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Investors’ high-dimensional prediction problem

Accounting data

Forecast of

X1, Xz, . , X, HE) cash flows
f(Xg, e, X))

Text of corporate filings

Stock price history

Media data

» Example: SEC Edgar database of corporate filings alone receives 3,000
filings per day, =~ 3,000 terabytes of data annually
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Market efficiency in a high-dimensional world

Optimal Stock price
Text of corporate filings forecast of
Xy Xgr e s Xy - cash flows -
Stock price history
f(Xq, v ) X))

» Questions: In a high-dimensional world

» what is the benchmark for forecast optimality, and hence market efficiency?
» how can we detect deviations from this benchmark?



Evaluating market efficiency: Typical approach

Track relative performance of stocks with different firm characteristic x;
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Hypothesis in standard market efficiency tests
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Market efficiency rejections: Factor zoo

Finding that x; predicts stock returns = declare a new
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Evaluating market efficiency: Alternative methods

» Portfolio sorts: Group stocks with similar x; and track their performance
» Example: small- / mid- / large-capitalization stocks
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Evaluating market efficiency: Alternative methods

» Portfolio sorts: Group stocks with similar x; and track their performance
» Example: small- / mid- / large-capitalization stocks

» Regressions: Estimate statistical return prediction model
Riy1=a+ b1X1,t + b2X2,t + ...+ &

» Machine learning (ML): Accommodate very large number of predictors
and nonlinearity
» Ridge, lasso
» Random forests
» Neural networks
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Evaluating market efficiency: The problem of investor learning

» Example: Suppose x;; is found to predict r,.; in historical data from 1990 to
2020.

» Problems in interpreting this fact: For an investor in years before 2020,
predictive power of xj; was not necessarily knowable yet.

» Problem is magnified in a high-dimensional world with many potential
predictors.
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Learning can generate seemingly predictable returns

_— x = high == Value = 5150
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Implicit assumption in typical market efficiency tests

» Standard market efficiency tests assume absence of learning effects:
investors assumed to know perfectly how predictor variables map into future
cash flows
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Implicit assumption in typical market efficiency tests

» Standard market efficiency tests assume absence of learning effects:
investors assumed to know perfectly how predictor variables map into future
cash flows
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» Not a useful benchmark in high-dimensional settings where investors are
faced with thousands or millions of potential predictors



Quantifying learning effects in high-dimensional environments:
Modeling investors as “machine learners”

Accounting data Machine

Text of corporate filings Learning

X1, Xy, ..., x, EHp forecast of mmp
Stock price history cash flows
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Stock price

Media data

» Investors in this model face large number of potentially relevant predictor
variables and learn over time how to use them for forecasting cash flows



Learning effects in asset returns

» Investors’ learning problem in this model is hard =- substantial unavoidable
errors



Learning effects in asset returns

» Investors’ learning problem in this model is hard =- substantial unavoidable
errors

» As a consequence, lots of contamination of returns with errors that look

predictable with hindsight
x = high == Value =$150
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$100 price change

T x=low == Value=5$50

T T
2000 2010 20|20



In-sample return prediction backtest in model-generated data

» Now consider a researcher running an in-sample backtest with a regression
Rt-i-l =a+ b1X17t + b2X27t + ..+ b3X_/7t + &

in a panel of stocks.
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» Now consider a researcher running an in-sample backtest with a regression
RH-I =a-+ b1X17t + b2X27t + ...+ b3X_/7t + €
in a panel of stocks.

» How likely is that the researcher will find that returns are predictable
according to conventional statistical criteria?



In-sample return prediction backtest in model-generated data

» Now consider a researcher running an in-sample backtest with a regression
Rf-‘rl =a-+ b1X17t + b2X27t + ...+ b3X_/7t + €
in a panel of stocks.

» How likely is that the researcher will find that returns are predictable
according to conventional statistical criteria?

» Compare with case (RE) where stocks are priced by investors with perfect
knowledge of the cash-flow process parameters



Overrejection
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Implication for market efficiency tests

» Rejection of no-predictability null hypothesis in in-sample tests can be
artifact of look-ahead advantage of researcher rather than market efficiency
violation
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Implication for market efficiency tests

» Rejection of no-predictability null hypothesis in in-sample tests can be
artifact of look-ahead advantage of researcher rather than market efficiency
violation

» Researchers’ look-ahead advantage vis-a-vis investors is magnified in
high-dimensional setting

» How can one test market efficiency in a high-dimensional setting with
investor learning?
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Feasible: Pseudo-OOS backtest
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Feasible: Pseudo-OOS backtest
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What does not work: Backtest for ex-post selected predictors

» Use full data set of returns until now to find “significant” predictors

» Then backtest these selected predictors with pseudo-OOS test, e.g.,

1. Split data into subperiods
2. Evaluate whether return predictability consistent across subperiods

» Does not remove look-ahead bias:

_— x = high == Value =$150

Price =
$100

.. Predictability associated with
,,,,,, x will seem consistent across
! subperiods
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Uncovering market inefficiencies: Shrinkage regression

» So far: testing market efficiency

» Now: if there are inefficiencies, how can we estimate

» their relation to predictor variables?
» the magnitude of inefficiencies?

» Estimation with shrinkage that maximizes pseudo-OOS predictive
performance

» Machine learning tools allow consideration of large numbers of predictors
jointly, without focusing on on arbitrary subsets or pre-selecting based on
hindsight information

» Here: Ridge regression or lasso for linear models



Uncovering market inefficiencies: Shrinkage regression
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Intuition: Shrinking away researchers hindsight advantage vis-a-vis investors
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Application: Past returns as predictors

» Stock characteristics that have already appeared in published asset pricing
studies are a selected sample, subject to look-ahead bias

» Therefore: Use an entire class of predictor variables without pre-selecting
particular variables in this class

» Here: Linear prediction based on lagged monthly past stock returns
fit—1; Fit—2, -5 Fit—120

» Construct 120 portfolios, each weighted by market-adjusted returns lagged k
months



Past-return-based anomalies

» Prior research has selectively focused on subsets and did not adjust for
learning effects

» DeBondt and Thaler (1985): 3- to 5-year reversals (1926-1982)
Jegadeesh (1990): one-month reversals (1926-1982)

Jegadeesh and Titman (1993): 3- to 12-month momentum (1965-1987)
Heston and Sadka (2008): Autocorrelation at 12-month lags (1945-2002)
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Past-return-based anomalies

» Prior research has selectively focused on subsets and did not adjust for
learning effects
» DeBondt and Thaler (1985): 3- to 5-year reversals (1926-1982)
> Jegadeesh (1990): one-month reversals (1926-1982)
» Jegadeesh and Titman (1993): 3- to 12-month momentum (1965-1987)
» Heston and Sadka (2008): Autocorrelation at 12-month lags (1945-2002)
» Novy-Marx (2012): Momentum at 7- to 12-month lags (1926-2010)

» Here:
» Tests robust to investor learning
» Characterize predicted Sharpe ratio based on using many lags of returns
jointly as predictors



Full-sample historical average returns

Average returns of 120 portfolios that weight stocks by their market-adjusted
returns in month t — 1, t —2, ... , t — 120
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Sample period: 1926 to 2021; first portfolio returns in January 1936.
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Modified Gaussian process regression

» Every month t, estimate expected returns of each of the 120 portfolios using
dataup to t

> Apply
» Shrinkage: shrink away learning effects
» Smoothing: increase statistical power
» Exponential weighing: allow downweighting of data in distant past

» All optimized to achieve maximum pseudo-OOS predictive performance in
data until month t
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Sharpe ratios
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Conclusion

» Learning contaminates stock returns with components that appear
predictable with researchers’ look-ahead advantage relative to investors

» Investors’ learning problem is particularly difficult in a high-dimensional
setting

» Standard market efficiency tests misleading in a high-dimensional setting

» Shrinkage methods can remove this hindsight bias from backtests, if

» applied to universe of all predictors within a certain class
» without selection based on full-sample returns

» ML tools allow embracing of high-dimensionality in empirical asset pricing
rather than forcing artificially low-dimensional models



