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0. Prolog

We all know that one should not use fractional Brownian
motion in finance.
It is strictly forbidden.

But we also know that boys like to do forbidden things ...

Esko Valkeila ∼ 2010;
before starting a talk on fractional Brownian motion in finance
...



The background for Esko’ statement was the following:

Recall the Samuelson model ∼ 1970 for stock price S(t) at time t:

dS(t) = bS(t)dt + σS(t)dB(t); S(0) > 0(1.1)

where B(t) = B(t, ω); t ≥ 0, ω ∈ Ω is Brownian motion and the
equation is interpreted as an Ito stochastic differential equation,.
Here b and σ 6= 0 are constants.

It soon became clear that this model was not perfect, and people
were looking for improvements. About 20 years later came the
extension to the fractional Brownian motion model:

dS(t) = bS(t)dt + σS(t)dBH(t); S(0) > 0(1.2)

where BH(t) is the fractional Brownian motion with Hurst
coefficent H ∈ (0, 1).

( Note that B
1
2 (t) = B(t).)



The problem now is that if H 6= 1
2 this stochastic differential

equation can be defined in several different ways, mathematically.
The two most important of these are:

1. The forward (ω-wise) integral definition

2. The Wick-Ito-Skorohod definition

In the classical Brownain motion case (H = 1
2 ) the two definitions

give the same result.



The same problem follows us if we proceed to define the wealth
V(t) generated by a self-financing portfolio ϕ(t) by

dV (t) = ϕ(t)dS(t).(1.3)

Then we have

1. The forward integral interpretation gives markets with
arbitrage

2. The Wick-Ito-Skorohod interpretation leads to a mathematical
finance market model without arbitrage, but with challenges
when it comes to financial interpretation.

See
Hu & Ø. (2003): ”Fractional white noise calculus and applications
to finance” [6],

and the critique in

Björk & Hult (2005): ”A note on Wick products and the fractional
Black-Scholes model” [3].



It is on this background that many researchers (except some bold
mathematicians like Esko Valkeila) considered fractional Brownian
motion as off limit in finance.

Before proceeding, I want to point out that although researchers in
finance and mathematicians have a lot to talk about, there is (in
my experience) a cultural difference:

I Researchers in finance remain faithful to the established
theories and do not easily get diverted into model experiments,
while

I mathematicians like to play around with models, just to see
what happens.

It is with this understanding that I, being a mathematician, present
the following, which I hope will be received with goodwill (and
forgiven, if necessary)...



My question is:

Can fractional stochastic calculus still be of interest in finance?

After the basic model introduced by Samuelson, there has been a
lot of modifications, for example by replacing the constant
volatility σ by a stochastic volatility, e.g. including a fractional
Brownian motion component into σ.

In the following I will present a completely different fractional
calculus approach to mathematical finance, namely through fractal
time differentiation.



This approach is based on the fact that In many biological or
transport systems the relation between the input flow u(t) and the
output reaction/growth rate v(t) are of the form

v(t) = Dαu(t)(1.4)

where Dα = dα

dtα denotes the (Abel-Caputo) fractional derivative
operator of order α ∈ (0, 2). (α = 1 corresponds to the classical
derivative: D1 = d

dt )

If we adopt this point of view for the relation between the given
price and its rate of change in the stock market (which can be
regarded as a complicated mixture of a biological and a transport
system), we get the equation

DαS(t) = bS(t) + σS(t)”noise”(1.5)

where, as before, we represent ”noise” by ”white noise”, i.e. the
time-derivative of Brownian motion:

”noise” = W (t) := d
dtB(t).(1.6)

Can we make rigorous mathematical sense of equations
(1.5)-(1.6)?



1. Introduction

The fractional derivative of a function was first introduced by Niels
Henrik Abel in 1823 [1], in connection with his solution of the
tautochrone (isochrone) problem in mechanics.



The Mittag-Leffler function Eα(z) was introduced by Gösta
Magnus Mittag-Leffler in 1903 [12]. He showed that this function
has a connection to the fractional derivative introduced by Abel.



The fractional derivative turns out to be useful in many situations,
e.g. in the study of waves, including ocean waves around an oil
platform in the North Sea, and ultrasound in bodies. In particular,
the fractional heat equation may be used to describe anomalous
heat diffusion, and it is related to power law attenuation.
Many applications of fractional derivatives can be found in the
book by S. Holm [7].



In this paper we study the following fractional stochastic
differential equation

dαX (t) = bX (t)dt + σX (t)dB(t); t ≥ 0

X (0) = x > 0(2.1)

where b, σ 6= 0 are given constants in R. We interpret the equation
(2.1) as the following (S)∗-valued differential equation, which
could be called the fractional geometric Brownian motion equation

dα

dtα
X (t) = bX (t) + σX (t) �W (t)dt

X (0) = x(2.2)

where

(2.3) W (t) = W (t, ω) =
d

dt
B(t)

is white noise, and

B(t) = B(t, ω); t ≥ 0, ω ∈ Ω

is Brownian motion with probability law P.



- In the classical case, when α = 1, we have dα

dtα = d
dt and equation

(2.1) becomes the classical stochastic differential equation of Ito
type, called the geometric Brownian motion equation:

dX (t) = bX (t)dt + σX (t)dB(t); t ≥ 0

X (0) = x > 0(2.4)

which, by Ito’s formula, has the solution

X (t) = x exp((b − 1
2σ

2)t + σB(t)); t > 0

(geometric Brownian motion)(2.5)

Recall that this solution has the expected value

E[X (t)] = xebt .(2.6)



- When α > 1 equation (2.1) models superdiffusion or enhanced
diffusion, where the particles spread faster than in regular diffusion.
This occurs for example in some biological systems.

- When α < 1 the equation models subdiffusion, in which travel
times of the particles are longer than in the standard case. Such
situation may occur in transport systems.



We now ask the following:

Problem
Does the fractional geometric Brownian motion (2.2) give a good
model in finance, for example for asset prices, for any value of
α 6= 1?

We consider the equation (2.2) in the sense of distributions, and
we show that the unique (S)∗- valued solution X (t) (where (S)∗ is
the Hida space of stochastic distributions.) coincides with the
solution of a stochastic linear Volterra equation. Then we discuss
the properties of the solution and compare them for different
values of α.



2. The space of tempered distributions

For the convenience of the reader we recall some of the basic
properties of the Schwartz space S of rapidly decreasing smooth
functions and its dual, the space S ′ of tempered distributions.

Let S = S(R) be the space of rapidly decreasing smooth real
functions f on R equipped with the family of seminorms:

‖f ‖k,β := sup
x∈R

{
(1 + |x |k)|∂βf (x)|

}
<∞,

where k = 0, 1, ..., β = (β1, ..., βn) is a multi-index with
βj = 0, 1, ... (j = 1, ..., n) and

∂βf (x) :=
∂|β|

∂xβ1 · · · ∂xβn
f (x)

for |β| = β1 + ...+ βn.



Then S = S(R) is a Fréchet space.
Let S ′ = S ′(R) be its dual, called the space of tempered
distributions. Let B denote the family of all Borel subsets of S ′(R)
equipped with the weak* topology. If Φ ∈ S ′ and f ∈ S we let

(3.1) Φ(f ) or 〈Φ, f 〉

denote the action of Φ on f .



Example

I (Evaluations) For y ∈ R define the function δy on S(R) by
δy (φ) = φ(y). Then δy is a tempered distribution.

I (Derivatives) Consider the function D, defined for φ ∈ S(R)
by D[φ] = φ′(y). Then D is a tempered distribution.

I (Distributional derivative)
Let T be a tempered distribution, i.e. T ∈ S ′(R). We define
the distributional derivative T

′
of T by

T
′
[φ] = −T [φ

′
]; φ ∈ S.

Then T
′

is again a tempered distribution.



3. The Mittag-Leffler functions

Definition
(The two-parameter Mittag-Leffler function) The Mittag-Leffler
function of two parameters α, β is denoted by Eα,β(z) and defined
by:

(4.1) Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)

where z , α, β ∈ C, Re(α) > 0 and Re(β) > 0, and Γ is the
Gamma function.



Definition
(The one-parameter Mittag-Leffler function) The Mittag-Leffler
function of one parameter α is denoted by Eα(z) and defined as;

(4.2) Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)

where z , α ∈ C, Re(α) > 0.

Remark
Note that Eα(z) = Eα,1(z) and that

E1(z) =
∞∑
k=0

zk

Γ(k + 1)
=
∞∑
k=0

zk

k!
= ez .(4.3)



4. The (Abel-)Caputo fractional derivative

In this section we present the definitions and some properties of
the Caputo derivatives.

Definition
The (Abel-)Caputo fractional derivative of order α > 0 of a
function f is denoted by Dαf (x) or dα

dxα f (x) and defined by

Dαf (x) : =

{
1

Γ(n−α)

∫ x
0

f (n)(u)du
(x−u)α+1−n ; n − 1 < α < n

dn

dxn f (x); α = n.
(5.1)

Here n is the smallest integer greater than or equal to α.
If f is not smooth these derivatives are interpreted in the sense of
distributions.



Example

If f (x) = x and α ∈ (0, 1) then

Dαf (x) =
x1−α

(1− α)Γ(1− α)
.(5.2)

In particular, choosing α = 1
2 we get

D
1
2 f (x) =

2
√
x√
π
.(5.3)



5. Laplace transform of Caputo derivatives

Recall that the Laplace transform L is defined by

(6.1) Lf (s) =

∫ ∞
0

e−st f (t)dt =: f̃ (s)

for all f such that the integral converges.
Some of the properties of the Laplace transform that we will need
are:

L[
∂α

∂tα
f (t)](s) = sα(Lf )(s)− sα−1f (0)(6.2)

L[Eα(btα)](s) =
sα−1

sα − b
(6.3)

L[tα−1Eα,α(btα)](s) =
1

sα − b
(6.4)



Recall that the convolution f ∗ g of two functions
f , g : [0,∞) 7→ R is defined by

(f ∗ g)(t) =

∫ t

0
f (t − r)g(r)dr ; t ≥ 0.(6.5)

The convolution rule for Laplace transform states that

L

(∫ t

0
f (t − r)g(r)dr

)
(s) = Lf (s)Lg(s),

or

(6.6)

∫ t

0
f (t − w)g(w)dw = L−1 (Lf (s)Lg(s)) (t).



6. White noise

Define Ω = S ′(R), equipped with the weak-star topology. This
space will be the base of our basic probability space, which we
explain in the following:

As events we will use the family F = B(S ′(R)) of Borel subsets of
S ′(R), and our probability measure P is defined by the following
result:



Theorem
(The Bochner–Minlos theorem)
There exists a unique probability measure P on B(S ′(R)) with the
following property:

E[e i〈·,φ〉] :=

∫
S′

e i〈ω,φ〉P(dω) = e−
1
2‖φ‖

2

; i =
√
−1

for all φ ∈ S(R), where ‖φ‖2 = ‖φ‖2
L2(R) and 〈ω, φ〉 = ω(φ) is

the action of ω ∈ S ′(R) on φ ∈ S(R) and E = EP denotes the
expectation with respect to P.

We call the triplet (S ′(R),B(S ′(R)),P) the white noise probability
space, and P is called the white noise probability measure.



It is not difficult to prove that if φ ∈ L2(R) and we choose
φk ∈ S(R) such that φk → φ in L2(R), then

〈ω, φ〉 := lim
k→∞
〈ω, φk〉 exists in L2(P)

and is independent of the choice of {φk}. In particular, if we define

B̄(t) := 〈ω, χ[0,t]〉; t ≥ 0,

then B̄(t, ω) has an t-continuous version denoted by B(t, ω),
which becomes a standard Brownian motion.



With this definition of Brownian motion it is natural to define the
Wiener–Itô integral of φ ∈ L2(R) by∫

R

φ(t)dB(t, ω) := 〈ω, φ〉; ω ∈ S ′(R).

We see that by using the Bochner–Minlos theorem we have
obtained an easy construction of Brownian motion . Moreover, we
get a representation of the space Ω as the Fréchet space S ′(Rd).
This is an advantage in many situations, for example in the
construction of the Hida-Malliavin derivative, which can be
regarded as a stochastic gradient on Ω.



Since B(t, ω) is t-continuous a.s., we can for a.a. ω ∈ Ω define its
derivatives with respect to t in the sense of distributions. Thus we
define the white noise W (t) = W (t, ω) by

(7.1) W (t) =
d

dt
B(t) in S ′ .

The definition (7.1) can also be interpreted as an element of the
Hida space (S)∗ of stochastic distributions, and in that setting it
has been proved (see Lindstrøm, Ø. , Ubøe [11] and Benth [2])
that the Ito- integral with respect to dB(t) can be expressed as∫ T

0
f (t, ω)dB(t) =

∫ T

0
f (t, ω) �W (t)dt,(7.2)

where � denotes the Wick product.



8. Relation to linear stochastic Volterra equations

We are now ready to prove the following result:

Theorem
The solution X (t) ∈ (S)∗ of the fractional geometric Brownian
motion equation

dαX (t) = bX (t)dt + σX (t)dB(t); t ≥ 0

X (0) = x > 0(8.1)

coincides with the solution X (t) of the following linear stochastic
Volterra equation:

X (t) = xEα,1 (btα) + σ

∫ t

0
(t − u)α−1Eα,α(b(t − u)α)X (u)dB(u).

(8.2)



Proof. a) Uniqueness.
We interpret the equation (8.1) as the (S)∗-valued differential
equation

dα

dtα
X (t) = bX (t) + σX (t) �W (t)dt

X (0) = x > 0.(8.3)

First, suppose that X (t) is a solution. We apply the Laplace
transform L to both sides of (8.3) and obtain (see (6.2)):



(8.4) sαX̃ (s)− sα−1X (0) = bX̃ (s) + σX̃ �W (s).

or,

(8.5) (sα − b) X̃ (s) = sα−1x + σX̃ �W (s).

Hence

X̃ (s) =
sα−1x

sα − b
+

σ

sα − b
X̃ �W (s)(8.6)



Applying the inverse Laplace operator L−1 to this equation we get

X (t) = L−1
( sα−1x

sα − b

)
(t) + L−1

(σX̃ �W (s)

sα − b

)
(t)

= xEα,1(btα) + L−1
(σX̃ �W (s)

sα − b

)
(t),(8.7)

where we recall that

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
(8.8)

is the Mittag-Leffler function.



It remains to find L−1
(
σX̃�W (s)
sα−b

)
(t)

By (6.4) we have

L−1

(
1

sα − b

)
(t) = tα−1Eα,α(btα)

=: Λ(t).(8.9)

In other words,

(8.10)
σ

sα − b
= σLΛ(s),



Combining with Lemma ?? we get

L−1

(
σ

sα − b
X̃ �W (s)

)
(t) = L−1

(
L (σΛ(s)) X̃ �W (s)

)
(t)

= σ

∫ t

0
Λ(t − u)X (u) �W (u)du.(8.11)

Substituting this into (8.7) leads to

X (t) = xEα,1 (btα) + σ

∫ t

0
Λ(t − u)X (u) �W (u)du

= xEα,1 (btα) + σ

∫ t

0
(t − u)α−1Eα,α(b(t − u)α)X (u)dB(u).

(8.12)



This proves uniqueness and also that the unique solution (if it
exists) is given by the above formula (8.2).

b) Next, define X (t) by (8.2). Then we can prove that X (t)
satisfies (8.1) by reversing the argument above. We skip the
details. �



Remark

I Note that (8.2) is a linear stochastic Volterra equation in the
unknown process X (t). In particular, this shows that, unless
α = 1, this model for asset prices has memory. This is an
interesting feature that is missing in the classical
Samuelson/Black-Scholes model.

I Deterministic Volterra equations (i.e. σ = 0) with
Mittag-Leffler functions as coefficients have been studied by
Kilbas et al [9].

I From (8.2) we get directly that

E[X (t)] = xebt ; t ≥ 0(8.13)

for all α.



I In the standard case when α = 1 the solution of the Volterra
equation (8.2) coincides with the classical geometric Brownian
motion (2.5). Indeed, using the Ito formula it is easy to verify
that

X (t) := x exp((b − 1
2σ

2)t + σB(t)); t ≥ 0.(8.14)

solves (8.2) when α = 1.

I It would be interesting to test this time-fractional
Black-Scholes model in specific cases, for different values of α.



9. Properties of the solution

There are many unanswered questions about this solution X (t).
Some immediate partial results are:

Theorem
(Computation of the solution)
Suppose α > 1.
Define
F (t) = xEα,1(btα) and K (v) = σvα−1Eα,α(bvα); v ≥ 0.
Put X (0)(t) = F (t) and define the processes X (n)(t) recursively as
follows:

X (n+1)(t) = F (t) +

∫ t

0
K (t − s)X (n)(s)dB(s); n = 0, 1, 2, ...

(9.1)

Then {X (n)}n=1,2,... converges in L2([0,T ]× Ω) to a process
Xα(t), which is the unique solution of (8.2).



Theorem
(Positivity)
Suppose α < 1.
Let Xα(t) be the solution of (8.2). Then, for a.a. ω, Xα(t)
converges uniformly in [0,T ] to

X1(t) = x exp((b − 1
2σ

2)t + σB(t))(9.2)

as α→ 1−.
In particular, Xα(t) > 0 a.s., for all α < 1 sufficiently close to 1.



10. A fractional financial market

Coming back to fractional modelling in finance, in view of the
general fractional relation (1.4) between input and output in
biological/transport systems, we may heuristically interpret the
fractional equation

DαX (t) = bX (t) + σX (t) �W (t)(10.1)

or, in differential form,

dαX (t) = bX (t)dt + σX (t)dB(t),(10.2)

as the relation between the input

I bX (t)dt + σX (t)dB(t)
and the corresponding growth rate (output)

I Y (t) = dαX (t).



Now let us apply this to a financial market, consisting of two assets

S(t) = (S0(t), S1(t)),

where S0 denotes a risk-free asset, with unit price

S0(t) = 1 for all t ≥ 0,(10.3)

and S1 denotes a risky asset (e.g. stock) with the price dynamics

dαS1(t) = bS1(t)dt + σS1(t)dB(t); S1(0) > 0.(10.4)

Let
ϕ(t) = (ϕ0(t), ϕ1(t))

be a portfolio in this market, giving the number of units held at
time t in the assets S0 and S1, respectively.



The value at time t of this portfolio is defined by

V (t) = ϕ0(t)S0(t) + ϕ1(t)S1(t) = ϕ(t)S(t) (inner product ).

In the classical case, with α = 1, we say that ϕ is self-financing if

dV (t) = ϕ(t)dS(t)

(Intuitively, the infinitesimal change in the value V comes from the
infinitesimal change in S only.)

Similarly, in the fractional market, we say that the portfolio is
self-financing if we have a corresponding relation between the
growth rate dαV (t) and the growth rate dαS(t), i.e.

dαV (t) = ϕ(t)dαS(t)

= ϕ0(t)dαS0(t) + ϕ1(t)dαS1(t)

= ϕ1(t)dαS1(t)

= ϕ1(t)[bS1(t)dt + σS1(t)dB(t)]



This gives, after some calculations, the following formula for the
value process:

V (t) = V (0) + Γ(α)

∫ t

0
ϕ1(s)S1(s)(t − s)α−1[bds + σdB(s)].

If we, as is customary, define π(t) to be the fraction of the value
invested in the risky asset, then we have

π(t)V (t) = ϕ1(t)S1(t)

and the equation above gets the form

V (t) = V (0) + Γ(α)

∫ t

0
π(s)V (s)(t − s)α−1[bds + σdB(s)].,

(10.5)

which is, for given portfolio π, a Volterra equation in V .



The above market leads to many interesting questions that I would
have liked to discuss with Tomas. For example:

Question 1: Does this market have an arbitrage?

Question 2: Is the market complete?

We see that last question is equivalent to the question of the
existence of a solution of a backward stochastic fractional Volterra
integral equation (BSVIE), namely the above equation (10.5)
combined with a given required terminal value V (T ).



Those were the days,Tomas!

On our way to Guanajuato, shortly before the Montezuma revenge hit us!

Photo: Eva Øksendal Mexico City 18 March 1998
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