In memory of Professor Tomas Björk

Voting with Decentralized Policy Contingent Promises

Ali Lazrak Jianfeng Zhang UBC USC

Stockholm School of Economics October 2022

Tomas Björk and time inconsistency

- All started with Strotz (1955): beautiful continuous time, deterministic model with non constant discount rate.
- Tomas introduced very the idea of time inconsistency in stochastic settings in a standard model in math finance:
 - Mean variance preferences
- The problem of time inconsistency is much broader because it appears endogenously (i.e not from the preferences) in
 - Dynamic games: game between central banks and private agents
 - Collective decision making: Voting

• There is a stigma with vote trading: Voting is a moral duty that is not amenable to trading

- There is a stigma with vote trading: Voting is a moral duty that is not amenable to trading
- "Vote trading" is however common:

- There is a stigma with vote trading: Voting is a moral duty that is not amenable to trading
- "Vote trading" is however common:

- There is a stigma with vote trading: Voting is a moral duty that is not amenable to trading
- "Vote trading" is however common:
 - "Logrolling" in legislatures

- There is a stigma with vote trading: Voting is a moral duty that is not amenable to trading
- "Vote trading" is however common:
 - "Logrolling" in legislatures
 - Borrow shares to use their voting rights prior to shareholders meetings

- There is a stigma with vote trading: Voting is a moral duty that is not amenable to trading
- "Vote trading" is however common:
 - "Logrolling" in legislatures
 - Borrow shares to use their voting rights prior to shareholders meetings
 - Acquires make promises to labor unions to entice them to support a takeover

- There is a stigma with vote trading: Voting is a moral duty that is not amenable to trading
- "Vote trading" is however common:
 - "Logrolling" in legislatures
 - Borrow shares to use their voting rights prior to shareholders meetings
 - Acquires make promises to labor unions to entice them to support a takeover
 - Democrats had to change the economic stimulus bill to get the pivotal support of Joe Manchin

- There is a stigma with vote trading: Voting is a moral duty that is not amenable to trading
- "Vote trading" is however common:
 - "Logrolling" in legislatures
 - Borrow shares to use their voting rights prior to shareholders meetings
 - Acquires make promises to labor unions to entice them to support a takeover
 - Democrats had to change the economic stimulus bill to get the pivotal support of Joe Manchin
- Normative implications of vote trading are not clear:

- There is a stigma with vote trading: Voting is a moral duty that is not amenable to trading
- "Vote trading" is however common:
 - "Logrolling" in legislatures
 - Borrow shares to use their voting rights prior to shareholders meetings
 - Acquires make promises to labor unions to entice them to support a takeover
 - Democrats had to change the economic stimulus bill to get the pivotal support of Joe Manchin
- Normative implications of vote trading are not clear:
 - Vote trading allows to express the intensity of preferences (good)

- There is a stigma with vote trading: Voting is a moral duty that is not amenable to trading
- "Vote trading" is however common:
 - "Logrolling" in legislatures
 - Borrow shares to use their voting rights prior to shareholders meetings
 - Acquires make promises to labor unions to entice them to support a takeover
 - Democrats had to change the economic stimulus bill to get the pivotal support of Joe Manchin
- Normative implications of vote trading are not clear:
 - Vote trading allows to express the intensity of preferences (good)
 - Trading votes generates externalities on non-trading members (bad)

- There is a stigma with vote trading: Voting is a moral duty that is not amenable to trading
- "Vote trading" is however common:
 - "Logrolling" in legislatures
 - Borrow shares to use their voting rights prior to shareholders meetings
 - Acquires make promises to labor unions to entice them to support a takeover
 - Democrats had to change the economic stimulus bill to get the pivotal support of Joe Manchin
- Normative implications of vote trading are not clear:
 - Vote trading allows to express the intensity of preferences (good)
 - Trading votes generates externalities on non-trading members (bad)
- This paper: Vote trading through promises contingent on the collective decision of a committee ruled by a qualified majority rule in the absence of any stigma/constraint.

This paper

• A committee $\mathbb{I} = \{1, \dots, I\}$ of I members vote to adopt/reject a reform with a super majority rule κ (If $I = 3, \kappa = 2$).

() Intensity of preferences for the reform are known $u_1 \le u_2 \le ... \le 0 \le ... \le u_l$.

2 The reform is socially optimal $\sum_i u_i > 0$.

• Timing of the model:

The promises r = (r₁,..,r_l) (resp. s = (s₁,..,s_l)) contingent on adopting (resp. rejecting) the reform are done within the committee:

$$(\boldsymbol{r},\boldsymbol{s})\in\mathcal{P}^2\Leftrightarrow\sum_ir_i=\sum_is_i=0$$

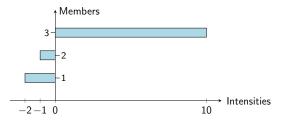
Committee member i vote for or against the reform to maximize the ex post intensity

$$v_i^{r,s} := \left\{ egin{array}{cc} u_i + r_i & ext{if the reform is adopted;} \\ s_i, & ext{otherwise} \end{array}
ight.$$

3 The promises are enforced.

• In this framework, we define the "*political equilibrium*" and provide insights on the structure of promises that need to be done to implement the political equilibrium. An example: Committee with 3 members ruled by majority $(\kappa = 2)$

Ex ante utilities:
$$\boldsymbol{u} = (-2, -1, 10)$$



 \bullet Reform is defeated without promises: $\textbf{v}^{0}=(0,0,0)$

• Promises generate gains from trades

• Reform is adopted after the promises are made!

• Too many degrees of freedom: Stability at the cheapest cost

Lazrak and Zhang

Main results

Equilibrium Definition

1) No blocking coalition exists, 2) The total promises are minimized

- All equilibria implement the socially optimal reform
 - Intuition: If the reform is defeated, blocking coalitions emerge to "grow the total size of the pie" and get a better payoff.
- Multiple equilibria
 - Intuition: indeterminacy in cost sharing and distribution of enticements.
- Equilibrium promises feature some general properties:
 - Voluntary participation for those who make the promises
 - Push toward equality: Top-down flow of promises.
 - When the reform is defeated under no trade: Frustrated minority coalition compensates a majority coalition to sway their vote in favour of the reform.
 - When the reform is adopted under no trade: Promises may be needed to preempt the emergence of frustrated minorities

Notations

Decisive coalitions:

$$\mathcal{D}^{R} = \{ \mathcal{C} \subseteq \mathbb{I} : |\mathcal{C}| \ge \kappa \}, \quad \mathcal{D}^{S} = \{ \mathcal{C} \subseteq \mathbb{I} : |\mathcal{C}| \ge I - \kappa + 1 \}$$

- Supportive coalitions: $C^R = \{i : u_i \ge 0\}, \quad C^S = \{i : u_i < 0\}$
- Aggregate intensity of preferences: $U_R = \sum_{i \in C^R} |u_i|, U_S = \sum_{i \in C^S} |u_i|.$
- For any given transfer promises (\mathbf{r}, \mathbf{s}) from the set $\mathcal{P} = \{x | \sum_{i \in \mathbb{I}} x_i = 0\}$:
 - The committee decision is $D(r, s) \in \{R, S\}$

$$D(\mathbf{r}, \mathbf{s}) := \begin{cases} R, & \text{if } |\{i : u_i + r_i \ge s_i\}| \ge \kappa; \\ S, & \text{otherwise} \end{cases}$$

• The voting outcome: $v_i^{r,s}$ is given by

$$v_i^{\boldsymbol{r},\boldsymbol{s}} := \left\{ egin{array}{cc} u_i + r_i, & ext{if } D(\boldsymbol{r},\boldsymbol{s}) = R; \\ s_i, & ext{otherwise} \end{array}
ight.$$

The political equilibrium

A coalition $\mathcal C$ of at least two members blocks the promises $(r, s) \in \mathcal P^2$ iff

() When $D(\mathbf{r}, \mathbf{s}) = R$: There exists a promise $\tilde{\mathbf{s}} \in \mathcal{P}$ such that:

$$\tilde{\boldsymbol{s}}_i \neq 0$$
 if and only if $i \in C$; $D(\boldsymbol{r}, \boldsymbol{s} + \tilde{\boldsymbol{s}}) = S$ and,

$$v_i^{\boldsymbol{r},\boldsymbol{s}+\tilde{\boldsymbol{s}}} > v_i^{\boldsymbol{r},\boldsymbol{s}}$$
 for all $i \in \mathcal{C}$.

3 When $D(\mathbf{r}, \mathbf{s}) = S$: There exists a promise $\tilde{\mathbf{r}} \in \mathcal{P}$ such that:

$$\tilde{\boldsymbol{r}}_i \neq 0$$
 if and only if $i \in C$; $D(\boldsymbol{r} + \tilde{\boldsymbol{r}}, \boldsymbol{s}) = R$ and,

• $v_i^{\boldsymbol{r}+\tilde{\boldsymbol{r}},\boldsymbol{s}} > v_i^{\boldsymbol{r},\boldsymbol{s}}$ for all $i \in \mathcal{C}$.

$(\mathbf{r}, \mathbf{s}) \in \mathcal{P}^2$ is an equilibrium (\mathcal{E}) iff

() No blocking coalition exists: (\mathbf{r}, \mathbf{s}) is stable (\mathcal{S}_0) ,

Cheapest cost of enticement: The total promise $\mathcal{T}_{\mathbf{r},\mathbf{s}} = \frac{1}{2} \sum_{\mathbb{I}} |r_i| + \frac{1}{2} \sum_{\mathbb{I}} |s_i|$ is minimized

Equilibrium analysis

Observation

Equilibria with minimal total promises have the form (r, 0) or simply r. Intuition: if (r, s) is stable, then (r - s, 0) is also stable and $\mathcal{T}_{r-s,0} \leq \mathcal{T}_{r,s}$.

Proposition 1: Characterization of the stable promises

A promise *r* is stable iff

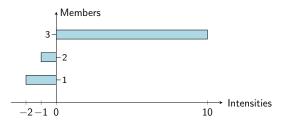
$$\sum_{\mathcal{C}} (u_i + r_i) \geq 0 \text{ for all coalitions } \mathcal{C} \in \mathcal{D}^{\mathcal{S}}$$

Proposition 2: Existence, indeterminacy and efficiency

Stable promises \mathbf{r} are indeterminate they all implement the reform: $D(\mathbf{r}) = R$.

The equilibrium promises are also indeterminate: the multiplicity is not removed by minimizing the total payment T_r .

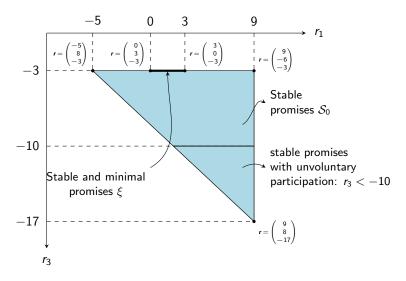
Example continued: Committee with 3 members ruled by majority



•
$$\boldsymbol{u} = (u_1, u_2, u_3) = (-2, -1, 10).$$

- No trading is not an equilibrium: $u_1 + u_2 = -3 < 0$
- The equilibrium payment promises satisfy $r_1 + r_2 \ge 3$, $r_1 + r_3 \ge -8$, $r_2 + r_3 \ge -9$ and, $r_1 + r_2 + r_3 = 0$.
- Member 3 need to pay 3 to the coalition {1,2}.
- The set of equilibrium payment promises satisfies $T_r = 3$

Visualization of the example: $\boldsymbol{u} = (-2, -1, 10)$



 Minimality i) reduces multiplicity but does not eliminate it and, ii) imply voluntary participation: no one promises more than ex ante utility

Lazrak and Zhang

General properties of the equilibrium promises

Proposition 3: Voluntary participation

Stable promises can violate voluntary participation for those who make the promises. Equilibrium promises are consistent with voluntary participation for those who make the promises.

Proposition 4: Push toward equality

For any equilibrium with minimal total promises, there exists k_* such that:

- $r_i \ge 0$ for all $i < k_*$,
- $r_j \leq 0$ for all $k_* \leq j$ and,
- $v_i^{\mathbf{r}} \leq v_j^{\mathbf{r}}$ for all $i < k_* \leq j$.

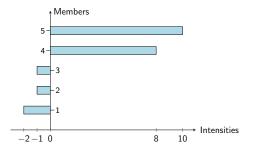
Result:

- Top-down flow of promises.
- The order of inter-coalition *ex ante* intensities is not reversed by the *ex post* intensities.

An example of frustrated minority: $|C^{R}| < \kappa$

• A committee with 5 members rules by majority $\kappa = 3$:

$$\boldsymbol{u} = (u_1, u_2, u_3, u_4, u_5) = (-2, -1, -1, 8, 10).$$

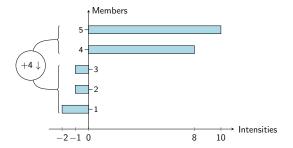


In any equilibrium, T_r = 4 and the coalition C^R = {4, 5} need to promise a total of 4 to the coalition C^S = {1, 2, 3}.

An example of frustrated minority: $|C^{R}| < \kappa$

• A committee with 5 members rules by majority $\kappa = 3$:

$$\boldsymbol{u} = (u_1, u_2, u_3, u_4, u_5) = (-2, -1, -1, 8, 10).$$



• Examples of minimum payment equilibrium

▶
$$\mathbf{r} = (2, 1, 1, -2, -2)$$
 leading to $\mathbf{v}^{\mathbf{r}} = (0, 0, 0, 6, 8)$.

▶
$$r = (0, 0, 4, 0, -4)$$
 leading to $v^r = (-2, -1, 3, 8, 6)$.

Lazrak and Zhang

Equilibrium with weak support for the reform $\mid C^R \mid < \kappa$

Proposition 5: "Frustrated minority"

The promise profile $\textbf{r} \in \mathcal{P}$ is an equilibrium if and only if

- $T_{\mathbf{r}} = \min_{\mathbf{r'} \in S_o} \mathcal{T}_{\mathbf{r'}} = U_S$
- Omega Members of C^R send the promises: r_i ≤ 0 for all i ∈ C^R. The promises are indeterminate but satisfy the voluntary participation constraint -u_i ≤ r_i and ∑_{C^R} r_i = -U_S.
- Members of the coalition C^S receive the promises: r_i ≥ 0 with ∑_{C^S} r_i = U_S.
 When |C^R| < κ − 1, r_i = −u_i > 0 for all i ∈ C^S.
 - When |C^R| = κ 1, there are multiple ways of distributing the total payment promises of U^S among the members of C^S.
- In all cases, the ex post intensity of any reform opponent is smaller than the ex post intensity of any reform supporter

$$u_i + r_i \leq u_j + r_j$$
, for all $i \in C^S$, $j \in C^R$.

Equilibrium with strong support for the reform: $|\mathcal{C}^R| \geq \kappa$

- We denote by *n* the swing voter for the status quo $C^{S} = \{1, .., n\}$ with $|C^{S}| = n \le I \kappa$, so that $C^{R} = \{n + 1, .., I\}$.
- The minority coalition C^{S} can "entice" the coalition:

$$\underline{\mathcal{C}}^{R} = \{n+1, .., I-\kappa+1\}$$

- The coalition C^S need to promise a total of <u>U</u>^R := ∑_C^R u_i to convince members of the coalition <u>C</u>^R to vote against the reform.
- \bullet The gains from trade of the coalition \mathcal{C}^{S} is:

$$G^S = U^S - \underline{U}^R.$$

Proposition 6: No trade equilibrium

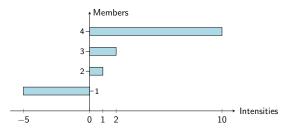
Assume $|\mathcal{C}^R| \ge \kappa$ and $G^S \le 0$. The only equilibrium is a no trade equilibrium $r = \mathbf{0}$.

Strong support of the reform, $|C^R| \ge \kappa$ and $G^S > 0$

- Members of the coalition C^R/C^R have to promise G^S to preempt members of the coalition C^S from "bribing" the coalition C^R into voting for S.
- The total payment promise will be at least G^{S} .
- The analysis shows that two subcases need to be considered:
 - ► The coalition C^R/<u>C</u>^R can afford to promise G^S to preempt the enticement of <u>C</u>^R from taking place without inducing some of its members to be new subjects of enticements to vote against the reform.
 - ► The coalition C^R/C^R cannot afford to promise G^S without reversing the natural order to ex ante intensities.

The case $|\mathcal{C}^R| \ge \kappa$ and positive but small G^S

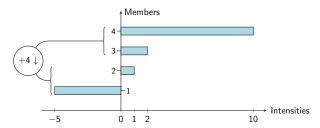
I = 4, *ex ante* intensities $\boldsymbol{u} = (-5, 1, 2, 10)$; majority rule $\kappa = 3$.



- We have $U^R = 13$, $U^S = 5$, $\underline{U}^R = 1$ and $G^S = 4$
- All equilibria require the coalition {3,4} to promise 4 to the members of the coalition {1,2} without reversing the *ex ante* inter coalition ranking of intensities.
- All equilibria have $T_r = 4$

The case $|\mathcal{C}^R| \geq \kappa$ and positive but small G^S

I = 4, *ex ante* intensities $\boldsymbol{u} = (-5, 1, 2, 10)$; majority rule $\kappa = 3$.



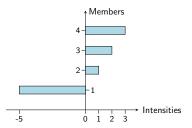
Indeterminacy occurs again:

$$\mathbf{r} = (3, 1, 0, -4),$$
 $\mathbf{v}^{\mathbf{r}} = (-2, 2, 2, 6);$
 $\mathbf{r} = (4, 0, -1, -3),$ $\mathbf{v}^{\mathbf{r}} = (-1, 1, 1, 7);$

• The following *r* is not an equilibrium, although its total payment is \$4:

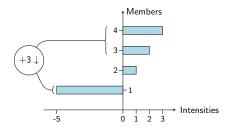
$$r = (2, 2, -1, -3),$$
 $v^r = (-3, 3, 1, 7).$

I = 4, ex ante intensities $\boldsymbol{u} = (-5, 1, 2, 3)$; majority rule $\kappa = 3$.



- We have $U^R = 6$, $U^S = 5$, $\underline{U}^R = 1$ and $G^S = 4$
- If the members of the coalition {3,4} promise 4 to the members of the coalition {1,2} the *ex ante* inter coalition ranking of intensities cannot be preserved by the *ex post* intensities.
- For example r = (4,0,-2,-2) lead to the it ex post intensities
 r' = (-1,1,0,1): Member 2 becomes a new target of enticement by member 1.

I = 4, ex ante intensities $\boldsymbol{u} = (-5, 1, 2, 3)$; majority rule $\kappa = 3$.



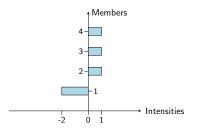
- To achieve an equilibrium the following algorithm need to be performed:
- Step 1: Member 3 and 4 need to promise just enough to align their intensities with that of member 2

$$\mathbf{r}^{[1]} = (3, 0, -1, -2).$$

New intensities become

$$\boldsymbol{u}^{[1]} = (-2, 1, 1, 1).$$

I = 4, *ex ante* intensities $\boldsymbol{u} = (-5, 1, 2, 3)$; majority rule $\kappa = 3$.



• New intensities are

$$\boldsymbol{u}^{[1]} = (-2, 1, 1, 1).$$

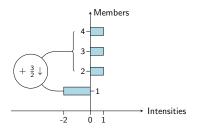
• Gains from trade is

$$G_{[1]}^S = 1$$

• Members of the coalition {2,3,4} need to promise the same amount otherwise whoever pays more becomes a new target of enticement

Lazrak and Zhang

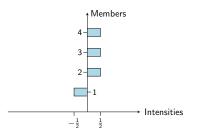
I = 4, ex ante intensities $\boldsymbol{u} = (-5, 1, 2, 3)$; majority rule $\kappa = 3$.



- Each member of the coalition {2,3,4} promises 0.5 to member 1
- The total payment promises after the two rounds is

$$T_r = 3 + 3/2 = 9/2 > G^S = 4$$

I = 4, ex ante intensities $\boldsymbol{u} = (-5, 1, 2, 3)$; majority rule $\kappa = 3$.



New intensities are

$$\boldsymbol{u}^{[2]} = (-\frac{1}{2}, \ \frac{1}{2}, \ \frac{1}{2}, \ \frac{1}{2}).$$

• No more incentives for enticements: $G_{[2]}^{S} = 0$.

The case $|\mathcal{C}^R| \geq \kappa$ and positive but small G^S

Proposition 7: Preemptive promises of first order

Assume $|\mathcal{C}^{R}| \geq \kappa$ and $0 < G^{S} \leq \sum_{j \in \mathcal{C}^{R} \setminus \underline{\mathcal{C}}^{R}} [u_{j} - u_{I-\kappa+1}].$

The payment promises profile $\pmb{r} \in \mathcal{P}$ is an equilibrium if and only if

 Members of the coalition C^S ∪ C^R receive the promises while the members of the coalition C^R\C^R send the promises :

$$-u_j \leq r_j \leq 0 \leq r_i$$
 for all $i \in \mathcal{C}^S \cup \underline{\mathcal{C}}^R$ and $j \in \mathcal{C}^R \setminus \underline{\mathcal{C}}^R$.

• the ex post intensity of any reform opponent is smaller than the ex post intensity of any reform supporter

$$u_i + r_i \leq u_j + r_j$$
, for all $i \in \mathcal{C}^S \cup \underline{\mathcal{C}}^R$ and $j \in \mathcal{C}^R \setminus \underline{\mathcal{C}}^R$.

• The minimum total payment achieved in all equilibria is

$$\mathcal{T}_* = \sum_{i \in \mathcal{C}^S \cup \underline{\mathcal{C}}^R} r_i = G^S$$

The case
$$|\mathcal{C}^R| \geq \kappa$$
 and large $G^S > 0$

Proposition 8: Preemptive promises of higher order Assume $|C^{R}| \ge \kappa$ and $G^{S} > \sum_{j \in C^{R} \setminus \underline{C}^{R}} [u_{j} - u_{I-\kappa+1}]$. Define k_{*} with

$$\sum_{j \in \mathcal{C}^R \setminus \underline{\mathcal{C}}^R} [u_j - u_{k_*}] < G^{\mathsf{S}} \leq \sum_{j \in \mathcal{C}^R \setminus \underline{\mathcal{C}}^R} [u_j - u_{k_*-1}]$$

The promises $r \in \mathcal{P}$ is an equilibrium if and only if

$$r_i \geq 0 > r_j, \quad v_i^{\mathbf{r}} \leq u_{k_*} - x_* = v_j^{\mathbf{r}}, \quad \forall i < k_* \leq j.$$

The minimum total promises achieved in all equilibria is,

$$\mathcal{T}_{*} = \sum_{i < k_{*}} r_{i} = \sum_{i \ge k_{*}} \left[u_{i} - u_{k_{*}} + x_{*} \right] > G^{S}$$
$$x_{*} := \frac{G^{S} - \sum_{j \in \mathcal{C}^{R} \setminus \underline{\mathcal{C}}^{R}} [u_{j} - u_{k_{*}}]}{\kappa - 1}.$$

Conclusion

- We consider a voting model where voters can freely make promises contingent on vote outcome and prior to voting in order to influence the vote of those who receive the promises.
- The promises are decentralized, enforceable and, are only guided by self interest
- Median voter theorem does not hold because the policy set is multidimensional: The political equilibrium is based on stability and total promises minimization.
- We find, that equilibria exist, are indeterminate but satisfy some general properties:
 - Push toward equality: Top-down flow of payment.
 - When the reform is defeated under no trade: Frustrated minority coalition compensates a majority coalition to sway their vote in favour of the reform.
 - ► When the reform is adopted under no trade: Trading may be needed to preempt the emergence of frustrated minorities