrig, and Palacios (2017)

A static model

- One period problem, only assets in place;
- CES production function, so gross profits π are

$$\pi = \max_{E} \left\{ X \left[(ZE)^{\frac{\eta-1}{\eta}} + K^{\frac{\eta-1}{\eta}} \right]^{\frac{\eta}{\eta-1}} - P \times E \right\}$$

where K is capital, E is intermediate inputs, P is the purchase price of E, η is the elasticity of substitution between capital and intermediate inputs, X represents the aggregate demand, and Z is the idiosyncratic input-augmenting productivity;

• FOC implies:

$$\mathsf{GP}/\mathsf{A} \equiv \frac{\pi}{K} = X \left[\left(\frac{ZE}{K} \right)^{\frac{\eta-1}{\eta}} + 1 \right]^{\frac{1}{\eta-1}}$$

 \Rightarrow GP/A increases with Z.

• • • • • • •

A static model, Cont.

• The exposure of gross profit (π) to X shocks:

$$\beta_X \equiv \frac{\partial \log \pi}{\partial \log X} = \frac{\partial \log P}{\partial \log X} + \left(1 - \frac{\partial \log P}{\partial \log X}\right) \left[\left(\frac{ZE}{K}\right)^{\frac{\eta-1}{\eta}} + 1 \right]$$

• It can be shown:

$$\frac{\partial \beta_X}{\partial \log Z} = (\eta - 1) \left(1 - \frac{\partial \log P}{\partial \log X} \right) \left(\frac{ZE}{K} \right)^{\frac{\eta - 1}{\eta}} \left[1 + \left(\frac{ZE}{K} \right)^{\frac{\eta - 1}{\eta}} \right].$$

 \Rightarrow A positive gross profitability premium if

$$\begin{array}{ll} \bullet & \eta > 1 \text{ and } \frac{\partial \log P}{\partial \log X} < 1; \text{ or} \\ \bullet & \eta < 1 \text{ and } \frac{\partial \log P}{\partial \log X} > 1. \end{array} \end{array}$$

< ∃ >

Intuition

Gross profit = Rev – COGS = $\left\{ X \left[(ZE^*)^{\frac{\eta-1}{\eta}} + K^{\frac{\eta-1}{\eta}} \right]^{\frac{\eta}{\eta-1}} - P \times E^* \right\}$

- When $\frac{\partial \log P}{\partial \log X} > 1$, $\beta_X(\text{Rev}) < \beta_X(\text{COGS})$;
- On average, variable cost generates a hedging effect to X shocks;
- Cross-sectional heterogeneity: when η < 1, E is "sticky", revenue increases more than variable cost in response to a positive Z shock;
- High Z (more profitable) firms have higher Rev/COGS ratio, and less affected by the hedging effect than low Z (less profitable) firms;
- High Z firms have higher exposures to X shocks and higher expected returns than low Z firms;
- \Rightarrow Positive gross profitability premium.

伺 ト イ ヨ ト イ ヨ ト

Aggregate demand elasticity of input price and quantity

Panel A: Summary statistics							
$\Delta P(Output) \Delta P(Input) \Delta Q(Output) \Delta Q(Input)$							
Mean (%)	3.35	3.34	3.07	3.03			
Std (%)	<mark>2.83</mark>	3.68	2.81	3.86			

Panel B: Elasticity of intermediate input price and quantity w.r.t. output prices $\Delta P(\text{Input}) \Delta Q(\text{Input})$

		•(1)
$\beta(\Delta P(Output))$	1.27	-0.27
<i>t</i> -stat	<mark>(25.43)</mark>	(-1.40)

*Data from BEA GDP-by-industry account, 1947-2014

- Input price is highly procylical $(\frac{\partial \log P}{\partial \log X} > 1)$;
- Input quantity is "sticky" $(\eta < 1)$.

Aggregate demand elasticity of input price and quantity

Panel A: Summary statistics							
$\Delta P(Output) \Delta P(Input) \Delta Q(Output) \Delta Q(Input)$							
Mean (%)	3.35	3.34	3.07	3.03			
Std (%)	2.83	3.68	2.81	3.86			

Panel B: Elasticity of intermediate input price and quantity w.r.t. output prices $\Delta P(\text{Input}) \Delta Q(\text{Input})$

		•(1)
$\beta(\Delta P(Output))$	1.27	-0.27
<i>t</i> -stat	(25.43)	<mark>(-1.40)</mark>

*Data from BEA GDP-by-industry account, 1947-2014

- Input price is highly procylical $(\frac{\partial \log P}{\partial \log X} > 1)$;
- Input quantity is "sticky" ($\eta < 1$).

Estimates of η

Model predicts:	GP/	$A = X\left(\frac{1}{GM}\right)$	$)^{rac{1}{\eta-1}}$, η ca	n be estimated fr	om FMB	regression:	
	$logGM_{it} = \pmb{a}_t + (1-\eta_t) imes logGP/A_{it} + \epsilon_{it}$						
		10 GP/A	10 BM	10 GP/A + 10	BM		
-	η	0.612	0.371	0.573			
_	se	0.031	0.035	0.025			
Industry					η	se	
Agriculture	, fores	stry, fishing,	and hunt	ing	0.738	0.037	
Arts, entert	tainme	ent, recreati	on, etc		0.708	0.032	
Constructio	n				0.751	0.037	
Educationa	l servi	ces, health	care, and	social assistance	0.510	0.026	
Finance, in	surand	ce, real esta	te, rental,	and leasing	0.878	0.027	
Information	1				0.642	0.008	
Manufactur	ring				0.534	0.020	
Mining					0.690	0.031	
Other servi	Other services, except government					0.032	
Professional and business services					0.607	0.023	
Retail trade					0.624	0.021	
Transportat	Transportation and warehousing					0.046	
Utilities	5					0.067	
Wholesale t	trade				0.627	0.035	

Estimates of η

ſ

Model predicts	: GP/	$A = X \left(\frac{1}{GM}\right)$	$)^{rac{1}{\eta-1}}$, η ca	an be estimated	from FM	B regression:
	lo	$gGM_{it}=a_t$	$+(1 - \eta_t)$) $ imes$ log GP/A $_{it}$ -	$\vdash \epsilon_{it}$	
		10 GP/A	10 BM	10 GP/A + 1	0 BM	
	η	0.612	0.371	0.573		
	se	0.031	0.035	0.025		
Industry					η	se
Agriculture	, fore	stry, fishing,	and hunti	ng	0.738	0.037
Arts, enter	tainm	ent, recreati	on, etc		0.708	0.032
Constructio	on				0.751	0.037
Education	al serv	ices, health	care, and	social assistance	0.510	0.026
Finance, in	suran	<mark>ce, real esta</mark>	te, rental,	and leasing	<mark>0.878</mark>	0.027
Information	ı				0.642	0.008
Manufactu	ring				0.534	0.020
Mining					0.690	0.031
Other servi	ices, e	xcept goveri	nment		0.733	0.032
Professiona	Professional and business services					0.023
Retail trade					0.624	0.021
Transporta	tion a	nd warehous	sing		0.696	0.046
Utilities			-		0.743	0.067
Wholesale	trade				0.627	0.035
				 U > 		이 사람에 들어

When $\frac{\partial \log P}{\partial \log X} > 1$ and $\eta < 1$, firms' responses to an aggregate demand shock and an idiosyncratic productivity shock are very different:

• A positive aggregate demand shock \Rightarrow Rev \uparrow and COGS $\uparrow\uparrow$

Prediction 1: At aggregate level, Vol(Rev) > Vol(GP)

• A positive idiosyncratic shock \Rightarrow Rev $\uparrow\uparrow$ and COGS \uparrow

Prediction 2: At firm level, Vol(Rev) < Vol(GP)

通 ト イ ヨ ト イ ヨ ト

Sales growth and gross profits growth

Panel A: Sales growth and gross profits growth at the aggregate level Panel A1 Panel A2 Cyclicality of AGP $\Delta ASale$ ΔAGP Summary Mean (%) 3.16 3.31 0.75 h Std (%) 5.754.99 (14.27)t-stat

Panel B: Sales growth and gross profits growth at the firm level Panel B1 Panel B2 ΔGP Summary $\Delta Sale$ Cyclicality of GP Mean (%) 7.49 7.06 1.14 h Std (%)

 \Rightarrow The opposite patterns in responses to aggregate and idiosyncratic shocks are key for the GP/A premium.

26.73

21.07

(17.73)

t-stat

Sales growth and gross profits growth

Panel A: Sales growth and gross profits growth at the aggregate level Panel A1 Panel A2 $\Delta ASale$ ΔAGP Cyclicality of AGP Summary Mean (%) 0.75 3.16 3.31 h Std (%) 5.75 4.99 (14.27)t-stat

Panel B: Sales growth and gross profits growth at the firm level Panel B1 Panel B2 ΔGP Cyclicality of GP Summary $\Delta Sale$ Mean (%) 7.49 7.06 h 1 14 Std (%) 21.0726.73 t-stat (17.73)

 \Rightarrow The opposite patterns in responses to aggregate and idiosyncratic shocks are key for the GP/A premium.

A dynamic extension: Motivation

- The static model describes the intuition for the gross profitability premium in a parsimonious way;
- But it implies that high Z firms have high V and high β_X ⇒ A negative value premium!!
- Furthermore, one-factor model structure implies CAPM holds;
- We provide a dynamic extension of the model to quantitatively explain both gross profitability premium and value premium.

通 と イ ヨ と イ ヨ と

A dynamic extension: Setup

• The basic production unit is projects. Each project uses one unit of capital and *E_{it}* units of intermediate inputs;

$$\pi_{jt} = \max_{E_{jt}} \left\{ X_t \left[\left(Z_{jt} E_{jt} Y_t \right)^{\frac{\eta-1}{\eta}} + Y_t^{\frac{\eta-1}{\eta}} \right]^{\frac{\eta}{\eta-1}} - P_t Y_t E_{jt} \right\} \\ = Y_t \max_{E_{jt}} \left\{ X_t \left[\left(Z_{jt} E_{jt} \right)^{\frac{\eta-1}{\eta}} + 1 \right]^{\frac{\eta}{\eta-1}} - P_t E_{jt} \right\}$$

where Y_t is aggregate productivity shock;

• Capital accumulation:

$$K_{jt+1} = (1-\delta)K_{jt} + \delta S_t A_{jt} K_{jt},$$

where K_{jt} is the number of projects, S_t and A_{jt} measure the aggregate and firm-specific intensity of new project arrivals.

通 と イ ヨ と イ ヨ と

A dynamic extension: Setup

• Firm value can be written recursively as:

$$V_{jt} = K_{jt}\pi_{jt} + E_t[M_{t+1}V_{jt+1}]$$

subject to profit-maximizing condition and law of motion for capital

• Exogenous processes:

$$\begin{aligned} x_{t+1} &= \rho_x x_t + (1 - \rho_x) \bar{x} + \sigma_x \epsilon_{t+1}^s \\ s_{t+1} &= \rho_s s_t + (1 - \rho_s) \bar{s} + \sigma_s \epsilon_{t+1}^s \\ \Delta y_{t+1} &= \sigma_y \epsilon_{t+1}^y \\ \log P_t &= \log p_0 + p_1 \log X_t, \\ z_{jt+1} &= \rho_z z_{jt} + (1 - \rho_z) \bar{z} + \sigma_z \epsilon_{jt+1}^z + \mu_z \\ a_{jt+1} &= \rho_a a_{jt} + \sigma_a \epsilon_{jt+1}^a \\ \rho_{az} &\equiv \operatorname{Corr}(\epsilon_{jt+1}^z, \epsilon_{jt+1}^a) > 0 \end{aligned}$$

• Pricing kernel:

$$M_{t+1} = \exp\left(-r_f - \gamma_x \sigma_x \epsilon_{t+1}^x - \gamma_y \sigma_y \epsilon_{t+1}^y - \gamma_s \sigma_s \epsilon_{t+1}^s - \frac{1}{2} \gamma_x^2 \sigma_x^2 - \frac{1}{2} \gamma_y^2 \sigma_y^2 - \frac{1}{2} \gamma_s^2 \sigma_s^2\right)$$

Kogan, Li, and Zhang (2019) Production-based Gross Profitability Premium

A dynamic extension: Calibration

Parameter	Description	Value
γ_X	Price of risk for aggregate demand shocks	15
γ_y	Price of risk for aggregate productivity shocks	6.5
γ_s	Price of risk for aggregate investment shocks	-10
η	Elasticity of substitution between capital and inputs	0.3
δ	Depreciation rate	0.01
r _f	Risk-free rate	0.25%
\bar{x}	Unconditional aggregate demand	0
ρ_{x}	Persistence of aggregate demand shocks	0.98
σ_{x}	Conditional volatility of aggregate demand shocks	0.04
σ_{v}	Conditional volatility of aggregate productivity shocks	0.027
ร์	Unconditional aggregate investment opportunity	-0.146
ρ_s	Persistence of aggregate investment shocks	0.9685
σ_s	Conditional volatility of aggregate investment shocks	0.026
Ī	Unconditional idiosyncratic productivity	1.1
ρ_z	Persistence of idiosyncratic productivity shocks	0.97
σ_z	Conditional volatility of idiosyncratic productivity shocks	0.075
ρa	Persistence of idiosyncratic investment shocks	0.98
σ_a	Conditional volatility of idiosyncratic investment shocks	0.107
ρ_{az}	Correlation between z shocks and a shocks	0.18
p_0	Logarithm of the level of intermediate inputs price	0.588
p_1	Cyclicality of intermediate inputs price w.r.t. aggregate demand	1.39
ϕ	Leverage ratio	1.67

E 990

聞 と く き と く き と

A dynamic extension: Moments

Moment	Data	Model
Average annual aggregate GP/A	0.24	0.25
AR(1) of aggregate annual GP/A	0.87	0.92
Average book-to-market ratio	0.53	0.44
AR(1) of aggregate book-to-market	0.89	0.89
Average annual aggregate investment rate	11.4%	11.1%
Standard deviation of annual aggregate investment rate	1%	1%
AR(1) of annual aggregate investment rate	0.73	0.72
Average aggregate sales - aggregate variable costs ratio	1.44	1.50
Vol. of agg. sales - agg. variable costs ratio	0.05	0.05
Vol. of agg. variable costs growth/vol. of agg. sales growth	1.12	1.15
Corr. b/w agg. sales growth and agg. variable costs growth	0.99	0.99
Vol. of firm variable costs growth/Vol. of firm sales growth	0.99	0.91
Value-weighted annual market premium	6.47%	8.87%
Value-weighted annual market volatility	16.96%	18.33%
Equally-weighted annual market premium	10.9%	9.42%
Equally-weighted annual market volatility	26.03%	18.13%
Volatility of monthly firm-level stock returns	12.6%	10.9%

回 と く ヨ と く ヨ と

æ

A dynamic extension: Portfolio characteristics

GP/A portfolios						
	GP/A	logBM	Ζ	Α		
Lo	0.05	-0.93	0.09	0.71	-0.36	
2	0.16	-1.02	0.23	0.95	-0.28	
3	0.24	-1.09	0.30	1.10	-0.23	
4	0.33	-1.14	0.37	1.25	-0.18	
Hi	0.47	-1.24	0.47	1.49	-0.10	
	Boo	k-to-mark	et port	folios		
	Boo GP/A	k-to-mark logBM	et port GM	folios <i>Z</i>	A	
Lo			-		A 0.52	
Lo 2	GP/A	logBM	ĞМ	Ζ		
	GP/A 0.31	logBM -1.56	GM 0.35	<i>Z</i> 1.24	0.52	
2	GP/A 0.31 0.29	logBM -1.56 -1.21	GM 0.35 0.33	<i>Z</i> 1.24 1.19	0.52 0.04	

- Gross margin is higher for High GP/A and growth stocks;
- Gross profitability looks like the other side of value;
- GP/A portfolios mainly sorts on Z; BM portfolios mainly sorts on A.

A B > A B >

A dynamic extension: Portfolio returns and AP tests

GP/A portfolios						
	Lo	2	3	4	Hi	Hi-Lo
Mean	6.87	7.74	8.39	9.09	10.00	<mark>3.13</mark>
Std	16.95	17.08	17.15	17.23	17.45	5.59
α	-1.52	-0.72	-0.11	0.56	1.36	<mark>2.88</mark>
	(-3.15)	(-1.51)	(-0.23)	(1.15)	(2.77)	<mark>(3.67)</mark>
MKT	0.99	0.99	1.00	1.00	1.01	0.03
α	-2.00	-0.92	-0.17	0.68	1.79	3.79
	(-4.11)	(-1.89)	(-0.35)	(1.34)	(3.58)	(4.84)
MKT	1.00	1.00	1.00	1.00	1.00	0.00
HML	0.11	0.05	0.01	-0.03	-0.10	-0.20
		Book-to	-market p	ortfolios		
	Lo	2	3	4	Hi	Hi-Lo
Mean	6.45	8.78	9.42	9.89	9.86	3.40
Std	18.46	17.01	16.67	16.42	16.18	7.32
α	-2.64	0.31	1.12	1.73	1.86	4.50
	(-4.50)	(0.76)	(2.80)	(4.07)	(3.90)	(4.59)
MKT	1.07	1.00	0.97	0.96	0.94	-0.13
α	-0.12	-0.26	0.17	0.48	-0.12	0.00
	(-0.56)	(-0.68)	(0.48)	(1.43)	(-0.56)	
MKT	1.00	1.01	1.00	0.99	1.00	0.00
HML	-0.56	0.13	0.21	0.28	0.44	1.00

Kogan, Li, and Zhang (2019) Production-based Gross Profitability Premium

▲□ → ▲ □ → ▲ □ → …

æ

A dynamic extension: Portfolio returns and AP tests

		GP	/A portfo	lios		
	Lo	2	3	4	Hi	Hi-Lo
Mean	6.87	7.74	8.39	9.09	10.00	3.13
Std	16.95	17.08	17.15	17.23	17.45	5.59
α	-1.52	-0.72	-0.11	0.56	1.36	2.88
	(-3.15)	(-1.51)	(-0.23)	(1.15)	(2.77)	(3.67)
MKT	0.99	0.99	1.00	1.00	1.01	0.03
α	-2.00	-0.92	-0.17	0.68	1.79	3.79
	(-4.11)	(-1.89)	(-0.35)	(1.34)	(3.58)	(4.84)
MKT	1.00	1.00	1.00	1.00	1.00	0.00
HML	0.11	0.05	0.01	-0.03	-0.10	-0.20
		Book-to	-market p	ortfolios		
	Lo	2	3	4	Hi	Hi-Lo
Mean	6.45	8.78	9.42	9.89	9.86	3.40
Std	18.46	17.01	16.67	16.42	16.18	7.32
α	-2.64	0.31	1.12	1.73	1.86	4.50
	(-4.50)	(0.76)	(2.80)	(4.07)	(3.90)	<mark>(4.59)</mark>
MKT	1.07	1.00	0.97	0.96	0.94	-0.13
α	-0.12	-0.26	0.17	0.48	-0.12	0.00
	(-0.56)	(-0.68)	(0.48)	(1.43)	(-0.56)	
MKT	1.00	1.01	1.00	0.99	1.00	0.00
HML	-0.56	0.13	0.21	0.28	0.44	1.00

Kogan, Li, and Zhang (2019) Production-based Gross Profitability Premium

æ

• • = • • = •

A dynamic extension: Portfolio risk exposures

			GP/A portfo	olios		
	Lo	2	3	4	Hi	Hi-Lo
$\beta(X)$	0.05	0.09	0.11	0.14	0.18	0.13
	(4.99)	(7.94)	(10.12)	(12.39)	(15.67)	<mark>(8.49)</mark>
$\beta(Y)$	1.68	1.68	1.68	1.68	1.68	0.00
	(107.99)	(103.09)	(101.96)	(98.46)	(96.55)	(0.17)
$\beta(S)$	0.62	0.64	0.65	0.66	0.69	0.06
	(39.01)	(37.99)	(37.73)	(37.39)	(38.12)	(2.59)
		Book	-to-market I	Portfolios		
	Lo	2	3	4	Hi	Hi-Lo
$\beta(X)$	0.12	0.13	0.13	0.12	0.09	-0.02
	(8.41)	(14.66)	(16.63)	(17.26)	(14.84)	(-1.62)
$\beta(Y)$	1.68	1.68	1.68	1.68	1.68	0.00
	(80.60)	(126.62)	(145.28)	(159.42)	(179.85)	(0.21)
$\beta(S)$	0.95	0.65	0.55	0.47	0.38	-0.57
	(44.07)	(47.71)	(45.94)	(44.00)	(39.89)	<mark>(-24.46)</mark>

- The GP/A premium loads strongly on aggregate demand (X) shocks;
- The value premium loads strongly on investment (S) shocks ;
- Portfolio exposures to aggregate productivity (Y) shocks are flat;
- A positive ρ_{az} gives rise to a negative correlation between GP/A premium and value premium.

A dynamic extension: Portfolio risk exposures

GP/A portfolios									
	Lo	2	3	4	Hi	Hi-Lo			
$\beta(X)$	0.05	0.09	0.11	0.14	0.18	0.13			
	(4.99)	(7.94)	(10.12)	(12.39)	(15.67)	(8.49)			
$\beta(Y)$	1.68	1.68	1.68	1.68	1.68	0.00			
	(107.99)	(103.09)	(101.96)	(98.46)	(96.55)	(0.17)			
$\beta(S)$	0.62	0.64	0.65	0.66	0.69	0.06			
	(39.01)	(37.99)	(37.73)	(37.39)	(38.12)	(2.59)			
Book-to-market Portfolios									
	Lo	2	3	4	Hi	Hi-Lo			
$\beta(X)$	0.12	0.13	0.13	0.12	0.09	-0.02			
	(8.41)	(14.66)	(16.63)	(17.26)	(14.84)	(-1.62)			
$\beta(Y)$	1.68	1.68	1.68	1.68	1.68	0.00			
	(80.60)	(126.62)	(145.28)	(159.42)	(179.85)	(0.21)			
$\beta(S)$	0.95	0.65	0.55	0.47	0.38	-0.57			
	(44.07)	(47.71)	(45.94)	(44.00)	(39.89)	(-24.46)			

- The GP/A premium loads strongly on X shocks;
- The value premium loads strongly on S shocks;
- Portfolio exposures to Y shocks are flat;
- A positive ρ_{az} gives rise to a negative correlation between GP/A premium and value premium.

A dynamic extension: Portfolio risk exposures

GP/A portfolios									
	Lo	2	3	4	Hi	Hi-Lo			
$\beta(X)$	0.05	0.09	0.11	0.14	0.18	0.13			
	(4.99)	(7.94)	(10.12)	(12.39)	(15.67)	<mark>(8.49)</mark>			
$\beta(Y)$	1.68	1.68	1.68	1.68	1.68	0.00			
	(107.99)	(103.09)	(101.96)	(98.46)	(96.55)	(0.17)			
$\beta(S)$	0.62	0.64	0.65	0.66	0.69	0.06			
	(39.01)	(37.99)	(37.73)	(37.39)	(38.12)	<mark>(2.59)</mark>			
Book-to-market Portfolios									
	Lo	2	3	4	Hi	Hi-Lo			
$\beta(X)$	0.12	0.13	0.13	0.12	0.09	-0.02			
	(8.41)	(14.66)	(16.63)	(17.26)	(14.84)	<mark>(-1.62)</mark>			
$\beta(Y)$	1.68	1.68	1.68	1.68	1.68	0.00			
	(80.60)	(126.62)	(145.28)	(159.42)	(179.85)	(0.21)			
$\beta(S)$	0.95	0.65	0.55	0.47	0.38	-0.57			
	(44.07)	(47.71)	(45.94)	(44.00)	(39.89)	<mark>(-24.46)</mark>			

- The GP/A premium loads strongly on X shocks;
- The value premium loads strongly on S shocks;
- Portfolio exposures to Y shocks are flat;
- A positive ρ_{az} gives rise to a negative correlation between GP/A premium and value premium.

Conclusion

- A production-based explanation for the gross profitability premium;
 - A novel hedging effect from intermediate inputs;
 - More profitable firms have higher exposure to the aggregate demand shock than less profitable firms due to heterogeneity in hedging effect;
- A dynamic extension offers a unified interpretation for gross profitability premium and value premium;
- It reproduces the coexistence of gross profitability premium and value premium, their negative correlation, and the failure of CAPM.

伺 ト イ ヨ ト イ ヨ ト