A Hereditary Hsu-Robbins-Erdös Law of Large Numbers

by Ioannis Karatzas and Walter Schachermayer

October 7, 2022

Strong Law of Large Numbers Kolmogorov (1930)

On a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ consider independent, integrable, real-valued functions f, f_{1}, f_{2}, \ldots with the same distribution. Then the CESÀRO means

$$
\frac{1}{N} \sum_{n=1}^{N}, \quad N \in \mathbb{N}
$$

converge \mathbb{P}-a.e., and with respect to the norm of \mathbb{L}^{1}, as $N \rightarrow \infty$, to the ensemble average

$$
\mathbb{E}(f)=\int_{\Omega} f(\omega) \mathbb{P}(d \omega)
$$

In 1947, P.L. Hsu and H.E. Robbins showed that, in the same setting but now under the stronger condition

$$
\mathbb{E}\left(f^{2}\right)=\int_{\Omega} f^{2}(\omega) \mu(d \omega)<\infty
$$

we have the stronger convergence, called complete convergence,

$$
\sum_{N \in \mathbb{N}} \mathbb{P}\left(\left|\frac{1}{N} \sum_{n=1}^{N} f_{n}-\mathbb{E}(f)\right|>\epsilon\right)<\infty
$$

for every $\epsilon>0$.
Then in 1949/50, P. Erdös showed that the square-intgrability $\mathbb{E}\left(f^{2}\right)<\infty$ is not only sufficient for this strengthening of the SLLN, but also necessary.

Here is a useful way to look at these results. We look at the sojourn times

$$
T_{\epsilon}=\#\left\{N \in \mathbb{N}:\left|\frac{1}{N} \sum_{n=1}^{N} f_{n}-\mathbb{E}(f)\right|>\epsilon\right\}
$$

spent by the sequence of CESÀRO averages outside the interval

$$
[\mathbb{E}(f)-\epsilon, \mathbb{E}(f)+\epsilon]
$$

for $\epsilon>0$. Then the SLLN amounts to

$$
\mathbb{E}(|f|)<\infty \Rightarrow \mathbb{P}\left(T_{\epsilon}<\infty\right)=1, \quad \forall \epsilon>0
$$

The Hsu-Robbins result amounts to

$$
\mathbb{E}\left(f^{2}\right)<\infty \Rightarrow \mathbb{E}\left(T_{\epsilon}\right)<\infty, \quad \forall \epsilon>0
$$

And the ERDÖS result to the statement that the above implication goes also the other way.

A quantitative version due to C. Heyde

Under the Condition $\mathbb{E}\left(f^{2}\right)<\infty$ and with

$$
\sigma^{2} \triangleq \operatorname{Var}(f)=\mathbb{E}(f-\mathbb{E}(f))^{2}
$$

we have also

$$
\lim _{\epsilon \downarrow 0}\left(\epsilon^{2} \mathbb{E}\left(T_{\epsilon}\right)\right)=\sigma^{2}
$$

from HEYDE (1974).

Beyond the i.i.d.case

In 1967, J. Komlos proved a truly astonishing result.
For ANY sequence f_{1}, f_{2}, \ldots of integrable functions which are bounded in \mathbb{L}^{1}, i.e.,

$$
\sup _{n \in \mathbb{N}} \mathbb{E}\left(\left|f_{n}\right|\right)<\infty
$$

there is an integrable f_{*} and a subsequence $f_{k_{1}}, f_{k_{2}}, \ldots$ such that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f_{k_{n}}=f_{*}, \quad \mathbb{P}-\text { a.e. }
$$

not only along the indicated subsequence, but also along ALL of its subsequence.

Hereditary behaviour.

We believe that a smilar result holds along the Hsu-Robbins-Erdös lines.

DESIDERATUM:

For any given sequence f_{1}, f_{2}, \ldots of measurable functions, bounded in \mathbb{L}^{2}, i.e.,

$$
\begin{equation*}
\left.\sup _{n \in \mathbb{N}} \mathbb{E}\left(f_{n}^{2}\right)\right]<\infty \tag{1}
\end{equation*}
$$

there exists an $f_{*} \in \mathbb{L}^{2}$ and a subsequence $f_{k_{1}}, f_{k_{2}}, \ldots$ such that

$$
\begin{equation*}
\left.\sum_{N \in \mathbb{N}} \mathbb{P}\left(\left\lvert\, \frac{1}{N} \sum_{n=1}^{N} f_{k_{n}}-f_{*}>\epsilon\right.\right) \right\rvert\,<\infty, \forall \epsilon>0 \tag{2}
\end{equation*}
$$

holds, not only along said subsequence, but also hereditarily.

REMARK:

Without sacrificing generality, for the purposes of establishing (2), the condition (1) can be replaced by the stronger condition

$$
\begin{equation*}
\text { the sequence }\left(f_{n}^{2}\right)_{n=1}^{\infty} \text { is uniformly integrable. } \tag{3}
\end{equation*}
$$

We have not been able to prove this.

We have not been able to prove this.
But we have been able to prove the result (2), provided not only (1) holds, i.e., boundedness in \mathbb{L}^{2} of f_{1}, f_{2}, \ldots, but also the following stronger assumption:
The sequence f_{1}, f_{2}, \ldots contains a subsequence $f_{k_{1}}, f_{k_{2}}, \ldots$ whose squares converge weakly in \mathbb{L}^{1} to a function $\eta \in \mathbb{L}^{2}$:

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left(f_{k_{n}}^{2} \cdot \zeta\right)=\mathbb{E}(\eta \cdot \zeta), \quad \forall \zeta \in \mathbb{L}^{\infty}
$$

We have not been able to prove this.
But we have been able to prove the result (2), provided not only (1) holds, i.e., boundedness in \mathbb{L}^{2} of f_{1}, f_{2}, \ldots, but also the following stronger assumption:
The sequence f_{1}, f_{2}, \ldots contains a subsequence $f_{k_{1}}, f_{k_{2}}, \ldots$ whose squares converge weakly in \mathbb{L}^{1} to a function $\eta \in \mathbb{L}^{2}$:

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left(f_{k_{n}}^{2} \cdot \zeta\right)=\mathbb{E}(\eta \cdot \zeta), \quad \forall \zeta \in \mathbb{L}^{\infty}
$$

From the uniform integrability (3) and DUNFORD-PETTIS, we DO have the weak- \mathbb{L}^{1} convergence (4) for some $\eta \in \mathbb{L}^{1}$. The real assumption here is

$$
\eta \in \mathbb{L}^{2}
$$

We have not been able to prove this.
But we have been able to prove the result (2), provided not only (1) holds, i.e., boundedness in \mathbb{L}^{2} of f_{1}, f_{2}, \ldots, but also the following stronger assumption:
The sequence f_{1}, f_{2}, \ldots contains a subsequence $f_{k_{1}}, f_{k_{2}}, \ldots$ whose squares converge weakly in \mathbb{L}^{1} to a function $\eta \in \mathbb{L}^{2}$:

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left(f_{k_{n}}^{2} \cdot \zeta\right)=\mathbb{E}(\eta \cdot \zeta), \quad \forall \zeta \in \mathbb{L}^{\infty}
$$

From the uniform integrability (3) and DUNFORD-PETTIS, we DO have the weak- \mathbb{L}^{1} convergence (4) for some $\eta \in \mathbb{L}^{1}$. The real assumption here is

$$
\eta \in \mathbb{L}^{2}
$$

This DOES hold in a few important cases.

BOUNDEDNESS IN \mathbb{L}^{4}

Suppose

$$
\sup _{n \in \mathbb{N}} \mathbb{E}\left(f_{n}^{4}\right)<\infty
$$

holds.
This means that $f_{1}^{2}, f_{2}^{2}, \ldots$ is bounded in \mathbb{L}^{2}. But then there exist a function $\eta \in \mathbb{L}^{2}$ and a subsequence $f_{k_{1}}, f_{k_{2}}$, dots with

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left(f_{k_{n}}^{2} \cdot \zeta\right)=\mathbb{E}(\eta \cdot \zeta)
$$

valid for every $\zeta \in \mathbb{L}^{2}$, thus also in \mathbb{L}^{∞}.

BOUNDEDNESS IN \mathbb{L}^{4}

Suppose

$$
\sup _{n \in \mathbb{N}} \mathbb{E}\left(f_{n}^{4}\right)<\infty
$$

holds.
This means that $f_{1}^{2}, f_{2}^{2}, \ldots$ is bounded in \mathbb{L}^{2}. But then there exist a function $\eta \in \mathbb{L}^{2}$ and a subsequence $f_{k_{1}}, f_{k_{2}}$, dots with

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left(f_{k_{n}}^{2} \cdot \zeta\right)=\mathbb{E}(\eta \cdot \zeta)
$$

valid for every $\zeta \in \mathbb{L}^{2}$, thus also in \mathbb{L}^{∞}.
Then there exists an $f_{*} \in \mathbb{L}^{2}$ to which a further subsequence converges in CESÀRO mean completely), and hereditarily (together with all its subsequence).

BOUNDEDNESS IN \mathbb{L}^{4}

Suppose

$$
\sup _{n \in \mathbb{N}} \mathbb{E}\left(f_{n}^{4}\right)<\infty
$$

holds.
This means that $f_{1}^{2}, f_{2}^{2}, \ldots$ is bounded in \mathbb{L}^{2}. But then there exist a function $\eta \in \mathbb{L}^{2}$ and a subsequence $f_{k_{1}}, f_{k_{2}}$, dots with

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left(f_{k_{n}}^{2} \cdot \zeta\right)=\mathbb{E}(\eta \cdot \zeta)
$$

valid for every $\zeta \in \mathbb{L}^{2}$, thus also in \mathbb{L}^{∞}.
Then there exists an $f_{*} \in \mathbb{L}^{2}$ to which a further subsequence converges in CESÀRO mean completely), and hereditarily (together with all its subsequence).
The hereditary aspect is automatic in the IID Case.

INDEPENDENCE

As we mentioned, the weak- \mathbb{L}^{1} convergence

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left(f_{k_{n}}^{2} \cdot \zeta\right)=\mathbb{E}(\eta \cdot \zeta), \quad \forall \zeta \in \mathbb{L}^{\infty}
$$

can always be guaranteed along a suitable subsequence, and for some $\eta \in \mathbb{L}^{1}$.

INDEPENDENCE

As we mentioned, the weak- \mathbb{L}^{1} convergence

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left(f_{k_{n}}^{2} \cdot \zeta\right)=\mathbb{E}(\eta \cdot \zeta), \quad \forall \zeta \in \mathbb{L}^{\infty}
$$

can always be guaranteed along a suitable subsequence, and for some $\eta \in \mathbb{L}^{1}$.
Now, if the f_{1}, f_{2}, \ldots are independent, this η is a constant, and therefore trivially in \mathbb{L}^{2}.

IDEA OF PROOF.

Since the sequence f_{1}, f_{2}, \ldots is bounded in \mathbb{L}^{2}, it contains a subsequence $f_{k_{1}}, f_{k_{2}}, \ldots$ which converges weakly in \mathbb{L}^{2} to some $f_{*} \in \mathbb{L}^{2}$:

$$
\mathbb{E}\left(f_{k_{n}} \cdot \zeta\right) \rightarrow \mathbb{E}\left(f_{*} \cdot \zeta\right), \quad \forall \zeta \in \mathbb{L}^{2}
$$

IDEA OF PROOF.

Since the sequence f_{1}, f_{2}, \ldots is bounded in \mathbb{L}^{2}, it contains a subsequence $f_{k_{1}}, f_{k_{2}}, \ldots$ which converges weakly in \mathbb{L}^{2} to some $f_{*} \in \mathbb{L}^{2}$:

$$
\mathbb{E}\left(f_{k_{n}} \cdot \zeta\right) \rightarrow \mathbb{E}\left(f_{*} \cdot \zeta\right), \quad \forall \zeta \in \mathbb{L}^{2}
$$

This f_{*} is the "randomized expectation", and we can assume it to be $f_{*} \equiv 0$ from now on.

IDEA OF PROOF.

Since the sequence f_{1}, f_{2}, \ldots is bounded in \mathbb{L}^{2}, it contains a subsequence $f_{k_{1}}, f_{k_{2}}, \ldots$ which converges weakly in \mathbb{L}^{2} to some $f_{*} \in \mathbb{L}^{2}$:

$$
\mathbb{E}\left(f_{k_{n}} \cdot \zeta\right) \rightarrow \mathbb{E}\left(f_{*} \cdot \zeta\right), \quad \forall \zeta \in \mathbb{L}^{2}
$$

This f_{*} is the "randomized expectation", and we can assume it to be $f_{*} \equiv 0$ from now on.
Next Reduction: Assume the $f_{k_{n}}, \nu \in \mathbb{N}$ to be simple, and a martingale difference.
Thus

$$
X_{n} \triangleq \sum_{n=1}^{N} f_{k_{n}}, \quad N \in \mathbb{N}
$$

to be a square-integrable martingale. Now use a martingale theory for the job...

