Stripping the Discount Curve
A Robust Machine Learning Approach

Damir Filipović1 Markus Pelger2 Ye Ye2

Conference in memory of Tomas Björk
Stockholm, 10 October 2022

1EPFL and Swiss Finance Institute
2Stanford University
This talk is based on

- Work of Tomas and many other researchers who have been inspired by him
Outline

1 Past to Present: 1990s – today

2 Kernel Ridge (KR) Method

3 Empirical results
Outline

1. Past to Present: 1990s – today
3. Empirical results
Past: the roaring 1990s

- 1990s: from PDEs to Stochastic PDEs: HJM–Musiela equation

\[
df_t(x) = \left(\frac{\partial}{\partial x} f_t(x) + \sigma(f_t, x, \omega) \int_0^x \sigma(f_t, \xi, \omega) \, d\xi \right) \, dt + \sigma(f_t, x, \omega) \, dW_t
\]

- Heath, Jarrow, and Morton (HJM): every arbitrage-free interest rate model is of this form
- Da Prato and Zabczyk et al.: analyze (1) as stochastic equation in Hilbert space \(\mathcal{H} \)
- Parametric families \(\mathcal{M} \) of forward curves: e.g., Nelson–Siegel and Svensson (NSS)

\[
f_{NSS}(x) = \gamma_0 + \gamma_1 e^{-\frac{x}{\tau_1}} + \gamma_2 \frac{x}{\tau_1} e^{-\frac{x}{\tau_1}} + \gamma_3 \frac{x}{\tau_2} e^{-\frac{x}{\tau_2}}, \quad \gamma_0, \ldots, \tau_2 \in \mathbb{R}
\]

to represent and estimate forward curves from data
Consistency problems

1999: Tomas and B. Christensen formulate consistency problems:

- Problem I. Given an interest rate model (1) and a family of forward curves \(M \), what are necessary and sufficient conditions for invariance (i.e. consistency)?
- Problem II. Take as given a specific family \(M \) of forward curves. Does there exist any interest rate model (1) that is consistent with \(M \)?
- Problem III. Take as given a specific interest rate model (1). Does there exist a finitely parametrized family of forward curves \(M \) that is consistent with (1); in other words, does there exist a finite dimensional factor realization?

Set the ground for many (and my own PhD) research projects
State space \mathcal{H} for HJMM equation (1)

- Björk and Christensen (1999): assume a strong solution of (1) in \mathcal{H} with norm
 \[\| f \|^2 = \int_0^\infty |f(x)|^2 e^{-\gamma x} \, dx + \int_0^\infty |f'(x)|^2 e^{-\gamma x} \, dx, \quad \gamma > 0 \]

- Björk and Svensson (2001): define Hilbert space \mathcal{H} with norm
 \[\| f \|^2 = \sum_{n=0}^\infty \beta^{-n} \int_0^\infty |f^{(n)}(x)|^2 e^{-\gamma x} \, dx, \quad \gamma > 0, \beta > 1 \]
 $\frac{\partial}{\partial x}$ is bounded on \mathcal{H}. Space is very “small”: contains only real analytic functions

- DF (2000) analyzed HJM equation (1) on weighted Sobolev space $\mathcal{H} = H_{\alpha,1}$
 \[\| f \|^2 = |f(0)|^2 + \int_0^\infty |f'(x)|^2 e^{\alpha x} \, dx, \quad \alpha > 0 \]
 $\frac{\partial}{\partial x}$ generates strongly continuous shift semigroup on \mathcal{H}.

- DF and Teichmann (2003): work on larger convenient spaces
Some main findings

- Björk and Christensen (1999): Nelson–Siegel is not consistent with (deterministic) HJM
- DF (1999): Nelson–Siegel(–Svensson) is not consistent with any (nontrivial) HJM model
- Björk and Svensson (2001): finite-dimensional invariant submanifolds are affine
- DF and Teichmann (2003) generalized this to convenient spaces and stochastic volatility
Fact check: estimation methods used by several central banks

<table>
<thead>
<tr>
<th>Central bank</th>
<th>Method</th>
<th>Minimized error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>S or NS</td>
<td>wp</td>
</tr>
<tr>
<td>Canada</td>
<td>Exponential spline</td>
<td>wp</td>
</tr>
<tr>
<td>Finland</td>
<td>NS</td>
<td>wp</td>
</tr>
<tr>
<td>France</td>
<td>S or NS</td>
<td>wp</td>
</tr>
<tr>
<td>Germany</td>
<td>S</td>
<td>yields</td>
</tr>
<tr>
<td>Italy</td>
<td>NS</td>
<td>wp</td>
</tr>
<tr>
<td>Japan</td>
<td>Smoothing spline</td>
<td>prices</td>
</tr>
<tr>
<td>Norway</td>
<td>S</td>
<td>yields</td>
</tr>
<tr>
<td>Spain</td>
<td>S</td>
<td>wp</td>
</tr>
<tr>
<td>Sweden</td>
<td>Smoothing spline or S</td>
<td>yields</td>
</tr>
<tr>
<td>Switzerland</td>
<td>S</td>
<td>yields</td>
</tr>
<tr>
<td>UK</td>
<td>Smoothing spline</td>
<td>yields</td>
</tr>
<tr>
<td>USA</td>
<td>Smoothing spline</td>
<td>bills: wp, bonds: prices</td>
</tr>
</tbody>
</table>

Table: Nelson–Siegel (NS), Svensson (S), weighted prices (wp)
Present: current research

- Discount or yield curve critical economic quantity
- Discount curve has to be estimated from sparse and noisy Treasury prices
- Statistical estimation of the discount curve was considered in fundamental work by [Fama and Bliss, 1987], follow-up by Nelson and Siegel, [Svensson, 1994], [Gürkaynak et al., 2007], and [Liu and Wu, 2021], a.o.

Problems:
- Parametric models lack flexibility and are misspecified (consistency)
- Nelson–Siegel–Svensson fitting leads to non-convex optimization problem
- Non-parametric models (e.g., FB) prone to overfitting and irregular curve shapes
Outline

1. Past to Present: 1990s – today
3. Empirical results
Ingredients

- **Unobserved ground truth: discount curve** $g(x) = \text{fundamental value of a non-defaultable zero-coupon bond with time to maturity } x$

- **Observed:** M fixed income securities with
 - cash flow dates $0 < x_1 < \cdots < x_N$
 - $M \times N$ cash flow matrix C
 - noisy ex-coupon prices $P = (P_1, \ldots, P_M)^\top$

- No-arbitrage pricing relation

\[
 P_i = C_i g(x) + \epsilon_i
\]

where $x = (x_1, \ldots, x_N)^\top$ and $g(x) = (g(x_1), \ldots, g(x_N))^\top$

- $\epsilon_i = \text{deviations of } P_i \text{ from fundamental value, due to market microstructure effects, convenience yields, or data errors}$
Estimation problem

Minimize weighted pricing errors for some exogenous weights ω_i:

$$\min_{g \in G} \left\{ \sum_{i=1}^{M} \omega_i (P_i - C_i g(x))^2 \right\}$$

Problems:

- Underdetermined problem: we observe only $M \approx 300$ U.S. treasuries, need to estimate $N \approx 10,000$ (30 years x 365 days) discount bond prices
- Every estimation approach needs to reduce degrees of freedom
- Existing approaches impose ad-hoc assumptions \Rightarrow misspecified form
- How to choose hypothesis set G?
- How to choose the weights ω_i?
Arbitrage-free discount curves are generically twice differentiable

- Any arbitrage-free discount curve is the form $g(x) = \mathbb{E}_Q\left[e^{-\int_0^x r_u \, du}\right]$.
- For some short rate Q-dynamics $dr_t = \mu_t \, dt + dM_t$.
- Stochastic Taylor expansion

$$e^{-\int_0^x r_u \, du} = 1 - \int_0^x e^{-\int_0^r r_u \, du} \, r_t \, dt$$

$$e^{-\int_0^t r_u \, du} \, r_t = r_0 - \int_0^t e^{-\int_0^s r_u \, du} \left(r_s^2 - \mu_s\right) \, ds + \int_0^t e^{-\int_0^s r_u \, du} \, dM_s$$

- Under mild moment assumptions on r_t, μ_t, M_t, we obtain that

$$g(x) = 1 - r_0 x + \int_0^x \int_0^t \mathbb{E}_Q\left[e^{-\int_0^s r_u \, du} \left(r_s^2 - \mu_s\right)\right] \, ds \, dt$$

is twice weakly differentiable.
Measure of smoothness

- We obtain natural space of arbitrage-free discount curves

\[G = \text{space of twice weakly differentiable functions } g : [0, \infty) \to \mathbb{R} \text{ with } g(0) = 1 \]

- Define measure smoothness of \(g \in G \) by

\[
\|g\|_{2,\alpha,\delta}^2 = \int_0^\infty \left(\delta g'(x)^2 + (1 - \delta) g''(x)^2 \right) e^{\alpha x} \, dx
\]

- **Curvature** \(g''(x)^2 \): penalizing avoids kinks
- **Tension** \(g'(x)^2 \): penalizing avoids redundant oscillations
- **Maturity weight** \(\alpha \geq 0 \): distributes smoothness measure across maturities
- **Tension parameter** \(\delta \in [0, 1] \) balances tension and curvature
Appendix: two lemmas

Lemma 2.1 (Equivalence of norms).

For fixed $\alpha > 0$, for all $0 \leq \delta_1, \delta_2 < 1$ there exists C_{12} such that $\|g\|_{\alpha, \delta_1} \leq C_{12} \|g\|_{\alpha, \delta_2}$.

Lemma 2.2 (Relation to forward curves).

Assume the forward curve f lies in the forward curve space $H_{\alpha, 1}$, that is,

$$\int_0^\infty f'(x)^2 e^{\alpha x} \, dx < \infty.$$

Then the discount curve $g(x) = e^{-\int_0^x f(t) \, dt}$ satisfies $\|g\|_{\alpha, \delta} < \infty$ for any $\alpha < 2f(\infty)$.

Corollary 2.3.

The discount curve space $G_{\alpha, \delta} \subset \mathcal{G}$ is consistent with essentially all HJM models.
Regularized estimation problem

- Add smoothness measure as regularization term to estimation problem:

\[
\min_{g \in \mathcal{G}} \left\{ \sum_{i=1}^{M} \omega_i(P_i - C_i g(x))^2 + \lambda \int_{0}^{\infty} \left(\delta g'(x)^2 + (1 - \delta) g''(x)^2 \right) e^{\alpha x} \, dx \right\} \tag{2}
\]

- **Smoothness parameter** \(\lambda \geq 0 \): trade-off between pricing errors and smoothness
- **Weights** \(0 < \omega_i \leq \infty \) (\(\omega_i = \infty \) is exact pricing): we set \(\sqrt{\omega_i} \propto \frac{1}{P_i \text{duration}_i} \) \(\Rightarrow \) yield fitting
- **Technical remark**: \(\lambda = 0 \) corresponds to \(\omega_i = \infty \) for all \(i \)
- **Select** \(\alpha, \delta, \lambda \) empirically via cross-validation to minimize pricing errors out-of-sample
Theorem 2.4 (Kernel-Ridge (KR) Solution).

The regularized problem (2) has a unique solution \(g = \hat{g} \) given in closed form

\[
\hat{g}(x) = 1 + \sum_{j=1}^{N} k(x, x_j) \beta_j,
\]

where \(\beta = (\beta_1, \ldots, \beta_N)^\top \) is given by

\[
\beta = C^\top (C K C^\top + \Lambda)^{-1} (P - C1), \quad \Lambda = \text{diag} \left(\frac{\lambda}{\omega_1}, \ldots, \frac{\lambda}{\omega_M} \right)
\]

for the \(N \times N \)-kernel matrix \(K_{ij} = k(x_i, x_j) \), where kernel function \(k : [0, \infty) \times [0, \infty) \rightarrow \mathbb{R} \) is given in closed form.
KR solution

\[\hat{g}(x) = 1 + \sum_{j=1}^{N} k(x, x_j) \beta_j, \quad \text{where} \quad \beta = C^T (CKC^T + \Lambda)^{-1} (P - C1) \]

- Simple closed-form solution, easy to implement
- Kernel ridge regression with smoothness as ridge penalty
- Discount bonds are portfolios of coupon bonds \(\Rightarrow \) Immunization
- Basis functions \(k(\cdot, x_j) \) are determined by smoothness measure \((\alpha, \delta) \)
Outline

1 Past to Present: 1990s – today
2 Kernel Ridge (KR) Method
3 Empirical results
Data

Out-of-sample analysis on U.S. Treasury securities:
- U.S. Treasury securities from the CRSP Treasury data file
- End of month, ex-dividend bid-ask averaged mid-price
- Sampling period: June 1961 to December 2020 (715 months)
- Total of 5,422 issues of Treasury securities and 121,088 price quotes

Estimation and evaluation:
- Out-of-sample evaluation on next business day $t + 1$ for model estimated on day t
- Cross-sectional out-of-sample with stratified sampling to keep maturity distribution
- Root-mean-squared errors (RMSE) for yields and percentage price errors
Cross-validation for hyper-parameters α, δ, λ

- Figures show average cross-validation YTM fitting error (in bps)
- Optimal $\lambda \approx 1$: ground truth discount curve exhibits minimal curvature
- Optimal $\delta \approx 0$: ground truth discount curve exhibits systematic slope pattern

Figure: Left panel: fix $\alpha = 0.05$, vary δ, λ. Right panel: fix $\delta = 0$, vary α, λ.
Conclusion: KR method satisfies all principles of yield curve estimation

- Simple and fast to implement
- Transparent and reproducible
- Data-driven
- Precise representation of the term structure, taking into account all market signals
- Robust to outliers and data selection choices (shown in paper)
- Flexible for integration of external views: exogenous points, choice of weights
- Consistent with absence of arbitrage
Appendix: Bayesian perspective

Assume Gaussian prior distribution

\[g(x) \sim \mathcal{N}(m(x), k(x, x^\top)) \]

with pricing errors \(\epsilon \sim \mathcal{N}(0, \Sigma^\epsilon) \) for \(\Sigma^\epsilon = \text{diag}(\sigma_1^2, \ldots, \sigma_M^2) \).

Theorem 5.1 (Bayesian perspective).

If prior mean function \(m(x) = 1 \) and pricing error variance \(\sigma_i^2 = \frac{\lambda}{\omega_i} \), then

1. the posterior mean function of the Gaussian Process equals the KR estimated discount curve,
2. the posterior distribution is a Gaussian process with known posterior variance.

\(\Rightarrow \) We obtain a confidence range for the discount curve and securities
References

