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Abstract

We develop a new approach to modeling high-frequency dynamics in cash flows extracted

from daily firm-level dividend announcements. Daily cash flow news follows a noisy process that

is dominated by outliers so our approach decomposes this series into a persistent component,

large but infrequent jumps, and temporary shocks with time-varying volatility. Empirically, we

find that the persistent cash flow growth component is a better predictor of future dividend

growth than alternative predictors from the literature. We also find strong evidence that news

about the persistent cash flow component has a significantly positive effect on same-day stock

market returns, while news about the temporary cash flow components has little effect on returns.

Negative jumps in the cash flow process and higher cash flow volatility are associated with elevated

stock market volatility and a higher probability of observing a jump in daily stock returns. These

findings suggest that high-frequency news about the underlying cash flow growth process is an

important driver not only of average stock market performance but also of the volatility and

jump probability of stock prices.
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1 Introduction

On any given day, a multitude of firms typically announce cash flow news, but the number of

firms, as well as the industries they belong to, can vary greatly over time. Such variation gives

rise to a highly irregular cash flow news process and complicates investors’ attempt to infer

the underlying growth rate of cash flows for individual firms, industries, and for the economy

as a whole. This is important because the resulting cash flow growth estimates play a key

role in forecasting future cash flows, assessing cash flow risks, and valuing asset prices.1

While information extracted from firms’ cash flow announcements is likely to be critical to

understanding investors’ cash flow expectations and, in turn, movements both in individual

and aggregate stock prices, relatively few studies analyze predictability of cash flows and,

in most cases, focus on quarterly or annual changes in aggregate dividends or earnings.2

However, cash flows that are aggregated in this manner conceal the rich dynamic patterns

that arise in cash flows recorded at a higher frequency which reduces our ability to study

important questions such as how strong and rapid cash flow growth responds to changes in

the underlying state of the economy.3

Daily estimates of cash flows offer potentially large benefits to empirical tests of asset

pricing models. A key challenge for such tests is that while high-frequency data are available

on movements in individual and aggregate stock prices (e.g., daily or even intra-daily returns),

cash flows of individual firms are observed at much lower frequencies (e.g., quarterly). The

1Patton and Verardo (2012) develop a rational learning model to explain the patterns in betas observed
around earnings announcements. Their model contains unobserved firm-specific and common earnings
innovation terms and investors’ extraction of these components is modeled as a Kalman filtering problem.
Savor and Wilson (2016) develop a learning model in which investors decompose cash flow news into firm-
specific and market-wide components. Positive average covariances between the cash flow process of individual
firms and of the broader market imply that bad (good) news on individual firms’ cash flows are likely to result
in reduced (increased) forecasts of aggregate cash flows. In turn, this cash flow learning channel implies that
the stock returns of the announcing firms and of the aggregate stock market are positively correlated, justifying
an “announcement risk premium” for exposure to individual firms’ cash flows. Their model does not allow for
lumpiness in cash flows (“jumps”), although in practice this is an important feature of earnings and dividend
data.

2Cochrane (2008) finds little evidence of predictability of dividend growth, while van Binsbergen and Koijen
(2010) and Kelly and Pruitt (2013) find some evidence that growth in dividends is predictable.

3To illustrate the loss in information from the common practice of aggregating cash flow news over the most
recent 12-month period and updating this on, say, a monthly basis, suppose that firms’ announcement dates
are uniformly distributed across calendar dates. Every month when the cash flow estimate gets updated, the
same weight is assigned to firms announcing cash flows close to the cutoff date and firms whose announcement
date happened almost one year previously. This weighting automatically makes the resulting growth estimate
stale and also introduces spurious serial correlation in the estimate – see, e.g., Working (1960).
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absence of high-frequency cash flow data reduces researchers’ ability to estimate and test asset

pricing models which rely on the joint dynamics of stock prices, expected returns and cash

flow growth. For example, being limited to a smoothed annual dividend growth series means

that we cannot explore to which extent daily return movements or stock market volatility are

driven by cash flow news.

Several challenges complicate inference about daily cash flow dynamics. First, most

firms’ cash flows have a pronounced seasonal component related to weather patterns and

holiday sales. Second, the number of firms announcing cash flow news on any given day can

fluctuate between as little as zero firms to more than 200 firms and exhibits a clear pattern

(“earnings season”). Third, the particular date on which a firm pays dividends or announces

its quarterly earnings can vary widely from year to year, requiring that close attention be

paid to constructing daily proxies that account for firm specific effects. Fourth, there is

considerable heterogeneity across individual firms’ cash flow processes. The combined effect

of these factors is that daily news on cash flows tends to be very lumpy.

To address these challenges, in this paper we develop a new approach for extracting and

modeling dynamics in high frequency (daily) cash flows. To handle firm-level seasonality we

take a bottom-up approach that starts from changes in individual firms’ dividends on a given

day relative to their payments over the same quarter during the previous year. In contrast

with conventional smoothed estimates, only data on those firms that announce dividend news

on a given day are used to update the dividend growth estimate, thus ensuring that our

measure is timely in picking up changes in the cash flow process. Moreover, by computing

a dollar-weighted growth estimate, we account for variation in the size of the firms that pay

dividends on any given day.4

To account for the lumpiness in daily values of year-on-year changes in firm-matched

dividend growth, our modeling approach decomposes cash flows into a slowly evolving

component that identifies time-variation in the mean of the cash flow process, a transitory

component whose volatility is allowed to change over time, and large jumps whose

4The daily horizon appears to be the highest frequency at which news on dividends can meaningfully be
modeled; often, cash flow news are announced after the regular trading sessions in the stock markets have
closed and so aggregating across firms that announced cash flows within a 24-hour interval – as opposed to
modeling, say, hourly cash flow news – seems appropriate.
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probability of occurring can depend on the number of firms that announce dividends on a

given day. Empirically, all three components turn out to be important for capturing

predictability in the dividend growth process and understanding the evolution in the

uncertainty that surrounds growth in cash flows.

An important test of our approach is whether it can be used to generate more accurate

forecasts of dividend growth than existing methods. Empirically, we find that the our estimate

of the persistent dividend growth component is a strong predictor of future dividend growth

while raw dividends do not have this property. Moreover, the predictive power of our approach

compares favorably to alternative predictors of dividend growth computed using the filtering

approaches of van Binsbergen and Koijen (2010) and Kelly and Pruitt (2013). We also find

that our measure of the persistent dividend growth component is a positive and significant

predictor of future growth in GDP and aggregate consumption. In sharp contrast, “raw” cash

flow growth, or the individual jump or transitory shock components, are very noisy and turn

out to have no predictive power over cash flow growth measured in the conventional manner.

Using our high frequency cash flow estimates, we next develop a model that allows us

to estimate the effect of daily cash flow news on the mean, volatility and probability of a

jump in stock market returns. We find that it is crucial to distinguish between different

components of the cash flow process when analyzing the impact of cash flow news on stock

prices. In particular, news about the persistent growth component has a large, positive and

statistically significant effect on same-day stock returns, while news about jumps or shocks

to the temporary cash flow component have a much smaller effect on mean stock returns.

This finding does not rule out that these components of dividend growth have an effect on

the dynamics of stock prices. In fact, we identify an “uncertainty effect” of dividend news

on stock returns as negative jumps in dividend growth tend to increase both the volatility

of stock market returns as well as the probability of observing a jump in stock returns. The

latter effect is particularly large when few firms announce dividend news, i.e., on days with

less cash flow news available to the markets. Positive jumps in cash flows have the reverse

effect on stock market volatility and jump risk. Higher cash flow volatility also tend to spill

over to higher volatility of stock market returns.

Our paper is related to a literature that attempts to estimate the effect of news on stock
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prices, especially on days with big market moves, see e.g., Cutler et al. (1989).5 A limitation

of traditional event-study methods is that news stories are heterogeneous and based on

qualitative information which makes it difficult to quantify the effect of each news story or

compare the effect of different news over time. A second literature uses analyst expectations

to gauge the news component from firms’ earnings announcements, using the difference

between actual and expected earnings as an estimate of the news. A limitation of this

approach is that the estimated surprise is affected by biases in analyst estimates (e.g., Lim,

2001; Hong and Kubik, 2003) and by staleness in analysts’ updates of their estimates which

can contaminate consensus estimates. Our approach is fundamentally different as it uses

actual cash flow data which, unlike analyst expectations, are not affected by biases in

subjective estimates.

The methodology developed in our paper is related to that used by papers in the asset

pricing literature which estimate models of stock return dynamics with stochastic volatility

and jumps. However, to the best of our knowledge, no existing study has attempted to model

the high-frequency dynamics in dividends using such methods, let alone estimate and test a

model as general as ours. We are also not aware of any work that models the dependency

of high-frequency dynamics in stock returns–e.g., time variation in the volatility and jump

probability of returns–on cash flow news.

The outline for the paper is as follows. Section 2 introduces our data and explains how we

construct a daily cash flow index from dividend announcement data. Section 3 explains our

econometric modeling approach for dealing with jumps and a persistent (predictable) cash

flow component and reports estimates of our model. Section 4 analyzes the extent to which our

approach can be used to predict conventional measures of dividend growth. Section 5 develops

a model relating dynamics in stock returns to cash flow news, while Section 6 presents results

from a set of robustness tests, and Section 7 concludes.

5See also Andersen et al. (2007), McQueen and Roley (1993), and Boyd et al. (2005) for studies that look
at the effect of news on movements in market prices.
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2 Data

This section explains how we construct our daily dividend growth series and describes the

data sources that we use. Our analysis of daily cash flows focuses on growth in dividends

which, as pointed out by Kelly and Pruitt (2013), has been the focus of a large asset pricing

literature.6 Moreover, because earnings can be negative, defining growth in earnings poses

challenges that are quite different from those arising when studying dividends.

The biggest effect of dividend news on asset prices is likely to come through their

information content, so we focus on dividends as initially announced as opposed to the

actual dividend payments.7 However, in Section 6.1.1 we also undertake an analysis of daily

dividends viewed from the perspective of the payment date which allows us to compare the

information effect to the direct cash flow effect from dividend payments.

2.1 Sample Construction

Our sample includes all ordinary cash dividends declared by firms with common stocks (share

codes 10 and 11) listed on the NYSE-NASDAQ-AMEX from 1926 to 2016.8 We require

firms to have valid stock prices and a valid figure for the number of shares outstanding when

dividends are announced. Furthermore, we make sure there are no duplicate observations in

the dataset and that each firm pays only one dividend at any point in time.9 Overall, our

sample consists of 503,591 declared dividends.10

Corporate dividends have a strong firm specific component and also can display

pronounced seasonal variation. Our analysis therefore computes dividend growth by

comparing same-firm, same-(fiscal) quarter, year-on-year changes in cash flows. To this end,

let Di
yr,s be the total dividends declared by firm i on day s in year yr, calculated as the

6See, e.g., Campbell and Shiller (1988), Cochrane (1992), Lettau and Ludvigson (2005), Koijen and
Nieuwerburgh (2011), and Maio and Santa-Clara (2015).

7Announced dividends precede actual dividend payments by approximately 42 days, on average.
8Ordinary cash dividends have CRSP distribution codes below 2000.
9There are instances in CRSP in which a company declares or pays multiple dividends on the same day,

using different distribution codes but still classified as ordinary dividends. We aggregate such dividends to
convert them into a single dividend. As an example, on November 23rd 1983, PPL Corporation (permno
22517) declared two ordinary dividends of 39 and 21 cents.

10Following a recent update, CRSP no longer provides the dividend declaration date prior to 1962 and data
until 1964 appear to be incomplete. Nonetheless, we also have an older version of the database in which the
declared dividend dates start in 1926. As a consequence, we have 101,476 pre-1964 observations and 402,115
post-1964 observations.
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dividend per share times the number of outstanding shares. Moreover, let Iiyr,s be an

indicator variable that equals one if company i announces quarterly dividends on day s in

year yr, and otherwise takes a value of zero, while s̃ is the associated same-quarter,

prior-year dividend announcement date for firm i.11 For example, company i may have

declared dividends on May 17, 2014 while it declared the corresponding quarter’s prior-year

dividends on May 9, 2013, in which case s is May 17, 2014 and s̃ is May 9, 2013.

Using these notations, Nyr,s =
∑Nyr

i=1 I
i
yr,s is the number of firms that announce dividends

on day s in year yr. Aggregating across firms, the total dollar value of dividends paid out on

day s in year yr is
∑Nyr

i=1 I
i
yr,sD

i
yr,s. Similarly, the total value of dividends paid out by the same

set of firms for the same fiscal quarter during the prior year is given by
∑Nyr

i=1 I
i
yr,sD

i
yr−1,s̃.

Taking the ratio of these two numbers, we obtain a measure of the aggregate, year-on-year

(gross) growth in dividends on day s:

Dyr,s =

∑Nt
i=1 I

i
yr,sD

i
yr,s∑Nt

i=1 I
i
yr,sD

i
yr−1,s̃

. (1)

Note that the number of firms used in this calculation – as well as the identity of the specific

firms – changes on a daily basis and from year to year as firms move their exact dividend

announcement dates. Note also that only firms which satisfy that Iiyr,s = 1 are included in this

calculation, ensuring that the same firms are used in both the numerator and denominator of

the ratio. The definition in equation (1) accounts for seasonal components in dividends and

uses the dollar amount paid in dividends by individual firms, implicitly applying value weights

since large firms tend to have larger dividend payouts. Only seven percent of individual firms’

year-on-year dividend growth observations in our sample are constant, suggesting that firms

often change their dividends, even marginally, every year.12

11We use this notation to keep the exposition simple. More precisely, s̃ depends on both the firm i and years
yr − 1 and yr, so that a more precise notation would be s(i, yr − 1, yr).

12An alternative approach that more explicitly accounts for heterogeneity in firm size is to first define
individual firms’ cash flow growth as

yiyr,s =

{
Di

yr,s

Di
yr−1,s̃

if Iiyr,s = 1

0 otherwise
.

In a second step we can use individual firms’ market capitalization to aggregate the cash flow growth rates
across firms that pay dividends on day s in year yr :
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As an illustration of these points, Figure 1 provides a plot of the number of firms, as well

as the dollar dividend and the (net) growth rate from equation (1) during a single quarter

(Q2 2014). The top panel shows substantial intra-quarter variation in the number of firms

announcing dividends, consistent with the fact that firms tend to announce dividends around

the same days. During this particular quarter, the maximum number of firms announcing

dividends on any one day was 68 (on April 24), while the minimum number was zero (on June

22), and there were several days where more than 50 firms announced dividends.

The middle panel in Figure 1 shows the variation in the total value of dividends declared

on any given date. This depends not only on the number of firms announcing dividends,

but also on the size of the underlying companies because large firms tend to announce bigger

dividends.13

Lastly, the bottom panel in Figure 1 shows the net daily dividend growth during the

quarter. Peaks in this measure do not necessarily coincide with days where most firms

announce dividends (top panel) or days in which the overall amount of dividends announced

(middle panel) peaked. This is because the dividend growth rate depends on dividends

announced by the same group of firms during the prior year as reflected in the denominator

of equation (1). For example, the gross dividend growth rate on June 22 (1.15) is generated

by a single firm announcing dividends on that day: the firm announced $155m in dividends

in Q2, 2014 and $135m for Q2, 2013. The substantial variation in daily dividend growth

rates that we observe reflects both heterogeneity across firms’ dividend behavior and also

variation in the number of firms announcing dividends on a given day.

An alternative to our bottom-up approach would be to extract dividends top-down from

CRSP. Three limitations render this alternative approach unattractive. First, the CRSP index

yyr,s =

Nyr∑
i=1

Iiyr,sω
i
yr,sy

i
yr,s, where

ωiyr,s =
MktCapiyr,s × Iiyr,s∑Nyr

i=1 MktCapiyr,sIiyr,s

is the weight on company i in the daily year-on-year value-weighted dividend growth calculation. By
construction,

∑Nyr

i=1 ω
i
yr,s = 1 on all days in the sample. Results based on this alternative measure are very

similar to those based on the measure in equation (1) and are, therefore, not reported here.
13The largest amount of dividends declared during Q2 2014, $7.12bn, happened on April 24, while only

$3.6m of dividends were announced on June 30.
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reflects the dividends that were distributed on a particular day but does not show when those

dividends were announced. This distinction is crucial as firms typically announce dividends

several days prior to the payment date and it is the news effect of announced dividends that we

would expect to be important for movements in stock market returns and volatility. Second,

the set of firms announcing or paying dividends on any given day is generally different from

the set of firms announcing dividends on the same day one year earlier. As a consequence,

year-on-year estimates of dividend growth from daily values of the CRSP index are difficult

to interpret as they do not control for firm fixed effects. Third, the CRSP index contains

many different assets such as ETFs and mutual funds (see Sabbatucci (2017)). Any dividend

measure extracted top-down using the CRSP indexes is therefore not as clean as our measure

which explicitly focuses on the actual nominal amount of dividends announced or distributed

on any given day.

3 Econometric model

We propose a new measure of daily cash flow growth and it is worth studying its main features

before introducing our formal modeling approach.

3.1 Features of daily dividend growth

Our data spans the period 1927-2016, but the first part of the sample is dominated by the

Great Depression. For robustness, we therefore split the sample into halves and study both

the full sample and the second half of the sample from 1973 to 2016. Because dividends are

non-negative, the measure in (1) is also non-negative and so we can compute the log change,

∆dyr,s = ln(Dyr,s). Figure 2 (top panel) plots ∆dyr,s from 1973 to 2016.14 The daily dividend

growth series is very spiky and is dominated by days with unusually large or small dividend

growth. There is also evidence of a sustained decline in dividends during the financial crisis.

The features displayed by our daily series of year-on-year growth in dividends in Figure

2 can be summarized as follows: (i) the daily dividend growth series is very lumpy. This

is due, in part, to variation in individual firms’ cash flow growth, in part to changes in the

composition of firms that, on any given day, announce their cash flows; (ii) daily dividend

14On days with no dividend announcements, we set the series to zero.
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news also appears to be driven by a persistent component which was particularly pronounced

during the financial crisis of 2008/09; (iii) the volatility of daily cash flow news changes over

time with unusually calm periods interchanged with more volatile periods.

These observations suggest that a model for daily news about cash flow growth must

account for multiple components that display very different behavior. We accomplish this as

follows. First, we account for lumpiness by allowing for a jump component in daily cash flow

growth. Moreover, we allow the jump intensity to depend on the number of firms announcing

dividends on a given day. Second, we incorporate a persistent component in the mean growth

equation. Third, we account for time-varying volatility by modeling the volatility of the

non-jump component of daily dividend growth as a stochastic volatility process.

This type of decomposition is not only of interest because it can better capture the

dynamics in daily cash flow news. Most importantly, the decomposition is crucial for

understanding and interpreting the effects of different types of cash flow news on movements

in stock prices. For example, we would expect a change in the longer-lasting, persistent cash

flow component to have a stronger effect on stock prices than a change in the transitory

components.

We next introduce our econometric approach. To simplify notations, we use the daily

indicator t in place of the more cumbersome yr, s notation used in equation (1). Thus,

∆dt = ln(Dyr,s) denotes the year-on-year growth in dividends on day t.

3.2 A components model for daily dividend growth

Our econometric model decomposes the daily dividend growth process into three parts, namely

(i) a persistent term, µdt+1, which captures a smoothly evolving mean component; (ii) a jump

component, ξdt+1Jdt+1, where Jdt+1 ∈ {0, 1} is a jump indicator that equals unity in case of

a jump in dividends and otherwise is zero, while ξdt+1 measures the magnitude of the jump;

(iii) a temporary cash flow shock, εdt+1, whose volatility is allowed to be persistent. Adding

up these terms, we have

∆dt+1 = µdt+1 + ξdt+1Jdt+1 + εdt+1. (2)

We next introduce our assumptions on the individual components. We capture any
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persistence that may be present in the dividend growth process by assuming that µdt+1

follows a mean-reverting first-order autoregressive process

µdt+1 = µd + φµ (µdt − µd) + σµεµt+1, (3)

where |φµ| < 1. The shocks εµt+1 are assumed to be normally distributed, εµt+1 ∼ N (0, 1),

and uncorrelated at all times with innovations to the temporary dividend shocks, εdt+1. When

φµ = 0, changes in the dividend growth rate process, ∆dt+1, become unpredictable and so

this is a special case of our model.

Turning to the jump component, it turns out that there is a systematic relation between

the probability of observing a jump in our daily cash flow series and the number of firms that

announce dividends on a given day. In particular, days with few firms announcing news tend

to have a higher chance of outliers in aggregate dividend growth, as the effect of diversifying

outlier observations across multiple firms is smaller on such days. Accounting for this effect,

we assume that the probability of a jump depends on the number of firms announcing their

dividends on any given day. We capture this through a Probit model of the form

Pr (Jdt+1 = 1) = Φ (λ1 + λ2Ndt+1) , (4)

where Ndt+1 denotes the number of firms announcing dividends on day t+ 1, while Φ stands

for the CDF of a standard Normal distribution. The magnitude of the jumps is modeled as

ξdt+1 ∼ N
(

0, σ2
ξ

)
.

Finally, time-varying uncertainty about the temporary cash flow news component, εdt+1,

is modeled by means of a stochastic volatility process:

εdt+1 ∼ N (0, ehdt+1), (5)

where ht+1 is the log-variance of εdt+1 which is assumed to follow a mean-reverting process,

hdt+1 = µh + φh (hdt − µh) + σhεht+1, (6)

where εht+1 ∼ N (0, 1) is uncorrelated at all times with both εdt+1 and εµt+1.

To summarize, our model accounts for a persistent mean-reverting component,
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time-varying volatility, and jumps. We evaluate the importance of the individual features of

the model by comparing results from the general model in (2) to a simpler (no-jump) model

that ignores both jump dynamics and stochastic volatility and so takes the form

∆dt+1 = µNJdt+1 + εdt+1 (7)

where εdt+1 ∼ N (0, σ2
d) and µNJdt+1 follows the process in equation (3). This comparison allows

us to gauge the importance of incorporating jump dynamics and stochastic volatility.

3.3 Estimation

We adopt a Bayesian estimation approach that uses Gibbs sampling to estimate the model

parameters. Details of our estimation procedure are provided in Appendix A while Appendix

B documents the convergence properties of our estimation algorithm.

It is worth briefly describing the priors that underlie our model. We choose standard

normal-gamma conjugate priors which simplify the process of drawing from the conditional

distributions of the model parameters in the Gibbs samplers. Moreover, we specify

independent priors for the parameters of both the mean, variance, and jump processes. As

for the prior hyperparameters, for almost all of the parameters we use loose and mildly

uninformative priors. The main exceptions are the persistence parameters, φµ and φh ,

whose priors we center on 0.99. Further details are provided in the appendices.

3.4 Empirical estimates

We next present estimates of the parameters of the econometric model introduced above.

We also evaluate the empirical importance of the three components in the dividend growth

process.

The middle and bottom panels in Figure 2 plot the persistent dividend growth component,

µdt, extracted from the daily dividend series shown in the top panel of the same figure using

either the no-jump model (equation 7, middle panel) or the general jump model (equation 2,

bottom panel). The µNJdt component extracted from the no-jump model evolves on the same

scale as the daily dividend growth series from which it is extracted and thus, erroneously,

assigns large daily spikes in the observed series to the persistent component, µdt. In contrast,
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the jump model succeeds in separating the temporary spikes (noise) in the daily dividend

series from the persistent component µdt which consequently is far smoother. Indeed, values

of the persistent dividend growth component extracted from the general model fall on a far

narrower scale than the unfiltered cash flow series, ranging from just below zero to 0.15. As

expected, the financial crisis in 2008-09 is associated with a notable drop in mean dividend

growth which, for the only time in our sample turn negative, followed by a notable bounce-

back in the second half of 2009 and 2010.

Figure 3 provides details of the jump component obtained from our estimation procedure.

The jump probability indicator, Jdt, in the top panel shows that the spikes in daily dividend

growth is attributed mostly to jumps rather than to clusters with unusually high volatility

from the transitory component, εdt, in equation (2). Moreover, on many days, the jump

indicator variable is close to one. On such days we attribute, with a very high likelihood,

much of the dividend growth shock to a jump. Jumps can be very large in magnitude, as

shown in the bottom panel, which displays the estimated jump size, ξdt.

While Figures 2 and 3 show the evolution in the different dividend components, further

insights can be gained by focusing on how our model decomposes the total variation in the

dividend growth rate into temporary normal variation, jump, and mean-reverting components.

Figure 4 performs this analysis for two days in our sample, namely December 8, 2008, in the

middle of the global financial crisis, and August 5, 2010, i.e., during the recovery. The first

day experienced a large negative shock to dividend growth. Our decomposition shows that

this is attributed to small negative shocks to the persistent and transitory components and

a large negative jump. Conversely, on August 5, 2010, the dividend growth news was small

and positive which gets attributed to small positive realizations of the persistent component

and the transitory shock and no jump.

Table 1 presents parameter estimates for our general dividend growth model in equations

(2)-(6) for both the shorter sample (1973-2016) and the longer sample (1927-2016). We focus

our discussion on the parameter estimates for the shorter sample but note that the estimates

for the longer sample are very similar.

First consider the parameters determining the mean of the dividend growth process in

equation (3). The long-run mean estimate µd = 0.084 corresponds to an 8% annualized
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nominal dividend growth rate. While quite high, this value is very close to the mean of the

standard dividend growth measure (extracted from CRSP data) of 7.8% over the same sample

period–well within the 90% credible set of [0.064, 0.104]. The persistence parameter in the

mean of the dividend growth process, φµ, has a mean of 0.998 and a narrow 90% credible

set that ranges from 0.997 to 0.999. While highly persistent, shocks to the mean process (3)

are very small as shown by the estimated σµ = 0.002. Our model thus identifies a small, but

highly persistent component in the dividend growth process.

The stochastic volatility process in equation (6) is also quite persistent as evidenced by the

estimate of φh whose mean is 0.963 with a standard deviation of 0.002. The jump intensity

parameters (λ1 and λ2) have mean values of -1.59 and -0.025, respectively, and are accurately

estimated. These parameter estimates imply that a jump occurs every sixty days on average

and the negative and highly significant estimate of λ2 show that the jump probability tends

to be lower on days where a large number of firms announce dividends.

To give a sense of how sensitive the dividend growth jump probability is to the number of

firms announcing dividends on a given day, Nt, Figure 5 plots the jump intensities for three

values of N chosen to match the 25th, median and 75th percentiles of the distribution of the

daily number of announcing firms. On days with a large number of announcing firms (75th

percentile, or 36 firms on average), the jump intensity distribution is centered on a number a

little over 0.005, corresponding to a jump on average every 200 days. On days with a typical

number of announcing firms (median, or 22 firms), the jump intensity is centered around its

average value near 0.016, implying a jump every 60 days. Finally, on days with a small number

of announcing firms (25th percentile, or 12 firms), the probability of a jump is centered just

below 0.03, corresponding to a jump every 35 days.

The estimated standard deviation of the jump size (σξ) has a mean of 1.43, suggesting

that jumps in daily dividend growth, though relatively infrequent, can be very large when

they do occur. This value can be compared to the estimated mean of σh which, at 0.20, is

seven times smaller. In other words, shocks to daily dividend growth process coming from

the jump component tend to be seven times bigger than the regularly occurring εdt shocks.
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4 Predictability of dividend growth

Predictability of dividend growth has featured prominently in discussions of asset pricing

models. Cochrane (2008) finds little evidence of predictability of US dividends, while studies

such as van Binsbergen and Koijen (2010) and Kelly and Pruitt (2013) argue that dividend

growth is, to some extent, predictable.15 The parameter estimates from our dividend model in

Section 3.4 show that the daily dividend growth process contains a small, but highly persistent

component which, in principle, should be able to pick up dividend growth predictability. This

section explores the implications of our model estimates for predictability in dividend growth.

Existing studies on dividend growth predictability use time-aggregated dividends measured

over longer horizons than our daily interval. To explore the extent to which our estimate of

the persistent dividend growth component is capable of predicting dividends as conventionally

measured–and to make our results directly comparable to existing ones–we construct quarterly

and annual measures of dividend growth from the CRSP index with and without dividends.16

4.1 Correlation with conventional dividend growth

To assess the contemporaneous relation between the conventional measure of dividend growth,

∆dCRSPt , and our estimate, we regress ∆dCRSPt on the persistent dividend growth component

obtained from our jump model, µdt, measured at the end of period t :

∆dCRSPt = α+ βµdt + εt. (8)

Panel A of Table 2 reports results at the annual and quarterly (4Q-rolling)

frequencies–the frequencies most commonly used in the literature to account for dividend

seasonality. First consider the findings for the sample period that starts in 1973. At the

quarterly horizon we find a strong positive contemporaneous correlation between µdt and the

15A recent literature uses dividend futures to estimate the term structure of dividends. In particular, van
Binsbergen et al. (2012) and van Binsbergen and Koijen (2016) present evidence on the term structure of the
equity premium, recovering prices of dividend strips and show that their expected returns are higher than
those on the underlying index. Kragt et al. (2015) estimate a model for the term structure of discounted
risk-adjusted dividend growth using dividend derivatives for four major stock markets.

16Most researchers extract aggregate dividends, Dt, from CRSP as the difference between the cum-dividend
return (VWRETD), Rcumt , minus the ex-dividend return (VWRETX), Rext , multiplied by the previous ex-
dividend index level, P ext−1, i.e., Dt = (Rcumt −Rext )× P ext−1. Using the resulting aggregate dividend series, the

log dividend growth rate can be computed as ∆dCRSPt = ln
(

Dt
Dt−1

)
.
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conventional dividend growth measure as reflected in an R2 value of 28% and a t-statistic of

6.93. In the longer sample that starts in 1927, the persistent dividend growth component

continues to be strongly correlated with the contemporaneous growth in dividends measured

in the conventional manner, generating an R2 value of 35% and a t-statistic above seven.

At the annual horizon we continue to find that our estimate of the persistent dividend

growth component, µdt, is significantly correlated with contemporaneous dividend growth

although the R2 values, at 10% and 15%, respectively, are somewhat lower than at the

quarterly horizon.

4.2 Predictive regressions

Next, we estimate predictive regressions that regress next-period dividend growth on the

current persistent dividend component, µdt, the current log dividend-price ratio extracted

from CRSP, dpt, and current and lagged dividend growth:

∆dCRSPt+1 = α+ βµdt + γdpt +
3∑
j=1

ρj∆d
CRSP
t+1−j + εt+1. (9)

We include the log dividend-price ratio in this regression because this has been suggested as a

predictor of cash flow growth in a variety of studies (e.g., Cochrane (1992), Cochrane (2008),

Lettau and Nieuwerburgh (2008), and Cochrane (2011)).

Panel B of Table 2 shows that the persistent component of dividend growth, µdt, has strong

predictive power over future dividend growth recorded at the quarterly horizon. In the shorter

post-1973 sample, the lagged persistent dividend growth component obtains a t-statistic of

4.5 after accounting for the effect of lagged dividend growth and the lagged dividend-price

ratio. Moreover, at 0.28 the R2 remains as high as it was in the contemporaneous regression.

Again, this finding is not sensitive to the sample period. Starting the sample in 1927, the

coefficient on µdt obtains a t-statistic of 4.3 and the predictive regression has an R2 value of

0.41. Interestingly, the coefficient on the lagged dividend-price ratio is not significant in any

of these regressions, while the first two lags of the lagged dividend growth are significant in

some of the models, but not always with the expected (positive) sign.

The predictive power of µdt over future dividend growth is somewhat weaker at the annual
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than at the quarterly horizon. This is perhaps not surprising in light of the mean reversion in

µdt which reduces the predictive power of this component at long horizons. Still, we continue

to find at the annual horizon that the statistical significance of our dividend growth measure is

robust to the inclusion of lagged dividend growth and the dividend-price ratio in the predictive

regression.

4.3 Alternative predictors of dividend growth

Our study is not the first to use filtering methods to obtain an estimate of dividend growth. For

example, van Binsbergen and Koijen (2010) use a latent variables approach to estimate a log-

linearized present value model consisting of expected returns and expected dividend growth

rates for the aggregate stock market. Because the expected values of dividend growth rates

are unobserved, van Binsbergen and Koijen (2010) use Kalman filtering methods to extract

the underlying series and generate forecasts of cash flows. Empirically, van Binsbergen and

Koijen (2010) find that annual dividend growth rates are less persistent, but more predictable,

than stock returns.

Kelly and Pruitt (2013) assume that individual firms’ stock returns and log cash flow

growth rates are a linear function of a set of unobserved common factors which can be

estimated using a three-pass regression (partial least squares) methodology. In turn, cash

flow growth can be projected on the common factors to generate a dividend growth forecast.

Empirically, Kelly and Pruitt find strong in-sample evidence of annual cash flow growth

predictability. Their out-of-sample results are somewhat mixed; in the Depression-era from

1930-1940, dividend growth appears to be highly unstable and hard to predict while

conversely out-of-sample predictability is stronger over the sample 1940-2010.

We next compare our dividend growth estimates to results based on the approaches of

van Binsbergen and Koijen (2010) and Kelly and Pruitt (2013).17 To this end, the top panel

in Figure 6 plots realized values of quarterly dividend growth against the persistent growth

component estimated from our model, µdt, (sampled annually) and the van Binsbergen and

Koijen (2010) measure, gV BKt . The bottom panel repeats the exercise, plotting monthly

17We are grateful to Seth Pruitt for sharing data and computer code which allowed us to replicate the results
in Kelly and Pruitt (2013).
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dividend growth against our persistent dividend growth series, µdt, (sampled monthly) and

the Kelly and Pruitt (2013) estimate, gKPt .While the different dividend growth estimates

are clearly correlated, there are also some notable differences. For example, our persistent

dividend growth measure shows a sharper decline during the global financial crisis compared

with the two alternative estimates.

To conduct a more formal comparison, Panel C in Table 2 reports results from regressions

of the observed future dividend growth on the growth estimate implied by the three approaches

we are comparing. Note that findings from the two approaches are not directly comparable as

van Binsbergen and Koijen (2010) study cash-reinvested, annual dividend growth while Kelly

and Pruitt (2013) use monthly dividend growth extracted from CRSP. We therefore report

separate results for the annual and monthly frequencies used in the two studies.

In the univariate regressions, all three growth estimates clearly have predictive power over

future dividends. For example, the growth estimate of van Binsbergen and Koijen (2010)

obtains a t-statistic of 2.94 and generates an R2 value of 14% in the annual sample from

1946 to 2015. For comparison, the t-statistic on our µdt estimate is 5.77 and the associated

R2 value is 39%. Including both the µdt and gV BKt measures in the regression, we obtain a

very large t-statistic on µdt (6.03), while the t-statistic on the estimate of van Binsbergen and

Koijen (2010) drops to 2.03. The R2 value of this regression is 44%. This is notably higher

than the value obtained when only gV BKt is used as a predictor, thus demonstrating the extra

predictive power possessed by our estimate of the persistent growth component.

In monthly dividend growth regressions from 1940 to 2016, the growth estimate of Kelly

and Pruitt (2013) generates a t-statistic of 4.86 and an R2 value of 13%. For comparison,

the t-statistic obtained when instead we use our µdt component is 9.96 and the R2 value is

32%. Including both µdt and gKPt as predictors in the regression, µdt obtains a t-statistic of

8.09 while the t-statistic of the growth estimate of Kelly and Pruitt (2013) declines to 2.06.

Moreover, the R2 value of this regression is 33% which is marginally higher than the value

from the regression only on µdt, though notably higher than the R2 value from the univariate

dividend regression on gKPt .

These results show that the persistent component in dividend growth extracted from daily

dividend announcements possesses strong predictive power over actual dividend growth at
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both the monthly and annual frequencies. Moreover, our estimate adds substantial predictive

power to existing dividend growth estimates.

To formally test and compare the predictive power of the three dividend growth estimates,

we run a series of forecast encompassing regressions:

∆dCRSPt+1 = α+ β1µdt+1 + (1− β1)gV BKt + εt+1,

∆dCRSPt+1 = α+ β1µdt+1 + (1− β1)gKPt + εt+1. (10)

The larger is β1 in these regressions, the greater the weight on our dividend growth estimate

and the smaller the weight on the competing model estimate. In particular, a value of β1 = 1

suggests that µdt dominates (encompasses) either gV BKt (top regression) or gKPt (bottom

regression).18

The bottom two rows of Table 2 show that the estimate of β1 in the encompassing

regression that includes µdt and the van Binsbergen and Koijen (2010) dividend growth

estimate equals 0.81, so that the persistent dividend growth estimate from our model

obtains a weight of 81% while the weight on the van Binsbergen and Koijen (2010) estimate

equals 19%. Moreover, the estimated weight on µdt is statistically significant at the 1% level

while the weight on the van Binsbergen and Koijen (2010) estimate is significant at the 10%

level. Very similar results are obtained from the second regression. Here the weight on µdt is

77%, while the weight on the Kelly and Pruitt (2013) dividend growth estimate is 23%, with

both being significant at the 1% level. Thus, while the dividend growth estimates of van

Binsbergen and Koijen (2010) and Kelly and Pruitt (2013) contain information relevant for

predicting future dividend growth over and above the information in our µdt estimate, these

regressions show that our dividend growth estimate performs very well compared to existing

state-of-the-art alternatives.

4.4 Cash flow news and economic activity

We next examine the relation between our estimate of the persistent component of dividend

growth news and two measures of macroeconomic growth, namely GDP and consumption

growth, both of which have been examined by authors such as Liew and Vassalou (2000) and

18Note that gt = Et∆dt+1 is the forecast of next period dividend growth.
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Bansal and Yaron (2004)).19 Figure 7 plots quarterly GDP and consumption growth against

our µdt measure sampled quarterly. We observe a clear and positive relation between the

persistent dividend growth component on the one hand and consumption and GDP growth

on the other.

To obtain formal results on the relation between the three measures, we estimate the

following quarterly contemporaneous regression

∆yt = α+ βµdt + εt, (11)

where ∆yt is either the (log) GDP or consumption growth. Results are reported in Panel A

of Table 3. Our estimate of the persistent component of dividend growth, µdt, is positively

related to contemporaneous growth in both GDP and consumption, with statistically

significant coefficients of .14 and .13, respectively, and t-statistics around six. The R2 values

of the regressions are 26% and 30%, respectively, suggesting that our measure picks up more

than a quarter of the variation in these macroeconomic variables.

We also consider predictive regressions of the form

∆yt+1 = α+ β1µdt + β2∆yt + εt+1, (12)

where we include one lag of the dependent variable, ∆yt, to control for persistence in

consumption or GDP growth. Panel B in Table 3 reports the results from the regression in

(12). In the univariate regressions, our persistent dividend growth measure, µdt, generates

positive coefficients of 0.14 and 0.13 with t-statistics of 4.57 and 4.72 for GDP growth and

consumption growth, respectively. Moreover, with R2 values of 21% and 26%, µdt clearly

has strong predictive power over future GDP and consumption growth.

We conclude from this evidence that our persistent cash flow measure µdt helps explain

and predict variation in macroeconomic growth. This is consistent with our earlier finding

that µdt predicts future dividend growth and shows that the earlier result carries over to

broader measures of economic growth.

19The Gross Domestic Product series is downloaded from FRED and is seasonally adjusted, see https:

//fred.stlouisfed.org/series/GDP. Consumption expenditures are the sum of non durable consumption
plus services from Table 2.3.5 of the National Income and Product Accounts (NIPAs) and are available on the
Bureau of Economic Analysis (BEA) website.
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4.5 Relation to other measures of economic and financial activity

Since our daily cash flow growth measure reflects general macroeconomic conditions, it can

be viewed as an economic indicator similar to existing measures such as the macroeconomic

uncertainty measure of Jurado et al. (2015), the economic policy uncertainty measure of Baker

et al. (2016), the ADS business conditions index of Aruoba et al. (2009), the credit spread

indicator of Gilchrist and Zakrajek (2012), and “noise” in the Treasury market (Hu et al.

(2013)).20 Previous research has addressed whether these measures can be used to improve

forecasting and evaluation of the state of the economy in real time, especially during recessions

and financial crises. Similarly, our high-frequency cash flow measure can be used to evaluate

the “financial soundness” of the economy by understanding its relationship with some of these

proxies.21

Panel A of Table 4 shows estimates of the correlations between the persistent dividend

component µdt and some of these daily measures of financial and macroeconomic conditions.

Our persistent dividend growth measure has a highly significant negative correlation of -

0.53 with the VIX, suggesting that dividend growth is lower in times with high uncertainty,

which tends to coincide with economic recessions. Confirming this finding, µdt also has a

significantly negative correlation of -0.23 with the policy uncertainty index of Baker et al.

(2016) and a negative correlation of -0.59 with the liquidity noise index of Hu et al. (2013),

indicating that firm payouts are lower in times with greater uncertainty. Finally, our cash

flow index is positively correlated with the ADS index of Aruoba et al. (2009), obtaining a

highly significant correlation of 0.32, and with the daily inflation index of Cavallo and Rigobon

(2016) (correlation of 0.78). These findings show that our persistent dividend growth measure

is significantly negatively correlated with risk proxies, e.g., stock market volatility and policy

uncertainty, but positively correlated with economic growth and inflation.

Panel A uses levels and so the correlation estimates described above are driven by

20Aruoba et al. (2009) measure economic activity at the daily frequency using a variety of stock and flow
data observed at mixed frequencies. Their approach extracts the state of the business cycle from a latent
factor that affects all observed variables. Jurado et al. (2015) provide econometric estimates of time-varying
macroeconomic uncertainty and show that important uncertainty episodes appear far more infrequently than
indicated by popular uncertainty proxies. However, when such episides do occur, they tend to be larger, more
persistent, and more correlated with real economic activity.

21Other proxies include the aggregate external cost of financing (Eisfeldt and Muir (2016)) and bank-loan
supply conditions (Becker and Ivashina (2014)) which are related to firms’ dividend payout policy.
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common, persistent factors reflecting the state of the economy. Panel B sheds light on

short-run correlations by reporting the correlations between daily changes in the underlying

indexes. Changes in our daily dividend growth index are significantly positively correlated

both with changes in the ADS index and changes in daily inflation, suggesting that our

measure in part captures fundamental information reflected in other macroeconomic

variables.

5 Return dynamics and cash flow news

A key motivation for our new decomposition of cash flow news is that it can shed light on

the drivers of the dynamics in daily stock prices. From a theoretical perspective, we would

expect the three components to have very different impact on stock prices. For example, we

would expect a purely temporary shock to the cash flow process (εdt) to have very little effect

on stock prices, whereas a shock to the persistent dividend growth component (µdt) should

have a larger impact. Similarly, shocks to the volatility of cash flows might influence the

mean and volatility of aggregate stock market returns, as investors attempt to learn about

the underlying cash flow process, and hence affect returns through a risk premium channel.

Documenting the importance of these effects is important as the sources of daily movements

in stock prices are poorly understood.

To address these points, in this section we use our daily dividend growth estimates to

conduct an analysis of the relation between stock market returns and news about the dividend

growth process. We first develop a new dynamic model that is sufficiently flexible to allow

the distribution of stock market returns to incorporate cash flow news. We then develop a set

of key hypotheses linking movements in stock market returns to our estimates of cash flow

dynamics. Finally, we report estimates of our return model and results from empirical tests

of the hypotheses.

5.1 Stock returns and cash flow dynamics

A long-standing debate in the asset pricing literature is concerned with how important time

variation in expected cash flows is to explaining variation in stock market returns.22 Some

22See, e.g., Cochrane (2008) and van Binsbergen et al. (2012).
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studies argue that growth in cash flows is largely unpredictable. If dividends follow a

random walk with a drift and dividend growth is not predictable, time variation in risk

premia become more important to explaining movements in stock returns. Conversely,

variation in the predictable component of dividend growth should impact stock prices by

more than shocks to temporary components of dividend growth. Our model allows us to

easily update and compute forecasts of future cash flows and so can readily be used to

estimate the importance of time variation in cash flow expectations.

To analyze the effect of dividend news on stock returns, we develop a novel dynamic model

for daily stock returns. As in earlier studies such as Eraker et al. (2003), we allow for stochastic

volatility effects and jumps in stock returns, but our model generalizes existing approaches

by linking stock market volatility and jumps to the corresponding dynamic components in

the cash flow process. We accomplish this using a two-stage approach that first estimates the

dividend growth rate model, then includes the extracted components in the model for stock

market returns.

Our approach takes advantage of the timing of firms’ dividend announcement and

movements in stock returns. Firms generally determine their dividends several days prior to

observing the aggregate returns on the day of the dividend announcement. Given this

timing, we can treat the estimated dividend components as being pre-determined relative to

aggregate stock market returns.

Our model for the dynamics in daily stock market returns takes the following form:

rt+1 = µrt+1 +ξrt+1Jrt+1 +β1∆µdt+1 +β2 exp (hdt+1/2)+β3ξdt+1Jdt+1 +β4εdt+1 +εrt+1. (13)

Analogously with the dividend model, µrt+1 captures a persistent component in returns,

ξrt+1Jrt+1 represent jumps in returns with Jrt+1 ∈ {0, 1} being a jump indicator and ξrt+1

measuring the magnitude of a jump, while εrt+1 ∼ N
(
0, ehrt+1

)
is a diffusion term with time-

varying log-volatility hrt+1. The four additional components, β1∆µdt+1, β2 exp (hdt+1/2),

β3ξdt+1Jdt+1, and β4εdt+1 capture spillover effects on returns from the conditional mean,

conditional volatility, jump, and diffusion components of the dividend growth process. We

discuss the economic interpretation of these terms below.
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The mean of the return process, µrt+1, is assumed to follow a mean-reverting AR(1)

process:

µrt+1 = µr + φµr (µrt − µr) + σµrεrµt+1, εrµt+1 ∼ N (0, 1) (14)

where εrµt+1 is assumed to be uncorrelated at all times with the innovation in the temporary

return component, εrt+1 and |φµr| < 1.

The log variance of εrt+1 is also assumed to evolve according to a mean-reverting,

autoregressive process modified to include the volatility and jump components extracted

from the dividend process:

hrt+1 = µhr + φhr (hrt − µhr) + γ1∆µdt+1 + γ2hdt+1 + γ3ξdt+1Jdt+1 + σhrεrht+1, (15)

where εrht+1 ∼ N (0, 1) is uncorrelated at all times with both εrt+1 and εrµt+1.

Finally, we allow the jump intensity of returns to depend on the number of firms

announcing dividends on any given day, Nt, as well as on the jumps in the dividend growth

process:

Pr (Jrt+1 = 1) = Φ (λr1 + λr2Ndt+1 + λr3 (ξdt+1Jdt+1)) . (16)

The magnitude of the jump, ξrt+1, is modeled as ξrt+1 ∼ N
(

0, σ2
ξr

)
.

Our return model can be compared to specifications adopted in previous studies in the asset

pricing literature such as Chib et al. (2002) and Eraker et al. (2003). Chib et al. (2002) model

daily returns on the S&P 500 index using an additive jump process in the return equation of

a discrete time stochastic volatility (SV) model, while Eraker et al. (2003) compare several

SV models with additive jump components in both the return and variance equations applied

to daily returns on the S&P 500 and Nasdaq indexes. Eraker et al. (2003) find that allowing

for jumps in both the mean and the variance processes generate quite different price dynamic

compared to a strategy of adding diffusion factors or only allowing for jumps in returns.23

There are several key differences between our specification and the models used in earlier

studies. First, and most importantly, we include the components extracted from the daily

23Chan and Grant (2016a,b) discuss and compare various SV models that are widely used in the literature
to model financial and macroeconomic time series with and without jumps in the mean equation, and outline
efficient algorithms for fitting these models that build on fast band matrix routines.
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dividend growth process in the specification of mean returns dynamics (13). Second, we

allow for a mean reverting component, µrt, in stock returns. Third, we allow the volatility of

stock market returns to be affected by both the volatility and jumps of the dividend growth

process, (15). Finally, the jump probability of returns in our model can depend not only

on the number of firms announcing dividends on a given day but also on jumps in news

about dividend growth, (16). These are features that have not previously been explored when

modeling stock returns.

5.2 Hypotheses

We next develop a set of economic hypotheses that we use to guide our empirical analysis.

Note that the direction of causality is well-determined in our setting: It is highly unlikely

that the dividends announced by firms on any given day could be affected by stock returns

on that day as corporate boards meet to determine dividend payments well in advance of the

day where they get announced. Conversely, stock prices are expected to react quickly to cash

flow news announcements.

Our first hypothesis is that news about the permanent component of cash flows, ∆µdt+1,

should have a significantly positive and larger effect on same-day stock returns than a shock

to the transitory cash flow component, εdt+1, or jumps in the cash flow process, ξdt+1Jdt+1.

These observations translate into the following hypothesis about the parameters in equation

(13):

Hypothesis 1. Stock returns tend to be higher on days with positive news about the persistent

growth component of cash flows, while temporary shocks to cash flows should not have any

effect on stock returns.

H1 : β1 > 0 and β3 = β4 = 0.

Our second hypothesis is that higher cash flow volatility is associated with a positive risk

premium as it indicates an environment with higher uncertainty about fundamental growth.

We formulate this hypothesis as a statement about the effect of exp(hdt+1/2) on stock returns,

noting that this term will be dominated by variation in the conditional variance of the εdt+1
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cash flow component due to the high persistence in the hdt+1 process.

Hypothesis 2. Stock returns tend to be higher in periods with high cash flow volatility and

greater uncertainty about cash flow growth.

H2 : β2 > 0.

Our third hypothesis is that higher cash flow volatility and jumps in cash flows are drivers

of the return volatility process. Specifically, we would expect positive news about ∆µdt+1

to be associated with lower return volatility as it indicates stronger fundamentals which are

traditionally associated with a less uncertain environment. Conversely, we expect higher cash

flow volatility and large negative jumps to be associated with more volatile stock returns as

they indicate greater uncertainty about cash flows and worse growth prospects. In the context

of the return volatility equation (15), this suggests the following hypothesis:

Hypothesis 3. Return volatility tends to be higher on days with negative news about the

persistent growth rate, higher cash flow volatility, and negative jumps in cash flows:

H3 : γ1 < 0, γ2 > 0 and γ3 < 0.

Fourth and finally, we expect that jumps in cash flows will increase the probability of

observing same-day jumps in stock returns. Jumps in cash flows increase uncertainty about the

prospects for stock prices and make it more likely to see large movements in these. Moreover,

in the same way that negative news increase stock market volatility more than positive news

through a leverage effect, we would expect a negative jump, i.e., a sharp downward adjustment

in the cash flow process, to be associated with a particularly high chance of observing a jump

in returns. Days with fewer signals about fundamentals, i.e., days with fewer firms announcing

their dividends, can also be expected to be more uncertain, increasing the chance of observing

a jump in stock returns. Using equation (16), these hypotheses translate into the following

parameter restrictions:

Hypothesis 4. The probability of a jump in stock returns is higher if there is little information

about cash flows (few firms announce dividends) and if there was a large negative jump in the

cash flow process.
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H4 : λr2 < 0 and λr3 < 0.

5.3 Empirical results

Before testing the hypotheses laid out above, we briefly present results from estimating our

model for dynamics in daily stock returns.24 To this end, Figure 8 shows the time series

of hrt+1, Jrt+1 and ξrt+1, extracted from daily stock returns using the model in equations

(13)-(16). The top panel in Figure 8 shows that the volatility of stock returns rose markedly

during the 2008-09 financial crisis as we would expect. The third and fourth panels indicate

that also the jump intensity was notably higher during the financial crisis of 2008-09.

Table 5 reports posterior means and credible sets for the parameters of the return model.

Our model identifies highly persistent, mean reverting components in both the conditional

mean and volatility of returns with mean estimates φµr = 0.989 and φhr = 0.990 so that

99% of the daily value of the persistent mean or log-volatility component carries over to the

following day. The jump intensity parameters suggest an average jump probability of 7.2%,

corresponding to a jump in stock returns occurring every 14 days. These features of our model

for stock returns are consistent with similar ones identified in earlier studies such as Eraker

et al. (2003).

Turning to the tests of the economic hypotheses listed in the previous subsection, consistent

with H1 the estimate of β1 is highly statistically significant with the expected positive value,

so that positive news about the persistent growth rate in cash flows are associated with higher

stock returns on the same day. The coefficient on the jump component, β3, is positive and

significant at the 90% confidence level though it is insignificant at the 95% level. Thus, there

is some evidence to suggest that jumps in the dividend growth process affect stock returns,

contrary to H1.25 Finally, the insignificant and small value of β4 suggests that temporary

shocks to dividend growth do not directly affect same-day returns, consistent with H1.

Our second hypothesis is that higher uncertainty about cash flow growth translates into

24As with the econometric model of Section 3, we provide the full details of our estimation procedure and
converge statistics in Appendix A and Appendix B.

25A possible explanation of this finding is that the risk premium on stocks rises on days with negative jumps
in the dividend growth process, leading to a downward adjustment in the stock price on such days.
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lower stock returns. Consistent with this hypothesis, our estimate of β2 is positive and

statistically significant so that we tend to find higher average returns on days with higher

cash flow volatility. Importantly, this result is driven by an expected volatility effect: if we

split the actual volatility exp(hdt+1/2) into an expected term, given information on day t, and

the surprise component (i.e., the unanticipated change in volatility on day t+ 1), we find that

only the expected cash flow volatility exp(hdt+1|t/2) has a significant correlation with returns

on day t+ 1.

Turning to the third hypothesis, consistent with H3 we find that positive news about the

persistent cash flow growth component tend to dampen return volatility (γ1 < 0 in (15)).

Conversely, higher cash flow volatility or a negative jump in the cash flow growth rate are

associated with significantly higher return volatility as γ2 > 0 and γ3 < 0.

Finally, our probit estimates of the probability of jumps in stock market returns (16)

show that, consistent with H4, the probability of observing a jump in returns is higher on

days where few firms announce dividends (λr2 is negative) and on days with a negative jump

in dividends (negative λr3). Hence, a negative jump in the dividend growth process increases

the probability of observing a jump in stock returns on the same day.

To evaluate the economic magnitude of how variation in Ndt+1 and ξdt+1Jdt+1 affect the

probability of a jump in stock returns, we evaluate the fitted Probit model (16) at different

percentiles of these variables. Setting the variables at their 25th percentiles, we find a jump

probability of 9%, corresponding to a jump every 11 days. Conversely, setting these variables

at their 75th percentiles, the jump probability is 5.7%. Hence, the chance of observing a jump

in stock returns on a given day is notably higher if fewer firms announce earnings and if a

negative jump affected the dividend growth process on that day.

We conclude from this evidence that the three different components of the cash flow

growth process have distinctly different effects on the dynamics in the mean, volatility and

jump probability of stock returns. News about the persistent component of dividend growth

is associated with higher mean returns, whereas news about the temporary components has

a much smaller effect on returns. Moreover, there is strong evidence that uncertainty

surrounding the dividend growth process has an impact on the corresponding uncertainty

measures of stock returns as the volatility and jump probability of the dividend growth
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process are significant drivers of the volatility and jump processes of returns.

5.4 Uncertainty about dividend growth and expected returns

Our second hypothesis suggests that uncertainty about cash flow growth should translate

into lower stock prices through a higher risk premium. However, uncertainty about cash flow

growth could also have a more direct effect on the uncertainty about expected returns. In

particular, we would expect uncertainty about the persistent component of the mean dividend

growth, µdt, to be linked to uncertainty about the expected return (equity premium) process,

µrt.

Our approach allows us to readily compute an estimate of the uncertainty surrounding

the two persistent components and we plot these estimates in Figure 9. Uncertainty about

µdt rose sharply during the fall of 2008, remained at elevated levels until the third quarter

of 2009, before declining during the last part of 2009 and early 2010. Uncertainty about µrt

peaks in the third quarter of 2008 and comes down earlier than the corresponding uncertainty

measure for µdt.

6 Robustness analysis

This section conducts a set of tests designed to verify the robustness of the previous analysis.

First, we report the outcome of simple regressions of daily stock returns on different measures

of cash flow news. Moreover, we use these regressions to study the relation between stock

returns and dividends on dividend payment days, rather than on days where dividends get

announced. It is reasonable to expect the impact of dividends on stock returns to be largely

associated with a news effect rather than a liquidity effect, which suggests that the effect on

stock returns should be notably larger on announcement days than on payment days. Second,

we estimate regressions of different measures of stock market volatility on the persistent cash

flow component extracted from our dividend growth decomposition.

6.1 Stock returns and cash flow news

Our return model in equations (13)-(16) provides a structured framework for analyzing the

relation between cash flow news and stock market returns. However, any inference will be
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model-dependent and so it is useful to explore whether our findings stand up in the context

of a set of simple return regressions. To this end, we explore the robustness of the relation

between stock returns and dividend growth news.

Because dividend growth news announced on day t could arrive after markets have closed

on that day, such news can affect aggregate stock market returns on day t or day t + 1 and

so we measure trading day returns as the sum of the close-on-close returns on days t and

t + 1, denoted rt:t+1. To understand which, if any, of a set of alternative dividend growth

measures are correlated with stock returns, we consider three different specifications. The

first specification simply regresses two-day returns on dividend growth news on day t, ∆dt :

rt:t+1 = α+ β1∆dt + εt:t+1. (17)

This regression uses a very noisy measure of cash flow news, mixing up temporary and

persistent components in the dividend growth process which we would expect to have very

different impact on returns. To separate these components, our second return regression

uses changes in the persistent component from the no-jump model, ∆µNJdt , in equation (7) as

the regressor:

rt:t+1 = α+ β1∆µNJdt + εt:t+1. (18)

We would expect to find a positive estimate of β1 in (18). However, the estimate of µNJdt

extracted from the no-jump model remains very noisy which might confound the regression.

To address this issue, our final model regresses returns on the different dividend growth

components extracted from the general model:

rt:t+1 = α+ β1∆µdt + β2ξdtJdt + β4εdt + εt:t+1. (19)

Results from the return regressions in (17)-(19) are presented in Table 6 for both the short

sample, 1973-2016 (columns 1-3) and for the long sample, 1927-2016 (columns 4-6.) We focus

our discussion on the shorter sample but note that the results are very similar across the two

sample periods.

The regression of daily stock market returns on the daily change in the dividend growth

rate, ∆dt, uncovers no evidence of a statistically significant positive relation between stock
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returns and cash flow news. This conclusion carries over to the regression of returns on the

change in the persistent cash flow component extracted from the simple model that ignores

jumps, ∆µNJdt . In contrast, we find a positive and highly significant (t-statistic of 2.09) relation

between stock returns and changes in the persistent cash flow component, ∆µdt, extracted

from the general model that allows for jumps. The R2 from this regression (0.10%) is low,

though not immodest in the context of a daily return regression.

For the longer sample dating back to 1927 (columns 4-6), we continue to find that

changes in daily dividends as well as changes in the persistent dividend growth component

extracted from a model with no jumps are insignificantly correlated with aggregate stock

market returns. In contrast, changes in our estimate of the persistent dividend growth

component that accounts for jumps, ∆µt, are highly correlated with stock returns

(t-statistic of 3.60 and R2 = 0.16%).

Consistent with the empirical results in the previous section, we continue to find only

weak evidence (one instance with significance at the 10% level) that the jump or diffusion

components are significantly correlated with stock returns.

6.1.1 Dividend Payments versus Announced Dividends

Our results up to this point show that movements in aggregate stock returns and market

volatility are related to dividend news on the date of the announcement. It is plausible that

this relation reflects how investors re-assess equity prices following cash flow news. We can

test this hypothesis by exploiting the fact that we have data on both the date of the dividend

announcement and the date where a dividend is paid out, with the payment date typically

occurring several days after the announcement date. If the news effect hypothesis is correct,

we would expect to find a substantially smaller impact of dividend growth on stock returns

on the payment date as compared to the return effect on the announcement date.

To see if this is the case, we estimate daily return regressions of the form in (19), but

using the dividend payment date as opposed to the dividend announcement date. The results,

presented in columns 7-9 of Table 6, show that the t-statistic on µdt drops from 3.60 to 2.01

and the R2 values declines from 0.16% to 0.06%. This is consistent with the cash flow news

effect being what matters to movements in aggregate stock market prices, rather than any
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liquidity effects associated with payment of dividends.

6.1.2 Analyst surprises and stock returns

Our approach produces forecasts of daily cash flow growth from past dividend announcements,

but there are also alternative estimates of cash flows. In particular we can use data on

analyst forecasts to construct estimates of dividend surprises, using the approach of Patton

and Verardo (2012) and Doyle et al. (2006). To this end, we construct a sample which

includes all announced DPS available from IBES from July 1984 to January 2016 with at

least two dividend forecasts.26 To keep as many observations as possible and limit the impact

of outliers, we winsorize the data at the 1% level. Overall, our sample consists of 39,918

dividend surprises. For each day, we construct our aggregate daily dividend surprise measure

SUDt by value-weighting individual firms’ dividend surprises, as defined by

SUDi
t =

Actual DPSit −Medest DPSit
P it−7

. (20)

Here Medest DPSt is the last available median analyst DPS forecast ahead of the dividend

announcement date, and Pt−7 is the stock price seven days before the actual DPS

announcement. Using the stock price seven days prior to the dividend announcement date

avoids the confounding effect of the announcement surprise on the stock price (Patton and

Verardo (2012)).

Next, we regress the two-day cumulative return, rt:t+1 on the values of SUDt and ∆µdt

from the general model with jumps:

rt:t+1 = α+ β1SUDt + β2∆µdt + εt:t+1. (21)

Results from this regression reveal that our µdt measure continues to be positively correlated

with stock market returns after controlling for analysts’ dividend expectations, although the

coefficient on µdt is only marginally significant with a t-statistic of 1.93. Conversely, the SUD

measure fails to explain same-day stock market returns as the coefficient on this variable

26The announcement date is the anndats act variable in the “Announcement Date of the Actual” from the
Detail Actuals File.
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obtains a t-statistic below one.

This finding is perhaps not surprising as earnings and dividend surprises mainly have a

cross-sectional effect: a daily dividend surprise announced by an individual firm can affect

the stock itself – as well as stock prices of other companies within the same industry or

geographical areas – by a lead-lag relationship (e.g., Parsons et al. (2017)), but does not seem

to drive the return of the overall aggregate stock market. Hence, movement in the aggregate

stock market cannot be explained by the SUD value of individual stocks.

6.2 Stock market volatility and dividend news

Our empirical analysis in Section 5 shows that dividend growth dynamics affect not only the

mean of stock returns but also have an impact on the volatility and jump probability of the

return process. In particular, positive news about the persistent dividend growth component

reduces stock market volatility. Conversely, higher dividend growth volatility leads to greater

volatility in stock prices.

To explore the robustness of this finding, we investigate the relation between daily stock

market volatility and cash flow news using two different measures of market volatility. First,

we use the VIX obtained from options prices. The widely-used VIX measure reflects market

expectations of short-run (30-day) volatility in stock prices. Second, we use a realized variance

(RV) measure of daily stock market volatility based on intra-day movements in the price on

the S&P500 index sampled every 5 minutes.27 Data on the VIX are available starting in 1990,

while data on realized volatility begin in 2000.

We first consider the contemporaneous relation between daily stock market volatility and

news about the persistent dividend growth component. Panel A in Table 7 shows that there

is a significant and negative correlation between movements in the persistent dividend growth

component and stock market volatility measured either by the VIX or by the RV, consistent

with the notion that positive news about long-run dividend growth reduces volatility in the

stock market.

Next, we consider whether dividend growth news helps predict future stock market

27Our data come from the Oxford-Man Institute of Quantitative Finance, see http://realized.oxford-man.
ox.ac.uk/data/download.
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volatility. In common with empirical studies such as Paye (2012), we use the level of

volatility in our regressions, but account for the high persistence in this variable by

including either a single lag of volatility or an average of lagged volatility as proposed in the

cascade model of Corsi (2009). Specifically, we use the following two regression specifications

for the volatility on day t, V OLt:

V olt+1 = α+ β1V olt + β2µdt + εt+1, (22)

V olt+1 = α+ βdRV
d
t + βwRV

w
t + βmRV

m
t + βµdt + εt+1, (23)

whereRV d, RV w andRV m are the daily, weekly, and monthly volatility averages, respectively,

as defined in Corsi (2009).

Panel B in Table 7 shows the results from these regressions using the VIX (left column)

or the realized volatility (right column). Independently of whether we use the regression

specification in (22) or in (23), we find strong evidence of persistence in the volatility process.

The VIX measure is particularly persistent which can be explained by its use of a partially

overlapping 30-day horizon.

Turning to the predictive content of the persistent dividend component, µdt, over stock

market volatility, for both specifications in Panel B we find that the coefficient on µdt is

negative and highly statistically significant with t-statistics of -4.40 and -9.27, respectively.

While these t-statistics drop to -2.31 and -2.21 in the cascade model, they remain significant

at the 5% level. This suggests that positive news about persistent dividend growth lead to

lower stock market volatility, while negative news tend to increase stock market volatility.28

7 Conclusion

This paper develops a new methodology for constructing daily estimates of cash flow growth

based on firms’ announcements of dividends. Two stylized facts characterize the cash flows

that get announced on a given day. First, the number of firms that pay dividends often

28We also analyze whether the stochastic volatility and jump components extracted from the jump model
have any contemporaneous or predictive effect on the aggregate volatility but find that the effects are negligible
and not statistically significant.
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changes substantially from day to day. Second, individual firms’ cash flow news can change

by large amounts from one quarter to the next and are highly heterogeneous across firms.

Both effects cause lumpiness in the daily cash flow news process.

We handle this lumpiness by decomposing news on dividend growth into a transitory

“normal” shock whose volatility can vary over time, jumps that occur more rarely but whose

magnitude tends to be much larger, and a persistent, smoothly evolving component that

captures long-run mean dynamics in the cash flow growth process. We find that these

components are well identified in the dividend growth data. Importantly, the persistent

mean component captures predictable dynamics in daily dividend growth which gets

overlooked if one studies the raw dividend growth series because this is dominated by the

more volatile temporary components. In turn, we show empirically that this persistent

dividend growth component can be used to produce more accurate forecasts of future

dividend growth than alternative approaches from the existing finance literature.

Our model for daily cash flow dynamics opens up for new tests of asset pricing models

conducted at a higher frequency than conventional tests and our analysis take a number of

steps in this direction. Specifically, we formulate a dynamic model that allows us to study the

effect of different cash flow news components on the conditional distribution of stock market

returns. We find that positive news about the persistent component of dividend growth is

associated with significantly higher average stock returns, while news about the temporary

components has a much smaller effect on returns. Higher cash flow volatility and negative

jumps in the cash flow process are also associated with higher volatility in the stock market

and a higher probability of observing a jump in returns.
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Parameter estimates

1973-2016 1927-2016

Mean Std 90% Credible Set Mean Std 90% Credible Set

µd 0.084 0.015 [0.064,0.104] 0.062 0.016 [0.036,0.088]

φµ 0.998 0.001 [0.997,0.999] 0.998 0.000 [0.998,0.999]

σµ 0.002 0.000 [0.002,0.003] 0.003 0.000 [0.003,0.004]

µh -3.385 0.052 [-3.470,-3.299] -3.106 0.041 [-3.174,-3.038]

φh 0.963 0.002 [0.959,0.967] 0.967 0.002 [0.964,0.969]

σh 0.205 0.001 [0.203,0.207] 0.203 0.001 [0.202,0.205]

σξ 1.437 0.165 [1.191,1.732] 1.149 0.084 [1.017,1.290]

λ1 -1.589 0.056 [-1.684,-1.497] -1.576 0.036 [-1.635,-1.516]

λ2 -0.025 0.003 [-0.030,-0.021] -0.033 0.003 [-0.038,-0.029]

Table 1: Parameter estimates for the dividend growth rate model. This table shows
parameter estimates for a dynamic model fitted to the daily series of year-on-year dividend growth.
The equations for the components model, further described in Section 3.2, take the following form:

∆dt+1 = µdt+1 + ξdt+1Jdt+1 + εdt+1

µdt+1 = µd + φµ (µdt − µd) + σµεµt+1

εdt+1 ∼ N (0, ehdt+1 )

hdt+1 = µh + φh (hdt − µh) + σhεht+1

Pr (Jdt+1 = 1) = Φ (λ1 + λ2Ndt+1)

ξdt+1 ∼ N
(

0, σ2
ξ

)
where µdt+1 captures the mean of the smooth component of the underlying dividend process,
Jdt+1 ∈ {0, 1} is a jump indicator that equals unity in case of a jump in dividends and otherwise
is zero, ξdt+1 measures the jump size, εdt+1 is a temporary cash flow shock, εµt+1 ∼ N (0, 1) is
assumed to be uncorrelated at all times with the innovation in the temporary dividend growth
component, εdt+1 and |φµ| < 1. hdt+1 denotes the log-variance of εdt+1, and εht+1 ∼ N (0, 1)
is uncorrelated at all times with both εdt+1 and εµt+1. Ndt+1 denotes the number of firms
announcing their dividends at time t + 1, while Φ stands for the CDF of a standard Normal

distribution. The magnitude of the jumps is modeled as ξdt+1 ∼ N
(

0, σ2
ξ

)
. The columns report

the posterior mean, standard deviation and 90% credible sets of the parameter estimates.
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PANEL A: ∆dCRSP
t = α + βµdt + εt

Quarterly Annual Quarterly (1927) Annual (1927)

µdt .42*** 1.30** .34*** .89***

[6.93] [2.33] [7.42] [4.85]

R2 28.17% 9.91% 34.99% 15.40%

Observations 168 42 356 89

PANEL B: ∆dCRSP
t+1 = α + ρi

∑3
i=1 ∆dCRSP

t+1−i + βµdt + γdpCRSP
t + εt+1

Quarterly Annual Quarterly (1927) Annual (1927)

µdt .32*** 2.00** .20*** .84***

[4.48] [2.26] [4.29] [2.76]

dpt -.00 .05 .00 .05

[-0.60] [0.81] [0.63] [1.25]

∆dCRSP
t .14* -.63*** .26*** -.22

[1.77] [-4.65] [4.14] [1.23]

∆dCRSP
t−1 .05 -.49*** .16*** -.17

[0.83] [-3.82] [3.45] [-1.03]

∆dCRSP
t−2 .01 -.07 -.03 -.00

[0.20] [-0.49] [-0.56] [-0.05]

R2 27.47% 27.84% 41.02% 7.31%

Observations 165 39 353 86

PANEL C: ∆dit+1 = α + βµdt+1 + γgit + εt+1

Annual Monthly

µdt 1.02*** .92*** .88*** .78***

[5.77] [6.03] [9.96] [8.09]

gV BK
t .96*** .58**

[2.94] [2.03]

gKP
t 1.00*** .39**

[4.86] [2.06]

R2 39.35% 14.31% 44.09% 32.09% 13.26% 33.72%

Observations 69 69 69 923 923 923

PANEL D: ∆dit+1 = β1µdt+1 + (1− β1)γgit + εt+1

β1 0.81*** .77***

p-value (0.00) (0.00)

1− β1 0.19* .23***

p-value (0.10) (0.00)

Table 2: Dividend growth regressions. Panel A reports results from contemporaneous
regressions of the conventional CRSP dividend growth measure, ∆dCRSPt , on the persistent
dividend component µdt extracted from our daily dividend growth model. We report results
for quarterly and annual frequencies, using the second half of our sample (1973-2016) as well as
the full sample (1927-2016). Panel B reports results from predictive regression of ∆dCRSPt+1 on the
persistent component µdt estimated from our daily dividend growth model and the log dividend
price ratio, dpt, at quarterly and annual frequencies. Panel C compares the predictive power of our
persistent dividend growth component to that of two latent dividend growth variables proposed
in the literature. The first measure is taken from van Binsbergen and Koijen (2010) and uses cash
reinvested dividend growth, measured annually over the extended sample period 1946-2015. The
second measure is taken from Kelly and Pruitt (2013) and uses monthly data over the extended
sample period 1940-2016. Panel D reports the results from forecast encompassing regressions
which compares the predictive power of our µdt measure to the two alternative measures. Square
brackets report t-statistics computed using Newey-West standard errors with three lags.
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PANEL A: ∆Yt = α+ βµdt + εt

∆GDP ∆Consumption

µdt .14*** .13***

[6.05] [5.75]

R2 26.11% 30.50%

Observations 172 172

PANEL B: ∆Yt+1 = α+ βµdt + γ∆Yt + εt+1

∆GDP ∆Consumption

µdt .14*** .08*** .13** .03*

[4.57] [2.72] [4.72] [1.80]

∆Yt .39*** .69***

[4.39] [11.77]

R2 21.15% 32.82% 25.93% 59.53%

Observations 171 171 171 171

Table 3: Contemporaneous and predictive regressions of GDP and consumption
growth on the persistent dividend growth component. Panel A reports estimates from
regressions of contemporaneous quarterly GDP and consumption growth, ∆Yt, on the persistent
dividend growth component µdt estimated from our dynamic cash flow model. Panel B reports
estimates from quarterly predictive regression of future GDP and consumption growth, ∆Yt, on
the persistent dividend growth component µdt estimated from our dynamic cash flow model.
Square brackets show t-statistics computed using Newey-West standard errors with three lags.
The sample period used for these regressions is 1973-2015.
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PANEL A: Index level correlations

VIX PU ADS Liquidity Inflation µdt

VIX 1

PU 0.34*** 1

(0.00)

ADS -0.49*** -0.26*** 1

(0.00) (0.00)

Liquidity 0.67*** 0.19*** -0.54*** 1

(0.00) (0.00) (0.00)

Inflation -0.66*** -0.36*** 0.50*** -0.63*** 1

(0.00) (0.00) (0.00) (0.00)

µdt -0.53*** -0.23*** 0.32*** -0.59*** 0.78*** 1

(0.00) (0.00) (0.00) (0.00) (0.00)

PANEL B: Index changes/returns correlations

∆VIX ∆PU ∆ADS Index ∆Liquidity ∆Inflation ∆µdt

∆VIX 1

∆PU -0.02 1

(0.10)

∆ADS Index 0.01 0.00 1

(0.65) (0.94)

∆Liquidity -0.01 0.05*** -0.00 1

(0.53) (0.00) (0.88)

∆Inflation 0.03 -0.03 -0.00 -0.00 1

(0.24) (0.27) (0.87) (0.91)

∆µdt -0.02 -0.01 0.05*** -0.01 0.09*** 1

(0.22) (0.58) (0.09) (0.25) (0.00)

Table 4: Correlations between the persistent dividend growth component µdt and
macroeconomic and financial activity measures. This table reports correlations between
the persistent dividend growth component µdt extracted from our daily cash flow model and the
following daily macroeconomic variables/indicators: the VIX index, the policy uncertainty index
of Baker et al. (2016), the ADS index of Aruoba et al. (2009), the liquidity noise index of Hu
et al. (2013), and the daily inflation index of Cavallo and Rigobon (2016). Daily data. Panel A
correlates the levels of these variables, while Panel B correlates the change in the variables.
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Mean Std 90% Credible Set

β1 1.336 0.420 [0.645,2.018]

β2 0.144† 0.080 [0.016,0.271]

β3 0.034† 0.019 [0.003,0.066]

β4 -0.023† 0.027 [-0.068,0.021]

µr 0.022† 0.023 [-0.015,0.061]

φµr 0.989 0.001 [0.987,0.990]

µhr -9.554 0.056 [-9.648,-9.462]

φhr 0.990 0.000 [0.990,0.990]

γ1 -17.916 1.286 [-20.010,-15.768]

γ2 0.050† 0.013 [0.029,0.072]

γ3 -0.109 0.011 [-0.127,-0.091]

λr1 -1.206 0.076 [-1.330,-1.084]

λr2 -0.010 0.002 [-0.013,-0.007]

λr3 -0.611 0.298 [-1.119,-0.139]

σµ 0.182 0.017 [0.156,0.211]

σh 9.999 0.000 [9.999,10.000]

σξr 0.541 0.055 [0.457,0.639]

Table 5: Parameter estimates for the dynamic return model that conditions on cash
flow news. The table shows parameter estimates of the return model in Section 5.1 which
relates dynamics in stock returns to the components extracted from our daily dividend growth
model. The parameters listed in the table are taken from the following model specification:

rt+1 = µrt+1 + ξrt+1Jrt+1 + β1∆µdt+1 + β2 exp (hdt+1/2) + β3 (ξdt+1Jdt+1) + β4εdt+1 + εrt+1

µrt+1 = µr + φµr (µrt − µr) + σµrεrµt+1

hrt+1 = µhr + φhr (hrt − µhr) + γ1∆µdt+1 + γ2hdt+1 + γ3 (ξdt+1Jdt+1) + σhrεrht+1

Pr (Jrt+1 = 1) = Φ (λr1 + λr2Ndt+1 + λr3 (ξdt+1Jdt+1))

ξrt+1 ∼ N
(

0, σ2
ξr

)
where µrt+1 captures the persistent component in stock returns, ξrt+1Jrt+1 represent jumps
in stock returns with Jrt+1 ∈ {0, 1} being a jump indicator, while εrt+1 ∼ N

(
0, ehrt+1

)
is a

diffusion term with time-varying log variance hrt+1. β1∆µdt+1 captures the effect of persistent
cash flow news on stock returns, while the three additional components, β2 exp (hdt+1/2),
β3 (ξdt+1Jdt+1) and β4εdt+1 capture spillover effects on returns from the conditional volatility,
jumps and idiosyncratic shock in the dividend growth process. εrµt+1 ∼ N (0, 1) is assumed to
be uncorrelated at all times with the innovation in the temporary return component, εrt+1 and
|φµr| < 1. hdt+1 denotes the time-varying variance extracted from the dividend model, while
Jdt+1 and ξdt+1 denote the time-varying jump probability and jump magnitude obtained from
the dividend growth rate model. εrht+1 ∼ N (0, 1) is uncorrelated at all times with both εrt+1 and
εrµt+1. Ndt+1 is the number of firms announcing dividends. The columns report the posterior
mean, standard deviation and 90% credible sets of the parameter estimates. The σ estimates
(estimates with the † symbol) have been multiplied by 1,000 (100) for better readability. The
model is estimated using daily data over the sample period 1973-2016.
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Dividend announcement days Dividend payment days

1973-2016 1927-2016 1927-2016

∆dt .00 .00 -.00

[0.40] [0.22] [-0.49]

∆µNJ
dt .00 .00 -.00

[0.40] [0.22] [-0.49]

∆µdt 2.31** 1.81*** 1.06**

[2.09] [3.60] [2.01]

ξdtJdt .00* .00 .00

[1.81] [1.25] [-0.19]

hdt/2 -.00 .00 -.00

[-0.03] [0.23] [-0.38]

R2 0.00% 0.00% 0.10% 0.00% 0.00% 0.16% 0.00% 0.00% 0.06%

Observations 9,037 9,037 9,037 19,404 19,404 19,404 18,602 18,602 18,602

Table 6: Daily regressions of stock returns on dividend news. This table reports estimates
from regressions of daily stock market returns on 1) daily changes in our aggregate dividend growth
measure (∆yt); 2) the change in the persistent component ∆µNJdt extracted from a dividend growth
model without jumps and stochastic volatility; or 3) the change in the persistent component
∆µdt extracted from the dynamic dividend growth model that accounts for jumps and stochastic
volatility. In each case, the dependent variable is the two-day cumulative log stock market return
rt:t+1 Columns 1-6 consider stock returns on the dates of the dividend news announcements,
while columns 7-9 instead relate stock returns to dividend news on the days where the dividend
payments are actually made. Columns 1-3 show results for the shorter 1973-2016 sample, while
columns 4-9 show results for the longer sample, 1927-2016. Square brackets report t-statistics
using Newey-West standard errors with three lags.
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Panel A: Contemporaneous regressions

VIX SP500 Realized Vol

µdt -16.19*** -12.15***

[-17.49] [-13.15]

ξdtJdt -.18** -.09

[-2.10] [-1.04]

hdt/2 .07 -.57***

[0.38] [-2.55]

R2 26.66% 21.61%

Observations 6,527 3,977

Panel B: Predictive regressions

VIX SP500 Realized Vol

AR(1) .97*** .74***

[176.40] [32.90]

µdt -2.84*** -.02***

[-4.40] [-9.27]

R2 96.28% 64.72%

Observations 6,525 3,952

Corsi (2009) model

µdt -1.65** -.00**

[-2.31] [-2.21]

RV d
t .85*** .35***

[28.35] [7.84]

RV w
t .11*** .41***

[2.75] [5.74]

RV m
t .03 .17***

[1.61] [3.22]

R2 96.38% 70.97%

Observations 6,442 3,541

Table 7: Relation between the persistent dividend component, VIX, and realized
stock market volatility. Panel A in this table reports estimates from daily regressions of the
VIX (left column) or the realized volatility extracted from the S&P500 index (right column) on
the contemporaneous value of the persistent dividend growth component µdt extracted from our
components model. Panel B reports similar results, relating the VIX or realized volatility to the
lagged value of µdt as well as a single lag of the dependent variable or multiple lags based on the
Corsi (2009) model. The dependent variables in Panel A are standardized. Square brackets show
t-statistics using Newey-West standard errors computed using three lags.



Figure 1: Distribution of dividend announcements within a quarter. This figure plots
the time-series of dividend announcements for Q2 2014. For every day within this quarter, the
top panel shows the number of firms announcing dividends. The middle panel shows the overall
nominal amount of dividends announced by those firms, while the bottom panel shows the daily
(net) dividend growth rate defined in equation (1).
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Figure 2: Time series of daily dividend growth and the persistent mean component.
The top panel plots the log of the daily dividend growth series Dyr,s defined in Eq.1. The middle
panel plots the persistent dividend growth component µNJdt extracted from a model without jumps
and stochastic volatility. The bottom panel plots the persistent dividend growth component µdt
extracted from the daily dividend series using a model that accounts for jumps and stochastic
volatility. All plots use daily data over the sample 1973-2016.

Figure 3: Jump dynamics in daily dividend news. The top panel plots the probability of
a jump in the daily dividend growth series while the bottom panel plots the magnitude of such
jumps. Both plots use daily dividend data over the sample 1973-2016.
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Figure 4: Decomposition of dividend growth into its components. For two days in our
sample, this figure shows how the dividend growth rate gets decomposed into (i) a persistent mean
component µdt; (ii) a normal component with stochastic volatility σ; and (iii) a jump component.
The two days are December 8, 2009 (a day during the global financial crisis) and August 5, 2010
(a day during the recovery).
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Figure 5: Jump intensities and the number of firms announcing dividend news.
This figure shows the sensitivity of the dividend growth jump probability to the number of firms
announcing dividends on a given day, Ndt, chosen to match the 25th, median and 75th percentiles
of the distribution of the daily number of announcing firms. On days with a large number of
announcing firms (black, dashed curve), the jump intensity distribution is centered around 0.005,
corresponding to a jump on average every 200 days. On days with a typical (median) number
of announcing firms (blue curve), the jump intensity is centered around 0.016, implying a jump
roughly every 60 days. Finally, on days with a small number of announcing firms (red, dotted
curve), the probability of a jump is 0.03, corresponding to a jump every 35 days.
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Figure 6: Actual versus predicted dividend growth under alternative modeling
approaches. The top panel plots the actual dividend growth, ∆dt against the persistent dividend
growth component extracted from our model, µdt and the measure proposed by van Binsbergen
and Koijen (2010), gV BKt . The latter assumes cash reinvested dividend growth. The bottom panel
plots actual dividend growth against our persistent dividend growth component and the measure
of Kelly and Pruitt (2013), gKPt . In both cases we have extended the sample period originally
used by the papers after replicating their results.

Figure 7: GDP growth, consumption growth and the persistent dividend growth
component µdt. This figure plots quarterly GDP and consumption growth along with the
persistent dividend growth component µdt, extracted from our daily cash flow model over the
sample 1975-2015.
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Figure 8: Decomposition of daily stock returns into stochastic volatility and jumps.
The top panel of this figure shows the stochastic volatility (SV) component extracted from the
dynamic model for stock returns (eq. 13). The middle and bottom panels plot the probability
and magnitude of jumps in daily stock returns.

Figure 9: Uncertainty about the persistent mean components of dividend growth
and returns. This graph plots the uncertainty surrounding the mean of the dividend growth
process µdt and the mean of stock returns µrt during the period from 2007-2009. Uncertainty
about dividend growth rises sharply during the fall of 2008, remains at elevated levels until the
third quarter of 2009, before declining during the last part of 2009. Uncertainty is defined as the
volatility of the daily estimates of µdt and µrt, respectively.



Appendix A MCMC Algorithm

In this Appendix, we provide the analytical derivations needed to derive the posterior

distributions of all parameters and latent states of the most general model we estimate in

the paper.

A.1 The Model

We start by rewriting both the model as well as the prior distributions for all model

parameters. Starting with the observation equation and time-varying mean and volatility

processes, we have

yt+1 = µyt+1 + ξyt+1Jyt+1 + β′Xt+1 + εyt+1, (A.1)

µyt+1 = µy + φµ (µyt − µy) + σµεµt+1, (A.2)

and

hyt+1 = µh + φh (hyt − µh) + βh
′Xh

t+1 + σhεht+1 (A.3)

where yt+1 denotes either the cash flow growth rate at time t + 1 (yt+1 = ∆dt+1) or the

stock return at time t + 1 (yt+1 = rt+1), while εyt+1 ∼ N
(
0, ehyt+1

)
, εµt+1 ∼ N

(
0, σ2

µ

)
, and

εht+1 ∼ N
(
0, σ2

h

)
are mutually independent and independently and identically distributed

across time. Next, the intensity of the jump process is assumed to take the form

Pr(Jyt+1 = 1) = Φ(λ′XJ
t+1), (A.4)

where Φ(·) denotes the cumulative distribution function of a standard normal random variable,

while the magnitude of the jumps is determined from

ξyt+1 ∼ N (0, σ2
ξ ), (A.5)
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with Xt+1, Xh
t+1, and Xj

t+1 exogenous. Finally, the initial conditions for µy and hy are set

as follows:

µy1 ∼ N

(
µy,

σ2
µ

1− φ2
µ

)
(A.6)

and

hy1 ∼ N
(
µh +

β′hX
h
1

1− φh
,

σ2
h

1− φ2
h

)
. (A.7)

A.2 Priors

The model in (A.1)-(A.7) includes 10 parameters, namely µy, φµ, σ2
µ, µh, φh, σ2

h, λ, σ2
ξ , β,

and βh. Accordingly, we specify the following prior distributions:

µy ∼ N (µ
y0
, V µy), φµ ∼ N (φ

µ0
, V φµ)I(|φµ| < 1), σ2

µ ∼ IG(νµ, Sµ) (A.8)

µh ∼ N (µ
h0
, V µh

), φµ ∼ N (φ
h0
, V φh

)I(|φh| < 1), σ2
h ∼ IG(νh, Sh) (A.9)

λ ∼ N (µ
λ
,V λ) (A.10)

σ2
ξ ∼ IG(νξ, Sξ) (A.11)

β ∼ N (β
0
,V β) (A.12)

βh ∼ N (β
h0
,V βh

). (A.13)

where N is the normal distribution and IG refers to the Inverse Gamma distribution.

Next, we briefly describe the choices of prior hyperparameters of the dividend growth and

return models. Starting with the dividend growth model, for almost all of the parameters
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we work with loose and mildly uninformative priors.29 Starting with µy and µh, we set

µ
y0

= µ
h0

= 0, and specify their variances as V µy = V µh
= 10. Next, we set φ

µ0
= φ

h0
= 0.99

and V φµ = V φh
= 0.001, which implies a prior belief that the latent processes for µyt+1 and

hyt+1 will be very persistent. Finally, we set Sµ = 0.01 and = Sh = 0.1, restricting the

changes to the process for µyt+1 and hyt+1 to be 0.01 and 0.1 on average, and set νµ = 2

and νh = 1e10. As for the parameters of the jump process, we specify a normal prior for

the parameters governing the timing of the jumps, i.e. λ = (λ1, λ2) ∼ N (µλ,V λ), where

µλ = (0, 0)′ and V λ = diag (10, 10). As for the magnitude of the jumps, we tailor the

hyperparameter Sξ = 22 to the spread of the series being modeled and set νξ = 2 to impose

the least informative proper prior on σ2
ξ .

Turning to the tuning of the priors for the return model, we set µ
y0

= µ
h0

= 0, and

specify their variances as V µy = V µh
= 10. Next, we set φ

µ0
= φ

h0
= 0.99, V φµ = 0.001, and

V φh
= 0.0001. This implies a prior belief that the latent processes for µrt+1 and hrt+1 are

highly persistent. Finally, we set Sµ = 0.001 and Sh = 0.01, reflecting a belief that changes

to µrt+1 and hrt+1 are very small and we set νµ = 2 and νh = 1e10. Moreover, as for the

dividend process, we specify a normal prior for the parameters governing the timing of the

jumps, i.e., λ = (λr1, λ
r
2, λ

r
3) and set µλ = (0, 0, 0)′ and V λ = diag (10, 10, 10). Finally, we set

Sξ = 0.0252 and νξ = 2. As for the remaining parameter in the mean and volatility equation,

we specify a loosely uninformative normal prior with mean zero and variance equal to 10 for

all the elements in the vectors β and βh.

A.3 Posteriors

We now describe how to obtain posterior estimates for all model parameters (µy, φµ, σ2
µ, µh,

φh, σ2
h, λ, σ2

ξ , β, βh), as well as latent state vectors µy = {µyt}Tt=1, hy = {hyt}Tt=1,

Jy = {Jyt}Tt=1, and ξy = {ξyt}Tt=1. While the joint posterior distribution of all model

parameters and latent state variables is highly non-linear, we can employ a Gibbs sampler

algorithm augmented with a number of Metropolis-Hastings steps to draw recursively from

the conditional posteriors of all model parameter and state variables. In particular, we break

the evaluation of the joint posterior distribution into five different blocks:

29Note that we impose the stationarity conditions |φµ| < 1 and |φh| < 1 directly on the priors.
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1. µy
∣∣hy, ξy,Jy, µy, φµ, σ2

µ,β,DT

2. Jy|µy, ξy,β,hy,DT

3. ξy
∣∣µy,Jy,β,hy, σ2

ξ ,DT

4. hy|µy, ξy,Jy, µh, φh, σ2
h, β,DT

5. µy, φµ, σ
2
µ, µh, φh, σ

2
h,λ, σ

2
ξ ,β,βh

∣∣∣µy,hy, ξy,Jy,DT
where DT denotes the information set available at time T . The last block is further broken

down into 10 separate sub-blocks, one for each element of the parameter vector. We next

describe in details the steps of the Gibbs sampler algorithm.

A.3.1 µy
∣∣hy, ξy,Jy, µy, φµ, σ2

µ,β,DT

Start by rewriting the observation equation in (A.1) as follows:

y? = Xµµy + εy εy ∼ N (0,Σy), (A.14)

where

y? =


y1 − ξy1Jy1 − β′X1

...

yT − ξyTJyT − β′XT

 , (A.15)

Xµ =


1

. . .

1

 µy =


µy1

...

µyT

 εy =


εy1

...

εyT

 , (A.16)

and

Σy =


ehy1

. . .

ehyT

 . (A.17)

Next, combine the state equation for µy in (A.2) with the initial condition in (A.6) into:

Hµµy = δ̃µ + εµ εµ ∼ N (0,Σµ) (A.18)
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where

Hµ =


1 0 . . . . . . 0

−φµ 1 0 · · · 0
...

...
...

. . .
...

0 . . . 0 −φµ 1

 δ̃µ =


µy

(1− φµ)µy
...

(1− φµ)µy

 (A.19)

and

Σµ =


σ2
µ

(1−φ2
µ)

σ2
µ

. . .

σ2
µ

 . (A.20)

It is easy to show that

µy = δµ +H−1
µ εµ (A.21)

where δµ = H−1
µ δ̃µ. It follows that

µy ∼ N
(
δµ,H

−1
µ Σµ

(
H−1

µ

)′)
(A.22)

or

µy ∼ N
(
δµ,
(
H ′µΣ

−1
µ Hµ

)−1
)

(A.23)

Finally, combining (A.14) and (A.23) leads to the following posterior:

µy
∣∣hy, ξy,Jy, µy, φµ, σ2

µ,β,DT ∼ N (µ,V µ), (A.24)

where

V µ =
[
H ′µΣ

−1
µ Hµ +X ′µΣ

−1
y Xµ

]−1

µ = V µ

[
(H ′µΣ

−1
µ Hµ)δµ +X ′µΣ

−1
y y

?
]
.

(A.25)
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A.3.2 Jy|µy, ξy,β,hy,DT

It is easy to show that for any given t ∈ [1, T ]

Pr
(
Jyt = 1|µyt, ξyt,β,λ,Xt,X

J
t , ht,DT

)
∝ p(yt|µyt, ξyt, Jyt = 1,β,Xt, hyt)

× Pr(Jyt = 1|XJ
t ,λ),

(A.26)

where

p (yt|µyt, ξyt, Jyt = 1,β,Xt, hyt) ∼ N
(
yt|µyt + ξyt + β′Xt, e

hyt
)
, (A.27)

and Pr
(
Jyt = 1|XJ

t ,λ
)

= Φ
(
λ′XJ

t

)
, while

Pr
(
Jyt = 0|µyt, ξyt,β,λ,Xt,X

J
t , hyt,DT

)
∝ p (yt|µyt, ξyt, Jyt = 0,β,Xt, hyt)

× Pr
(
Jyt = 0|XJ

t ,λ
)
,

(A.28)

where

p (yt|µyt, ξyt, Jyt = 0,β,Xt, hyt) ∼ N
(
yt|µyt + β′Xt, e

hyt
)
, (A.29)

and Pr
(
Jyt = 0|XJ

t ,λ
)

= 1− Φ
(
λ′XJ

t

)
.

A.3.3 ξy
∣∣µy,Jy,β,hy, σ2

ξ ,DT

Start by noting that when Jyt = 0, ξyt| Jyt = 0,DT ∼ N (0, σ2
ξ). In other words, when Jyt = 0

we rely on the prior distribution of ξyt in (A.5). In contrast, when Jyt = 1, it is possible to

rewrite the observation equation of the model in (A.1) as

yt − µyt − β′Xt = ξyt + εyt, εyt ∼ N (0, ehyt). (A.30)

Combining (A.30) with (A.5) leads to

ξyt|µyt, Jyt = 1,β, hyt, σ
2
ξ ,DT ∼ N (µξyt , σ

2
ξyt) (A.31)
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where

σ2
ξyt =

(
σ−2
ξ + e−hyt

)−1

µξyt = σ2
ξyt

(
e−hyt

(
yt − µyt − β′Xt

))
.

(A.32)

A.3.4 hy|µy, ξy,Jy, µh, φh, σ2
h,β,DT

Combining the state equation for hyt in (A.3) with the initial condition for hy1 in (A.7), we

have:

Hhhy = δ̃h + εh, εh ∼ N (0,Σh), (A.33)

where

Hh =


1 0 . . . . . . . . . 0

−φh 1 0 . . . . . . 0
...

...
...

. . .
...

...

0 . . . . . . 0 −φh 1

 , δ̃h =


µh +

β′hX1

(1−φh)

(1− φh)µh + β′hX2

. . .

(1− φh)µh + β′hXT

 , (A.34)

and

Σh =


σ2
h

(1−φ2
h)

σ2
h

. . .

σ2
h

 . (A.35)

This leads to

hy ∼ N
(
δh,
(
H ′hΣ

−1
h Hh

)−1
)
, (A.36)

where δh = H−1
h δ̃h. Next, note that the observation equation is a non-linear function of hy,

so we follow Chan and Grant (2016a) and first approximate it with a Gaussian density in hy.

Recall from (A.14) that

y?|µy,hy,Jy, ξy,β ∼ N (µy,Σy). (A.37)
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A second-order Taylor expansion of (A.37) around h̃y, the mode of the posterior (see Chan

and Grant (2016a) for additional details), leads to the following approximation:

ln p
(
y?|µy,hy,Jy, ξy,β

)
≈ ln p

(
y?|µy, h̃y,Jy, ξy,β

)
+
(
hy − h̃y

)′
f

− 1

2

(
hy − h̃y

)′
G
(
hy − h̃y

)
,

(A.38)

where f is T × 1 vector of gradients and G is T × T matrix containing the elements of the

negative Hessian, while h̃y denotes the mode of ln p
(
y?|µy,hy,Jy, ξy,β

)
. In particular,

f =


f1

...

fT

 , G =


G11

. . .

GTT

 , (A.39)

with

ft =
∂ ln p (y?t |µyt, hyt, Jyt, ξyt,β)

∂hyt

∣∣∣∣
hyt=h̃yt

, (A.40)

and

Gtt = − ∂2 ln p (y?t |µyt, hyt, Jyt, ξyt,β)

∂h2
yt

∣∣∣∣∣
hyt=h̃yt

, (A.41)

with

ft = −1

2
+

1

2
e−hyt (y?t − µyt)

2 ,

Gtt = −1

2
e−hyt (y?t − µyt)

2 .

(A.42)

Some additional algebra leads to

ln p
(
y?|µy,hy,Jy, ξy,β

)
∝ h′yf −

1

2
h′yGhy + h′yGh̃y

∝ −1

2

(
h′yGhy − 2h′y

(
f +Gh̃y

))
.

(A.43)

Combining (A.43) with (A.36) leads to the following posterior for hy:

hy|µy, ξy,Jy, µh, φh, σ2
h,β,DT ∼ N

(
K−1

h kh,K
−1
h

)
, (A.44)

60



where

Kh = H ′hΣ
−1
h Hh +G, (A.45)

kh = H ′hΣ
−1
h Hhδh + f +Gh̃y. (A.46)

A.3.5 µy, φµ, σ
2
µ, µh, φh, σ

2
h,λ, σ

2
ξ ,β,βh

∣∣∣µy,hy, ξy,Jy,DT
We break the posterior into 10 separate blocks:

• µy|µy, φµ, σ2
µ,DT :

Start by combining (A.2) and (A.6) and rewriting them as:

Zµ = Xµµy + εµ εµ ∼ N (0,Σµ), (A.47)

where

Zµ =


µy1

µy2 − φµµy1

...

µyT − φµµyT−1

 , Xµ =


1

(1− φµ)
...

(1− φµ)

 . (A.48)

Combining (A.47) with the prior for µy in (A.8) leads to

µy|µy, φµ, σ2
µ,DT ∼ N (µy, V µy), (A.49)

where

V µy =
[
V −1
µy +X ′µΣ

−1
µ Xµ

]−1
, (A.50)

and

µy = V µy

[
V µyµy0

+X ′µΣ
−1
µ Zµ

]
. (A.51)

• φµ|µy, µy, σ2
µ,DT :
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Following Kim et al. (1998), we start by obtaining a candidate draw from the following

distribution:

φ?µ ∼ N
(
φµ, V µ

)
× I (|φµ| < 1) (A.52)

where

V φµ =

(
V −1
φµ

+
X ′φµXφµ

σ2
µ

)−1

, (A.53)

φµ = V φµ

(
V −1
φµ
φ
µ0

+
X ′φµZφµ

σ2
µ

)
(A.54)

and where

Zφµ =


µy2 − µy

...

µyT − µy

 , Xφµ =


µy1 − µy

...

µyT−1 − µy

 . (A.55)

Next, if the draw is retained (i.e., satisfies the stationarity restriction), we accept φ∗µ with

probability e(g(φ
∗
µ)−g(φoldµ )) where φoldµ is the retained draw from the previous iteration

of the Gibbs sampler, and

g (φµ) = ln p (φµ)− 1

2
ln

(
σ2
µ

1− φ2
µ

)
−
(
1− φ2

µ

)
2σ2

µ

(µy1 − µy)2 , (A.56)

with p (φµ) denoting the prior of φµ from (A.8).

• σ2
µ

∣∣µy, µy, φµ,DT :

The posterior for σ2
µ is readily available, and is given by:

σ2
µ

∣∣µy, µy, φµ,DT ∼ IG (νµ +
T

2
, Sµ

)
, (A.57)

where

Sµ = Sµ +
1

2

[(
1− φ2

µ

)
(µy1 − µy)2 +

T−1∑
t=1

(µyt+1 − µy − φµ (µyt − µy))2

]
. (A.58)
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• µh|hy, φh, σ2
h,βhDT :

We combine (A.3) and (A.7) into

Zh = Xhµh + εh εh ∼ N (0,Σh), (A.59)

where

Xh =


1

1− φh
...

1− φh

 , Zh =


hy1 −

β′hX
h
1

1−φh
hy2 − φhhy1 − β′hXh

2
...

hyT − φhhyT−1 − β′hXh
T

 . (A.60)

Next, combine (A.59) with the prior for µh in (A.9) to get

µh|hy, φh, σ2
h,βh,DT ∼ N

(
µh, V µh

)
, (A.61)

where

V µh =
[
V −1
µh

+X ′hΣ
−1
h Xh

]−1
, (A.62)

and

µh = V µh

[
V −1
µh
µ
h0

+X ′hΣ
−1
h Zh

]
. (A.63)

• φh|hy, µh, σ2
h,βh,DT :

As with φµ, we follow Kim et al. (1998) and first obtain a candidate draw from the

following distribution:

φ?h ∼ N
(
φh, V h

)
× I (|φh| < 1) , (A.64)

where

V φh =

(
V −1
φh

+
X ′φhXφh

σ2
h

)−1

, (A.65)

63



φh = V φh

(
V −1
φh
φ
h0

+
X ′φhZφh

σ2
h

)
(A.66)

and where

Zφh =


hy2 − µh − β

′
hX

h
2

...

hyT − µh − β
′
hX

h
T

 , Xφh =


hy1 − µh

...

hyT−1 − µh

 . (A.67)

Next, if the draw is retained (i.e., satisfies the stationarity restriction), we accept φ∗h with

probability e(g(φ
∗
h)−g(φ

old
h )) where φoldh is the retained draw from the previous iteration

of the Gibbs sampler, and

g (φh) = ln p (φh)− 1

2
ln

(
σ2
h

1− φ2
h

)
−
(
1− φ2

h

)
2σ2

h

(
hy1 − µh −

β
′
hX

h
1

1− φh

)2

, (A.68)

with p (φh) denoting the prior of φh.

• σ2
h|hy, µh, φh, βh,DT :

The posterior for σ2
h is readily available, and is given by

σ2
h|hy, µh, φh, βh,DT ∼ IG

(
νh +

T

2
, Sh

)
, (A.69)

where

Sh = Sh +
1

2

[(
1− φ2

h

)(
hy1 − µh −

β′hX
h
1

1− φh

)2

+

T−1∑
t=1

(
hyt+1 − µh − φh (hyt − µh)− β′hXh

t+1

)2
]
.

(A.70)

• βh|hy, µh, φh, σ2
h,DT :

Start by rewriting (A.3) as follows

Zβh = Xβhβh + εh εh ∼ N (0,Σh) (A.71)
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where

Zβh =


hy1 − µh

hy2 − µh − φh(hy1 − µh)
...

hyT − µh − φh(hyT−1 − µh)

 , Xβh =


(1− φh)−1Xh′

1

Xh′
2

...

Xh′
T

 . (A.72)

Combing (A.71) with the prior for βh in (A.13) leads to the following posterior

distribution:

βh|hy, µh, φh, σ2
h,DT ∼ N (βh,V βh) (A.73)

where

V βh =
(
V −1
βh

+X ′βhΣ
−1
h Xβh

)−1
(A.74)

and

βh = V βh

(
V −1
βh
β
h0

+X ′βhΣ
−1
h Zβh

)
. (A.75)

• λ|W ,DT and W |λ,Jy,DT :

We follow Albert and Chib (1993) and to simplify the computations introduce the

auxiliary latent state variable Wt, t = 1, ..., T . We proceed by first rewriting the

stochastic process of the jump intensity in (A.4) as

Jyt+1 =

1 if Wt+1 > 0

0 if Wt+1 ≤ 0
(A.76)

where

Wt+1 = λ′XJ
t+1 + εWt+1, εWt+1 ∼ N (0, 1) (A.77)

or, more compactly,

W = XJλ+ εW , εW ∼ N (0, IT ) (A.78)
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where

XJ =


XJ ′

1
...

XJ ′
T

 , W =


W1

...

WT

 . (A.79)

The posterior of λ is readily available and is given by

λ|W ,DT ∼ N
(
µλ,V λ

)
, (A.80)

where

V λ =
[
V −1
λ +XJ ′XJ

]−1
, (A.81)

and

µλ = V λ

[
V −1
λ µλ +XJ ′Z

]
. (A.82)

Turning to the sequence of latent variables {Wt}Tt=1, we have

Wt|λ, Jyt,DT ∼

T N (λ′XJ
t , 1, 0,∞) if Jyt = 1

T N (λ′XJ
t , 1,−∞, 0) if Jyt = 0

(A.83)

where T N (µ, σ2, lb, ub) denotes a truncated normal distribution with mean µ, variance

σ2, and lower and upper bound lb, ub.

• σ2
ξ |ξy,DT :

The posterior distribution for σ2
ξ is readily available and is given by

σ2
ξ

∣∣ ξy,DT ∼ IG (νξ +
T

2
, Sξ

)
(A.84)

where

Sξ = Sξ +
1

2

T∑
t=1

ξ2
yt. (A.85)
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• β|µy,hy,Jy, ξy,DT :

Start by rewriting (A.1) as follows:

y∗∗ = Xβ + ε ε ∼ N (0,Σy), (A.86)

where

y∗∗ =


y1 − µy1 − Jy1ξy1

...

yT − µyT − JyT ξyT

 , X =


X ′1

...

X ′T

 . (A.87)

Next, combine (A.86) with the prior distribution for β in (A.12) to obtain:

β|µy,hy,Jy, ξy,DT ∼ N (β,V β), (A.88)

where

V β =
[
V −1
β +X ′Σ−1

y X
]−1

, (A.89)

and

β = V β

[
V −1
β β0

+X ′Σ−1
y y

∗∗
]
. (A.90)
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Appendix B MCMC Convergence and Efficiency

In this Appendix, we discuss the convergence properties of our MCMC algorithm for both the

mean-reverting, stochastic volatility model with jumps described in Section 3.2 and the joint

return-cash flow model described in Section 5.1. All results are based on samples of 2,000

retained draws, obtained by sampling a total of 101,000 draws, discarding the first 1,000

draws, and retaining every 20th draw of the post-burn samples.

Table B.1 and Table B.2 report summary statistics of inefficiency factors (IF) for the

posterior estimates of all key parameters of the cash flow and return-cash flow models,

respectively. Generally speaking, values of the IFs below 20 are taken as indication that the

chain has satisfactory mixing properties. As is clear from the entries in both tables, our

algorithm shows excellent mixing properties.
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PANEL A: DIVIDENDS

IF 4% IF 8% IF 15%

µdt 0.888 0.747 0.714

φµ 3.681 3.488 3.413

σ2
µ 7.054 6.337 6.454

µh 0.766 0.554 0.369

φh 0.650 0.439 0.333

σ2
h 0.741 0.645 0.521

σ2
ξ 3.218 3.222 3.797

λ1 0.857 0.897 0.998

λ2 1.284 1.433 1.859

PANEL B: DIVIDENDS (from 1927)

IF 4% IF 8% IF 15%

µdt 1.447 1.614 1.921

φµ 3.041 3.270 3.174

σ2
µ 6.944 7.504 9.093

µh 0.840 0.797 0.853

φh 0.741 0.612 0.409

σ2
h 0.616 0.474 0.336

σ2
ξ 1.918 1.913 1.770

λ1 1.712 1.612 1.198

λ2 2.667 2.509 2.087

Table B.1: Inefficiency factors of the model. This table reports the inefficiency factors
for the key parameters of the mean-reverting, stochastic volatility model with jumps described in
Section 3.2. Panel A reports results for the model using the daily dividend growth series starting
in 1973, while Panel B shows estimates using the daily dividend growth series and starting in 1927.
For each individual parameter, the inefficiency factor is estimated as 1 + 2

∑∞
k=1 ρk where ρk is

the kth-order autocorrelation of the chain of retained draws. The estimates use the Newey-West
kernel and a bandwidth of 4%, 8%, or 15% of the sample of retained draws. All results are based
on a sample of 2,000 retained draws, obtained by sampling a total of 101,000 draws, discarding
the first 1,000, and retaining every 20th draw of the post-burn sample.
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Joint returns-cash flow model

IF 4% IF 8% IF 15%

β1 0.748 0.490 0.404

β2 1.321 1.289 1.340

β3 0.985 1.075 1.076

β4 0.741 0.580 0.485

µr 0.985 0.849 0.660

φµr 1.285 0.969 0.730

µhr 4.367 4.195 2.582

φhr 1.162 1.242 1.217

γ1 1.603 1.353 0.473

γ2 3.454 3.215 2.010

γ3 14.260 13.886 11.485

λr1 3.628 3.329 2.172

λr2 1.291 1.191 1.291

λr3 1.482 1.341 1.358

σµ 7.653 8.299 8.975

σh 1.092 1.076 0.840

σξ 5.288 5.189 3.823

Table B.2: Inefficiency factors of the joint return-cash flow model. This table reports
the inefficiency factors for the key parameters of the joint return-cash flow model in Section 5.1.
For each individual parameter, the inefficiency factor is estimated as 1 + 2

∑∞
k=1 ρk where ρk is

the kth-order autocorrelation of the chain of retained draws. The estimates use the Newey-West
kernel and a bandwidth of 4%, 8%, or 15% of the sample of retained draws. All results are based
on a sample of 2,000 retained draws, obtained by sampling a total of 101,000 draws, discarding
the first 1,000, and retaining every 20th draw of the post-burn sample. Data: 1973-2016.
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