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The basic problem

Consider financial market with discounted prices given by

bank account 1 and stocks S , where S is Rd -valued

semimartingale.

Call G (ϑ) =
∫
ϑ dS the gains from trade for self-financing

strategy with initial capital 0 and using ϑ to trade in S .

MVPS problem is to

maximise E [GT (ϑ)]− ξVar[GT (ϑ)] over all ϑ ∈ Θ

for some risk-aversion parameter ξ > 0.

We want to find an optimal ϑ∗ via dynamic programming.
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Abstract setup

X = {Xϑ : ϑ ∈ Θ} family of processes on {0, 1, . . . ,T}.

Θ is family of predictable processes (controls) ϑ.

Controlled: Xϑ|J0,kK only depends on ϑ|K0,kK for each k .

Goal is to maximise

j(ϑ) := E

[ T∑
k=1

f
(
k ,Xϑ|J0,kK, ϑ|K0,kK,L(Xϑ|J0,kK, ϑ|K0,kK)

)
+ g

(
Xϑ|J0,T K,L(Xϑ|J0,T K)

)]
over all ϑ ∈ Θ, with suitable functions f (running reward)

and g (final reward).
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Examples

Example 1. If f and g do not depend on the law L, this is a

classical stochastic control problem.

Example 2. If f ≡ 0 and g is affine–quadratic in Xϑ
T and in

E [Xϑ
T ] =

∫
zL(Xϑ

T )(dz), we can get as a special case the

MVPS problem.

Example 3. If f has the form

f
(
k ,Xϑ|J0,kK, ϑk ,L(Xϑ|J0,kK, ϑk)

)
= −`(ϑk∆Xϑ

k −E [ϑk∆Xϑ
k ])

for a loss function `, we want to avoid strategies whose

instantaneous gains fluctuate too much.
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Dynamic programming

Define Θ(k , ϑ) := {ϑ′ ∈ Θ : ϑ′ = ϑ on K0, kK,

j(k , ϑ′) := E

[ T∑
i=k+1

f
(
i ,Xϑ′ |J0,iK, ϑ

′|K0,iK,L(Xϑ′ |J0,iK, ϑ
′|K0,iK)

)
+ g

(
Xϑ′ |J0,T K,L(Xϑ′ |J0,T K)

)]
,

v(k , ϑ) := sup{j(k, ϑ′) : ϑ′ ∈ Θ(k, ϑ)}.

Then

v(T , ϑ) = j(T , ϑ) = E
[
g
(
Xϑ|J0,T K,L(Xϑ|J0,T K)

)]
,

v(0, ϑ) = sup{j(ϑ′) : ϑ′ ∈ Θ} =: v(0).
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The DPP

Theorem: Assume that Θ(`, ϑ) ⊆ Θ(k, ϑ) for ` ≥ k . Then:

1) For k = 0, 1, . . . ,T − 1 and any ϑ ∈ Θ,

v(k − 1, ϑ)

= sup
ϑ′∈Θ(k−1,ϑ)

{
v(k , ϑ′)

+ E
[
f
(
k ,Xϑ′ |J0,kK, ϑ

′|K0,kK,L(Xϑ′ |J0,kK, ϑ
′|K0,kK)

)]}
.

2) In consequence, v(k − 1, ϑ) only depends on ϑ|K0,k−1K, and

the maximisation above only goes over those random variables

δk which make up the k-th time coordinate of ϑ′.
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Comments

The dynamic programming principle here is for a

deterministic function, but we still optimise over

stochastic quantities.

For finite discrete time, DPP leads to backward recursion

for value function, with each recursion step a single-step

problem where we optimise over only one variable.

Because our criterion depends both on the state Xϑ and on

its law L(Xϑ), it includes both

expectations of nonlinear functions of the state (as in

classical stochastic control), and

nonlinear functions of expectations of the state (as in

e.g. MVPS).
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A linear–quadratic example

Suppose running reward f ≡ 0 and final reward is

g(x , µ) = aT x + bT x
2 + cT

(∫
z µ(dz)

)2

+ dT ,

with deterministic coefficients aT , bT , cT , dT .

So we want to maximise

aTE [Xϑ
T ] + bTE [(Xϑ

T )2] + cT (E [Xϑ
T ])2 + dT .

If Xϑ =
∫
ϑ dS = G (ϑ) for some fixed process S , we obtain

the MVPS problem for

aT = 1, bT = −ξ, cT = ξ, dT = 0.
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LQ control and DPP

In the setting with f ≡ 0, the DPP takes the form

v(k − 1, ϑ) = sup
{
v
(
k , ϑ(k , δk)

)
: δk ∈ Θ[k](ϑ)

}
, (1)

where ϑ(k, δk) = (ϑ1, . . . , ϑk−1, δk , ϑk+1, . . . , ϑT ) and

Θ[k](ϑ) := {ϑ′k : ϑ′ ∈ Θ(k − 1, ϑ)}.

We also start the recursion with

v(T , ϑ) = E
[
g
(
Xϑ
T ,L(Xϑ

T )
)]

= aTE [Xϑ
T ] + bTE [(Xϑ

T )2] + cT (E [Xϑ
T ])2 + dT .

Now we study this for the case Xϑ =
∫
ϑ dS = G (ϑ) with a

fixed process S . So dynamics of Xϑ is linear.
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Solving the LQ problem via DPP

To find optimal strategy ϑ∗, we solve each subproblem (1)

at time k to find an optimal δ∗k there. Then ϑ∗ = (δ∗1 , . . . , δ
∗
T ).

How do we solve (1)?

For k = T , criterion v(T , ϑ) depends on Xϑ
T and E [Xϑ

T ] in

affine–quadratic way.

We need to optimise over the last component δT of ϑ.

Linear state dynamics gives Xϑ
T = Xϑ

T−1 + δT∆ST .

So criterion for δT is affine–quadratic, with coefficients

depending on Xϑ
T−1 and E [Xϑ

T−1] in affine–quadratic way.

FOC for optimal δ∗T will be linear, again with coefficients

depending on Xϑ
T−1 and E [Xϑ

T−1] in affine–quadratic way.

So we expect that optimal δ∗T will be linear, depending on

Xϑ
T−1 and E [Xϑ

T−1] in affine–quadratic way.
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Solving the LQ problem via DPP (cont’d)

Plugging δ∗T back into v(T − 1, ϑ) = v(T , ϑ(T , δ∗T )), we

expect again affine–quadratic function of Xϑ
T−1 and E [Xϑ

T−1].

This should then iterate . . .

So we guess that we should obtain

v(k, ϑ) = akE [Xϑ
k ] + bkE [(Xϑ

k )2] + ck(E [Xϑ
k ])2 + dk ,

with deterministic coefficients ak , bk , ck , dk .

However, the correct form is actually

v(k , ϑ) = akE [ZkX
ϑ
k ] + bkE [Zk(Xϑ

k )2] + ck(E [ZkX
ϑ
k ])2 + dk ,

with deterministic coefficients ak , bk , ck , dk and with Zk ≥ 0,

Fk-measurable and bounded.
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Solving the LQ problem via DPP (cont’d)

Starting with the ansatz

v(k , ϑ) = akE [ZkX
ϑ
k ] + bkE [Zk(Xϑ

k )2] + ck(E [ZkX
ϑ
k ])2 + dk ,

(2)

with ak , bk , ck , dk deterministic and Zk ≥ 0, Fk -measurable

and bounded, one can now

iteratively work out the optimal δ∗k via the FOC,

express δ∗k in terms of ak , bk , ck , dk and Zk as well as Xϑ
k−1,

check recursively that (2) holds, and

also obtain a recursion for the coefficients a, b, c , d and Z .
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Technical issues

Where do we encounter difficulties with the above procedure?

One needs to check in the recursion for the coefficients that

the properties of Zk are inherited by Zk−1.

One needs to check that everything that comes up in formulas

is well defined.

One needs to check that the candidate δ∗k obtained by solving

the FOC is sufficiently integrable, so that one can later

deduce that ϑ∗ := (δ∗1 , . . . , δ
∗
T ) is in the correct space Θ.
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Assumptions

Which assumptions do we need?

1) S is square-integrable and satisfies structure condition SC,

meaning that A� 〈M〉, where

A :=
∑

E [∆Sk |Fk−1], 〈M〉 :=
∑

Var[∆Sk |Fk−1].

2) The closure in L2(P) of the space

GT (Θ) :=

{
GT (ϑ) :=

T∑
j=1

ϑj∆Sj : ϑ ∈ Θ

}

does not contain the constant payoff 1.

3) Θ is such that Θ(`, ϑ) ⊆ Θ(k , ϑ) for ` ≥ k .

Note that both 1) and 2) are absence-of-arbitrage type conditions.
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Example spaces

Possible choices for the space Θ of integrands/controls ϑ:

We always assume that ϑ is predictable.

Notation: Gk(ϑ) :=
∑k

j=1 ϑj∆Sj for k = 0, 1, . . . ,T .

Can consider

ΘS := {all ϑ with Gk(ϑ) ∈ L2(P) for all k} [−→ Schweizer]

ΘCK := {all ϑ for which there is a sequence (ϑn)n∈N of

elementary strategies with Gk(ϑn)→ Gk(ϑ) in L0 for all k

and Gk(ϑn)→ Gk(ϑ) in L2(P)} [−→ Černý/Kallsen]

ΘMN := {all ϑ with GT (ϑ) ∈ L2(P)} [−→ Melnikov/Nechaev]
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Optimal strategy

Theorem: Under assumptions 1)–3), the optimal strategy

for the MVPS problem is recursively given by

ϑ∗k = − E [Zk∆Sk |Fk−1]

E [Zk(∆Sk)2|Fk−1]

(
Gk−1(ϑ∗)− 1

2ξE [Z0]

)
.

For the case Θ = ΘS, this needs extra assumptions to guarantee

that ϑ∗ is in ΘS:

A sufficient condition is that Z is uniformly bounded from below. But

this is rather implicit.

Z is uniformly bounded from below if there exists an equivalent martingale

measure for S which satisfies the reverse Hölder inequality R2(P).

There exists an equivalent martingale measure for S which satisfies the

reverse Hölder inequality R2(P) if the mean–variance tradeoff process of

S is bounded and we have λk∆Mk < 1 for all k.
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Executive summary

Main message:

The mean–variance portfolio optimisation problem can be

solved with the help of dynamic programming methods, in

full generality, in finite discrete time.
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Thank you for your attention
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