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Strong Law of Large Numbers Kolmogorov (1930)

On a probability space (Ω,F ,P) consider independent, integrable,
real-valued functions f , f1, f2, . . . with the same distribution. Then
the CESÀRO means

1

N

N∑
n=1

, N ∈ N

converge P-a.e., and with respect to the norm of L1, as N →∞,
to the ensemble average

E(f ) =

∫
Ω
f (ω)P(dω).



In 1947, P.L. Hsu and H.E. Robbins showed that, in the same
setting but now under the stronger condition

E(f 2) =

∫
Ω
f 2(ω)µ(dω) <∞

we have the stronger convergence, called complete convergence,

∑
N∈N

P(| 1
N

N∑
n=1

fn − E(f )| > ε) <∞

for every ε > 0.

Then in 1949/50, P. Erdös showed that the square-intgrability
E(f 2) <∞ is not only sufficient for this strengthening of the
SLLN, but also necessary.



Here is a useful way to look at these results. We look at the
sojourn times

Tε = #{N ∈ N : | 1
N

N∑
n=1

fn − E(f )| > ε}

spent by the sequence of CESÀRO averages outside the interval

[E(f )− ε,E(f ) + ε]

for ε > 0. Then the SLLN amounts to

E(|f |) <∞⇒ P(Tε <∞) = 1, ∀ε > 0.

The Hsu-Robbins result amounts to

E(f 2) <∞⇒ E(Tε) <∞, ∀ε > 0.

And the ERDÖS result to the statement that the above
implication goes also the other way.



A quantitative version due to C. Heyde

Under the Condition E(f 2) <∞ and with

σ2 , Var(f ) = E(f − E(f ))2

we have also

lim
ε↓0

(ε2 E(Tε)) = σ2

from HEYDE (1974).



Beyond the i.i.d.case

In 1967, J. Komlos proved a truly astonishing result.
For ANY sequence f1, f2, . . . of integrable functions which are
bounded in L1, i.e.,

sup
n∈N

E(|fn|) <∞,

there is an integrable f∗ and a subsequence fk1 , fk2 , . . . such that

lim
N→∞

1

N

N∑
n=1

fkn = f∗, P− a.e.

not only along the indicated subsequence, but also along ALL of its
subsequence.

Hereditary behaviour.



We believe that a smilar result holds along the Hsu-Robbins-Erdös
lines.

DESIDERATUM:
For any given sequence f1, f2, . . . of measurable functions, bounded
in L2, i.e.,

sup
n∈N

E(f 2
n )] <∞, (1)

there exists an f∗ ∈ L2 and a subsequence fk1 , fk2 , . . . such that

∑
N∈N

P(| 1
N

N∑
n=1

fkn − f∗ > ε)| <∞,∀ε > 0, (2)

holds, not only along said subsequence, but also hereditarily.

REMARK:
Without sacrificing generality, for the purposes of establishing (2),
the condition (1) can be replaced by the stronger condition

the sequence (f 2
n )∞n=1 is uniformly integrable. (3).



We have not been able to prove this.

But we have been able to prove the result (2), provided not only
(1) holds, i.e., boundedness in L2 of f1, f2, . . . , but also the
following stronger assumption:

The sequence f1, f2, . . . contains a subsequence fk1 , fk2 , . . . whose
squares converge weakly in L1 to a function η ∈ L2 :

lim
n→∞

E(f 2
kn .ζ) = E(η.ζ), ∀ζ ∈ L∞.

From the uniform integrability (3) and DUNFORD-PETTIS, we
DO have the weak-L1 convergence (4) for some η ∈ L1. The real
assumption here is

η ∈ L2.

This DOES hold in a few important cases.
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BOUNDEDNESS IN L4

Suppose
sup
n∈N

E(f 4
n ) <∞

holds.
This means that f 2

1 , f
2

2 , . . . is bounded in L2. But then there exist
a function η ∈ L2 and a subsequence fk1 , fk2 , dots with

lim
n→∞

E(f 2
kn .ζ) = E(η.ζ)

valid for every ζ ∈ L2, thus also in L∞.

Then there exists an f∗ ∈ L2 to which a further subsequence
converges in CESÀRO mean completely), and hereditarily
(together with all its subsequence).

The hereditary aspect is automatic in the IID Case.
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INDEPENDENCE

As we mentioned, the weak-L1 convergence

lim
n→∞

E(f 2
kn .ζ) = E(η.ζ), ∀ζ ∈ L∞.

can always be guaranteed along a suitable subsequence, and for
some η ∈ L1.

Now, if the f1, f2, . . . are independent, this η is a constant, and
therefore trivially in L2.
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IDEA OF PROOF.

Since the sequence f1, f2, . . . is bounded in L2, it contains a
subsequence fk1 , fk2 , . . . which converges weakly in L2 to some
f∗ ∈ L2 :

E(fkn .ζ)→ E(f∗.ζ), ∀ζ ∈ L2

This f∗ is the ”randomized expectation“ , and we can assume it to
be f∗ ≡ 0 from now on.

Next Reduction: Assume the fkn , ν ∈ N to be simple, and a
martingale difference.
Thus

Xn ,
N∑

n=1

fkn , N ∈ N

to be a square-integrable martingale. Now use a martingale theory
for the job . . .
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