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Adverse Selection and Liquidity

Questions
• Is there a simple empirical measure of liquidity?

• How can theoretical liquidity parameters, like λ, be implemented em-
pirically?

• How can empirical measures of liquidity be connected, through ad-
verse selection, to properties of prices?

Answers: Use general principles

• Invariance implies a simple measure of liquidity: L =

(

m2PV

Cσ2

)1/3

• Liquidity L can be mapped to permanent price impact λ, temporary
price impact κ , funding and trading liquidity.

• Theoretical dynamic models link L to resiliency of prices ρ and error
variance of prices Σ.
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Noise Trading and One-Period Models
One-period models are like block trading models.

• 1970s: Traditional ideology that financial markets are perfectly com-
petitive. Grossman and Miller (1988): Customers demand immediacy.
Perfect competition consistent with noise traders trading immediately.

• Kyle (1985): Breaks tradition: Large trader with monopolistic access to
private information reduces price impact by reducing quantity traded.

– “Market-ordermodel” capture hybrid features of organized exchanges
of 1980s: No limit orders but anonymity.

• Kyle (1989): Imperfectly competitive equilibrium in demand schedules
approximates organized exchange.

– Traders exercise monopoly power over private information by trad-
ing less aggressively than perfect competitors.

• Lee and Kyle (2018, 2017): In symmetric setup like Diamond and Ver-
recchia (1982) but with imperfect competition: prices are same as with
competition, quantities are smaller, vanishing noise makes markets
infinitely non-competitive, contradicting Grossman and Stiglitz (1980).
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Dynamic Models
In dynamic models, traders have incentives to trade many times:

• Kyle (1985): Large trader trades gradually over time but noise traders
demand immediacy.

– Noise traders could reduce costs by trading gradually over time, as
in model of Vayanos (1999).

• Kyle, Obizhaeva, Wang (2018): Well-specified stationary dynamicmodel
of smooth trading on flow of private information with continuous limit
order book. Trade motivated by overconfidence on private informa-
tion.

– Instantaneous liquidity vanishes; smooth trading as a flow over time,
with permanent price impact λ and temporary price impact κ .

– Prices reveal information immediately. Anomalies vanish whenmar-
kets extremely illiquid. Liquidity leads to Keynesian beauty contest.

• Kyle and Lee (2018): Propose continuous scaled limit orders to end
high frequency arms race; alternative to frequent batch auctions of
Budish, Cramton, Shim (2015).
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Invariance: From Theory to Practice

It is difficult to use theoretical microstructure models to make empiri-
cally operational predictions. Invariance makes it possible to

• Map parameters of theoretical models (order flow imbalances, quality
of private information) into empirically observable quantities (dollar
volume, return volatility).

• Infer difficult-to-observe market characteristics (market impact, aver-
age bet size, number of bets, pricing accuracy, resiliency) from easy-
to-observe characteristics (volume and volatility).

• Derive precise empirical measures of trading and funding liquidity.

• Derive “universal price impact formula” which is a function of a few
asset characteristics and applies to all assets simultaneously.

• Build a benchmark for assessing the role of industrial organization pa-
rameters (dealer markets, specialist system, Reg NMS or MiFiD), fric-
tions (tick size, lot size), technology (high frequency trading).
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Derivation of Invariance Formulas

There are many ways to derive invariance formulas:

• Meta-model: Reduced-form microstructure model.

• Dimensional analysis and leverage neutrality: Like physics.

• Kyle–Obizhaeva (ECMA, 2016): Ad hoc invariance hypotheses: Risk trans-
fer of bets and transactions costs of bets the same for bets which
transfer the same risk per unit of business time (arrival rate of bets).

• Dynamic theoretical model of Kyle–Obizhaeva (WP, 2018) in spirit of
Kyle (1985) and Glosten–Milgrom (1985).
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Market Microstructure Variables
Easy-to-observe quantities include price, volume, and volatility:

Price = Pj t = 40.00 dollars/share
Trading Volume =Vj t = 1.00 million shares/day

Returns Volatility = σj t = 0.02/day1/2

Hard-to-measure quantities that vary greatly across assets and time in-
clude bet size, number of bets, and the price impact coefficient:

Size of Bet = Q j t = 10 000 shares
Number of Bets = γj t = 100/day

Execution Horizon = H j t = 1 day
Price Change per Bet = ∆Pj t = 0.04 = dollars/share

Price Impact Coefficient = λj t = 5 × 10−5dollars/share2

Price Error = Σ1/2 = var1/2
[
log

(

F

P

)]
= log(2) (dimensionless)

Price Resiliency = ρ = 0.0040/day (dimensionless)
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Market Microstructure Variables (continued)

Invariant Parameters: Hard-to-measure variables which (we hypothesize
do) not vary much, if at all:

Avg Dollar Cost per Bet = C = 2000 dollars,

Moment ratio = m =
E [|Q |] ·

√

E
�
|Q |2β

�

E
�
|Q |β+1

� =
√

2/π (dimensionless) for

Moment ratio = mβ =
( E [|Q |])β+1

E
�
|Q |β+1

� =
√

2/π (dimensionless)

Probability a bet is informed = θ = 1/2 (dimensionless),
Information content of signal = τ = 0.00802 (dimensionless).
Information content of a bet = θ2τ = 0.00402 (dimensionless),
Cost of an Informative Signal = c̄I = 2000 dollars.
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Notation for Linear Price Impact

Finance theorists like linear models of price impact:

Price Impact = ∆P = λ · Q

Price impact cost in dollars:

Dollar Price Impact Cost = λ · Q 2

Price impact cost G as fraction of value traded:

G =
∆P

P
=
λ · Q 2

P · Q
=
λ · Q
P

Note: λ has units of dollars per share-squared, Q has units of shares, P
has units of dollars per share, so G is dimensionless.
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Approach I: Meta-Model

Suppose power function price impact for a bet Q : ∆P = λ · Q β .
Define γ = number of bets per day.
Now assume three-equation “meta-model”:

V = γ · E [|Q |] (Definition of volume)

σ2 = γ · E


(

∆P

P

)2
(Bets generate all volatility),

E
[
(∆P )2

]
= λ2 · E

[
|Q |2β

]
(Volatility from one bet).

Three easy-to-measure quantities: V , σ , P .
Five hard-to-measure quantities:

γ, E{`Q `}, E{`Q `2β}, E
[
(∆P )2

]
, α .

Since three log-linear constraints, need to know e.g. γ or E{`Q `} to im-
plement solution empirically.
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Empirical Motivation for Invariance

• Emprical Problem: Parameters like bet arrival rate γ and bet size E{`Q `}

are hard to measure or estimate.

• Can they be replaced with a parameter that is either easier to estimate
or does not vary much across assets?

• Empirical strategy: Introduce a parameter C (dollars), which does not
vary (much) across assets and time.

• Use “invariant” parameter C to replace hard-to-measure and varying
across assets and time parameters γ or E{`Q `}.

• Assume “transactions cost invariance”: Ex ante expected dollar cost
of a bet is constant (almost?)

C = E{`Q ` · ∆P } = λ E
[
|Q |1+β

]
.
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Augmented Four Equation Meta-Model

Add transactions cost invariance to obtain four equations:

V = γ · E{`Q `} (Definition of volume)

σ2 = γ · E


(

∆P

P

)2
(Bets generate all volatility),

E
[
(∆P )2

]
= λ2 · E

[
|Q |2β

]
(Price Impact of one bet),

C = λ E
[
|Q |1+β

]
(Dollar impact cost of a bet).

Need two invariant moment ratios:

m :=
E{`Q `} ·

√

E{`Q `2β}

E{`Q `β+1}
, mβ :=

( E{`Q `})β+1

E{`Q `β+1}
.

Assume six parameters are easy to measure or almost constant:

P , V , σ, C , m, mβ .

Solve six equations and six hard-to-measure parameters:

γ, α , E
[
∆P 2

]
, E{`Q `}, E{`Q `1+β}, E{`Q `2β}.
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Solution with Invariance

Define observable “illiquidity” 1/L as volume-weighted expected cost:

1

L
:=

C

E{`PQ `}
=

(

σ2C

m2PV

)1/3

.

Then expected bet size and number of bets are given by

E{`PQ `} = C · L, γ =
1

m2
· σ2L2.

Price impact is
∆P

P
=

1

L
· mβ · `Z `β , where Z :=

Q

E{`Q `}
=
PQ

CL
,

Result: If C , m, and mβ are invariant across assets, then we have a uni-
versal market impact formula and universal formula for size and number
of bets, which requires estimation of only these three parameters and β !

(Preliminary) Calibration: C = $2, 000; if β = 1, thenm ≈ 0.25 andmβ = m2.
If β = 1/2, then mβ = m ≈ 0.40.
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Portfolio Transition Order Size
Figure from Kyle-Obizhaeva-ECMA-2016
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Distribution of Portfolio Transitions Orders
Figure from Kyle-Obizhaeva-ECMA-2016

0
.1

.2
.3

15 10 5 0 5

0
.1

.2
.3

15 10 5 0 5

0
.1

.2
.3

15 10 5 0 5

0
.1

.2
.3

15 10 5 0 5

0
.1

.2
.3

15 10 5 0 5

0
.1

.2
.3

15 10 5 0 5

0
.1

.2
.3

15 10 5 0 5

0
.1

.2
.3

15 10 5 0 5

0
.1

.2
.3

15 10 5 0 5

0
.1

.2
.3

15 10 5 0 5

0
.1

.2
.3

15 10 5 0 5

0
.1

.2
.3

15 10 5 0 5

0
.1

.2
.3

15 10 5 0 5

0
.1

.2
.3

15 10 5 0 5

0
.1

.2
.3

15 10 5 0 5

st d
e

v

volume

st
 d

e
v

  g
ro

u
p

 1
st

 d
e

v
  g

ro
u

p
 3

volume  group 10volume  group 4 volume  group  7volume  group 1 volume  group  9

st
 d

e
v

  g
ro

u
p

 5

N=7213 N=8959 N=6800 N=8901 N=11149

N=12134 N=8623 N=5568 N=8531 N=8864

N=26525 N=13191 N=6478 N=7107 N=8098

m=-5.87

  v=2.23

  s=0.02

  k=3.18 

m=-6.03

  v=2.44

  s=0.10

  k=2.73 

m=-5.81

  v=2.44

  s=0.01

  k=2.93 

m=-5.60

  v=2.38

 s=-0.18

  k=3.15 

m=-5.48

  v=2.32

  s=-0.21

  k=3.34 

m=-5.69

  v=2.37

  s=0.05

  k=2.95 

m=-5.80

  v=2.60

  s=-0.02

  k=2.80 

m=-5.82

  v=2.62

  s=0.03

  k=2.87 

m=-5.61

  v=2.48

 s=-0.03

  k=3.23 

m=-5.41

  v=2.47

  s=-0.13

  k=3.32 

m=-5.86

  v=2.90

  s=-0.07

  k=3.00 

m=-5.67

  v=2.51

  s=-0.08

  k=3.01 

m=-5.77

  v=2.84

  s=-0.06

  k=3.03 

m=-5.72

  v=2.68

  s=0.08

  k=3.10 

m=-5.59

  v=2.85

  s=0.05

  k=3.38 

Pete Kyle University of Maryland p. 14/36



Square Root Model in Portfolio Transition Orders
Figure from Kyle-Obizhaeva-ECMA-2016
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Approach II: Dimensional Analysis

Physics researchers obtain powerful results by using dimensional anal-
ysis to reduce the dimensionality of problems (the size and number of
molecules in a mole of gas, the size of the explosive energy, turbulence).

• Physics: Fundamental units of mass, distance, and time & conserva-
tion laws based on laws of physics.

• Finance: Fundamental units of time, currency, and shares & conser-
vation laws based on no-arbitrage restrictions.
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Dimensional Analysis Approach (continued)

Basic idea: Use dimensional analysis like a physicist (units consistency,
Buckingham π Theorem):

• “Guess” correct functional form, i.e, correct list of explanatory vari-
ables.

– Warning: Incorrect guess may lead to nonsense.

• Reduce dimensionality of problem by factoring out units, making re-
maining parameters dimensionless.

• Add restriction of “leverage neutrality” (Modigliani–Miller Theorem) to
reduce dimensionality further. The cost of exchanging cash is zero.
Dollar market impact cost of exchanging a risky bundle of assets is the
same for any positive or negative amount of cash-equivalent assets
included with the bundle.

• Make empirically motivated invariance assumption.

Implication: Results similar to meta-model
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Where is Adverse Selection?

• Meta-model derives an empirical formula for liquidity L without an
underlying model of adverse selection.

– This is consistent with mechanical aspects of trading experienced
in markets, where information is invisible.

• We need theories based in economics to link meta-model to adverse
selection.

• This enables further link to pricing accuracy, probability of informed
trading, and precision of signals.

We next show that the meta-model and dimensional approach are con-
sistent with theoretical models of both block trading and smooth trading.
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Model of Treynor (1971)

How to determine bid price B , ask price A, bid-ask spread S , and mid-
point P ?

• Informed traders and liquidity traders buy or sell fixed quantity ±Q̄
with competitive risk neutral market maker.

• Probability θ: Informed trader observes information about fundamen-
tal value P ± ∆F with equal probabilities.

• Probability 1 − θ: Noise trader trades randomly.

Result: Bid-ask spread satisfies

S = A − B = 2θ∆F .

How to map to data? Since model maps to meta-model (two states con-
sistent with linearity), bid-ask spread satisfies reasonable, empirically
testable hypothesis

1

2
· S
P

=

(

σ2C

PV

)1/3

=
1

L
with m = 1.
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One-period Model of Kyle (1985): Setup

Assumptions:

• Informed trader observes fundamental value:

F = P0 + σF ZF , with ZF ∼ N(0, 1).

• Noise traders trade QU = σUZU , with ZU ∼ NID(0, 1).

Definition of Equilibrium (following nice approach of Bagnoli, Holden,
Viswanathan (2001)):

• Informed trader exercises market power, trades QI given by

QI (F ) = argmax
x

E [(F − p(x ,QU )) · xI ` F ] ,

• Market makers set price as symmetric function

p(QI ,QU ) = E [F ` {QI ,QU}] .
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One-Period Model of Kyle (1985): Equilibrium

Simple derivation shows equilibrium given by

QI = β (F − P0), p(QI ,QU ) = P0 + λ(QI + QU ),

with coefficients for trading intensity β and market impact λ given by

β =
σU

σF

and λ =
1

2

σF

σU
.

Equilibrium maps into meta-model with two bets, QI and QU :

V = γ · E [|Q |] (Definition of volume)

σ2 = γ · E


(

∆P

P

)2
(Bets generate all volatility),

E
[
∆P 2

]
= λ2 · E

[
Q 2

]
(Market impact of one bet),

C = λ · E
[
Q 2

]
(Dollar impact cost of a bet.)
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One-Period Model of Kyle (1985): Invariance

Therefore, theoretical parameters map empirically to L as

σF :=
2mP

L
=
2Pσ
√
γ
, and σU :=

CL

mP
=
E [|Q |]
m

.

Solution to model implies

Trading Profit = C =
σF σU

2
= Dollar Market Impact Cost

Market microstructure invariance is consistent with assumption that in-
formed trader pays C for a private signal, in which case

C =
σF σU

2
= Cost of Private Signal.

Model describes what happens during time period when two bets arrive,
both of which are executed as block trades.

• Model operates over different horizons for securities with different
liquidity (in this case measured by γ = σ2L2/m2).
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Smooth Trading Model: Setup

Simplified version of Kyle, Obizhaeva, Wang (2018):

• With probability θ, informed trader receives one signal at random time,
trades gradually on signal over time. Risk neutrality consistent with
θ = 1/2.

• With probability 1 − θ, noise trader trades randomly with fake signal.

Trading has temporary and permanent price impact:

P (t ) = P−∗(t ) + λS (t ) + κ · x (t ), where x (t ) =
dS (t )

dt
.

Equilibrium definition is analogous to Kyle (1985):

• Trader maximizes profit by incorporating fraction θ of private informa-
tion into prices.

• Market makers set efficient price based on past order flow.

Pete Kyle University of Maryland p. 23/36



Smooth Trading Model: Equilibrium

Prices reveal information immediately:

E
�
P (t + h)

�
Bet arrives

�
= P (t ) + θ · ∆F .

Trader trades total quantity Q (t ) smoothly over time:

Q (t ) =

∫ ∞
h=t

∆x (t ) · e−ρh · dh =
∆x (t )

ρ
,

The trade rate ∆x is determined by some additional assumption about
intensity of noise trading.
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Smooth Trading Model: Invariance

This equilibrium satisfies meta-model-like equations

V = γ · E [|∆x |]
ρ

(Definition of volume)

σ2 = γ · E


(

∆P

P

)2
(Bets generate all volatility),

E
[
(∆P )2

]
= κ2 · (∆x )2 (Market impact of one bet),

C = κ · (∆x )
2

ρ
(Dollar impact cost of a bet.)

Maps into meta-model with invariance under assumptions:

Q 7→ `∆x `

ρ
(Bet Size)

λ 7→ κ ρ (Market Impact)

Temporary price impact κ defines liquidity as a flow concept.
The “bet” size Q is total contribution of flow trading to volume over time.
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Smooth Trading Model: Information and Bet Size

Implications of meta-model mapping:

E
[
|∆x |
V

]
= θ2τ,

κ E [|∆x |]
P

=
m2

L
.

Interpret ∆x as trader’s fraction of volume when new bet starts.
Results map information content of bet into expected flow-bet-size.
Flow price impact maps into observable liquidity.
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Pricing Accuracy

Liquidity L can be linked through information flow to pricing accuracy
and resiliency.
Define error variance of prices like Black (1986):

Σ = var
[
log

(

F

P

)]
≈ var

[
F − P
P

]
.

Private signals have invariant precision τ , which, from perspective of in-
formed trader, reduces error variance by fraction τ from Σ to (1 − τ)Σ.
Then each bet reduces price variance only by fraction θ2τ becausemarket
cannot distinguish informed bets from noise.

σ2

γ
= E



(

∆P

P

)2
=
λ2 · E

�
Q 2

�

P 2
= θ2τ · Σ.

Pricing accuracy can be inferred from market liquidity L:

Σ =
σ2

γ(θ2τ)
=

m2

(θ2τ)L2
.
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Market Resiliency

Define “market resiliency” ρ as rate at which prices converge to changing
fundamental value; also equal to rate at which noise shocks die out from
prices:

ρ = (θ2 · τ) · γ.

Resiliency ρ is function of invariance parameters θ2 ·τ
m2 and observable volatil-

ity σ and liquidity L:

ρ =
σ2

Σ
=
θ2 · τ
m2
· σ2L2.
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Trading Liquidity, Funding Liquidity, and Time
Liquidity L is related to the rate at which bets arrive γ (business time):

L =

(

m2PV

Cσ2

)1/3

=
γ1/2m

σ
.

Riskiness of large bets in risky assets depends on horizon over which
liquidation takes place:

• Margins and Repo Haircuts: Liquidation of defaulted collateral takes
time.

• Bank Capital: Bank assets extremely illiquid. Selling bank assets is
impractical. Raising new capital takes time.

• Bank Equity Issuance: Issuing equity takes time.

• Government Securities: Can be sold quickly.

• Stock Market Crashes: Can be caused by large sales over short periods
of time. See Kyle and Obizhaeva (2016) paper on stock market crashes.

This implies that margins, repo haircuts, and bank capital should be pro-
portional to 1/L, taking into account time dimension of liquidity of un-
derlying assets.
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Conclusion

Theoretical models generate empirically realistic predictions when aug-
mented with invariance principles.

• Meta-model implies liquidity measure L.

• This measure is consistent with both block trading and smooth trading
models.

• Generates many empirically useful implications relating bet size to
liquidity.

• By connecting liquidity to time, provides approach for setting bank
capita.
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More Empirical Evidence

Working papers can be found on SSRN.
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Large Bets and Stock Market Crashes
Figure from “Large Bets and Stock Market Crashes”

-12

-10

-8

-6

-4

-2

0

2

4

-12 -7 -2 3 8

 median

order size

Q/V=5%

ln(Q/V)

ln(W/W*)

1929 crash

1987 crash

1987 Soros

2008 SocGen

Flash CrashQ/V=1%

Q/V=25%
Q/V=10%

std1

std2

std3

std4

std5

std6

std 0

Pete Kyle University of Maryland p. 32/36



Volume-Weighted Distribution of NASDAQ Trades
(1993)
Figure from Kyle-Obizhaeva-Tuzun-2018
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Reuters News Articles
Figure from Kyle-Obizhaeva-Sinha-Tuzun-2010
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Trade Size in S&P 500 E-mini Futures Contracts
Figure from Andersen-Bondarenko-Kyle-Obizhaeva-2017
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Switching Points on the Korea Exchange
Figure from Bae-Kyle-Lee-Obizhaeva-2016
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