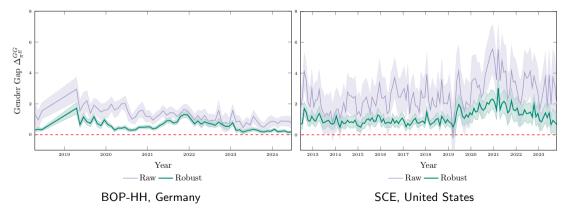
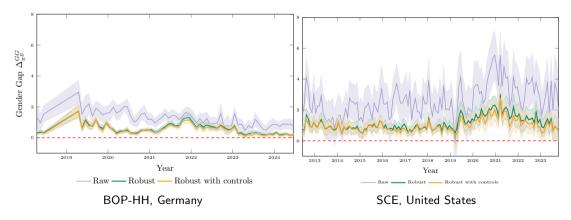

Beyond Groceries: Forecast Confidence and the Gender Gap in Inflation Expectations

Lovisa Reiche


Department of Finance BI Norwegian Business School

CEPR European Conference on Household Finance 19 September 2025


Observation: Women have on average higher inflation point forecasts than men.

Observation: Women have on average higher inflation point forecasts than men. This is driven partially by outliers.

Observation: Women have on average higher inflation point forecasts than men. But cannot be explained through demographics.

Observation: Women have on average higher inflation point forecasts than men. **Question:** What are possible drivers of the gender gap in inflation expectations?

Observation: Women have on average higher inflation point forecasts than men. **Question:** What are possible drivers of the gender gap in inflation expectations?

Exposure

Women in traditional households roles are more exposed to food prices [Jonung, 1981, D'Acunto et al., 2021b].

Distribution of historical Food CPI

Observation: Women have on average higher inflation point forecasts than men. **Question:** What are possible drivers of the gender gap in inflation expectations?

Exposure

Women in traditional households roles are more exposed to food prices [Jonung, 1981, D'Acunto et al., 2021b].

Distribution of historical Food CPI

Forecast confidence

Women have lower confidence in their financial skills [Bucher-Koenen et al., 2024] and thus report rounded, less precise forecasts [Reiche and Meyler, 2022]. Distribution of point forecasts

Observation: Women have on average higher inflation point forecasts than men. **Question:** What are possible drivers of the gender gap in inflation expectations?

Part I: Bayesian updating framework illustrates interaction of signals (experiences) and priors (confidence) on posterior expectations

→ Volatile signals (i.e. grocery shopping experience) increase average posterior expectations only if priors are imprecise (i.e. forecast confidence is low)

Observation: Women have on average higher inflation point forecasts than men. **Question:** What are possible drivers of the gender gap in inflation expectations?

Part I: Bayesian updating framework illustrates interaction of signals (experiences) and priors (confidence) on posterior expectations

→ Volatile signals (i.e. grocery shopping experience) increase average posterior expectations only if priors are imprecise (i.e. forecast confidence is low)

- → Confidence dominates exposure.
- → Grocery shopping matters for low confidence.

Observation: Women have on average higher inflation point forecasts than men. **Question:** What are possible drivers of the gender gap in inflation expectations?

Part I: Bayesian updating framework illustrates interaction of signals (experiences) and priors (confidence) on posterior expectations

→ Volatile signals (i.e. grocery shopping experience) increase average posterior expectations only if priors are imprecise (i.e. forecast confidence is low)

- → Confidence dominates exposure.
- → Grocery shopping matters for low confidence.

Observation: Women have on average higher inflation point forecasts than men. **Question:** What are possible drivers of the gender gap in inflation expectations?

Part I: Bayesian updating framework illustrates interaction of signals (experiences) and priors (confidence) on posterior expectations

→ Volatile signals (i.e. grocery shopping experience) increase average posterior expectations only if priors are imprecise (i.e. forecast confidence is low)

- → Confidence dominates exposure.
- \rightarrow Grocery shopping matters for low confidence.
- \rightarrow Low confidence is in parts driven by lower financial literacy.

Observation: Women have on average higher inflation point forecasts than men. **Question:** What are possible drivers of the gender gap in inflation expectations?

Part I: Bayesian updating framework illustrates interaction of signals (experiences) and priors (confidence) on posterior expectations

→ Volatile signals (i.e. grocery shopping experience) increase average posterior expectations only if priors are imprecise (i.e. forecast confidence is low)

- \rightarrow Confidence dominates exposure.
- → Grocery shopping matters for low confidence.
- \rightarrow Low confidence is in parts driven by lower financial literacy.
- → Confidence explains heterogeneity beyond gender.

Contributions

Unifying framework to connect Exposure with Forecast Confidence.

Theoretically...

[Cavallo et al., 2017]
Malmendier and Nagel, 2016]
[Coibion and Gorodnichenko, 2015,
Bordalo et al., 2020,
Kohlhas and Walther, 2021]

[Cavallo et al., 2017
D'Acunto et al., 2022,
D'Acunto and Webe

..empirically...

D'Acunto et al., 2021a,
Weber et al., 2022,
D'Acunto and Weber, 2024,
D'Acunto et al., 2024,
Anesti et al., 2025]
[Burke and Manz, 2014,
Lusardi and Mitchell, 2014,
Bucher-Koenen et al., 2017,
Bucher-Koenen et al., 2024,
Reiche and Meyler, 2022,
D'Acunto et al., 2023]

..and over time.

[Bracha and Tang, 2024, Pfäuti, 2024, Weber et al., 2025, Granziera et al., 2025]

Overview

1. Framework

- 2. Data and Measurement
- 3. The Effects of Forecast Confidence and Exposure
 - 3.1 Forecast confidence dominates exposure.
 - 3.2 Exposure matters only through confidence.
- 4. Financial literacy as a mitigating factor
- 5. Applications Beyond Gender
- 6. Conclusion

Prior: $\log \pi \sim \mathcal{N}\left(\mu_0, \frac{1}{\tau_0}\right)$

Prior:
$$\log \pi \sim \mathcal{N}\left(\mu_0, \frac{1}{\tau_0}\right)$$
Average density forecast Confidence channel

Prior:
$$\log \pi \sim \mathcal{N}\left(\mu_0, \frac{1}{\tau_0}\right)$$

Signal: $\log x = \log \pi + \epsilon$, where $\epsilon \sim \mathcal{N}\left(0, \frac{1}{\tau_x}\right)$

Distribution of historical CPL

Prior:
$$\log \pi \sim \mathcal{N}\left(\mu_0, \frac{1}{\tau_0}\right)$$

$$\begin{array}{c} \textbf{Signal: } \log x = \log \pi + \epsilon, \\ \text{where } \epsilon \sim \mathcal{N}\left(0, \frac{1}{\tau_{\chi}}\right) \\ \\ \textbf{Distribution of historical CPI} \\ \hline \\ \textbf{Unbiased signal} \end{array}$$

Prior:
$$\log \pi \sim \mathcal{N}\left(\mu_0, \frac{1}{\tau_0}\right)$$

Signal: $\log x = \log \pi + \epsilon$, where $\epsilon \sim \mathcal{N}\left(0, \frac{1}{\tau_{\mathsf{x}}}\right)$

Posterior:
$$\log \pi | x \sim \mathcal{N}\left(\frac{\tau_0 \mu_0 + \tau_x \log x}{\tau_0 + \tau_x}, \frac{1}{\tau_0 + \tau_x}\right)$$

Distribution of point forecasts

Prior:
$$\log \pi \sim \mathcal{N}\left(\mu_0, \frac{1}{\tau_0}\right)$$

Signal: $\log x = \log \pi + \epsilon$, where $\epsilon \sim \mathcal{N}\left(0, \frac{1}{\tau_x}\right)$

where $\epsilon \sim \mathcal{N}\left(0, \frac{1}{ au_{\mathsf{x}}}
ight)$

Posterior: $\log \pi | x \sim \mathcal{N}\left(\frac{\tau_0 \mu_0 + \tau_x \log x}{\tau_0 + \tau_x}, \frac{1}{\tau_0 + \tau_x}\right)$

Distribution of point forecasts

$$\begin{split} \mathbb{E}(\pi|x) &= \exp\left(\frac{\tau_0\mu_0 + \tau_x \log x + \frac{1}{2}}{\tau_0 + \tau_x}\right) \\ &IQR(\pi|x) = \exp\left(\frac{\tau_0\mu_0 + \tau_x \log x}{\tau_0 + \tau_x} + \frac{\Phi^{-1}(0.75)}{\tau_0 + \tau_x}\right) - \exp\left(\frac{\tau_0\mu_0 + \tau_x \log x}{\tau_0 + \tau_x} + \frac{\Phi^{-1}(0.25)}{\tau_0 + \tau_x}\right) \end{split}$$

Prior:
$$\log \pi \sim \mathcal{N}\left(\mu_0, \frac{1}{\tau_0}\right)$$

$$\begin{array}{l} \textbf{Signal: } \log x = \log \pi + \epsilon, \\ \text{where } \epsilon \sim \mathcal{N}\left(0, \frac{1}{\tau_{\mathbf{x}}}\right) \\ \text{Distribution of historical CPI} \end{array}$$

Posterior:
$$\log \pi | x \sim \mathcal{N}\left(\frac{\tau_0 \mu_0 + \tau_x \log x}{\tau_0 + \tau_x}, \frac{1}{\tau_0 + \tau_x}\right)$$

Calibrate τ_0 and τ_{\times} for men and women by matching posterior moments:

	BOP-HH, Germany		SCE, US	
	Men	Women	Men	Women
Model $ au_0$	0.57	0.45	0.60	0.40
Model $ au_{x}$	8.22	9.39	1.27	1.32
Model Actual Gap	1.24		:	2.35
Empirical Gap		1.22	:	2.61
Equalized Gap	-0.07		-0.07	
Share Explained by $ au_0$	1.08		0.93	

$$\begin{split} \mathbb{E}(\pi|x) &= \exp\left(\frac{\tau_0\mu_0 + \tau_x\log x + \frac{1}{2}}{\tau_0 + \tau_x}\right) \\ &IQR(\pi|x) = \exp\left(\frac{\tau_0\mu_0 + \tau_x\log x}{\tau_0 + \tau_x} + \frac{\Phi^{-1}(0.75)}{\tau_0 + \tau_x}\right) - \exp\left(\frac{\tau_0\mu_0 + \tau_x\log x}{\tau_0 + \tau_x} + \frac{\Phi^{-1}(0.25)}{\tau_0 + \tau_x}\right) \end{split}$$

Overview

1. Framework

2. Data and Measurement

- 3. The Effects of Forecast Confidence and Exposure
 - 3.1 Forecast confidence dominates exposure.
 - 3.2 Exposure matters only through confidence.
- 4. Financial literacy as a mitigating factor
- 5. Applications Beyond Gender
- 6. Conclusion

Combining three household surveys

Survey	Time/Place	Participants	Questions of Interest
вор-нн	Apr.2020- Sep.2022, DE	2000/month	$in/deflation + (definition) from 0-100$ $\Longrightarrow \mathbb{E}_i(\pi x) + Probabilistic bins for inflation \bowtie IQR_i(\pi x) Engelberg et al. 2009 + Household responsibilities \Longrightarrow shop_groceries_i + Financial literacy test + survey feedback$

Combining three household surveys

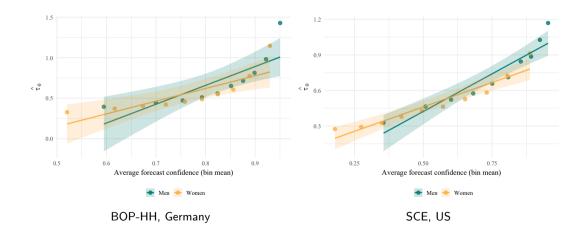
Survey	Time/Place	Participants	Questions of Interest
ВОР-НН	Apr.2020- Sep.2022, DE	2000/month	$in/deflation + (definition) from 0-100$ $\Rightarrow \mathbb{E}_i(\pi x)$ + Probabilistic bins for inflation $\Rightarrow IQR_i(\pi x)$ Engelberg et al. 2009 + Household responsibilities \Rightarrow shop_groceries; + Financial literacy test + survey feedback
SCE	Jun.2013- Nov.2020, US	1200/month	 inflation/deflation from 0-100 + Probabilistic bins for inflation + Financial literacy test + survey feedback + Inflation of specific items

Measuring Confidence

Rounding as a Measure of Forecast Confidence

- → Indicates low confidence in precise forecasting [Krifka, 2007]
- → Used in macro-uncertainty indices [Binder, 2017, Reiche and Meyler, 2022]

Distribution of point forecasts


$$\mathsf{prob_confident}_i = 1 - rac{1}{1 + e^{-\left(\hat{lpha}_0 + R_{i,t}\hat{eta} + \mathsf{X}_{i,t}\hat{\gamma}
ight)}}$$

where:

- ullet probround i is the predicted probability that individual i rounds their inflation forecast
- D_i is a vector of uncertainty measures (feedback, rounding, repeated participation) and X_i contains household characteristics

Regression results

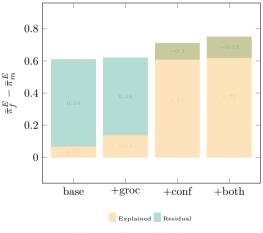
Measuring Confidence

Overview

- 1. Framework
- 2. Data and Measurement
- 3. The Effects of Forecast Confidence and Exposure
 - 3.1 Forecast confidence dominates exposure.
 - 3.2 Exposure matters only through confidence.
- 4. Financial literacy as a mitigating factor
- 5. Applications Beyond Gender
- 6. Conclusion

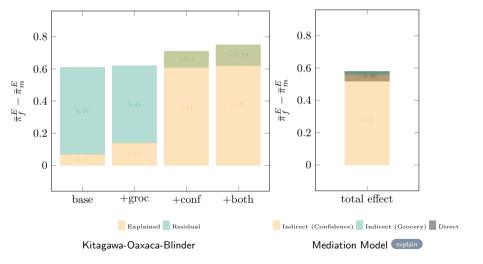
Decomposing the Gender Gap

Kitagawa-Oaxaca-Blinder decomposition


[Kitagawa, 1955, Oaxaca, 1973, Blinder, 1973]

$$\pi_{i,t}^{E} = \beta_0 + X_{i,t}\gamma_1 + D_t\gamma_2 + R_i\gamma_3 + v_i + \rho_t,$$

$$\bar{\pi}_w^{E} - \bar{\pi}_m^{E} = \underbrace{\hat{\gamma}_w(\bar{W} - \bar{M})}_{\text{explained by differences in } \bar{W}, \bar{M}} + \underbrace{\bar{M}(\hat{\gamma}_w - \hat{\gamma}_m)}_{\text{residual}}.$$


- \bar{W}, \bar{M} : vector of average values of the independent variables for women/men
- $\hat{\gamma}_w, \hat{\gamma}_m$: vector of estimated coefficients from the female/male sample
- $X_{i,t}$: vector of demographic characteristics: age, income, education, full-time, part-time, unemployed, retired, homemaker, refresher
- D_t : vector of time dummies
- R_i: vector of regional dummies

Confidence as Main Driver

Kitagawa-Oaxaca-Blinder

Confidence as Main Driver

Interaction Specification

$$\pi_{i,t}^{E} = \beta_0 + \beta_1 \text{female}_i + \beta_2 \text{prob_confident}_{i,t} + \beta_3 \text{shop_groceries}_i \\ + \beta_4 \text{prob_confident}_{i,t} \times \text{shop_groceries}_i + X_{i,t} \gamma_1 + D_t \gamma_2 + R_i \gamma_3 + v_i + \rho_t,$$

where

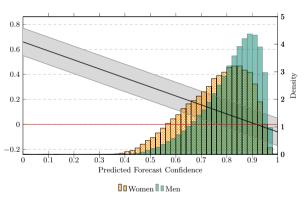
- $X_{i,t}$ is a vector of demographic characteristics: age, income, education, full-time, part-time, unemployed, retired, homemaker, refresher
- D_t is a vector of time dummies
- R_i is a vector of regional dummies

	Inflation expectation (12m ahead, point estimate)
female	-0.08*** (0.01)
$prob_confident$	-11.20*** (0.06)
shop_groceries	0.07*** (0.01)
prob_confident :	x shop groceries

Residual SE	1.65	
	*p<0.1; **p<0.05; ***p<0.01;	

N = 155,202. Standard errors in parentheses.

	Inflation expectation (12m ahead, point estimate)		
female	-0.08*** (0.01)	-0.08*** (0.01)	
prob_confident	-11.20*** (0.06)	-10.76*** (0.10)	
shop_groceries	0.07*** (0.01)	0.66*** (0.10)	
prob_confident × shop_groceries		0.72*** (0.12)	
Residual SE	1.65	1.65	

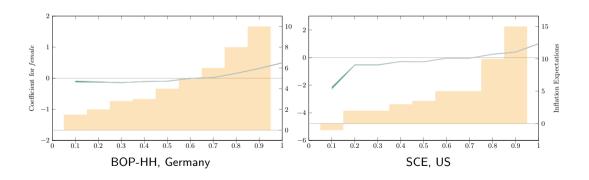

*p<0.1; **p<0.05; ***p<0.01;

N = 155,202. Standard errors in parentheses.

	Inflation expectation (12m ahead, point estimate)			
female	-0.08*** (0.01)	-0.08*** (0.01)	pping	
prob_confident	-11.20*** (0.06)	-10.76*** (0.10)	cery Sho	
shop_groceries	0.07*** (0.01)	0.66*** (0.10)	Effect of Grocery Shopping	
prob_confident :	0.72*** (0.12)	Effe		
Residual SE	1.65	1.65		

 $^*p<0.1;\ ^{**}p<0.05;\ ^{***}p<0.01;$

N=155,202. Standard errors in parentheses.



The Gender Gap and Skewness

Framework: Heterogeneity in $\frac{1}{\tau_0}$ and $\frac{1}{\tau_x}$ affects $\mathbb{E}(\pi|x)$ positively because of the right skew

The Gender Gap and Skewness

Framework: Heterogeneity in $\frac{1}{\tau_0}$ and $\frac{1}{\tau_x}$ affects $\mathbb{E}(\pi|x)$ positively because of the right skew Estimate the baseline model along percentiles of the distribution of $\pi_{i,t}^E$

Overview

- 1. Framework
- 2. Data and Measurement
- 3. The Effects of Forecast Confidence and Exposure
 - 3.1 Forecast confidence dominates exposure.
 - 3.2 Exposure matters only through confidence.
- 4. Financial literacy as a mitigating factor
- 5. Applications Beyond Gender
- 6. Conclusion

Measuring Financial Literacy

Lower confidence may be linked to lower financial literacy among women [Bucher-Koenen et al., 2024]

Measuring Financial Literacy

Lower confidence may be linked to lower financial literacy among women [Bucher-Koenen et al., 2024]

How to measure Financial Literacy:

- Standardized Financial Literacy Test [Lusardi and Mitchell, 2014] in SCE and BOP-HH
- Score of 1 assigned for correct answers on interest, inflation, and risk
- Dummy fin_lit: 3 correct answers

Financial Literacy and Forecast Confidence

Financial Literacy Specification:

$$prob_confident_{i,t} = \beta_0 + \beta_1 female_i + \beta_2 fin_lit_{i,t} + \beta_3 female_i \times fin_lit_{i,t} + X_{i,t}\gamma_1 + D_t\gamma_2 + R_i\gamma_3 + v_i + \rho_t,$$

where

- $X_{i,t}$ is a vector of demographic characteristics: age, income, education, full-time, part-time, unemployed, retired, homemaker, refresher
- D_t is a vector of time dummies
- R_i is a vector of regional dummies

Financial Literacy and Forecast Confidence

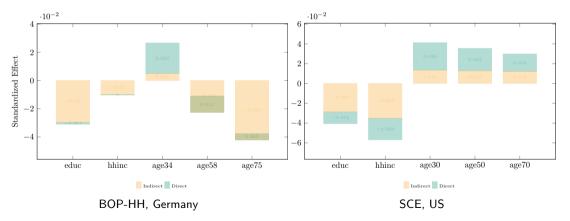
	Predicted confidence			Inflation point forecast
female	-0.16***	-0.16***	-0.17***	
	(0.001)	(0.001)	(0.001)	
fin_lit		0.02*** (0.001)	0.001 (0.001)	
fin_lit:female		, ,	0.04*** (0.002)	

Observations	145,452	145,452	145,452
Residual SE	0.18	0.18	0.18

*p<0.1; **p<0.05; ***p<0.01. Standard errors in parentheses. Source: SCE.

Financial Literacy and Forecast Confidence

	Predicted confidence			Inflation point forecast		
				High literacy	Low literacy	
female	-0.16*** (0.001)	-0.16*** (0.001)	-0.17*** (0.001)	0.82*** (0.09)	2.72*** (0.10)	
fin_lit	(0.001)	0.02***	0.001	(0.00)	(0.20)	
fin_lit:female		(0.002)	0.04*** (0.002)			
prob_confident			(5.55-)	-2.57***	-4.86***	
prob_confident:female				(0.10) -1.23*** (0.13)	(0.14) -3.69*** (0.15)	
Observations Residual SE	145,452 0.18	145,452 0.18	145,452 0.18	46,252 2.11	99,200 3.75	


*p<0.1; **p<0.05; ***p<0.01. Standard errors in parentheses. Source: SCE.

Overview

- 1. Framework
- 2. Data and Measurement
- 3. The Effects of Forecast Confidence and Exposure
 - 3.1 Forecast confidence dominates exposure.
 - 3.2 Exposure matters only through confidence.
- 4. Financial literacy as a mitigating factor
- 5. Applications Beyond Gender
- 6. Conclusion

A framework for heterogeneity in general

How much of the effect of x on $\pi_{i,t}^{E}$ is explained by the confidence channel?

Macro Implications

When do food prices matter? Framework suggests that food prices are more important when macroeconomic uncertainty is high (and priors are more imprecise).

Macro Implications

When do food prices matter? Framework suggests that food prices are more important when macroeconomic uncertainty is high (and priors are more imprecise).

Test using regression model in [Coibion and Gorodnichenko, 2015]

$$\Delta \pi_{i,t}^{\mathcal{E}} = \beta_0 + \beta_1 \pi_t^{\mathsf{food}} + \beta_2 \pi_t^{\mathsf{food}} \times \Delta \mathsf{EPU}_t + \beta_3 \Delta \mathsf{EPU}_t + X_{i,t} \gamma_1 + R_i \gamma_3 + v_i + \rho_t,$$

where

- $\Delta \pi_{i,t}^{E}$ is the change in inflation forecast of individual i over a 6 months time period
- π_t^{food} is food price inflation in period t
- ΔEPU_t is the 6-months change in the [Baker et al., 2016] economic policy uncertainty index

Food Prices Matter in Uncertain Times

$$\Delta \pi_{i,t}^{\mathsf{E}} = \beta_0 + \beta_1 \pi_t^{\mathsf{food}} + \beta_2 \pi_t^{\mathsf{food}} \times \Delta \mathsf{EPU}_t + \beta_3 \Delta \mathsf{EPU}_t + X_{i,t} \gamma_1 + R_i \gamma_3 + v_i + \rho_t,$$

	BOI	P-HH	SC	CE
π_t^{food}	0.12***	0.11***	-0.005	-0.01***
	(0.001)	(0.001)	(0.004)	(0.004)
$\pi_t^{food} \times \Delta EPU_t$		0.001*** (0.0000)		0.001*** (0.0001)
ΔEPU_t	0.01***	0.0004***	-0.0005**	-0.002***
	(0.0000)	(0.0001)	(0.0002)	(0.0003)
Observations	100,482	100,482	57,122	57,122
Residual SE	2.48	2.37	2.72	2.72

Overview

- 1. Framework
- 2. Data and Measurement
- 3. The Effects of Forecast Confidence and Exposure
 - 3.1 Forecast confidence dominates exposure.
 - 3.2 Exposure matters only through confidence.
- 4. Financial literacy as a mitigating factor
- 5. Applications Beyond Gender
- 6. Conclusion

Conclusion

Framework: Bayesian updating with heterogeneous signal and prior precision

 Volatile signals can increase posterior mean if priors are imprecise if distribution is right-skewed

Conclusion

Framework: Bayesian updating with heterogeneous signal and prior precision

 Volatile signals can increase posterior mean if priors are imprecise if distribution is right-skewed

Empirical Analysis: Test predictions from the framework using three expectations surveys

- Experience channel is insufficient in explaining stylized observations in the data
- Controlling for confidence (more than) closes the gender gap;
 Effect of grocery shopping on inflation expectations depends on forecasting confidence
- Gender gaps in confidence are (at least partially) caused by gender gaps in financial literacy

Conclusion

Framework: Bayesian updating with heterogeneous signal and prior precision

 Volatile signals can increase posterior mean if priors are imprecise if distribution is right-skewed

Empirical Analysis: Test predictions from the framework using three expectations surveys

- Experience channel is insufficient in explaining stylized observations in the data
- Controlling for confidence (more than) closes the gender gap;
 Effect of grocery shopping on inflation expectations depends on forecasting confidence
- Gender gaps in confidence are (at least partially) caused by gender gaps in financial literacy

⇒ A unified framework to explain

- Substantial heterogeneity across different demographic dimensions
- why food prices matter more when macroeconomic uncertainty is high

Thank you!

Overview

7. Appendix

References I

Anesti, N., Esady, V., and Naylor, M. (2025).

Food prices matter most: sensitive household inflation expectations.

Baker, S. R., Bloom, N., and Davis, S. J. (2016).

Measuring Economic Policy Uncertainty*.

The Quarterly Journal of Economics, 131(4):1593–1636.

Becker, C., Duersch, P., Eife, T., and Glas, A. (2021).

Extending the procedure of engelberg et al. (2009) to surveys with varying interval-widths.

Extending the procedure of engelberg et al. (2009) to surveys with varying interval-widths.

Binder, C. C. (2017).

Measuring uncertainty based on rounding: New method and application to inflation expectations. *Journal of Monetary Economics*, 90.

References II

Blinder, A. S. (1973).

Wage discrimination: Reduced form and structural estimates.

The Journal of Human Resources, 8:436.

Bordalo, P., Gennaioli, N., Ma, Y., and Shleifer, A. (2020).

Overreaction in Macroeconomic Expectations.

American Economic Review, 110(9).

Bracha, A. and Tang, J. (2024).

Inflation Levels and (In)Attention.

Review of Economic Studies.

Bucher-Koenen, T., Alessie, R. J., Lusardi, A., and Rooij, M. v. (2024).

Fearless Woman: Financial Literacy and Stock Market Participation.

Management Science, forthcoming.

References III

Bucher-Koenen, T., Lusardi, A., Alessie, R., and van Rooij, M. (2017). How financially literate are women? an overview and new insights. *Journal of Consumer Affairs*, 51:255–283.

Burke, M. A. and Manz, M. (2014).
Economic Literacy and Inflation Expectations: Evidence from a Laboratory Experiment.

Source: Journal of Money, Credit and Banking, 46(7):1421–1456.

Cavallo, A., Cruces, G., and Perez-Truglia, R. (2017).
Inflation Expectations, Learning, and Supermarket Prices: Evidence from Survey Experiments.

American Economic Journal: Macroeconomics, 9(3):1–35.

Coibion, O. and Gorodnichenko, Y. (2015). Information Rigidity and the Expectations Formation Process: A Simple Framework and New Facts. *American Economic Review*, 105(8):2644–2678.

References IV

- D'Acunto, F., Charalambakis, E., Geogarakos, D., Kenny, G., Meyer, J., and Weber, M. (2024). Household inflation expectations: an overview of recent insights for monetary policy.
- D'Acunto, F., Malmendier, U., Ospina, J., and Weber, M. (2021a). Exposure to grocery prices and inflation expectations.

 Journal of Political Economy, 129(5):1615–1639.
- D'Acunto, F., Malmendier, U., and Weber, M. (2021b).

 Gender Roles produce divergent economic expectations.

 Proceedings of the National Academy of Science, 118(21).
- D'Acunto, F., Hoang, D., Paloviita, M., and Weber, M. (2023). Iq, expectations, and choice.

The Review of Economic Studies, 90:2292-2325.

References V

D'Acunto, F. and Weber, M. (2024).

Why Survey-Based Subjective Expectations are Meaningful and Important.

Annual Reveiw of Economics, 16(1):329–357.

Evans, G. W. and Honkapohja, S. (2001).

Learning and expectations in macroeconomics.

Princeton University Press, page 424.

Granziera, E., Reiche, L., Maffei-Faccioli, N., Weber, M., and Fastbø, T. M. (2025). Five Facts About Inflation Expectations: Evidence from Four Different Groups of Agents.

Jonung, L. (1981).

Perceived and Expected Rates of Inflation in Sweden.

American Economic Review, 71(5):961-968.

References VI

Kita

Kitagawa, E. M. (1955).

Components of a Difference Between Two Rates.

Journal of the American Statistical Association, 50(272):1168.

Kohlhas, A. N. and Walther, A. (2021).

Asymmetric Attention.

American Economic Review, 111(9):2879–2925.

Krifka, M. (2007).

Approximate Interpretations of Number Words: A case for strategic communication.

Proceedings of the Colloquium, Amsterdam, 27-28 October 2004.

Lusardi, A. and Mitchell, O. S. (2014).

The economic importance of financial literacy: Theory and evidence.

Journal of Economic Literature, 52(1).

References VII

MacKinnon, D. P. (2012).

Introduction to Statistical Mediation Analysis.

Routledge.

Malmendier, U. and Nagel, S. (2016).

Learning from inflation experiences.

The Quarterly Journal of Economics, 131:53–87.

Oaxaca, R. (1973).

Male-female wage differentials in urban labor markets.

International Economic Review, 14:693.

Pfäuti, O. (2024).

Inflation—who cares? monetary policy in times of low attention.

Journal of Money, Credit and Banking.

References VIII

Reiche, L. and Meyler, A. (2022).

Making Sense of Consumer Inflation Expectations.

ECB Working Papers. (2642).

Tingley, D., Yamamoto, T., Hirose, K., Keele, L., and Imai, K. (2014). mediation: R package for causal mediation analysis. Journal of Statistical Software, 59.

Weber, M., Candia, B., Afrouzi, H., Ropele, T., Lluberas, R., Frache, S., Meyer, B., Kumar, S., Gorodnichenko, Y., Georgarakos, D., Coibion, O., Kenny, G., and Ponce, J. (2025). Tell Me Something I Don't Already Know: Learning in Low- and High-Inflation Settings.

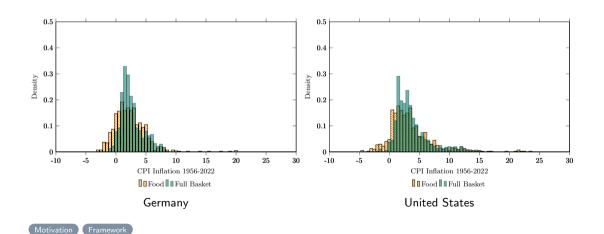
Econometrica, 93(1):229-264.

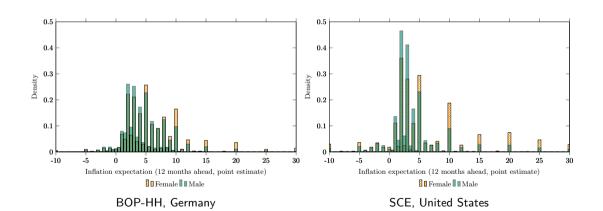
References IX

Weber, M., D'Acunto, F., Gorodnichenko, Y., and Coibion, O. (2022).

The subjective inflation expectations of households and firms: Measurement, determinants, and implications.

Journal of Economic Perspectives, 36:157–184.


Average Density Forecast


BOP-HH

Historical distribution of inflation

Distribution of point forecasts

Inflation Point Forecast

BOP-HH

Q1: Do you think inflation or deflation is more likely over the next twelve months? Note: Inflation is the percentage increase in the general price level. It is mostly measured using the consumer price index. A decrease in the price level is generally described as "deflation".

Q2: What do you think the rate of inflation/deflation in Germany will roughly be over the next twelve months?

Motivation | Measuring Inflation Expectations

SCE

Q1: Over the next 12 months, do you think that there will be inflation or deflation? (Note: deflation is the opposite of inflation)

Q2: What do you expect the rate of inflation/deflation to be over the next 12 months? Please give your best guess.

Inflation Density Forecast

BOP-HH

Q3: In your opinion, how likely is it that the rate of inflation will change as follows over the next twelve months?

Note: The aim of this question is to determine how likely you think it is that something specific will happen in the future. You can rate the likelihood on a scale from 0 to 100, with 0 meaning that an event is completely unlikely and 100 meaning that you are absolutely certain it will happen. Use values between the two extremes to moderate the strength of your opinion. Please note that your answers to the categories have to add up to 100. Please select one answer.

SCE

Q3: Now we would like you to think about the different things that may happen to inflation over the next 12 months. [...] In your view, what would you say is the percent chance that, over the next 12 months

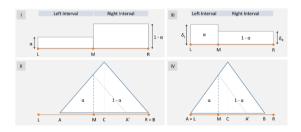
Note: Your answers can range from 0 to 100, where 0 means there is absolutely no chance, and 100 means that it is absolutely certain.

- a The rate of deflation will be 12% or higher.
- b The rate of deflation will be between 8% and less than 12%.
- c The rate of deflation will be between 4% and less than 8%.
- d The rate of deflation will be between 2% and less than 4%.
- e The rate of deflation will be between 0% and less than 2%.
- f The rate of inflation will be between 0% and less than 2%
- g The rate of inflation will be between 2% and less than 4%.
- h The rate of inflation will be between 4% and less than 8%.
- i The rate of inflation will be between 8% and less than 12%
- j The rate of inflation will be 12% or higher.

Density Forecast

Case 1: One bin

Fit isoscleles triangle with bin edges as limits of support


Measuring Inflation Expectations

Density Forecast

Case 1: One bin

Case 2: Two bins

Fit isoscleles triangle where limits of support are weighted based on density and relative probability mass in the two bins [Becker et al., 2021]

Measuring Inflation Expectations

Density Forecast

Case 1: One bin

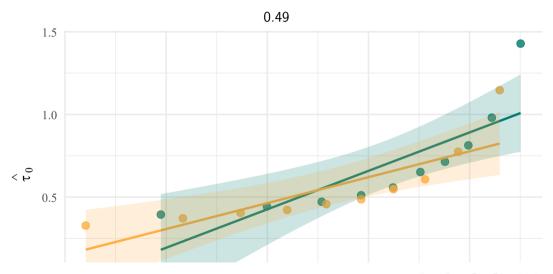
Case 2: Two bins

Case 3: Three or more bins

Fit generalized Beta distribution where limits of support are determined by outer bin edges (open-ended bins are set to $\pm 20\%$)

$$Beta(t, a, b, l, r) = \begin{cases} 0 & \text{if } t \leq l \\ \frac{1}{B(a,b)} \int_{l}^{t} \frac{(x-1)^{a-1}(r-x)^{b-1}}{(a-l)^{a-b-1}} dx & \text{if } l < t \leq r \\ 1 & \text{if } t \geq r \end{cases}$$

$$where \quad B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} \quad \text{and} \quad \Gamma(a) = \int_{0}^{\infty} x^{a-1}e^{-1} dx$$


$$\min_{a>1,b>1} \sum_{i=1}^{9} (Beta(t_{i}, a, b, l, r) - F(t_{i}))^{2}$$

Predicting Confidence through Rounding

	$round_{-}\pi^{E}_{-}point$			
	BOP-HH	SCE	MSC	
	(1)	(2)	(3)	
round_expint_point	0.23***			
•	(0.02)			
round_debt_point		0.98***		
		(0.02)		
round_exphp_point	0.64***	1.11***	0.38	
	(0.03)	(0.02)	(0.00)	
Observations	57,251	100,712	68,971	
	*p<0.1; **p<0.05; ***p<0.01			

Standard errors in parentheses.

Relating τ_0 to prob_confident_i

Financial Literacy Test

- 1. Let's say you have \$200 in a savings account. The account earns ten per cent interest per year. Interest accrues at each anniversary of the account. If you never withdraw money or interest payments, how much will you have in the account at the end of two years?
- 2. Imagine that the interest rate on your savings account was 1% per year and inflation was 2% per year. After one year, how much would you be able to buy with the money in this account?
 - -More than today
 - -Exactly the same
 - -Less than today
- 3. Please tell me whether this statement is true or false: Buying a single company's stock usually provides a safer return than a stock mutual fund.

Financial Literacy and Confidence

Gender Gap Specification:

$$\begin{split} \pi^{E}_{i,t} &= \beta_0 + \beta_1 \text{female}_i + \beta_2 \text{prob_confident}_{i,t} + \beta_3 \text{shop_groceries}_i \\ &+ \beta_4 \text{prob_confident}_{i,t} \times \text{female}_i + \beta_5 \text{shop_groceries}_i \times \text{female}_i \\ &+ X_{i,t} \gamma_1 + D_t \gamma_2 + R_i \gamma_3 + \textit{v}_i + \rho_t, \end{split}$$

where

- $X_{i,t}$ is a vector of demographic characteristics: age, income, education, full-time, part-time, unemployed, retired, homemaker, refresher
- D_t is a vector of time dummies
- R_i is a vector of regional dummies

	Inflation expectation (1 BOP-HH	L2 months ahead, poir SCE	nt estimate) MSC
female	3.92*** (0.55)	1.46*** (0.31)	0.31 (0.19)
prob_confident	-8.61*** (0.77)	-8.64*** (0.37)	-6.31*** (0.48)
$prob_confident \times female$	-4.37*** (0.70)	-2.48*** (0.42)	-0.66** (0.33)
shop_groceries			
$shop_groceries \times female$			
Observations	43,276	64,779	55,992
R^2	0.12	0.05	0.10

^{*}p<0.1; **p<0.05; ***p<0.01. Standard errors in parentheses.

	Inflation expectation (12 months ahead, point estimate)				
		BOP-HH	SCE	MSC	
female	3.92*** (0.55)	1.09*** (0.12)	1.46*** (0.31)	0.31 (0.19)	
prob_confident	-8.61*** (0.77)		-8.64*** (0.37)	-6.31*** (0.48)	
$prob_confident \times female$	-4.37*** (0.70)		-2.48*** (0.42)	-0.66** (0.33)	
shop_groceries		0.03 (0.09)			
$shop_groceries \times female$		0.19 (0.16)			
Observations	43,276	64,503	64,779	55,992	
R ²	0.12	0.11	0.05	0.10	

^{*}p<0.1; **p<0.05; ***p<0.01. Standard errors in parentheses.

	Inflatio	on expectati BOP-HH	on (12 mor	months ahead, point estimate) SCE MSC			
female	3.92*** (0.55)	1.09*** (0.12)	3.72*** (0.60)	1.46*** (0.31)	0.31 (0.19)		
prob_confident	-8.61*** (0.77)		-7.94*** (0.82)	-8.64*** (0.37)	-6.31*** (0.48)		
$prob_confident \times female$	-4.37*** (0.70)		-4.38*** (0.74)	-2.48*** (0.42)	-0.66** (0.33)		
shop_groceries		0.03 (0.09)	0.03 (0.12)				
$shop_groceries \times female$		0.19 (0.16)	0.26 (0.20)				
Observations	43,276	64,503	37,181	64,779	55,992		
R ²	0.12	0.11	0.12	0.05	0.10		

^{*}p<0.1; **p<0.05; ***p<0.01. Standard errors in parentheses.

Mediation model [MacKinnon, 2012, Tingley et al., 2014]

$$\begin{split} \pi^{E}_{i,t} &= \beta_0 + \beta_1 \textit{female}_i + \textit{v}_i + \rho_t \\ \pi^{E}_{i,t} &= \beta'_0 + \beta'_1 \textit{female}_i + \beta_2 \textit{prob_confident}_{i,t} + \beta_3 \textit{shop_groceries}_i + \textit{v}_i + \rho_t \\ &\rightarrow \; \mathsf{Mediated \; effect:} \; \beta_1 - \beta'_1 \end{split}$$

Mediation model [MacKinnon, 2012, Tingley et al., 2014]

$$\begin{split} \pi^{E}_{i,t} &= \beta_0 + \beta_1 \textit{female}_i + \textit{v}_i + \rho_t \\ \pi^{E}_{i,t} &= \beta'_0 + \beta'_1 \textit{female}_i + \beta_2 \textit{prob_confident}_{i,t} + \beta_3 \textit{shop_groceries}_i + \textit{v}_i + \rho_t \\ &\rightarrow \; \mathsf{Mediated \; effect:} \; \beta_1 - \beta'_1 \end{split}$$

Mediation model [MacKinnon, 2012, Tingley et al., 2014]

$$\begin{split} \pi^{E}_{i,t} &= \beta_0 + \beta_1 \textit{female}_i + \textit{v}_i + \rho_t \\ \pi^{E}_{i,t} &= \beta'_0 + \beta'_1 \textit{female}_i + \beta_2 \textit{prob_confident}_{i,t} + \beta_3 \textit{shop_groceries}_i + \textit{v}_i + \rho_t \\ &\rightarrow \; \mathsf{Mediated \; effect:} \; \beta_1 - \beta'_1 \end{split}$$

Mediation model [MacKinnon, 2012, Tingley et al., 2014]

$$\pi_{i,t}^{E} = \beta_0 + \beta_1 \text{female}_i + v_i + \rho_t$$

$$\pi_{i,t}^{E} = \beta_0' + \beta_1' \text{female}_i + \beta_2 \text{prob_confident}_{i,t} + \beta_3 \text{shop_groceries}_i + v_i + \rho_t$$

$$\rightarrow \text{Mediated effect: } \beta_1 - \beta_1'$$

$$prob_confident_{i,t} = \alpha_0^c + \alpha_1^c female_i + v_i + \rho_t$$

 $shop_groceries_i = \alpha_0^g + \alpha_1^g female_i + v_i + \rho_t$

- \rightarrow Effect mediated though grocery shopping: $\alpha_1^c \beta_2$
- \rightarrow Effect mediated though grocery shopping: $\alpha_1^{\it g}\beta_3$

Mediation Model Regression

	Inflation e	xpectation (12	months ah	ead, point es	timate)	prob_confident	shop_groceries
female	0.49***	-0.06***	0.47***	-0.08***	-0.08***	-0.05***	0.26***
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.0005)	(0.002)
prob_confident		-11.20***		-11.20***	-10.76***		-0.08***
		(0.06)		(0.06)	(0.10)		(0.01)
shop_groceries			0.11***	0.07***	0.66***	-0.004***	
			(0.02)	(0.01)	(0.10)	(0.001)	
prob_confident:	shop_groceries				-0.72***		
					(0.12)		
Constant	2.93***	11.46***	2.88***	11.42***	11.07***	0.76***	0.51***
	(0.20)	(0.20)	(0.20)	(0.20)	(0.21)	(0.01)	(0.04)
Observations	155,202	155,202	155,202	155,202	155,202	155,202	155,202
Residual SE	1.71	1.65	1.72	1.65	1.65	0.08	0.38

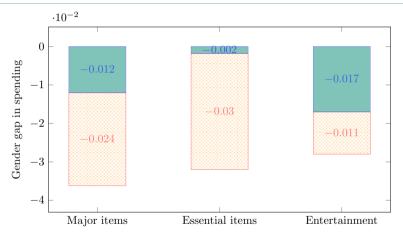
 $^*p{<}0.1;~^{**}p{<}0.05;~^{***}p{<}0.01.$ Robust standard errors in parentheses.

Decomposition of Spending Intentions

Estimate model with interaction terms

	Major items	Essential items	Entertainment	
π^{E}	-0.01***	-0.001***	-0.01***	
	(0.001)	(0.0003)	(0.0005)	
female	-0.01**	-0.02***	-0.02***	
	(0.01)	(0.003)	(0.01)	
π^{E} × female	0.001**	-0.0003	0.003***	
	(0.001)	(0.0004)	(0.001)	
R ²	0.05	0.02	0.14	

*p<0.1; **p<0.05; ***p<0.01; N=105,035. Standard errors in parentheses.


Decomposition of Spending Intentions

Estimate model with interaction terms and mediation model [MacKinnon, 2012]

	Major items		Essenti	al items	Entertainment	
π^{E}	-0.01***	-0.01***	-0.001***	-0.001***	-0.01***	-0.01***
	(0.0003)	(0.001)	(0.0002)	(0.0003)	(0.0003)	(0.0005)
female	-0.01	-0.01**	-0.02***	-0.02***	0.003	-0.02***
	(0.005)	(0.01)	(0.003)	(0.003)	(0.004)	(0.01)
$\pi^{\it E}$ × female		0.001**		-0.0003		0.003***
		(0.001)		(0.0004)		(0.001)
R ²	0.05	0.05	0.02	0.02	0.14	0.14

p<0.1; **p<0.05; ***p<0.01; N=105,035. Standard errors in parentheses.

Decomposition of Spending Intentions

 \blacksquare Average Causal Mediated Effect \boxtimes Average Direct Effect