

"How does Stock Market Affect Corporate Investment?"

Chong Huang, UC Irvine

Swedish House of Finance Conference on Financial Markets and Corporate Decisions August 19-20, 2019

How does Stock Market Affect Corporate Investment?

Itay Goldstein ¹ Chong Huang ² Qiguang Wang ³

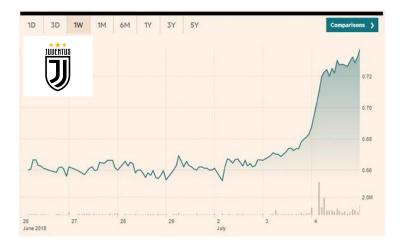
¹Wharton, UPenn

²Paul Merage School, UCI

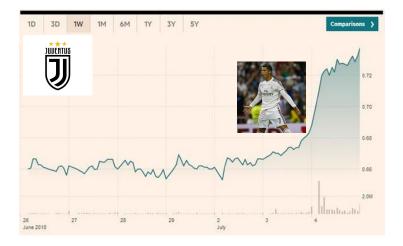
³School of Business, HKBU

August 15, 2019

Image: A math a math



・ロト ・回ト ・ヨト ・ヨト



イロト イヨト イヨト イヨト

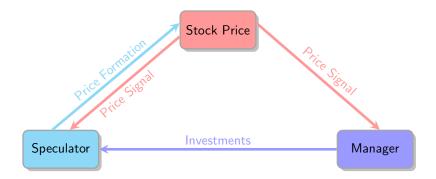
Strong positive correlation between investment and stock price

- Recent empirical evidence in Bond, Edmans, and Goldstein (2012)
- In short, investment-price sensitivity

No agreement on the reason

- Correlated information channel due to correlation between
 - Managerial information: determining investment
 - Speculator private information: determining price
- Managerial learning channel

Informational Feedback Loop



・ロト ・回ト ・ヨト

Managerial learning has been studied theoretically in various specific settings.

- Special payoff functions
- Binary random economic fundamentals
- Binary choices

We know less about general properties of informational feedback.

- Tractable model with general functional form, continuous economic fundamentals, and continuous choices
- O How does stock market affect corporate investments?
- Solution is the second seco

Consider an exogenous shock in financial market.

- Shock affects *investment-price sensitivity* through price signal only.
- Investment-price sensitivity = $\frac{\text{Shock effect on investment}}{\text{Shock effect on price}}$
 - Shock effect on investment represents managerial learning.
 - Shock effect on price arises from speculator learning.
 - Belief updating
 - Anticipating managerial learning
- Race between managerial learning and speculator learning
 - Determines how price informativeness affects corporate investments and *investment-price sensitivity*

< ロ > < 同 > < 三 > < 三

Price informativeness is the product of

- Precision of speculator private signal
- Precision of random supply shock
- Oifferent precisions have heterogeneous effects on investment-price sensitivity.

	investment-price sensitivity	
	global monotonicity	asymptotic
speculator signal	decreasing	significant
supply shock	increasing then decreasing	trivial

O Direct effects of price informativeness on investment

• Not through affecting investment-price sensitivity

Two new identifications for managerial learning hypothesis.

- **O** Different noise precisions affect investment-price sensitivity differently.
- One of the second se

A D > A B > A B > A

Manager optimization

$$\max_{I \in [I_L, I_H]} \mathbb{E} \left[\pi(v, I) - \Delta(I) | P \right]$$

- $\pi(v, I)$: firm value depends on fundamental v and investment I
- $\Delta(I)$: manager's private cost
- The manager can observe stock price P
 - Shutting down correlated information channel

A continuum of risk-neutral speculators with measure 1. Each speculator i

$$\max_{d_i \in [-1,1]} \mathbb{E}\left[\left(\pi(v, I) - P \right) d_i | s_i, P \right]$$

- $s_i = v + \epsilon_i$ is speculator *i*'s private signal
- Private signal noise: $\epsilon_i \sim \mathcal{N}(0, \gamma^{-1})$
- Submit a demand scheme

Random supply $S(\xi) = 1 - 2\Phi(\xi)$

• Random supply noise: $\xi \sim \mathcal{N}(\mathbf{0}, \beta^{-1})$

Manager's investment decision

- Belief updating: $v|P \sim \mathcal{N}\left(\mu_{v|P}, \sigma_{v|P}^2\right)$
- Maximization: $\mathbb{E}\left[\pi\left(\mathbf{v},I\right) \Delta(I)|P\right] \equiv \Pi\left(I,\mu_{\mathbf{v}|P},\sigma_{\mathbf{v}|P}\right) \Delta(I)$
- Equilibrium investment: $I^*(\mu_{v|P}, \sigma_{v|P})$

Each speculator *i*

$$d(s_i, P) = \begin{cases} 1, & \text{if } s_i > g(P) \\ \in [-1, 1], & \text{if } s_i = g(P) \\ -1, & \text{if } s_i < g(P) \end{cases}$$

Price Formation

Market clearing implies $g(P) = v + \xi/\sqrt{\gamma}$.

- Define z = g(P) as the price signal
- $z|v \sim \mathcal{N}\left(v, (\gamma\beta)^{-1}
 ight)$
- g(P) is not linear

Marginal speculator

• Private signal realization = price signal realization

•
$$v|s_i = z, z \sim \mathcal{N}\left(\mu_{v|s_i=z,z}, \sigma_{v|s_i=z,z}^2\right),$$

• Indifference:

$$P = \mathbb{E}\left[\pi(v, I^*)|s_i = z, z\right] = \Pi\left(I^*, \mu_{v|s_i = z, z}, \sigma_{v|s_i = z, z}\right)$$

Consider a change of random supply shock $\Delta \xi$.

• Affects investment and speculator payoff through price signal only (Δz)

Decomposition of *investment-price sensitivity*

Investment-price sensitivity =
$$\frac{\Delta I}{\Delta P} = \frac{\Delta I/\Delta z}{\Delta P/\Delta z}$$

- $\Delta I / \Delta z$: managerial learning
- $\Delta P/\Delta z$: (marginal) speculator learning

Importantly,

• P is not linear in z, so speculator learning is not constant.

Learning effects

Manager and speculators observe same signal realization but learn differently.

• Managerial learning $\Delta I^* / \Delta z$:

$$\frac{\Delta I^*}{\Delta z} = \frac{\partial I^*}{\partial \mu_{\nu|z}} \frac{\partial \mu_{\nu|z}}{\partial z},$$

where $\mu_{\nu|z} = \frac{\eta v_0 + \gamma \beta z}{\eta + \gamma \beta}$;

- Marginal speculator learning $\Delta P / \Delta z$:
 - Belief updating

$$\frac{\partial \Pi\left(I^*,\mu,\sigma\right)}{\partial \mu}\frac{\partial \mu_{\nu|s_i=z,z}}{\partial z},$$

where
$$\mu_{v|s_i=z,z} = \frac{\eta v_0 + \gamma z + \gamma \beta z}{\eta + \gamma + \gamma \beta}$$
.
• Anticipation effect:
 $\frac{\partial \Pi (I^*, \mu, \sigma)}{\partial I^*} \frac{\Delta I^*}{\Delta z}$

メロト メポト メヨト メヨ

Price signal z

$$z| oldsymbol{v} \sim \mathcal{N}\left(oldsymbol{v}, (\gammaeta)^{-1}
ight)$$

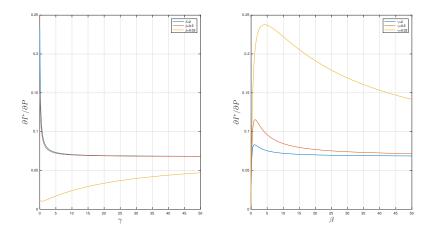
Price is almost uninformative if either $\gamma \rightarrow 0$ or $\beta \rightarrow 0$.

	$\gamma ightarrow 0$	eta ightarrow 0
Price signal z	noise	noise
Private signal $s_i = z$	noise	informative
Manager Learning	trivial: $rac{\gammaeta}{\eta+\gammaeta} ightarrow 0$	trivial: $rac{\gammaeta}{\eta+\gammaeta} ightarrow 0$
Speculator Learning	trivial: $\frac{\dot{\gamma} + \dot{\gamma}\beta}{\eta + \gamma + \gamma\beta} \to 0$	non-trivial: $\frac{\gamma + \gamma \beta}{\eta + \gamma + \gamma \beta} \rightarrow \frac{\gamma}{\eta + \gamma}$
Investment-price sensitivity	$rac{\Delta I}{\Delta P} ightarrow c > 0$	$rac{\Delta I}{\Delta P} ightarrow 0$

・ロト ・回ト ・ヨト ・

Heterogeneous Global Monotonicity

Investment-price sensitivity may not be strictly increasing in either γ or β . • The effects of γ and β differ.



When speculator private signals are more precise

- Managerial learning is stronger.
 - Price signal is more informative.
- Speculator learning is even stronger.
 - $\bullet~$ More informative private signal $\Rightarrow~$ Stronger belief updating
 - Anticipation effect is at least as strong as managerial learning.

Investment-price sensitivity = $\frac{\text{Managerial learning}}{\text{Anticipation} + \text{Belief updating}}$

• Denominator grows faster \Rightarrow *Investment-price sensitivity* decreases.

When random supply shock is less noise

- Managerial learning is stronger.
 - Price signal is more informative.
- Speculator learning becomes stronger.
 - For small β , belief updating is mainly based on private signal.
 - For large β , belief updating is mainly based on price signal.
 - Anticipation effect is as strong as managerial learning.

Investment-price sensitivity = $\frac{\text{Managerial learning}}{\text{Anticipation} + \text{Belief updating}}$

• First increases then decreases

Price informativeness affects investments directly (not through affecting investment-price sensitivity).

$$\frac{\partial \Pi \left(I, \mu_{\nu|P}, \sigma_{\nu|P} \right)}{\partial I} - \frac{\partial \Delta(I)}{\partial I} = 0.$$

- Increase in price informativeness weakens the role of prior.
- Price informativeness affects $\sigma_{v|P}$.

・ロト ・回ト ・ヨト ・ヨト

From theoretical aspect

- A tractable general equilibrium model about informational feedback
- Characterize generally how price informativeness affects investments and investment-price sensitivity

From empirical aspect: two new identifications for managerial learning hypothesis

- Different noise precisions affect investment-price sensitivity differently.
- Price informativeness affects investments directly.