
Market Efficiency in the Age of Machine Learning

Leonidas Barbopoulos
U. of Edinburgh

Rui Dai
WRDS
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Introduction

I As machines become more prevalent in financial markets, how is (informational)
efficiency impacted?

It’s not obvious whether...

I Market efficiency will be improved:
I Machines can process more data than a human.
I Machines can interpret data faster than a human.
I Machines are less susceptible to emotions and bias.

I Market efficiency will be deteriorated:
I Machines cannot deal with “soft” information (...it can’t be quantified).
I Overfitting ML models can result in trading on spurious correlations.
I Machines learn to predict the actions of humans, i.e., front-run humans

(Van Kervel and Menkveld, 2019).
I However, they do not bring new information.

I Trade-off between speed and accuracy in decision-making, squeezing out slow,
deliberating humans, could come at a cost of accuracy.
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Theoretical background

I Information acquisition costs and processing (Grossman and Stiglitz, 1980; Kyle, 1985,
1989; Admati and Pfleiderer, 1988).

I The cost of gathering and analyzing information has declined as machines replace
humans (Chen et al., 2020).

I Increased computational power and the use of ML/AI algorithms help investors to:
I Outperform traditional empirical asset pricing models (Gu et al., 2020).
I Make use of highly unstructured textual data (Bybee et al., 2020).
I Front-run slower traders (Van Kervel and Menkveld, 2019).
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Measuring the machines

Unique data from US SEC’s EDGAR servers
I Focus on 8-K filings of US stocks.

I Report of unscheduled, material events or corporate changes at a company that are
deemed important to shareholders or the SEC.

I Changes to a material agreements and contracts,
I Certain financial information,
I Mergers / Acquisitions / Disposals,
I Substantial impairments / loan defaults,
I Change in directors/officers,
I Change in control,
I Results of shareholder votes,
I Other material information, including Reg FD, disclosures and press releases.

I Legally required→ they provide a complete record of certain unscheduled info types.
I Filed with the SEC (within 4 days from the event date) and made public via the SEC’s

EDGAR server.
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Example: Tesla 2 July 2021

I Mix of hard (numbers) and soft (language) info.
I Range from completely unstructured/unstandardised to fairly standardised.
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Filing and accessing 8-K information

Market Efficiency in the Age of Machine Learning (Barbopoulos, Dai, Putnin, š and Saunders) 6



The SEC’s EDGAR Server log file

I 14 year period: 2003 to 2016.
I Data on each “download” (referred to as a “visit”) of an 8-K.
I 4 billion visits, multiple terabytes. time stamp, HTTP status codes, IP address (partial

redaction), crawler flag,...

Use IP addresses (MaxMind IP lookup (as in Chen et al. (2020)) + TR Ownership +
Capital IQ) to classify users/organisations:

Organizations of 8-K viewers and Link all that with
Cloud computing users CRSP
Traditional financial institutions Compustat
Database / media IBES
Internet service providers (retail) Refinitiv
Regulators and education NYSE TAQ
Other SEC MIDAS

Use access patterns and reaction times to classify:
Humans vs Machines:

I e.g., >5 downloads per minute or >1,000 per day (Drake et al., 2015).
I e.g., >25 downloads per minute or >500 per day (Dechow et al., 2015).
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Humans vs machines through time
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The growing importance of cloud computing machines

Market Efficiency in the Age of Machine Learning (Barbopoulos, Dai, Putnin, š and Saunders) 9



The growing importance of cloud computing machines
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Housekeeping

I What information (8-Ks) do machines or humans access?
I Impact on market efficiency?
I Identifying causality.
I Mechanisms?
I When do machines or humans have an edge?
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What info do machines access? Compare to humans?

DLR DRT

Total Cloud Cloud
Visits Human Machine Machine Human Machine Machine

(1) (2) (3) (4) (5) (6) (7)
FinNeg 1.072* 5.404*** 0.040 -1.445** 6.082*** 0.229 -1.415**

(1.99) (12.75) (0.08) (-2.73) (11.84) (0.43) (-2.65)
#Words 0.048*** 0.048*** 0.048** 0.054** 0.039*** 0.051*** 0.054***

(3.06) (6.29) (2.77) (2.94) (5.31) (3.08) (3.05)
Gap -0.014*** -0.042*** -0.009*** -0.011** -0.034*** -0.011*** -0.011**

(-5.35) (-7.38) (-3.49) (-2.55) (-7.34) (-4.09) (-2.54)
#Items 0.108*** 0.160*** 0.089*** 0.049*** 0.111*** 0.101*** 0.053***

(11.89) (19.04) (8.48) (4.11) (13.10) (9.82) (4.15)
#News 0.006 0.053*** -0.000 -0.009 0.028*** 0.004 -0.009

(1.16) (11.03) (-0.05) (-1.69) (7.66) (0.81) (-1.58)
BM 0.016** 0.057*** 0.002 -0.007 0.058*** 0.006 -0.006

(2.90) (6.93) (0.31) (-1.06) (7.55) (1.18) (-0.95)
SIZE 0.015 0.031** 0.009 -0.009 0.036*** 0.010 -0.008

(1.70) (2.96) (1.07) (-1.51) (3.76) (1.14) (-1.37)
Cld.Outage -0.045** 0.009 -0.048** -0.070*** -0.007 -0.048** -0.071***

(-2.42) (0.68) (-2.23) (-4.38) (-0.48) (-2.43) (-4.71)
Controls Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes
Nobs 514,731 514,731 514,731 514,731 514,731 514,731 514,731
Adj. R2 0.854 0.400 0.879 0.912 0.345 0.867 0.907

I Humans (H) drawn to negative sentiment news / machines (M) are sentiment-neutral.
I Larger 8-Ks (word count and # of items) receive more attention by both M & H.
I All viewers (H; M) are less attentive to 8-Ks published later in the 4-day window.
I H pay more attention to bigger stocks and value stocks / M care uniformly about the

cross-section→ limited capacity of humans→ must allocate limited attention.
I By 8-K content (unreported), H drawn to more specific, anticipated info, M not.
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Impact on market efficiency?
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Price drift measure (primary measure)

I The ACAR of Ball and Brown (1968) and Fama et al. (1969) is a standard measure of the
information aggregation into prices.

I It measures the post-event price drift, net of a predicted returns from a factor model.
I It measures the (inefficient) drift but also capture overreaction (if present):

CAR0,T
i,t =

T∑
t=0

(
ri,t − αi −

k∑
k=1

βi,kfm,t

)
=

T∑
t=0

εi,t

I The cumulative abnormal return (CAR) cumulates the abnormal return from
announcement date t = 0 to T .

I We use the absolute difference between post-announcement price variation and variation
over a short window right after the announcement:

DRIFT(2, T) =
∣∣∣∣CAR0,T

i,t − CAR0,1
i,t

∣∣∣∣
with T > 1 to capture post announcement drift.
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Alternative measures

For robustness, we:
I Examine the scaled version of the drift measure, normalizing it by the total information

content of the information release.
I Separate information + noise with variance decomposition (Brogaard et al., 2022).
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I We use the NoiseShare, which is based on a variance decomposition model that
partitions stock return variance into information of various types, and noise
(temporary price deviations from efficient prices, driven by under or over reaction).
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Impact of machine and human viewership on price drift

DRIFT(2, 10) DRIFT(2, 20)

(1) (2) (3) (4) (5) (6)
Machine 0.003 0.002 0.005 0.003

(1.09) (0.68) (1.23) (0.79)
Human 0.002*** 0.002*** 0.003*** 0.003***

(4.27) (5.87) (4.26) (5.55)
Controls Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
NObs 295,142 295,142 295,142 295,142 295,142 295,142
Adj. R2 0.221 0.222 0.222 0.243 0.243 0.243

I More downloads by human viewers are associated with a larger magnitude of price drift.
I A one standard deviation increase in human viewership is associated with a 13.23%

aggregate increase in the price drift over the post-publication month [DRIFT(2, 20)].
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Machine types and price drift

DRIFT(2, 10) DRIFT(2, 20)

(1) (2) (3) (4) (5) (6)
CloudMachine -0.002*** -0.002**

(-3.33) (-2.34)
InstInvMachine 0.001 0.002

(1.24) (1.29)
DataVendMachine -0.001 -0.001

(-0.44) (-0.37)
Controls Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
NObs 295,142 295,142 295,142 295,142 295,142 295,142
Adj. R2 0.221 0.221 0.221 0.242 0.242 0.242

I Increased downloads of 8-K filings by cloud-computing services (IT firms) are
associated with a smaller magnitude of price drift.

I A one standard deviation increase in the machine-based viewership of 8-K from cloud
computing services is associated with a 10.49% aggregate decrease in the price drift over
the post-filing month [DRIFT(2, 20)].
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Alternative measures (scale drift); the impact of viewership
on price variance due to noise trading

Scaled DRIFT(2, 10) Scaled DRIFT(2, 20) Noise

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Machine -0.024 0.005 0.114

(-1.38) (0.46) (0.90)
CloudMachine -0.037** -0.026*** -0.089**

(-2.34) (-3.64) (-2.57)
Human 0.001 0.028*** 0.062**

(0.13) (3.63) (2.68)
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
NObs 286,852 286,852 286,852 286,852 286,852 286,852 259,478 259,478 259,478
Adj. R2 0.033 0.033 0.033 0.037 0.037 0.037 0.523 0.523 0.523

I Increased downloads of 8-K filings by cloud-computing services are associated with a
smaller variance due to noise trading.
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Identifying causality

Three identification strategies:

I Exploit exogenous cloud computing server outages
I Cloud servers are fairly robust, but they do go down (hundreds of times in our

sample).
I Also exploit electricity/power outages that affect humans.

I Index additions/deletions→ disproportionately impact attention-constrained humans
compared to unconstrained machines.

I Instrumental variables, exploiting the fact that human viewership is constrained on
high macro news days, concentrated in certain stocks, influenced by sentiment, but
machines are not.

All three suggest causality is: Cloud machines→ Efficiency.
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Evidence from cloud and power outages: 2SLS

First Stage Second Stage

Machine CloudMachine Human DRIFT(2, 10) DRIFT(2, 20)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Machine -0.050* -0.002

(-2.03) (-0.06)
CloudMachine -0.036** -0.001

(-2.67) (-0.06)
Human 0.158 0.006

(1.19) (0.06)
CloudOutage -0.050** -0.068*** 0.016

(-2.10) (-3.63) (1.57)
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
NObs 295,142 295,142 295,142 295,142 295,142 295,142 295,142 295,142 295,142
Weak ID F-Value 4.361 13.157 2.661 - - - - - -

I During cloud service outage days, we find that the relationship between cloud machine
viewership and price drift is less negative.
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Evidence from cloud and power outages: Outage dummies

Cloud Outage Day Power Outage Day

NDRIFT(2, 10) NDRIFT(2, 20) NDRIFT(2, 10) NDRIFT(2, 20)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
CloudMachine -0.002*** -0.002** -0.002*** -0.002**

(-4.11) (-2.40) (-3.70) (-2.26)
CloudMachine× OutageDay 0.004*** 0.004** 0.000 -0.001

(3.63) (2.50) (0.32) (-0.40)
Machine 0.003 0.005 0.003 0.005

(0.95) (1.06) (0.97) (1.09)
Machine× OutageDay 0.002*** 0.002** 0.002** 0.002

(3.20) (2.22) (2.35) (1.12)
Human 0.003*** 0.004*** 0.003*** 0.004***

(4.35) (4.12) (4.84) (4.42)
Human× OutageDay 0.001 0.001 0.004 0.003

(1.21) (0.70) (1.48) (1.06)
OutageDay -0.008** -0.006* 0.000 -0.010* -0.009 -0.001 0.001 -0.006* -0.003* 0.003 -0.005 -0.002

(-2.83) (-1.86) (0.19) (-2.02) (-1.70) (-0.20) (0.34) (-2.01) (-1.93) (0.41) (-1.04) (-0.88)
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Nobs 517,739 517,739 517,739 517,739 517,739 517,739 517,739 517,739 517,739 517,739 517,739 517,739
Adj. R2 0.206 0.206 0.207 0.235 0.235 0.236 0.205 0.206 0.207 0.235 0.235 0.236

I During cloud service outage days, we find that the relationship between cloud machine
viewership and price drift is less negative.
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The effects of S&P500 inclusion on machines and humans

DRIFT(2, 10) DRIFT(2, 20)

(1) (2) (3) (4) (5) (6)
Machine 0.003 0.005

(1.09) (1.24)
Machine × InIndex -0.000 0.000

(-0.24) (0.06)
CloudMachine -0.002*** -0.002**

(-3.35) (-2.32)
CloudMachine × InIndex 0.000 0.000

(1.39) (0.95)
Human 0.002*** 0.004***

(4.98) (5.14)
Human × InIndex -0.001** -0.001*

(-2.18) (-1.82)
InIndex 0.003 0.002 0.004** 0.006** 0.005** 0.008***

(1.58) (0.99) (2.46) (2.56) (2.51) (3.39)
Control Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
NObs 295,142 295,142 295,142 295,142 295,142 295,142
Adj. R2 0.221 0.221 0.222 0.243 0.243 0.243

I Index inclusion attracts (more) sophisticated and skilled investors, whose viewership is
more likely to improve price discovery than that of average human viewers.

I After index inclusion, we find that the relationship between human viewership and
price drift is less positive.
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Instrumental variables tests

First Stage Second Stage

Machine CloudMachine Human DRIFT(2, 10) DRIFT(2, 20)

(1) (2) (3) (4) (5)
Human 0.077** 0.096**

(2.83) (2.60)
InvSent -0.306* 0.411*** -0.269***

(-1.70) (3.19) (-3.31)
MacroNews 0.110** 0.028 0.112**

(2.34) (1.10) (2.08)
Controls Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
NObs 295,142 295,142 295,142 295,142 295,142
Weak ID F-Value 4.304 5.179 28.883 - -
Hansen J-Stats - - - 0.339 0.310

Our IVs are:

1. Investor sentiment index (Baker and Wurgler, 2006)

2. A dummy variable for major macro news announcement (Flannery and Protopapadakis,
2002; Savor and Wilson, 2013)

Market Efficiency in the Age of Machine Learning (Barbopoulos, Dai, Putnin, š and Saunders) 23



Mechanism?
Machine views→ informed trades→ price discovery?
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Machine viewership→ informed trading... but human
viewership does not

PIN = Probability of Informed Trading (Easley and O’Hara, 2004)

PIN(0, 1) PIN(0, 5)

(1) (2) (3) (4) (5) (6)
Machine 0.002*** 0.002***

(3.27) (3.12)
CloudMachine 0.002** 0.002**

(2.52) (2.46)
Human -0.002*** -0.002***

(-5.24) (-3.67)
Controls Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
NObs 271,079 271,079 271,079 277,526 277,526 277,526
Adj. R2 0.633 0.633 0.633 0.686 0.686 0.686
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Cloud machine viewership→ algorithmic trading post
8-K... human viewership does not

OddLotRatio(0, 1) TradeSize(0, 1)

(1) (2) (3) (4) (5) (6)
Machine 0.004** -0.003

(2.61) (-1.91)
CloudMachine 0.006* -0.002*

(2.44) (-2.26)
Human -0.005** 0.003**

(-3.45) (3.69)
Controls Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
NObs 101,368 101,368 101,368 101,368 101,368 101,368
Adj. R2 0.203 0.203 0.203 0.586 0.586 0.586
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High-Frequency Traders (HFT) and price drift

DRIFT(2, 10) DRIFT(2, 20)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Machine -0.001 -0.001 -0.001 -0.001

(-1.37) (-1.38) (-0.92) (-1.02)
CloudMachine -0.002** -0.002** -0.002* -0.002*

(-3.02) (-2.80) (-2.27) (-2.15)
Human 0.001** 0.001** 0.001** 0.001**

(3.69) (2.71) (2.90) (2.57)
Cancel-to-Trade 0.000 0.000 0.000 0.000 0.000 0.000

(0.18) (0.16) (0.15) (0.69) (0.67) (0.66)
Trade-to-Order 0.001** 0.001** 0.001** 0.001** 0.001** 0.001**

(2.61) (2.70) (2.72) (3.99) (3.96) (3.88)
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
NObs 101,368 101,368 101,368 101,368 101,368 101,368 101,368 101,368 101,368 101,368 101,368 101,368
Adj. R2 0.250 0.250 0.249 0.250 0.250 0.250 0.279 0.279 0.279 0.279 0.279 0.279

I Earlier studies show that HFTs, which are also automated machine-based traders,
improve price discovery at intra-day horizons (Brogaard et al., 2014).

I We use the Cancel-to-Trade ratio and the Trade-to-Order ratio (an inverse measure of
HFT activity).

I The positive impact of cloud machine access of 8-Ks on info efficiency is not diminished
by controlling for HFT activity.

I Hence, our paper and the HFT-literature suggest that machines can benefit info efficiency
in multiple ways and at different horizons.

Market Efficiency in the Age of Machine Learning (Barbopoulos, Dai, Putnin, š and Saunders) 27



When do machines have an edge?

When do humans have an edge?
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Does numerical information increase the impact of
machines?

DRIFT(2, 10) DRIFT(2, 20)

(1) (2) (3) (4) (5) (6)
Machine 0.003 0.005

(1.24) (1.45)
Machine × NER -0.006 -0.012

(-1.27) (-1.22)
CloudMachine -0.002** -0.001

(-2.87) (-1.66)
CloudMachine × NER -0.011** -0.015**

(-2.53) (-2.21)
Human 0.002*** 0.004***

(5.02) (5.72)
Human × NER -0.008 -0.015

(-1.19) (-1.42)
NER -0.022 -0.022 -0.039** -0.053 -0.064* -0.084**

(-0.94) (-1.48) (-2.60) (-1.04) (-2.01) (-2.54)
Controls Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes

NObs 291,848 291,848 291,848 291,848 291,848 291,848
Adj. R2 0.222 0.221 0.222 0.243 0.243 0.243

I We test whether machines have a comparative advantage in handling hard, numeric or
quantitative information.

I We find that cloud machine 8-K viewership reduces the absolute price drift following
8-K filings with significantly more numerical content.
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Negative sentiment

Known: Emotion broadly interferes with decision-making.

Known: Humans struggle to process bad news rationally and tend to overreact (Tetlock, 2007)→
excessive pessimism.

I There is therefore an asymmetric bias to which machines should be neutral.
I Hence, machines might contribute more to price discovery in high-sentiment settings, as

well as high pessimism-bias settings.

Market Efficiency in the Age of Machine Learning (Barbopoulos, Dai, Putnin, š and Saunders) 30



Negative sentiment and price drift

I Confirmed in the data: Machines have stronger impact on efficiency in filings with
many/more negative words (Loughran and Mcdonald, 2011).

DRIFT(2, 10) DRIFT(2, 20)

(1) (2) (3) (4) (5) (6)
Machine 0.003 0.005

(1.19) (1.29)
Machine × FinNeg -0.076** -0.105*

(-2.24) (-1.88)
CloudMachine -0.002** -0.002*

(-2.93) (-1.89)
CloudMachine × FinNeg -0.045** -0.079**

(-2.71) (-2.37)
Human 0.002*** 0.004***

(3.77) (4.03)
Human × FinNeg -0.029 -0.055

(-1.00) (-1.48)
FinNeg 0.316** 0.148** 0.075 0.470* 0.279* 0.162

(2.18) (2.27) (1.07) (1.88) (2.10) (1.48)
Controls Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
NObs 295,142 295,142 295,142 295,142 295,142 295,142
Adj. R2 0.222 0.221 0.222 0.243 0.243 0.243
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Sequential/repeated information

Known: Trade-off between fast+noisy and slow+accurate processing of information (Dugast and
Foucault, 2018)→ many machines are trained to respond quickly to information in
isolation.

I E.g., predict whether a given announcement leads to price ↑ or ↓.
I Combining sequential, incremental information is how humans can make slow, but

accurate decisions (difficult for machines).
I Repeated information can be incorrectly interpreted by a machine as a new signal.
I We expect humans will have an edge when information is sequential with some

repetition and some incremental element.
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Sequential/repeated information and price drift

I Confirmed in the data: In Item2.02 (largely repeats previously disclosed financial info),
humans are more effective than machines in improving price discovery.

DRIFT(2, 10) DRIFT(2, 20)

(1) (2) (3) (4) (5) (6)
Machine 0.003 0.004

(1.12) (1.23)
Machine × Item2.02 -0.000 0.000

(-0.15) (0.34)
CloudMachine -0.002*** -0.002**

(-3.18) (-2.39)
CloudMachine × Item2.02 -0.000 -0.000

(-1.17) (-0.20)
Human 0.003*** 0.004***

(5.15) (5.20)
Human × Item2.02 -0.001*** -0.001**

(-3.03) (-2.48)
Item2.02 -0.003 -0.002* -0.002** -0.006* -0.006** -0.005**

(-1.53) (-1.96) (-2.80) (-1.82) (-2.43) (-2.84)
Controls Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
NObs 295,142 295,142 295,142 295,142 295,142 295,142
Adj. R2 0.222 0.222 0.222 0.243 0.243 0.244
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Additional test: Readability and price drift
I Do machines have an edge over humans when information is harder for humans to

read?

Gunning FOG Flesch-Kincaid

DRIFT(2, 10) DRIFT(2, 20) DRIFT(2, 10) DRIFT(2, 20)

(1) (2) (3) (4) (5) (6) (7) (8)
Machine 0.004 0.005 0.004 0.005

(1.24) (1.10) (1.20) (1.12)
Machine× DifficultToRead -0.006** -0.003 -0.006** -0.004

(-2.48) (-0.75) (-2.52) (-0.96)
Human 0.004*** 0.005*** 0.004*** 0.005***

(3.95) (3.79) (4.05) (3.90)
Human× DifficultToRead -0.003 -0.003 -0.004 -0.004

(-1.37) (-1.29) (-1.47) (-1.51)
DifficultToRead 0.009 -0.001 0.006 0.004 0.010* -0.001 0.007 0.004

(1.76) (-0.19) (0.69) (0.84) (1.91) (-0.32) (0.85) (0.89)
Controls Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Nobs 517,848 517,848 517,848 517,848 517,848 517,848 517,848 517,848
Adj. R2 0.206 0.207 0.235 0.236 0.205 0.206 0.237 0.237

I Machine 8-K viewership lessens the price drift following 8-Ks by a larger amount for
harder-to-read 8-Ks, which is info harder for human readers to interpret.

I Consistent with evidence suggesting that the increasing machine downloading activity
motivates firms to prepare filings according to machines’ readership, processing capacity,
and capability (Cao et al., 2020).
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Conclusion

I The most sophisticated machines (cloud computers/IT firms) consistently improve price
discovery around information events (8-K publication day).

I Not all machines are beneficial to price discovery.

Mechanism: Cloud machines→ Informed and algorithmic trades→ price discovery.
I Machines excel:

– High fraction of numerical information (NER) in the 8-K.
– Less biased by negative sentiment.
– Less capacity constrained.
– Difficult-to-Read filing.

I Humans have an edge:
– Combining sequential information that overlaps (i.e., sequential info).
– Soft information.
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