Credit Supply and Green Investments

A. Accetturo, G. Barboni, M. Cascarano, E. Garcia-Appendini, and M. Tomasi

Discussion

by

Hans Degryse

KU Leuven and CEPR

Harnessing Finance for Climate, Stockholm; May 23, 2023

Research Topic

- How to harness finance for climate? Several financiers can be important (stock markets, VC, PE, governments, individual investors, banks).
- This paper focuses on **banks** as external financiers and addresses the question:
 - Does an increase in bank credit supply affect firms' likelihood to invest in green technologies?
 - Not clear ex-ante;
 - if financial reasons, then green investments may not react to credit supply if there is no profit-motivation
 - If pro-social reasons probably positive effect of credit supply if borrower internalizes some of the externalities

Research Topic

- Why relevant?
 - SMEs around the world are mainly dependent on bank finance for financing their investments
 - Focus on Italian firms:
 - 'representative country' with many SMEs
 - firms are particularly bank-dependent
 - mostly multiple lending relationships might affect the impact of credit supply shocks
 - You may want to study effect whether effect of credit supply shocks is different with multiple relationships.

Contribution and novelty

- *Textual analysis to identify* green investments by *SMEs* following the literature on analyzing conference calls for publicly listed firms
 <-> self-reported commitments through CDP or Science Based Target Initiative
- Combined with banking literature on identifying credit supply shocks allows to establish the link between credit supply and green investments.
- Speaks and contributes to several strands of literature
 - Green finance
 - Credit supply
 - Subsidies and government support
 - Environmental preferences
 - Political economy
- Brings a positive message of banks fostering green investments (but mostly when subsidies are around and environmental preferences)

Main Findings

- A large **positive elasticity** of green investments to credit supply.
 - a one standard deviation increase in credit supply induces
 - a 1.9 to 3.4 percentage points increase in the likelihood of green investments, which is roughly equivalent to 14% of its standard deviation
 - is the correct standard deviation for credit supply not the one of CSI *first stage coefficient*coefficient on ΔLoan (0.3 percentage points)
 - no effect on other regular investments (but also with similar investment peaks?)
 - Positive elasticity concentrated among larger, older, more liquid, and more profitable firms, and coincides with investment peaks
 - Complementarity with government subsidies and environmental preferences as elasticities are larger in the regions with greater subsidies and environmental preferences

Main Findings (2)

- Positive effect is concentrated in areas with higher preferences for environmental protection
 - Driven by entrepreneurs' preferences, rather than clients' preferences
- Competition can spur green investments if combined with environmental awareness.
- Do not find a differential elasticity of green investments to credit supply across sectors with high and low GHG emissions
 - limited effect of changes in regulatory risk

Methodology

- Identifying green investments through textual algorithms
- Green_{it} =1 when at least one "word in the dictionary" is used, and the firm has positive capital expenditure

 $\operatorname{Green}_{it} = \mathbb{1}_{D \cap W_{it} \neq \emptyset} \cdot \mathbb{1}_{\operatorname{Capital Expenditure}_{it} > 0}.$

- Around 6% of firm-year observations have green investments
- Around 10% of firms have at least once a green investment in 5-year window covered
- Regression model (includes firm fixed effects)

$$Green_{it} = \beta \Delta Loan_{it} + \delta X_{it} + \mu_i + \tau_t + \gamma_{s(i) \times \tau_t} + \eta_{c(i) \times \tau_t} + \theta_{p(i) \times \tau_t} + \epsilon_{it},$$
(1)

• So captured variation comes mostly from firms "not always doing green investments" – those always doing may also be of interest?

Methodology (2)

• Regression model

$$Green_{it} = \beta \Delta Loan_{it} + \delta X_{it} + \mu_i + \tau_t + \gamma_{s(i) \times \tau_t} + \eta_{c(i) \times \tau_t} + \theta_{p(i) \times \tau_t} + \epsilon_{it}, \tag{1}$$

• $\Delta Loan_{i,t}$ is endogenous so they instrument it with a firm-specific credit supply shock

$$\Delta \text{Loan}_{bpst} = \delta_{bt} + \gamma_{pst} + \epsilon_{bpst}.$$

$$\Delta \text{Loan}_{it} \cdot \longleftarrow \text{CSI}_{i,t} = \sum_{b} w_{b,i,t_0} \times \hat{\delta}_{bt},$$

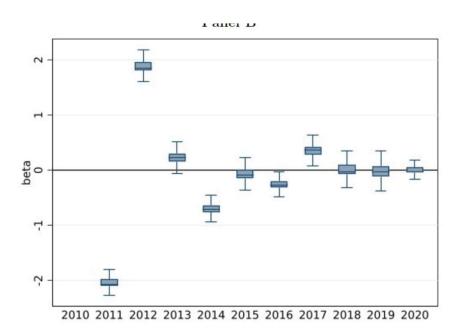
$$w_{b,i,t_0} = \frac{\operatorname{Loan}_{i,b,2014}}{\sum_b \operatorname{Loan}_{i,b,2014}}.$$

• $\Delta Loan_{i,t}$ is Davis-Haltiwanger growth rate and encompasses intensive and extensive margin, but shock is measured at intensive margin – credit supply shocks may also spur new lending which is not captured

Comment (1) – firm-specific credit supply measure

Empirical model to identify supply effects

 $\Delta \text{Loan}_{bpst} = \delta_{bt} + \gamma_{pst} + \epsilon_{bpst}.$


$$\mathrm{CSI}_{i,t} = \sum_{b} w_{b,i,t_0} \times \hat{\delta}_{bt},$$

$$w_{b,i,t_0} = \frac{\operatorname{Loan}_{i,b,2014}}{\sum_b \operatorname{Loan}_{i,b,2014}}.$$

- Identification for local banks versus global banks is quite different
 - Local banks: only cross-sectoral
 - Global: cross-province and cross-sectoral ullet
- Implications for analysis of credit supply as firms dealing with global banks get similar shocks across provinces versus local banks have more local shocks.
- Credit supply shocks may be correlated with firms teaming up with smaller, local banks with specific business model?
- Extensive margin results: are firms more likely to be green when • they start borrowing from a bank with a positive credit supply shock (i,b,t)

Comment (1) – firm-specific credit supply measure (2)

• Can we compare bank-supply shocks across periods? There is no comparable numeraire across periods.

- Shocks are quite mild during time window 2015-2019
- Are the same banks persistently in the tails of the distribution?

Comment (2) – textual analysis

- Authors gather information from notes to balance sheets and search for instances regarding words related to "green technologies"
 - Dictionary seems based on publicly listed firms

Panel A: Composition by size category				
Large	2,691	469	3,160	14.8
Medium	$13,\!956$	1,691	$15,\!647$	10.8
Small	8,087	597	8,684	6.9
Micro	1,752	119	1,871	6.4

- Distinguish between tangible and intangible assets?
 - Banks typically care about collateral
- Are banks or auditors behind this type of reporting? Are you capturing banks or auditors' incentives?

Comment (3) – OLS versus 2SLS; green versus regular

R-squared

• Would want to understand a bit more on different results

_							
Panel A - OLS							
	(1)	(2)	(3)	(4)			
$\Delta Loan$	-0.0001	-0.0001	-0.0001	-0.0002			
	(-0.136)	(-0.234)	(-0.201)	(-0.267)			
Observations	$113,\!841$	$113,\!841$	$113,\!841$	$113,\!841$			
R-squared	0.743	0.743	0.743	0.795			
Panel B - IV							
	(5)	(6)	(7)	(8)			
Δ Loan	0.0264*	0.0272*	0.0286*	0.0482**			
	(1.694)	(1.702)	(1.775)	(2.320)			
Observations	$113,\!841$	$113,\!841$	$113,\!841$	$113,\!841$			
R-squared	0.738	0.739	0.738	0.782			
Firm controls	Y	Y	Y	Y			
Firm FE	Y	Y	Y	Y			
Province-Year FE	Y	Y	Y				
Sector-Year FE		Y	Y				
Size-Year FE			Y				
Province-Sector-Size-Year FE				Y			
First-stage:							
CSI	0.285***	0.280***	0.279^{***}	0.252^{***}			
	(8.276)	(8.077)	(8.028)	(6.612)			
F-statistic weak instruments	178.4	170.4	168.4	114.8			
Observations	113,841	113,841	113,841	113,841			
R-squared	0.276	0.279	0.279	0.403			

Table 4: Main results: Credit supply and green investments

Table 5: Credit supply and the propensity to invest in capital expenditures

Panel A - OLS							
	(1)	(2)	(3)	(4)			
ΔLoan	0.0885***	0.0888***	0.0777***	0.0742***			
	(15.39)	(15.28)	(12.98)	(11.73)			
Observations	113,841	113,841	113,841	113,841			
R-squared	0.446	0.448	0.449	0.559			
	Panel B -	IV					
	(5)	(6)	(7)	(8)			
Δ Loan	0.00967	0.00847	0.0105	0.0190			
	(0.347)	(0.297)	(0.366)	(0.560)			
Observations	113,841	113,841	113,841	113,841			

0.446

0.448

0.449

0.557

Concluding remarks

- There are many things to like in this paper as they combine recent methods to learn something about green investments for a set of firms we know little about.
 - Employing textual analysis, the authors identify green investments having data on this is already a contribution
- What are these green investments (tangible, intangible)?
- Speaks to various literatures and is consistent with many
- Some suggestions to think about a deeper interpretation

• Good luck in the publication process