Monetary Policy Implementation with an Ample Supply of Reserves

Kyungmin Kim (Federal Reserve Board) with Afonso, Martin, Nosal, Potter and Schulhofer-Wohl August 24, 2021

* Material represents the authors' view, not those of any Federal Reserve Bank, the Federal Reserve Board or the Federal Reserve System.

- In 2019, the Federal Reserve announced that it would implement monetary policy with an ample supply of reserves.
- Is this a good idea?
- What is the optimal level of reserve supply?

Reserve Supply 2007-2019 in the U.S.

• Level of reserve supply has been changing.

- Tightly managed reserve supply to control the fed funds rate.
 - $\cdot\,$ (Excess) Reserve supply was very low, \sim \$2B in 2007.
 - Daily forecast of reserve demand and open market operations: \sim a few \$B.

Pre-2008 Regime: Illustration

• Daily open market operations to adjust reserve supply (vertical bar):

Post-2008 Regime: Abundant Reserves

• Large scale reserve injections through quantitative easing post-2008: Fed funds rate was essentially at a floor.

Balance Sheet Normalization 2017-2019

• Only occasional and minimal movements in the fed funds rate emerged.

- Federal Reserve stopped draining reserves in late 2019 and did not return to scarce reserve supply.
- What has changed from the past?
 - Reserve supply and demand have become more volatile and harder for CB to forecast.

Changes in Banking Environment: Reserve Supply

- With no CB action, Δ(reserve supply to banks) =
 -Δ(reserves held by non-bank entities).
- The right-hand side has become more volatile:

Changes in Banking Environment: Reserve Demand

- Banks are willing to hold a large amount of excess reserves to meet regulatory requirements.
 - And willing to pay substantially more than IOR (Senior Financial Officer Survey, for example).
- More complex regulations: CB might find it difficult to forecast reserve demand precisely.
 - Liquidity Coverage Ratio (LCR): Banks needs to hold enough high-quality liquid assets (HQLA).
 - Can choose between reserves, government securities, lower-quality assets.

- A stylized model of MP implementation.
 - CB chooses the optimal level of reserve supply.
- Depending on model parameters, either scarce or ample supply is optimal.
 - Defines ample.
 - Illustrates how efficiency of implementation affects the optimal choice.

Model

- A six-period model describing events happening over a day.
 - 1. CB chooses the baseline supply of reserves *R*.
 - 2. Reserve supply shock s is revealed.
 - 3. CB adds x (drains -x) reserves.
 - 4. Demand shock *d* is revealed. $d = \sum d_i$, where d_i is bank *i*'s demand shock.
 - 5. Fed funds market clears in a competitive market and the fed funds rate *r* is determined.
 - Each bank *i* receives a further shock to reserves, *u_i* (Poole 1968).

Banks' Reserve Valuation

• Date 6: Bank i's MV for reserves is a step function.

Federal Funds Market

• Date 5: bank *i* trades using its expected MV.

Aggregate Demand

• From CB's perspective (date 3): Aggregate demand factor $d = \sum d_i$ is a random variable.

CB Actions

• CB chooses the initial reserve supply *R* and conducts operations *x*(*R*, *s*) conditional on realized supply shocks:

- CB chooses x to offset s + d.
- Initial choice *R* determines how large *x* needs to be.

CB Objective

- CB wants to minimize:
 - 1. Interest rate uncertainty.
 - 2. Size of operations.
 - 3. Level of reserve supply (political cost).
- The objective function is a weighted average of these:

 $\min_{R \ge R_{LC}, x(R,s)} E[\alpha | r(R+s-d+x(R,s)) - r(R)| + \beta |x(R,s)| + R].$ (1)

• $R \ge R_{LC}$: CB wants to supply at least some level of reserves for market functioning.

Ample Reserves

• Result 1: There are two local optima in choosing *R*: 'scarce' and 'ample'.

Environment: Shocks

• Choice between scarce and ample depends on the distribution of s and d:

• Two shocks s (date 2) and d (date 4):

$$\begin{bmatrix} \mathsf{s} \\ \mathsf{d} \end{bmatrix} \sim \mathcal{N}(\begin{bmatrix} \mathsf{0} \\ \mathsf{0} \end{bmatrix}, \sigma^2 \begin{bmatrix} \mathsf{1} - \rho^2 & \mathsf{0} \\ \mathsf{0} & \rho^2 \end{bmatrix}). \tag{2}$$

- \cdot σ : total magnitude of shocks.
- ρ : relative size of demand shocks.

Ample vs. Scarce for Larger Shocks

• Result 2: Ample reserves are relatively preferred for larger shocks (larger σ).

Supply vs. Demand Shocks: an Example

- Example: s and d can be +1 or -1 with equal prob. CB wants to offset s + d.
 - If s = -1, then s + d can be either -2 or 0.
 - No operation.
 - Interest rate uncertainty.
- If instead s and d were both known, CB would totally offset interest rate movement.

Ample vs. Scarce for Different Shock Composition

- Recall $\begin{bmatrix} s \\ d \end{bmatrix} \sim \mathcal{N}(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \sigma^2 \begin{bmatrix} 1-\rho^2 & 0 \\ 0 & \rho^2 \end{bmatrix}).$ (3)
- Result 3: More uncertain (higher ρ) shocks increase the relative cost of the scarce-reserve regime.
 - Remaining uncertainty at the time of operations (*d*, variance $\rho^2 \sigma^2$) makes open market operations less effective.

Cross-Model Comparison

Results Summary

• Recall: s on date 2 and d on date 4.

$$\begin{bmatrix} s \\ d \end{bmatrix} \sim \mathcal{N}(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \sigma^2 \begin{bmatrix} 1 - \rho^2 & 0 \\ 0 & \rho^2 \end{bmatrix}).$$
(4)

- Larger σ : CB wants to avoid costs associated with reserve supply and demand shocks by supplying ample reserves.
 - Increases in the volatility of reserve supply and the complexity in regulations.
- Larger ρ : open market operations are less effective and thus ample reserves are preferred.
 - Emphasize the role of regulatory complexity.

- The stylized model emphasizes efficiency of implementation and operational cost.
- There are other potential considerations:
 - Robustness of transmission to money market rates.
 - CB liquidity interventions.

Transmission to Money Market Rates

• Theory predicts near one-to-one transmission from IOR to money market rates with ample or abundant reserves.

Transmission: Empirical Observations

Source: Federal Reserve Bank of New York, Board of Governors

Liquidity Injections

- With ample reserves, large-scale liquidity injections has little impact on money market rates.
 - With scarce reserves, need to switch interest rate control regime.

- In 2007-2008, Federal Reserve had to 'sterilize' its own lending programs.
- Standing repo facility and FIMA repo facility: little concern about sterilization.

- Conceptual framework to understand the change in monetary policy implementation regime.
 - Stylized model captures changes in the banking environment post-2008.
 - Concept of ample reserves naturally emerges.
- Discussion of ample reserves may re-emerge if Federal Reserve ends ongoing asset purchases.