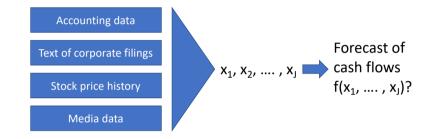
Evaluating market efficiency in a high-dimensional world

Stefan Nagel

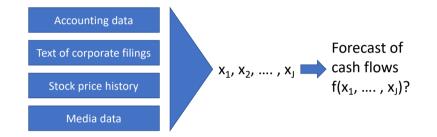
August 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Investors' high-dimensional prediction problem



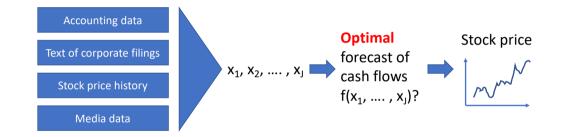
Investors' high-dimensional prediction problem



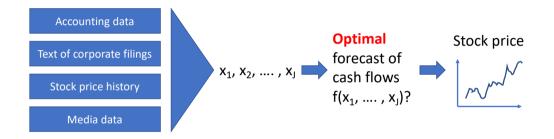
Example: SEC Edgar database of corporate filings alone receives 3,000 filings per day, \approx 3,000 terabytes of data annually

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Market efficiency in a high-dimensional world



Market efficiency in a high-dimensional world

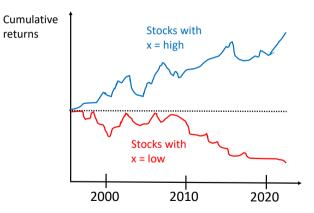


Questions: In a high-dimensional world

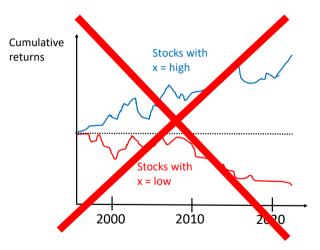
- what is the benchmark for forecast optimality, and hence market efficiency?
- how can we detect deviations from this benchmark?

Evaluating market efficiency: Typical approach

Track relative performance of stocks with different firm characteristic x_i



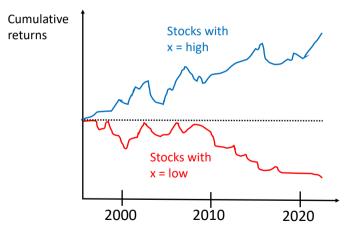
Hypothesis in standard market efficiency tests



NB: Abstract from classic joint hypothesis problem

Market efficiency rejections: Factor zoo

Finding that x_i predicts stock returns \Rightarrow declare a new "factor"



Evaluating market efficiency: Alternative methods

Portfolio sorts: Group stocks with similar x_j and track their performance

Example: small- / mid- / large-capitalization stocks

Evaluating market efficiency: Alternative methods

Portfolio sorts: Group stocks with similar x_j and track their performance
Example: small- / mid- / large-capitalization stocks

Regressions: Estimate statistical return prediction model

$$R_{t+1} = a + b_1 x_{1,t} + b_2 x_{2,t} + \dots + e_t$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Evaluating market efficiency: Alternative methods

Portfolio sorts: Group stocks with similar x_j and track their performance
Example: small- / mid- / large-capitalization stocks

Regressions: Estimate statistical return prediction model

 $R_{t+1} = a + b_1 x_{1,t} + b_2 x_{2,t} + \dots + e_t$

Machine learning (ML): Accommodate very large number of predictors and nonlinearity

- Ridge, lasso
- Random forests
- Neural networks

Evaluating market efficiency: The problem of investor learning

Example: Suppose x_{jt} is found to predict r_{t+1} in historical data from 1990 to 2020.

Evaluating market efficiency: The problem of investor learning

Example: Suppose x_{jt} is found to predict r_{t+1} in historical data from 1990 to 2020.

・ロト ・日 ・ モー・ モー・ ロー・ つへの

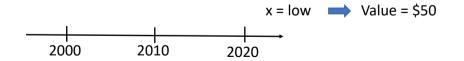
Problems in interpreting this fact: For an investor in years before 2020, predictive power of x_{jt} was not necessarily knowable yet.

Evaluating market efficiency: The problem of investor learning

- Example: Suppose x_{jt} is found to predict r_{t+1} in historical data from 1990 to 2020.
- Problems in interpreting this fact: For an investor in years before 2020, predictive power of x_{jt} was not necessarily knowable yet.
- Problem is magnified in a high-dimensional world with many potential predictors.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

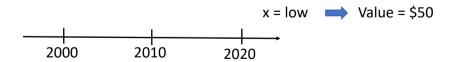
 $x = high \implies Value = 150



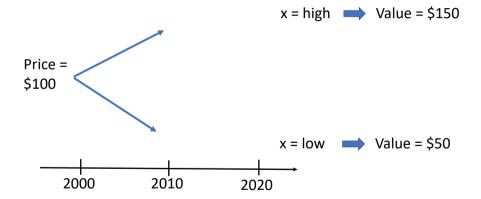
◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 - の々で

x = high 🛁 Value = \$150

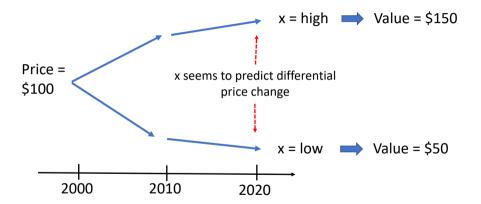
Price = \$100



▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三回 - 釣A⊘



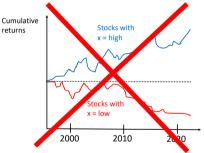
◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ●



◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼

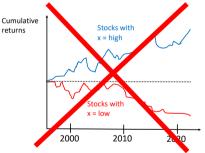
Implicit assumption in typical market efficiency tests

Standard market efficiency tests assume absence of learning effects: investors assumed to know perfectly how predictor variables map into future cash flows



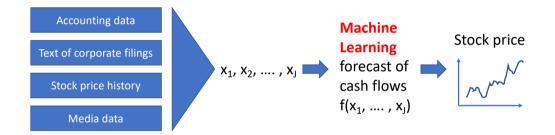
Implicit assumption in typical market efficiency tests

Standard market efficiency tests assume absence of learning effects: investors assumed to know perfectly how predictor variables map into future cash flows



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Not a useful benchmark in high-dimensional settings where investors are faced with thousands or millions of potential predictors Quantifying learning effects in high-dimensional environments: Modeling investors as "machine learners"



Investors in this model face large number of potentially relevant predictor variables and learn over time how to use them for forecasting cash flows

Learning effects in asset returns

 \blacktriangleright Investors' learning problem in this model is hard \Rightarrow substantial unavoidable errors

Learning effects in asset returns

- ► Investors' learning problem in this model is hard ⇒ substantial unavoidable errors
- As a consequence, lots of contamination of returns with errors that look predictable with hindsight

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

In-sample return prediction backtest in model-generated data

Now consider a researcher running an in-sample backtest with a regression

$$R_{t+1} = a + b_1 x_{1,t} + b_2 x_{2,t} + \dots + b_3 x_{J,t} + e_t$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

in a panel of stocks.

In-sample return prediction backtest in model-generated data

Now consider a researcher running an in-sample backtest with a regression

$$R_{t+1} = a + b_1 x_{1,t} + b_2 x_{2,t} + \dots + b_3 x_{J,t} + e_t$$

in a panel of stocks.

How likely is that the researcher will find that returns are predictable according to conventional statistical criteria? In-sample return prediction backtest in model-generated data

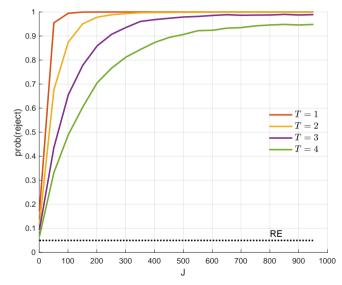
Now consider a researcher running an in-sample backtest with a regression

$$R_{t+1} = a + b_1 x_{1,t} + b_2 x_{2,t} + \dots + b_3 x_{J,t} + e_t$$

in a panel of stocks.

- How likely is that the researcher will find that returns are predictable according to conventional statistical criteria?
- Compare with case (RE) where stocks are priced by investors with perfect knowledge of the cash-flow process parameters

Overrejection of no-return-predictability null hypothesis



◆□ > ◆□ > ◆ □ > ● □ >

Implication for market efficiency tests

Rejection of no-predictability null hypothesis in in-sample tests can be artifact of look-ahead advantage of researcher rather than market efficiency violation

Implication for market efficiency tests

Rejection of no-predictability null hypothesis in in-sample tests can be artifact of look-ahead advantage of researcher rather than market efficiency violation

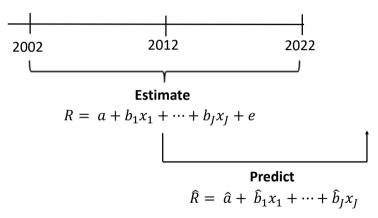
▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

 Researchers' look-ahead advantage vis-a-vis investors is magnified in high-dimensional setting

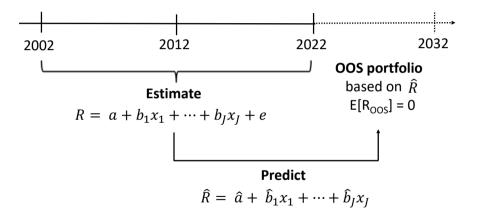
Implication for market efficiency tests

- Rejection of no-predictability null hypothesis in in-sample tests can be artifact of look-ahead advantage of researcher rather than market efficiency violation
- Researchers' look-ahead advantage vis-a-vis investors is magnified in high-dimensional setting
- How can one test market efficiency in a high-dimensional setting with investor learning?

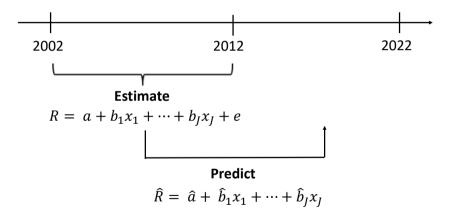
Ideal, but infeasible: True out-of-sample test



Ideal, but infeasible: True out-of-sample test

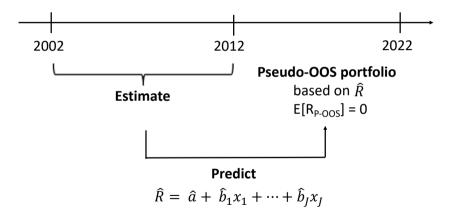


Feasible: Pseudo-OOS backtest



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Feasible: Pseudo-OOS backtest



▲□▶▲□▶▲≡▶▲≡▶ ≡ のへ⊙

What does not work: Backtest for ex-post selected predictors

Use full data set of returns until now to find "significant" predictors

What does not work: Backtest for ex-post selected predictors

- Use full data set of returns until now to find "significant" predictors
- ▶ Then backtest these selected predictors with pseudo-OOS test, e.g.,
 - 1. Split data into subperiods
 - 2. Evaluate whether return predictability consistent across subperiods

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

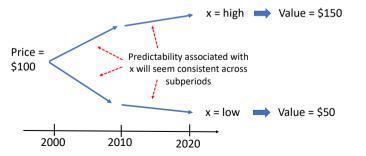
What does not work: Backtest for ex-post selected predictors

Use full data set of returns until now to find "significant" predictors

Then backtest these selected predictors with pseudo-OOS test, e.g.,

- 1. Split data into subperiods
- 2. Evaluate whether return predictability consistent across subperiods

Does not remove look-ahead bias:



So far: testing market efficiency

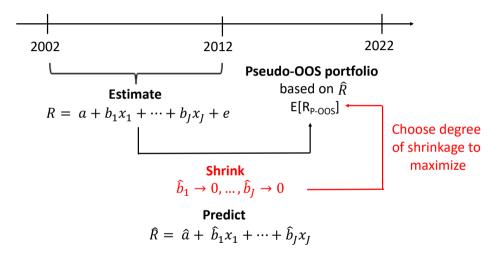
▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- So far: testing market efficiency
- ▶ Now: if there are inefficiencies, how can we estimate
 - their relation to predictor variables?
 - the magnitude of inefficiencies?

- So far: testing market efficiency
- ▶ Now: if there are inefficiencies, how can we estimate
 - their relation to predictor variables?
 - the magnitude of inefficiencies?
- Estimation with shrinkage that maximizes pseudo-OOS predictive performance

・ロト ・日 ・ モー・ モー・ ロー・ つへの

- So far: testing market efficiency
- ▶ Now: if there are inefficiencies, how can we estimate
 - their relation to predictor variables?
 - the magnitude of inefficiencies?
- Estimation with shrinkage that maximizes pseudo-OOS predictive performance
- Machine learning tools allow consideration of large numbers of predictors jointly, without focusing on on arbitrary subsets or pre-selecting based on hindsight information
 - Here: Ridge regression or lasso for linear models



Intuition: Shrinking away researchers hindsight advantage vis-a-vis investors

ロト (日) (王) (王) (王) (1)

Stock characteristics that have already appeared in published asset pricing studies are a selected sample, subject to look-ahead bias

- Stock characteristics that have already appeared in published asset pricing studies are a selected sample, subject to look-ahead bias
- Therefore: Use an entire class of predictor variables without pre-selecting particular variables in this class

・ロト ・日 ・ モー・ モー・ ロー・ つへの

- Stock characteristics that have already appeared in published asset pricing studies are a selected sample, subject to look-ahead bias
- Therefore: Use an entire class of predictor variables without pre-selecting particular variables in this class

Here: Linear prediction based on lagged monthly past stock returns r_{it-1}, r_{it-2}, ..., r_{it-120}

- Stock characteristics that have already appeared in published asset pricing studies are a selected sample, subject to look-ahead bias
- Therefore: Use an entire class of predictor variables without pre-selecting particular variables in this class
- Here: Linear prediction based on lagged monthly past stock returns r_{it-1}, r_{it-2}, ..., r_{it-120}
- Construct 120 portfolios, each weighted by market-adjusted returns lagged k months

Past-return-based anomalies

 Prior research has selectively focused on subsets and did not adjust for learning effects

- DeBondt and Thaler (1985): 3- to 5-year reversals (1926-1982)
- Jegadeesh (1990): one-month reversals (1926-1982)
- Jegadeesh and Titman (1993): 3- to 12-month momentum (1965-1987)
- Heston and Sadka (2008): Autocorrelation at 12-month lags (1945-2002)
- Novy-Marx (2012): Momentum at 7- to 12-month lags (1926-2010)

Past-return-based anomalies

 Prior research has selectively focused on subsets and did not adjust for learning effects

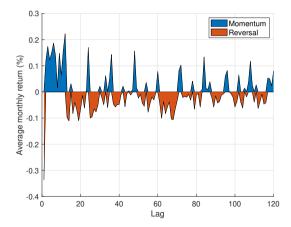
- DeBondt and Thaler (1985): 3- to 5-year reversals (1926-1982)
- Jegadeesh (1990): one-month reversals (1926-1982)
- Jegadeesh and Titman (1993): 3- to 12-month momentum (1965-1987)
- Heston and Sadka (2008): Autocorrelation at 12-month lags (1945-2002)
- Novy-Marx (2012): Momentum at 7- to 12-month lags (1926-2010)

Here:

- Tests robust to investor learning
- Characterize predicted Sharpe ratio based on using many lags of returns jointly as predictors

Full-sample historical average returns

Average returns of 120 portfolios that weight stocks by their market-adjusted returns in month $t-1,\ t-2,\ \ldots$, t-120



Sample period: 1926 to 2021; first portfolio returns in January 1936.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

Every month t, estimate expected returns of each of the 120 portfolios using data up to t

Every month t, estimate expected returns of each of the 120 portfolios using data up to t

- Apply
 - Shrinkage: shrink away learning effects

Every month t, estimate expected returns of each of the 120 portfolios using data up to t

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Apply

- Shrinkage: shrink away learning effects
- Smoothing: increase statistical power

Every month t, estimate expected returns of each of the 120 portfolios using data up to t

Apply

- Shrinkage: shrink away learning effects
- **Smoothing**: increase statistical power
- **Exponential weighing**: allow downweighting of data in distant past

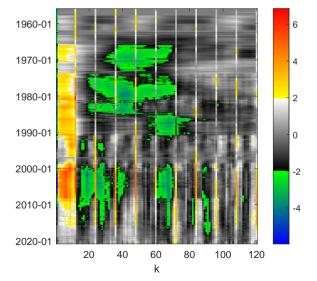
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Every month t, estimate expected returns of each of the 120 portfolios using data up to t

Apply

- Shrinkage: shrink away learning effects
- Smoothing: increase statistical power
- **Exponential weighing**: allow downweighting of data in distant past
- All optimized to achieve maximum pseudo-OOS predictive performance in data until month t

Posterior *t*-statistics

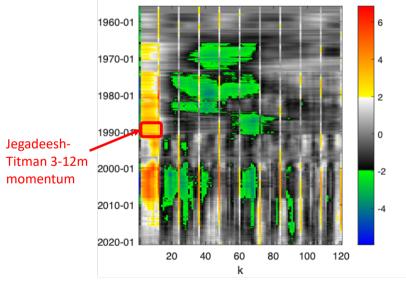


Posterior *t*-statistics

1960-01 6 1970-01 4 1980-01 2 DeBondt-Thaler 3-5yr 1990-01 0 reversals 2000-01 -2 2010-01 -4 2020-01 20 60 80 40 100 120 k

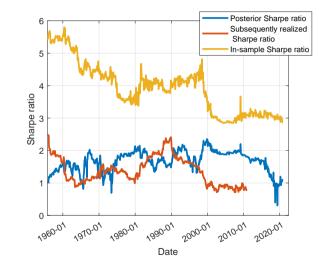
◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

Posterior *t*-statistics



◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆□ ● ◆○ ◆

Sharpe ratios



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○ ○○

Learning contaminates stock returns with components that appear predictable with researchers' look-ahead advantage relative to investors

- Learning contaminates stock returns with components that appear predictable with researchers' look-ahead advantage relative to investors
- Investors' learning problem is particularly difficult in a high-dimensional setting

- Learning contaminates stock returns with components that appear predictable with researchers' look-ahead advantage relative to investors
- Investors' learning problem is particularly difficult in a high-dimensional setting
- Standard market efficiency tests misleading in a high-dimensional setting

- Learning contaminates stock returns with components that appear predictable with researchers' look-ahead advantage relative to investors
- Investors' learning problem is particularly difficult in a high-dimensional setting
- Standard market efficiency tests misleading in a high-dimensional setting

- Shrinkage methods can remove this hindsight bias from backtests, if
 - applied to universe of all predictors within a certain class
 - without selection based on full-sample returns

- Learning contaminates stock returns with components that appear predictable with researchers' look-ahead advantage relative to investors
- Investors' learning problem is particularly difficult in a high-dimensional setting
- Standard market efficiency tests misleading in a high-dimensional setting
- Shrinkage methods can remove this hindsight bias from backtests, if
 - applied to universe of all predictors within a certain class
 - without selection based on full-sample returns
- ML tools allow embracing of high-dimensionality in empirical asset pricing rather than forcing artificially low-dimensional models