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Describing the title

As possible post-crisis term structures beyond multi-curves

→ Attempts to consider a single driver for the various spreads
(Libor-OIS, Libors for different tenors, post-Libor spreads,....)

One approach considers roll-over risk (Backwell et al, ’21) (shall
see that it can be related to multiplicative spreads)

Our purpose here is to relate the roll-over risk approach to
the risk attitude of a representative agent, which

i) does not require classical AOA (using partly the Benchmark
approach)

ii) relates it to risk sensitive control.
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Notions from the Benchmark Approach

Given is a diffusion-type market with

St = (S1
t , · · · , Sd

t ) the risky asset prices, S0
t a riskless asset

V π
t : portfolio value at t for self-financing π

θt : market price of risk

→ if θt ∈ L2
loc then ∃ ! the GOP V ∗t (also numèraire portfolio)

→ benchmarked prices: prices expressed in units of V ∗t



Notions from the Benchmark Approach

When benchmarked prices are true martingales: fair pricing (real
world pricing) is possible which does not require classical AOA.

Next extend the original market by adding ZCBs and FRAs

→ if ZCBs and FRAs can be fairly priced by V ∗t , then the original
GOP remains such also in the extended market.



Recalling some notions from Interest Rates

After the big crisis

L(t;T ,T + δ) 6= F (t;T ,T + δ) = 1
δ

(
p(t,T )

p(t,T+δ) − 1
)

↓ ↓
forward Libor simply compounded

forward rate

→ Leads to spreads, e.g. the multiplicative (Libor-OIS) spreads

S(t;T ,T + δ) =
1 + δ L(t;T ,T + δ)

1 + δ F (t;T ,T + δ)

→ Also with the current Libor reform there may still be
analogous spreads.
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Roll-over risk

Backwell, Macrina, Schlögl, Skovmand (’21) interpret interbank
risk as roll-over risk: the risk of not being able to roll over the
financing of debt at a given market reference rate (at the same
spread to a given market reference rate).

→ Roll-over risk may be due various risks, in particular credit
risk, but mainly funding/liquidity risk and may thus be
present also in absence of credit risk.

A(t,T ): value in t < T of a loan of one monetary unit,
continuously rolled over until T (present value, in t, of the
unsecured roll-over risk-adjusted borrowing account with
maturity T ).

→ One has A(t,T ) ≥ 1 and, if there is no roll-over risk, then
A(t,T ) = 1.



Roll-over risk

Next we derive an explicit expression for A(t,T ) in terms of credit
and funding spreads and assuming that it can be fairly priced by
the GOP. In view of this:

Denote

τ : default time of the counterparty of a loan

λt : credit/downgrade spread

ϕt : funding/liquidity spread

Gt = Ft ∨Ht (Ht : default history)



Roll-over risk

Assuming A(t,T ) to be fairly priced by the GOP and considering a
funding account B̃t based on the extended interest rate process r̃t :=
rt + ϕt , we obtain

A(t,T ) = V ∗t E

{
1
V ∗
T

exp

[∫ T

t
(rs + ϕs + λs) ds

]
1{τ>T} | Gt

}
= V ∗t E

{
1
V ∗
T

exp

[∫ T

t
(rs + ϕs) ds

]
| Ft

}
:=

V ∗t
B̃t

E

{
B̃T

V ∗T
| Ft

}

If there is roll-over risk, i.e. A(t,T ) > 1 then one can easily
see that B̃t cannot be fairly priced by V ∗T (the GOP).

Below we shall present an alternative, where B̃t can be fairly
priced and leading to a relation between the funding spread ϕt

and a risk sensitivity parameter η of a representative agent.



Roll-over risk

In equilibrium the values in T of the term borrowing and roll-
over borrowing over [T ,T + δ] (δ a given tenor) must be equal.
Assuming the defaultable bonds to coincide with the risk-free ones
(credit risk mitigated by collateralization), this then leads to

(1 + δ L(T ;T ,T + δ) p(T ,T + δ) = A(T ,T + δ)

i.e. we have

L(T ;T ,T + δ) =
1

δ

(
A(T ,T + δ)

p(T ,T + δ)
− 1

)
→ A(t,T ) can be seen as a single driver affecting the Libors

differently according to the tenor.



Roll-over risk

For the multiplicative spread it then follows that

S(T ;T ,T + δ) = 1+δ L(T ;T ,T+δ)
1+δ F (T ;T ,T+δ)

= A(T ,T+δ)
p(T ,T+δ) p(T ,T + δ) = A(T ,T + δ)

→ Since T and δ are arbitrary, identifying T with t and T + δ
with T , we obtain the equality
S(t,T ) := S(t; t,T ) = A(t,T ) (links spreads to roll-over
risk).

→ The Libor-OIS (multiplicative) spread can thus also be seen as
a premium paid by the borrower at Libor to avoid roll-over
risk over the period of the loan.
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Risk sensitive approach

Next we want to obtain a description of A(t,T ) (and thus also of
S(t,T )) in terms of the risk attitude of investors.

→ It will provide a risk-sensitive interpretation of spreads as
well as of the entire roll-over approach.



Dynamics

First we need some underlying dynamics for our market quantities.
To this effect consider a factor process Xt satisfying

dXt = f (t,Xt) dt + g(t,Xt) dwt

and assume it affects the dynamics in the market in the sense that{
dSt = diag(St) [µ(t,Xt) dt + σ(t,Xt) dwt ]
dS0

t = S0
t r(t,Xt) dt (wt : global Wiener)

→ Market price of risk

θ(t,Xt) = σ+(t,Xt) (µ(t,Xt)− r(t,Xt) 1)

(σ full rank ⇒ σ+ = σ′(σσ′)−1)

→ Let also the funding/liquidity spread be of the form
ϕt = ϕ(t,Xt).



Risk sensitive approach

Consider a criterion to be maximized which is of the form

Jη(π) = −1

η
log E {exp [−η log V π

T ]}

with η > −1 and 6= 0 a risk sensitivity parameter.

One may consider the reduced form

I η(π) = E {exp [−η log V π
T ]}

(
= E

{
(V π

T )−η
})

to be maximised/minimised depending on the sign of η.

→ The latter links risk-sensitive control to expected power utility
(can also be related to a mean-variance criterion)



Risk sensitive approach

Notice that fair pricing with the stochastic discount factor
1/V ∗t corresponds to a marginal utility pricing rule with
U(x) = log(x) (U ′(V ∗t ) = 1/V ∗t ).

→ Our B̃t was not correctly priced by logarithmic preferences
since U ′(V ∗t ) B̃t resulted in a sub-martingale.

Next change to a more flexible utility U(x) = x−η (η is as above a
risk sensitivity parameter considered as referred to a representative
agent)

Let πη be a strategy resulting from the maximisation of
E{(V πη

t )−η} for a given risk sensitivity parameter η. The
dynamics of V πη

t can be appropriately derived.



Risk sensitive approach

As stochastic discount factor take now one associated with U(x) =
x−η, namely

Yt := U ′(V πη

t ) = −η
(
V πη

t

)−η−1

Assumption: B̃t is correctly priced by the stochastic discount
factor (SDF) Yt , i.e. Yt B̃t is a local martingale.



Risk sensitive approach

Working out the stochastic differential of Yt B̃t , a necessary and
sufficient condition for it to be a local martingale is that

ϕt = η r + θ′t(θt + Ξt)−
2 + η

2 (1 + η)
‖θt + Ξt‖2

with Ξt a process (sometimes called intertemporal hedging com-
ponent) resulting from the dynamics of V πη

t .

→ It connects ϕ with η

→ ϕ can be seen to be increasing with η

→ In the limit for η → 0 (log-utility) we obtain ϕt = 0 (being
also Ξt = 0) thus reconfirming that fair marginal utility
pricing with log-utility implies that the funding spread ϕt has
to be equal to zero..



Thank you Tomas


