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“Principle of Parsimony” (Tukey, 1961)

Textbook Rule #1

“It is important, in practice, that we employ the smallest possible number of parameters for adequate

representations” (Box and Jenkins, Time Series Analysis: Forecasting and Control)

Principle clashes with massive parameterizations adopted by modern ML algorithms

I Leading edge GPT-3 language model (Brown et al., 2020) uses 175 billion parameters

I Return prediction neural networks (Gu, Kelly, and Xiu, 2020) use 30,000+ parameters

I To Box-Jenkins econometrician, seems profligate, prone to overfit, and likely disastrous out-of-sample...

...But this is incorrect!

I Image/NLP models with astronomical parameterization—and exactly fit training data—are best

performing models out-of-sample (Belkin, 2021)

I Evidently, modern machine learning has turned the principle of parsimony on its head
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... And It’s Happening In Finance Too

I Finance lit: Rapid advances in return prediction/portfolio choice using ML

I Large empirical gains over simple models

I Little theoretical understanding of why, and significant skepticism from old guard

What We Do: Building the “Case” for Financial ML

I Main theoretical result

I Portfolio performance (Sharpe ratio) generally increasing in model complexity

I Explain the intuition, answer the skeptics

I Prior evidence of empirical gains from ML are what we should expect

I Provide direct empirical support for theory



Problem Formulation

True Model: Rt+1 = f (Gt) + εt+1

I Predictors G may be known to the analyst, but the prediction function f is unknown

I Analyst cannot know true model, so instead she approximates f with large neural network:

f (Gt) ≈
P∑
i=1

Si,tβi

I Each Si,t = f̃ (w ′i Gt) is a known nonlinear function of original predictors

Empirical Model: Rt+1 =
∑P

i=1 Si,tβi + ε̃t+1
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Empirical Model: Rt+1 =
∑P

i=1 Si,tβi + ε̃t+1, where Si,t = f̃ (w ′i Gt)

The Choice:

I Given T data points, decide on “complexity” (number of features P) to use in approximating model

The Tradeoff:

I Simple model (P << T ) has low variance thanks to parsimony, but is coarse approximator of f

I Complex model (P > T ) is good approximator, but may behave poorly (and requires shrinkage)

Our Central Research Question:

I Which P should analyst opt for? Does benefit of more parameters justify their cost?

Answer:

I Use the largest P you can compute
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Why Do Big Models “Work”? Background From Least Squares

Rt+1 = β′St + ε̃t+1

I Estimator when P ≤ T : OLS

β̂ =

(
1

T

∑
t

StS
′
t

)−1
1

T

∑
t

StRt+1

I T equations in P unknowns ⇒ Unique solution for β̂

I Estimator when P > T : Ridge Regression

β̂(z) =

(
zI +

1

T

∑
t

StS
′
t

)−1
1

T

∑
t

StRt+1

I More unknowns (P) than equations (T ) ⇒ Multiple solutions for β̂
I “Ridgeless” regression, limz→0 β̂(z) ≡ β̂(0+). Smallest variance solution that exactly fits training data



Why Do Big Models “Work”? The Trading Strategy Perspective
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I c = P/T

1. Strategy variance

I As c → 1, strategy variance blows up.

One β exactly fits training data, but it

has high variance
I When c > 1, variance drops with

model complexity! Why?
I Many β’s exactly fit training data,

ridge selects one with small variance

2. Strategy expected returns

I ER low for c ≈ 0 due to poor

approximation of true model
I Raising model complexity

monotonically increases expected

strategy returns
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Main theory result

I Expected return always rises with model

complexity (benefit of improved

approximation)

I At same time, complex models have

surprisingly low variance

I As a result, Sharpe ratio strictly increases

with complexity

Complexity is a virtue. Approximation benefits dominate costs of heavy parameterization

I Paper provides general, rigorous theoretical statements and proofs that underlie plots

I Plots calculated from our theorems in a reasonable calibration
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Empirical Analysis

I Analyze exact empirical analogues to theoretical comparative statics

I Focus on a cornerstone of empirical finance research—forecasting aggregate market return

I To make conclusions as easy to digest as possible, study conventional setting with conventional data

I Forecast target is monthly return of CRSP value-weighted index 1926–2020
I Info set consists of 15 predictor variables† from Welch and Goyal (WG, 2008)

†This list includes (using mnemonics from their paper): dfy, infl, svar, de, lty, tms, tbl, dfr, dp, dy, ltr, ep, b/m, and ntis, as well as one lag of the market return.



Empirical Analysis
Random Fourier Features

I Empirical model: Rt+1 = S ′tβ + εt+1

I Need framework to smoothly transition from low to high complexity

I Adopt ML method known as “random Fourier features” (RFF)

I Let Gt be 15× 1 predictors. RFF converts Gt into

Si,t = sin(ω′iGt), ωi ∼ iidN(0, γI )

I Si,t : Random lin-combo of Gt fed through non-linear activation

I For fixed inputs, can create arbitrarily large (or small) feature set

I Low-dim model (say P = 1) draw a single random weight
I High-dim model (say P = 10,000) draw many weights

I In fact, RFF is two-layer neural network with fixed weights (ωi ) in

first layer and optimized weights (regression β) in second layer

RFFs

St=sin(ω′Gt )

WG Data

Gt

Prediction

S′t β
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Empirical Analysis
Training and Testing

I One-year rolling training window (T = 12) and large set of RFFs

i. Reach extreme levels of model complexity with smaller P and thus less computing burden

ii. Demonstrates virtue of complexity can be enjoyed in shockingly small samples

I Draw plots with model complexity P = 1, ..., 12,000 and shrinkage of log10(z) = −3, ..., 3

Empirical Procedure

i. Generate 12,000 RFFs

ii. Fix model defined by choice of (P, z)

iii. For each model (P, z), conduct recursive OOS prediction/timing strategy

iv. From OOS predictions, calculate ER, vol, and Sharpe of timing strategy
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Out-of-sample Market Timing Performance

I Broadly: OOS behavior

of ML predictions closely

matches theory

I Variance explodes at

c ≈ 1 and recovers in

high complexity regime

I Most importantly: OOS

ER is increasing in

complexity

I Sharpe of 0.4 p.a. for

high complexity model.

Mostly alpha/IR versus

buy-and-hold with

t(α) = 2.9
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What Do ML Timing Bets Look Like?



1. ML strategy is long-only at heart: Almost never bets on market downturn

I Campbell and Thompson (2008) “many predictive regressions beat the historical average return, once

weak restrictions are imposed on the signs of coefficients and return forecasts”

I Machine learns this without requiring explicit restriction



2. Machine learns to divest ahead of recessions

I For 14 of 15 recessions in OOS sample, essentially zeros out market position prior to recession (the

exception is the 8-month recession of 1945)



Extensions

Virtue of Complexity Everywhere (Kelly, Malamud, and Zhou, 2022)

I Document identical pattern—OOS Sharpe ratio increasing in model complexity—in many asset classes

I US equities, international equities, bonds, commodities, currencies, and interest rates

Complexity in the Cross Section (Didisheim, Ke, Kelly, and Malamud, 2022)

I Panel prediction problem, new results on virtue of complexity for stock selection

Deep Regression Ensembles (Didisheim, Kelly, Malamud, Kachman, and Rood, 2022)

I Introduce “deep” VoC models and apply to image recognition



Conclusions, I

I Asset pricing and asset management in midst of boom in ML research

I We provide new, rigorous theoretical insight into the behavior of ML models/portfolios

I Contrary to conventional wisdom: Higher complexity improves model performance

Virtue of Complexity: Performance of ML portfolios can be improved by pushing model parameterization

far beyond the number of training observations

I Not license to add arbitrary predictors to model. Instead, we recommend

i. including all plausibly relevant predictors

ii. using rich non-linear models rather than simple linear specifications
I Doing so confers prediction/portfolio benefits, even when training data is scarce and particularly

when accompanied by shrinkage

I In canonical empirical problem—market prediction and timing—we find

I OOS Sharpe nearly doubles relative to buy-and-hold strategy (highly significant)
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Conclusions, II

I Clashes with philosophy of parsimony frequently espoused by economists

I Two oft-repeated quotes from famed statistician George Box:

All models are wrong, but some are useful.

Since all models are wrong the scientist cannot obtain a ‘correct’ one by excessive elaboration. On the

contrary, following William of Occam, he should seek an economical description of natural phenomena. Just

as the ability to devise simple but evocative models is the signature of the great scientist so overelaboration

and overparameterization is often the mark of mediocrity.

Occam’s Blunder? Small model is preferable only if it is correctly specified. But models are never

correctly specified. Logical conclusion?
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Appendix Slides



Out-of-Sample R2 and Estimator Variance

R2 ‖β̂‖
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