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Intra-Personal Equilibrium for Mean–Variance Portfolio
Selection

I Basak and Chabakauri (RFS 2010) considers mean–variance
problem in a Black–Scholes market

Maximize E[Xt,x]− γ

2
Var[Xt,x]

I Inherently time inconsistent and intra-personal game
framework

I Optimal dollar amount h(t)
I Reproduced by Björk and Murgoci (2009) by extended HJB

equation
I Consider instead state-dependent risk aversion

Maximize E[Xt,x]− γ(x)

2
Var[Xt,x]

I When γ(x) = 1/x, optimal dollar amount as a feedback policy
is c(t)x
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MEAN–VARIANCE PORTFOLIO OPTIMIZATION WITH
STATE-DEPENDENT RISK AVERSION

TOMAS BJÖRK

Stockholm School of Economics

AGATHA MURGOCI

Copenhagen Business School∗

XUN YU ZHOU

University of Oxford

The objective of this paper is to study the mean–variance portfolio optimization
in continuous time. Since this problem is time inconsistent we attack it by placing
the problem within a game theoretic framework and look for subgame perfect Nash
equilibrium strategies. This particular problem has already been studied in Basak
and Chabakauri where the authors assumed a constant risk aversion parameter. This
assumption leads to an equilibrium control where the dollar amount invested in the
risky asset is independent of current wealth, and we argue that this result is unrealistic
from an economic point of view. In order to have a more realistic model we instead
study the case when the risk aversion depends dynamically on current wealth. This is a
substantially more complicated problem than the one with constant risk aversion but,
using the general theory of time-inconsistent control developed in Björk and Murgoci,
we provide a fairly detailed analysis on the general case. In particular, when the risk
aversion is inversely proportional to wealth, we provide an analytical solution where
the equilibrium dollar amount invested in the risky asset is proportional to current
wealth. The equilibrium for this model thus appears more reasonable than the one for
the model with constant risk aversion.

KEY WORDS: mean–variance, time inconsistency, time-inconsistent control, dynamic program-
ming, stochastic control, Hamilton–Jacobi–Bellman equation.

1. INTRODUCTION

Mean–variance (MV) analysis for optimal asset allocation is one of the classical results of
financial economics. After the original publication in Markowitz (1952), a vast number of
papers have been published on this topic. Most of these papers deal with the single period
case, and there is a very good reason for this: It is very easy to see that an MV optimal
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Reinforcement Learning

I Reinforcement learning (RL): an active and fast developing
subareas in machine learning

I RL mimics humans’ – especially children’s – learning process

I An RL agent learns the best strategies based on trial and
error, through interactions with the black box environment
(e.g. the market)

I RL learns strategies directly, not a model

I This is in sharp contrast with classical model-based methods
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Key Elements of Reinforcement Learning

I RL: stochastic control (dynamic optimization) without
knowledge about environment

I Key elements of model-based stochastic control: Bellman’s
principle, HJB equation, verification theorem

I Key components of model-free RL

I Exploration (trial and error): broaden search space via
randomization (stochastic policies)

I Policy evaluation (PE): estimate value function of a given
policy using samples only

I Policy improvement (PI): improve and update current policy
based on learned value function

I Policy gradient (PG): update current policy along gradient of
value function in policy

I Q-learning: learn the Q-function to generate an improved
policy
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Pitfalls of Current RL Study

I Two major limitations in existing study on RL

I Most algorithms developed for discrete-time Markov Decision
Processes (MDPs), and little attention paid to problems with
continuous time and spaces

I World is inherently continuous in time
I Abundant real-life examples in which an agent can or need to

interact with a random environment at ultra-high frequency
I Few existing studies in continuous setting restricted to

deterministic systems (Baird 1993, Doya 2000, Frémaux et al.
2013, Lee and Sutton 2021)

I Many RL algorithms were devised in heuristic and ad hoc
manners with underlying objectives not always clearly stated

I In short, there seems a lack of an overarching theoretical
understanding and a unified framework for RL methods
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RL in Continuous Time and Spaces

I Bridge these gaps by providing a unified theoretical
underpinning of RL in continuous time with possibly
continuous state and action spaces

I Carry out all theoretical analysis for the continuous setting
and take discrete observations at the final, algorithmic stage

I Rule out sensitivity in time step size

I Make use of well-developed tools in stochastic calculus,
differential equations, and stochastic control, which enables
better interpretability/explainability to underlying learning
technologies

I Provide new perspectives on RL overall
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Research Questions

I How to explore strategically?

I How to do PE?

I How to do PI generally?

I How to do PG specifically?

I Financial applications?
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A Pentalogy

I H. Wang, T. Zariphopoulou and X. Zhou, “Reinforcement
learning in continuous time and space: A stochastic control
approach”, Journal of Machine Learning Research, 2020.

I Y. Jia and X. Zhou, “Policy evaluation and
temporal-difference learning in continuous time and space: A
martingale approach”, Journal of Machine Learning Research,
2022a.

I Y. Jia and X. Zhou, “Policy gradient and actor–critic learning
in continuous time and space: Theory and algorithms”,
Journal of Machine Learning Research, 2022b.

I Y. Jia and X. Zhou, “q-Learning in continuous time”,
arXiv:2207.00713, 2022c.

I Y. Huang, Y. Jia and X. Zhou, “Data-driven mean-variance
portfolio selection”, work in progress.
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Problem Formulation

I
(
Ω,F ,P; {FWt }t≥0

)
, Brownian motion W = {Wt, t ≥ 0}

I Action space A: representing constraints on an agent’s
actions (or “controls”)

I Admissible action a = {at, t ≥ 0}: an {FWt }t≥0-adapted
measurable process taking value in A

I State (or “feature”) dynamics in Rd

dXt = b(t,Xt, at)dt+ σ(t,Xt, at)dWt, t > 0

I Objective: to achieve maximum expected total reward
represented by optimal value function

w (t, x) := supE
[∫ T

t
r (s,Xs, as) ds+ h(XT )

∣∣∣∣Xt = x

]
,

where (t, x) ∈ [0, T ]× Rd

13 / 33



Classical Model-Based Approach

I Dynamic programming (Fleming and Soner 1992, Yong and Z.
1998)

I HJB equation: optimal value function w satisfies

∂v

∂t
(t, x) + sup

a∈A
H(t, x, a,

∂v

∂x
(t, x),

∂2v

∂x2
(t, x)) = 0; v(T, x) = h(x)

I ... where (generalized) Hamiltonian (Yong and Z. 1998)

H(t, x, a, p, P ) =
1

2
tr
[
σ(t, x, a)′Pσ(t, x, a)

]
+p·b(t, x, a)+r(t, x, a)

I Verification theorem: optimal (feedback) control policy is

a(t, x) = argmaxa∈AH

(
t, x, a,

∂v

∂x
(t, x),

∂2v

∂x2
(t, x)

)
I Deterministic policy, devised at t = 0

I This approach requires the knowledge of environment
(functional forms of b, σ, r, h)
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Trial and Error: Exploration through Randomization

I Absence of knowledge of environment

I Exploration is modelled by a distribution (randomization) of
policies

I Stochastic policies

I Actions are sampled from a policy to be actually executed

I Notion of controls extended to distributions/measures

I Randomization itself is independent of Brownian motion W
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Stochastic Policies

I Probability space is rich enough to support Z ∼ U(0, 1)
independent of W

I Fs = FWs ∨ σ(Z)

I P(A): collection of probability density functions (pdfs) on A
I Let π : (t, x) ∈ [0, T ]× Rd 7→ π(·|t, x) ∈ P(A) be a given

(stochastic) policy

I At each time s, an action as is sampled from distribution
π(·|s,Xs)
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An Exploratory Formulation

I Let {Fs}s≥0-progressively measurable action process
aπ = {aπs , t ≤ s ≤ T} be generated from π

I Corresponding state process follows

dXπ
s = b(s,Xπ

s , a
π
s )ds+σ(s,Xπ

s , a
π
s )dWs, s ∈ [t, T ]; Xπ

t = x

I A regularizer is included to encourage exploration

J(t, x;π) =EP
(∫ T

t

[
r(s,Xπ

s , a
π
s ) + γp

(
s,Xπ

s , a
π
s ,π(·|s,Xπ

s )
)]

ds

+ h(Xπ
T )
∣∣∣Xπ

t = x

)
I Entropy regularizer (Wang, Zariphoupoulou, Z. 2020)

p
(
t, x, a, π(·)

)
= − log π(a)
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Entropy Regularization and Gibbs Measure

I With entropy regularization, optimal stochastic policy (Wang,
Zariphoupoulou, Z. 2020)

π∗(a|t, x) =
1

Z(γ)
exp

(
1

γ
H(t, x, a, vx(t, x), vxx(t, x))

)
where

Z(γ) =

∫
A

exp

(
1

γ
H(t, x, a, vx(t, x), vxx(t, x))

)
da

I Gibbs measure or Boltzmann exploration

I Gaussian in LQ case

I Mean–variance (Wang and Z. 2020)
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A Policy Improvement Theorem

Theorem (Wang and Z. 2020, Jia and Z. 2022c)

Given π ∈ Π, define

π′(·|t, x) ∝ exp

{
1

γ
H
(
t, x, ·, ∂J

∂x
(t, x;π),

∂J

∂x2
(t, x;π)

)}
.

If π′ ∈ Π, then
J(t, x;π′) ≥ J(t, x;π).

Moreover, if the following map

I(π) =
exp{ 1

γH
(
t, x, ·, ∂J∂x (t, x;π), ∂J

∂x2 (t, x;π)
)
}∫

A exp{ 1
γH
(
t, x, a, ∂J∂x (t, x;π), ∂J

∂x2 (t, x;π)
)
}da

, π ∈ Π

has a fixed point π∗ on Π, then π∗ is the optimal policy.
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Q-Learning
I The previous theorem is not implementable for learning

because H is unknown

I Recall classical stochastic control

w (t, x) = supE
[∫ T

t
r (s,Xs, as) ds+ h(XT )

∣∣∣∣Xt = x

]
I Bellman’s principle of optimality

w (t, x) = supE

[∫ t+∆t

t

r (s,Xs, as) ds+ w(t+ ∆t,Xt+∆t)

∣∣∣∣∣Xt = x

]
I Q-function

Q∆t (t, x, a) = E

[∫ t+∆t

t

r (s,Xs, a) ds+ w(t+ ∆t,Xt+∆t)

∣∣∣∣∣Xt = x

]
I Q∗∆t (t, x) = supaQ∆t (t, x, a)
I In chess, “what should be the current best move, assuming I

will always follow the best moves afterwards”?
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No Q-Function in Continuous Time!

I Q-learning works inherently for discrete-time only: ∆t is fixed

I Q-function collapses in continuous time when ∆t→ 0 (Tallec
et al. 2019)

I Impact of any action a is negligible on [t, t+ ∆t] when ∆t→ 0

I What should be a proper continuous-time counterpart of
Q-function?
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Continuous Time

I Given a policy π ∈ Π, define

Q∆t(t, x, a; π)

:=EP
[ ∫ t+∆t

t
r(s,X

a
s , a)ds

+ EP[ ∫ T
t+∆t

[r(s,X
π
s , a

π
s )− γ log π(a

π
s |s,X

π
s )]ds + h(X

π
T )|Xat+∆t

]∣∣∣Xπ
t = x

]

=J(t, x; π) +

[
∂J

∂t
(t, x; π) +H

(
t, x, a,

∂J

∂x
(t, x; π),

∂2J

∂x2
(t, x; π)

)]
∆t + o(∆t)

I Leading term J is independent of a, as expected

I Consider the first-order term instead!
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q-Function

Definition (Jia and Z. 2022c)

The q-function associated with a given stochastic policy π ∈ Π is
defined as

q(t, x, a;π) =
∂J

∂t
(t, x;π)+H

(
t, x, a,

∂J

∂x
(t, x;π),

∂2J

∂x2
(t, x;π)

)
.
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Discussions

I q-Function is first-order derivative of conventional Q-function
in time:

q(t, x, a;π) = lim
∆t→0

Q∆t(t, x, a;π)− J(t, x;π)

∆t

I A continuous-time notion because it does not depend on any
time-discretization

I Vital advantage for learning algorithm design as performance
of RL algorithms is very sensitive wrt time discretization step
(Tallec et al. 2019)

I Policy improvement theorem can now be expressed in terms of
q-function:

π′(·|t, x) ∝ exp

{
1

γ
q(t, x, ·;π)

}
I Only need to learn q-function q(·, ·, ·;π) under any policy π
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Martingale Characterization

Theorem (Jia and Z. 2022c)
Let a policy π ∈ Π, a function Ĵ ∈ C1,2

(
[0, T )× Rd

)
∩ C

(
[0, T ]× Rd

)
and a continuous function q̂ : [0, T ]× Rd ×A → R be given satisfying

Ĵ(T, x) = h(x),

∫
A

[
q̂(t, x, a)− γ logπ(a|t, x)

]
π(a|t, x)da = 0, ∀(t, x).

Then Ĵ and q̂ are respectively the value function and the q-function
associated with π if and only if for all (t, x) ∈ [0, T ]× Rd, the following
process

Ĵ(s,Xπ
s ;π) +

∫ s

t

[r(t′, Xπ
t′ , a

π
t′)− q̂(t′, Xπ

t′ , a
π
t′)]dt

′

is an ({Fs}s≥0,P)-martingale, where {Xπ
s , t ≤ s ≤ T} is the state

process with Xπ
t = x. If it holds further that

π(a|t, x) =
exp{ 1

γ q̂(t,x,a)}∫
A exp{ 1

γ q̂(t,x,a)}da , then π is the optimal policy and Ĵ is the

optimal value function.
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Function Approximation and Martingality

I Function approximation: approximates function f to be
learned by a parametric family of functions fθ where θ ∈ RL
(finite dimensional approximation)

I Parametric form may be inspired by problem structure or
neural networks

I Martingality of M leads to two loss functions for learning
algorithms (Jia and Z. 2022a)

I Martingale loss function (to be solved by stochastic gradient
descent):

E
∫ T

0

|Mθ
T −Mθ

t |2dt→ min.

I Martingale Orthogonality Conditions (to be solved by
stochastic approximation or least square):

E
∫ T

0

ξtdM
θ
t = 0

for any ξ ∈ L2
F ([0, T ];M) (test function)
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Help with Function Approximation

I Let Jθ and qψ be function approximators satisfying

J
θ
(T, x) = h(x),

∫
A

[
q
ψ

(t, x, a)− γ log π
ψ

(a|t, x)
]
π
ψ

(a|t, x)da = 0,

I ... and

πψ(a|t, x) =
exp{ 1

γ q
ψ(t, x, a)}∫

A exp{ 1
γ q

ψ(t, x, a)}da

I Lead to more special parametric form of q-function
approximator qψ, potentially facilitating more efficient learning
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An Example
I When system dynamic is linear in a and reward quadratic in a,

Hamiltonian and hence q-function are quadratic in a

I So we can parameterize

qψ(t, x, a) = −1

2
qψ2 (t, x) ◦

(
a− qψ1 (t, x)

)2
+ qψ0 (t, x)

I Corresponding policy is normal

πψ(·|t, x) = N
(
qψ1 (t, x), γ

(
qψ2 (t, x)

)−1
)

I Its entropy value is −1
2 log det qψ2 (t, x) + m

2 log 2πeγ
I The second constraint on qψ then yields

qψ0 (t, x) =
γ

2
log
(

det qψ2 (t, x)
)
− mγ

2
log 2π

I ... leading to a more specific parametric form

q
ψ

(t, x, a) = −
1

2
q
ψ
2 (t, x) ◦

(
a− qψ1 (t, x)

)2
+
γ

2
log
(
det q

ψ
2 (t, x)

)
−
mγ

2
log 2π
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Algorithm: Martingale Loss Function
I Minimize martingale loss function:

1

2
EP
[∫ T

0

[
h(X

πψ

T )− Jθ(t,X
πψ

t ) +

∫ T
t

[r(s,X
πψ

s , a
πψ

s )− qψ(s,X
πψ

s , a
πψ

s )]ds

]2
dt

]

I Intrinsically offline

I SGD to update

θ ← θ + αθ

∫ T

0

∂Jθ

∂θ
(t,Xπψ

t )Gt:Tdt

ψ ← ψ + αψ

∫ T

0

∫ T

t

∂qψ

∂ψ
(s,Xπψ

s , aπ
ψ

s )dsGt:Tdt

where

Gt:T = h(Xπψ

T )−Jθ(t,Xπψ

t )+

∫ T

t

[r(s,Xπψ

s , aπ
ψ

s )−qψ(s,Xπψ

s , aπ
ψ

s )]ds,

and αθ and αψ are learning rates
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Algorithm: Martingale Orthogonality Conditions
I Apply martingale orthogonality conditions to get following

system of equations in (θ, ψ):

EP
[∫ T

0

∂Jθ

∂θ
(t,X

πψ

t )

[
dJ
θ
(t,X

πψ

t ) + r(t,X
πψ

t , a
πψ

t )dt− qψ(t,X
πψ

t , a
πψ

t )dtdt

]]
= 0,

and

EP
[∫ T

0

∂qψ

∂ψ
(t,X

πψ

t , a
πψ

t )

[
dJ
θ
(t,X

πψ

t ) + r(t,X
πψ

t , a
πψ

t )dt− qψ(t,X
πψ

t , a
πψ

t )dt

]]
= 0

I Stochastic approximation to update (θ, ψ) either offline by

θ ← θ + αθ

∫ T
0

∂Jθ

∂θ
(t,X

πψ

t )

[
dJ
θ
(t,X

πψ

t ) + r(t,X
πψ

t , a
πψ

t )dt− qψ(t,X
πψ

t , a
πψ

t )dt

]
,

ψ ← ψ + αψ

∫ T
0

∂qψ

∂ψ
(t,X

πψ

t , a
πψ

t )

[
dJ
θ
(t,X

πψ

t ) + r(t,X
πψ

t , a
πψ

t )dt− qψ(t,X
πψ

t , a
πψ

t )dt

]
,

or online by

θ ← θ + αθ
∂Jθ

∂θ
(t,X

πψ

t )

[
dJ
θ
(t,X

πψ

t ) + r(t,X
πψ

t , a
πψ

t )dt− qψ(t,X
πψ

t , a
πψ

t )dt

]
,

ψ ← ψ + αψ
∂qψ

∂ψ
(t,X

πψ

t , a
πψ

t )

[
dJ
θ
(t,X

πψ

t ) + r(t,X
πψ

t , a
πψ

t )dt− qψ(t,X
πψ

t , a
πψ

t )dt

]
.

31 / 33



Algorithm: Martingale Orthogonality Conditions
I Apply martingale orthogonality conditions to get following

system of equations in (θ, ψ):

EP
[∫ T

0

∂Jθ

∂θ
(t,X

πψ

t )

[
dJ
θ
(t,X

πψ

t ) + r(t,X
πψ

t , a
πψ

t )dt− qψ(t,X
πψ

t , a
πψ

t )dtdt

]]
= 0,

and

EP
[∫ T

0

∂qψ

∂ψ
(t,X

πψ

t , a
πψ

t )

[
dJ
θ
(t,X

πψ

t ) + r(t,X
πψ

t , a
πψ

t )dt− qψ(t,X
πψ

t , a
πψ

t )dt

]]
= 0

I Stochastic approximation to update (θ, ψ) either offline by

θ ← θ + αθ

∫ T
0

∂Jθ

∂θ
(t,X

πψ

t )

[
dJ
θ
(t,X

πψ

t ) + r(t,X
πψ

t , a
πψ

t )dt− qψ(t,X
πψ

t , a
πψ

t )dt

]
,

ψ ← ψ + αψ

∫ T
0

∂qψ

∂ψ
(t,X

πψ

t , a
πψ

t )

[
dJ
θ
(t,X

πψ

t ) + r(t,X
πψ

t , a
πψ

t )dt− qψ(t,X
πψ

t , a
πψ

t )dt

]
,

or online by

θ ← θ + αθ
∂Jθ

∂θ
(t,X

πψ

t )

[
dJ
θ
(t,X

πψ

t ) + r(t,X
πψ

t , a
πψ

t )dt− qψ(t,X
πψ

t , a
πψ

t )dt

]
,

ψ ← ψ + αψ
∂qψ

∂ψ
(t,X

πψ

t , a
πψ

t )

[
dJ
θ
(t,X

πψ

t ) + r(t,X
πψ

t , a
πψ

t )dt− qψ(t,X
πψ

t , a
πψ

t )dt

]
.

31 / 33



Outline

Tomas Björk

Background and Motivation

Gibbs Sampler and Boltzmann Exploration

q-Learning

Conclusions

32 / 33



What Do We Need To Learn About Environment?

I Classical model-based approach: separates “estimation” and
“optimization”

I Model-free RL approach: skips estimating a model and learns
optimizing policies directly via PG or Q/q-learning

I But RL still learns something about the environment: q-function or
Hamiltonian

I It is the Hamiltonian, rather than each and every individual model
coefficient, that needs to be learned/estimated for optimization

I From a pure computational standpoint, estimating a single function
is much more efficient and robust than estimating multiple functions
(b, σ, r, h) in terms of avoiding or reducing over-parameterization,
sensitivity to errors and accumulation of errors

I Itô’s formula shows q-function can be learned through temporal
differences of the value function; so the task of learning and
optimizing can be accomplished in a data-driven way

I This would not be the case if we chose to learn individual model
coefficients separately
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