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The basic problem

o Consider financial market with discounted prices given by
bank account 1 and stocks S, where S is R%-valued

semimartingale.

e Call G(¥) = [¥dS the gains from trade for self-financing
strategy with initial capital 0 and using ¥ to trade in S.

e MVPS problem is to
maximise E[G7(1¥)] — £Var[GT ()] over all ¥ € ©

for some risk-aversion parameter £ > 0.

@ We want to find an optimal 9* via dynamic programming.
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Abstract setup

o X ={X":9 c O} family of processes on {0,1,..., T}.
e O is family of predictable processes (controls) 9.
o Controlled: Xﬂ][[(]’kﬂ only depends on 9J|jq 4 for each k.

@ Goal is to maximise

)
J(9) = E{Z (ke X7 0.1,
k=1

Jo.1> £(X? 10,475 o.47))

=+ g(X19|[[0,T}]7 [f(XﬁH[o,T]}))

over all ¥ € ©, with suitable functions f (running reward)

and g (final reward).
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o Example 1. If f and g do not depend on the law L, this is a

classical stochastic control problem.

o Example 2. If f =0 and g is affine—quadratic in X;’i and in
E[X?] = [ zL£(X¥)(dz), we can get as a special case the
MVPS problem.

o Example 3. If f has the form
F (K, X jo,k1> Pier (X7 o, 96)) = —L(DkAXE — E[0,AX{])
for a loss function ¢, we want to avoid strategies whose

instantaneous gains fluctuate too much.

4/19 Martin Schweizer DP for MVPS 4/19



Dynamic programming

o Define ©(k, ) :={¢ € ©: ¢ =9 on |0, k],
T
k0= E| 3 X7 g0 £ 101 o)
i=k+1
+ (X" .17 £LX 1o.77)) |
v(k,9) := sup{j(k,?9") : ¥ € O(k,9)}.
@ Then

v(T,9) = j(T,9) = E[g(X|jo,77, £L(X"|jo,77)) ]

v(0,9) = sup{j(¥') : ¥ € ©} =: v(0).
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The DPP

@ Theorem: Assume that ©(¢,9) C ©(k, ) for £ > k. Then:
1) For k=0,1,..., T —1and any ¥ € ©,
v(k —1,9)

= sup {v(k¥)
€0 (k—1,9)

+ E|[f(k, Xﬂl\[[o,k]] ;9 o k] ﬁ(XﬂlH[o,k]], VNjo.k7))] }-

2) In consequence, v(k —1,4) only depends on ¥J{jg x_1], and
the maximisation above only goes over those random variables

dx which make up the k-th time coordinate of ©'.
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Comments

@ The dynamic programming principle here is for a
deterministic function, but we still optimise over

stochastic quantities.

o For finite discrete time, DPP leads to backward recursion
for value function, with each recursion step a single-step
problem where we optimise over only one variable.

@ Because our criterion depends both on the state X and on
its law £(X?), it includes both

o expectations of nonlinear functions of the state (as in
classical stochastic control), and

e nonlinear functions of expectations of the state (as in
e.g. MVPS).
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A linear—quadratic example

@ Suppose running reward f = 0 and final reward is

2
g(x, ;) = arx + brx* + cT</Zu(dz)> + dr,

with deterministic coefficients a1, b1, c1, dT.

@ So we want to maximise
aTE[XY] + brE[(XY)?] + cr(E[XY])? + dT.

o If XV = [9dS = G(v) for some fixed process S, we obtain
the MVPS problem for

aT:]-u bT:_gv CT:§7 dTZO
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LQ control and DPP

@ In the setting with f = 0, the DPP takes the form
v(k —1,9) = sup {v(k, 9(k,0x)) : 6 € OIKI(90)}, (1)
where U(k,0x) = (Y1, ..., 91,0k, Vk4+1,-..,97) and
o) .= {9, - ¥ € O(k — 1,9)}.
@ We also start the recursion with

v(T,9) = E[g(X¥, L(X}))]
= arE[X7] + brE[(X})?] + cr(E[XF]) + dr.

o Now we study this for the case XV = [9dS = G(9J) with a

fixed process S. So dynamics of X” is linear.
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Solving the LQ problem via DPP

e To find optimal strategy ¥, we solve each subproblem (1)
at time k to find an optimal ¢, there. Then ¥* = (67,...,07%).

@ How do we solve (1)?

o For k=T, criterion v(T,9) depends on X% and E[XY] in
affine—quadratic way.
e We need to optimise over the last component 61 of 9.

o Linear state dynamics gives X? = X¥_| + 67 AST.

e So criterion for 1 is affine—quadratic, with coefficients
depending on X¥_; and E[X¥_,] in affine—quadratic way.

e FOC for optimal §% will be linear, again with coefficients
depending on X¥ | and E[X¥_,] in affine—quadratic way.

o So we expect that optimal ¢% will be linear, depending on

X2 | and E[XZ_,] in affine—quadratic way.
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Solving the LQ problem via DPP (cont'd)

o Plugging ¢% back into v(T — 1,9) = v(T,9(T,d%)), we
expect again affine—quadratic function of X2 _; and E[XZ_|].
o This should then iterate ...

@ So we guess that we should obtain
v(k,9) = akEIX{] + b EI(X{)?] + ck(EIX{D)? + di,

with deterministic coefficients ay, by, ck, dk.

@ However, the correct form is actually
v(k, V) = akE[ZkX] + beE[Zk(X{)?] + ck(E[ZkX{])? + d,

with deterministic coefficients ay, by, ¢k, dx and with Z, > 0,

Fir-measurable and bounded.
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Solving the LQ problem via DPP (cont'd)

@ Starting with the ansatz

v(k,9) = akE[ZkX{] + bkE[Zk(X{)] + ck(E[ZkXP])? + dk,
(2)
with ay, by, ¢k, dx deterministic and Z, > 0, Fx-measurable
and bounded, one can now
e iteratively work out the optimal §; via the FOC,
o express §; in terms of ay, by, ¢k, dx and Zj as well as X,f_l,

o check recursively that (2) holds, and
e also obtain a recursion for the coefficients a, b, c,d and Z.
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Technical issues

@ Where do we encounter difficulties with the above procedure?

@ One needs to check in the recursion for the coefficients that
the properties of Z; are inherited by Z_;.
@ One needs to check that everything that comes up in formulas

is well defined.

@ One needs to check that the candidate d; obtained by solving
the FOC is sufficiently integrable, so that one can later
deduce that ¥* := (67, ...,0%) is in the correct space ©.
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@ Which assumptions do we need?

1) S is square-integrable and satisfies structure condition SC,
meaning that A < (M), where

A= Z E[ASK|Fi1], (M) := ZVar[A$k|}'k_1].

2) The closure in L2(P) of the space
.
Gr(0) = {Gr(ﬁ) = WiAS V€ e}
=1

does not contain the constant payoff 1.
3) © is such that ©(¢,9) C ©(k, ) for £ > k.

@ Note that both 1) and 2) are absence-of-arbitrage type conditions.
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Example spaces

@ Possible choices for the space © of integrands/controls 9:

o We always assume that 9 is predictable.
o Notation: Gi(9) := Zf:l 9;AS; for k=0,1,..., T.

o Can consider

Og = {aII ¥ with Gk(ﬁ) S Lz(P) for all k} [—> Schweizer]

Ock = {all ¥ for which there is a sequence (¥")en of
elementary strategies with Gy (9") — Gx (1) in L for all k
and Gk(ﬁ") — Gk(ﬂ) in L2(P)} [—> éern)?/Kallsen]

OnnN = {aII ¥ with GT(ﬁ) S L2(P)} [—> Melnikov/Nechaev]
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Optimal strategy

@ Theorem: Under assumptions 1)-3), the optimal strategy

for the MVPS problem is recursively given by

o E[ZcAS|Fi] a1
Y= T EZ (A5 I Fe] (G“w ) 2§E[Zo]>'

@ For the case © = Og, this needs extra assumptions to guarantee
that ¥* is in Og:

@ A sufficient condition is that Z is uniformly bounded from below. But
this is rather implicit.

@ Z is uniformly bounded from below if there exists an equivalent martingale
measure for S which satisfies the reverse Holder inequality R»(P).

@ There exists an equivalent martingale measure for S which satisfies the
reverse Holder inequality Ry(P) if the mean—variance tradeoff process of
S is bounded and we have A\ AM, < 1 for all k.
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Executive summary

Main message:

The mean—variance portfolio optimisation problem can be
solved with the help of dynamic programming methods, in

full generality, in finite discrete time.
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Thank you for your attention
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