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Use Machine Learning to Estimate Structural Models

Three broad types of empirical models:

▶ Structural estimation
▶ Machine learning
▶ Reduced-form analysis

Today at a high level:

▶ Use machine learning techniques to make structural estimation as accessible as
reduced form analysis.



Neural Networks

Neural networks are good at predictive tasks.

Example: image recognition



Pretrained Model for Image Recognition

A neural net maps an image to the label “cat”.



This Paper

Training (and pretraining) a neural network to estimate structural
model.

Given your data 7→ parameter θ (based on a specific model)



Neural Network to Map Dataset to Model Parameter θ

For model estimation: treat a dataset as “images”, and model parameter θ as
the label.



Some Intuitions

Many structural papers show data patterns (e.g. reduced-form results), which
are informative of model parameter θ.

▶ Higher-ranked items are searched more → search cost increases with ranking.
▶ Lower-price items are searched more → utility decreases with price.

So an “expert” familiar with search model can guesstimate its parameter θ
after seeing data patterns.

We can train such an “expert” using neural net.
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Structural Models and Computational Challenges

Structural model: y = g(x, ε; θ).
▶ E.g., discrete choice, search model.

θ is typically estimated by (simulated) MLE/GMM.

▶ Often high computational cost because of simulation burden, non-smooth
objective functions, etc.

▶ Steep learning / coding costs for researchers.



Overview

A review of Neural Net Estimator (NNE)1

Extend to a pre-trained estimator (pNNE)

Conclusion

1Yanhao (Max) Wei, Zhenling Jiang (2024) Estimating Parameters of Structural Models Using Neural Networks. Marketing Science



NNE vs. pNNE

pNNE

like using a pre-trained image classifier

“Off-the-shelf”, as easy as running a
regression and very fast.
Trained for a specific structural model.
Accommodate a wide range of
datasets.
Best for fairly standardized models.

NNE

like training own image classifier

Requires coding by researchers.
Compared to SMLE/SMM, can have
lighter computational cost and robust
to redundant moments.
Users train for their own (structural)
model and specific data.
A wider range of applications.



Overview of NNE

Key idea: use neural nets to learn the mapping {y i , x i}n
i=1 7→ θ.

train a
neural net f (·)


θ(1) g(x i ,ε

(1)
i ;θ(1))

−−−−−−−−→ {y (1)
i , x i }n

i=1
moments−−−−−→ m(1) neural net−−−−−→ θ̂

(1)

θ(2) −−−−−−−−→ {y (2)
i , x i }n

i=1 −−−−−→ m(2) −−−−−→ θ̂
(2)

...
θ(L) −−−−−−−−→ {y (L)

i , x i }n
i=1 −−−−−→ m(L) −−−−−→ θ̂

(L)

apply f (·)
on real data { y i , x i︸︷︷︸

real data

}n
i=1

moments−−−−−→ m neural net−−−−−→ θ̂︸︷︷︸
estimate

Notation: θ(ℓ) drawn from a space Θ; y i = g(x i , εi ; θ) a structural model;
y (ℓ) simulated outcome; m(ℓ) simulated moments; θ̂ neural net prediction.



Generate Training Datasets

Draw θ(ℓ) uniformly from a parameter space Θ.

Use the structural model to generate training datasets.

Repeat L times to get L number of training datasets.

train a
neural net f (·)


θ(1) g(x i ,ε

(1)
i ;θ(1))

−−−−−−−−→ {y (1)
i , x i }n

i=1
moments−−−−−→ m(1) neural net−−−−−→ θ̂

(1)

θ(2) −−−−−−−−→ {y (2)
i , x i }n

i=1 −−−−−→ m(2) −−−−−→ θ̂
(2)

...
θ(L) −−−−−−−−→ {y (L)

i , x i }n
i=1 −−−−−→ m(L) −−−−−→ θ̂

(L)



Summarize with Data Moments

Summarize {y (ℓ)
i , x i}n

i=1 with data moments m(ℓ).

▶ Mean, variance, cross-covariance, etc.
▶ The parameters need to be identified by the moments (same as in GMM).

train a
neural net f (·)


θ(1) g(x i ,ε

(1)
i ;θ(1))

−−−−−−−−→ {y (1)
i , x i }n

i=1
moments−−−−−→ m(1) neural net−−−−−→ θ̂

(1)

θ(2) −−−−−−−−→ {y (2)
i , x i }n

i=1 −−−−−→ m(2) −−−−−→ θ̂
(2)

...
θ(L) −−−−−−−−→ {y (L)

i , x i }n
i=1 −−−−−→ m(L) −−−−−→ θ̂

(L)



Train a Neural Net f : m 7→ θ

Train a neural net to predict θ from moments m with MSE loss function
C =

∑L
ℓ=1∥θ̂

(ℓ)
− θ(ℓ)∥2.

train a
neural net f (·)


θ(1) g(x i ,ε

(1)
i ;θ(1))

−−−−−−−−→ {y (1)
i , x i }n

i=1
moments−−−−−→ m(1) neural net−−−−−→ θ̂

(1)

θ(2) −−−−−−−−→ {y (2)
i , x i }n

i=1 −−−−−→ m(2) −−−−−→ θ̂
(2)

...
θ(L) −−−−−−−−→ {y (L)

i , x i }n
i=1 −−−−−→ m(L) −−−−−→ θ̂

(L)



Obtain Estimates

Once the neural net f is trained, plug real data moments to obtain estimates.

train a
neural net f (·)


θ(1) g(x i ,ε

(1)
i ;θ(1))

−−−−−−−−→ {y (1)
i , x i }n

i=1
moments−−−−−→ m(1) neural net−−−−−→ θ̂

(1)

θ(2) −−−−−−−−→ {y (2)
i , x i }n

i=1 −−−−−→ m(2) −−−−−→ θ̂
(2)

...
θ(L) −−−−−−−−→ {y (L)

i , x i }n
i=1 −−−−−→ m(L) −−−−−→ θ̂

(L)

apply f (·)
on real data { y i , x i︸︷︷︸

real data

}n
i=1

moments−−−−−→ m neural net−−−−−→ θ̂︸︷︷︸
estimate



Theoretical Results

Proposition: Under conditions, as the number of training datasets L → ∞,
the trained neural net converges to limited-info Bayesian posterior mean
E(θ|m) and covariance matrix Cov(θ|m).

▶ “Limited information” because conditional on m not whole data.
▶ This result holds for any fixed data size n.



Key Benefits Compared to Existing Methods

Lighter simulation cost than traditional estimators.

▶ No need to evaluate likelihood or moment functions; can be costly (many
simulations at every θ trial) and introduce inaccuracy.

Robust to redundant moments.

▶ Learn which moments are useful during training.



NNE Recap

Train a neural net to estimate structural models.

Code available at nnehome.github.io.

User still needs to

▶ 1) simulate y i = g(x i , εi ; θ)
▶ 2) generate moments
▶ 3) train a neural net

http://nnehome.github.io


Overview

A review of Neural Net Estimator (NNE)

Extend to a pre-trained estimator (pNNE)

Conclusion



Pretrained Estimator

Benefit: Requires minimal coding and computation time of users.

Scope:

▶ Trained for a specific structural model (e.g., consumer search).
▶ Applies to a wide range of data.

Key innovations on top of NNE:

▶ In training, x is simulated instead of taken from data.
▶ m includes reduced-form regressions in addition to summary moments.

Build a pretrained estimator for sequential search model as a proof of
concept.



Consumer Sequential Search Model

Consumer optimal sequential search model (Weitzman 1979).
▶ Consumer utility: uij = β′x(prod)

ij + eij + ϵij

▶ Outside option: ui0 = η0 + η′x(cons)
i + ϵi0

▶ Consumer pay search cost cij to know ϵij : log(cij) = α0 + α′x(ads)
ij

Optimal search strategy: which options to search, when to stop, and what to
buy.

Observe consumer search and purchase decisions.

Estimate parameters: {y , x} 7→ [α0, α, η0, η, β] .



Estimation via MLE

Very challenging to estimate: millions of search-buy combinations for each
consumer:

L =
N∏

i=1

∫ {
zi1 > zi2 > ... > ziH > max

j′ /∈(1,...,H)
(zij′ ),

max(ui0, ui1) < zi2, ..., max(ui0, ui1, ..., ui,H−1) < ziH , max(ui0, ui1, ..., uiH ) > max(zij′ ),
j′ /∈(1,...,H)

uij⋆ ≥ max(ui0, ui1, ..., uiH )
}

J
Π

j=1
dF (eij )

J
Π

j=0
dF (ϵij )

Directly simulating likelihood is nearly impossible.

Survey by Ursu, Seiler and Honka 20242

2Ursu, Raluca and Seiler, Stephan and Honka, Elisabeth (2024), The Sequential Search Model: A Framework for Empirical Research. Quantitative

Marketing and Economics.



pNNE Demo
Off-the-shelf: use on your data.

(Beta-version) available at pnnehome.github.io.

Python package coming very soon!

http://pnnehome.github.io


Monte Carlo

Benchmark: MLE with a GHK-type estimator (Jiang et al. 20213).

pNNE has lower RMSE than MLE with the number of simulations S = 1000.

pNNE is much faster (4-5 orders of magnitude difference).
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3Jiang, Zhenling, Tat Chan, Hai Che, and Youwei Wang (2021). "Consumer search and purchase: An empirical investigation of retargeting based on

consumer online behaviors." Marketing Science.



Monte Carlo: Fourteen Datasets from Different Domains

number of
consumers

product
attributes

consumer
attributes

“advertising”
attributes

Taobao
iPad mini 10,000 3 5 0
iPad 4 10,000 3 5 0

Expedia (Kaggle)
Destination 1 1,258 6 2 1
Destination 2 8,97 6 2 1

Expedia (WCA)
Cancun 2,135 6 0 1
Manhattan 1,369 6 0 1

Trivago
PC channel 2,082 7 0 1
mobile channel 2,726 7 0 1

JD
PC channel 5,896 4 2 0
mobile channel 4,069 4 2 0
app channel 10,000 4 2 0

Anonymous eCommerce
laptop 10,000 6 0 0
vacuum 10,000 4 0 0
washer 10,000 5 0 0



Monte Carlo Results
■: MLE (R=50) ■: MLE (R=1e3) ■: pretrained NNE
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Real Data with Diverse Search Patterns

number of
consumers

buy rate search rate number of
searches

Taobao
iPad mini 10,000 1.16% 10.82% 1.14
iPad 4 10,000 1.23% 9.58% 1.12

Expedia (Kaggle)
Destination 1 1,258 11.53% 8.66% 1.18
Destination 2 8,97 3.79% 6.02% 1.13

Expedia (WCA)
Cancun 2,135 1.31% 30.82% 1.56
Manhattan 1,369 3.07% 28.71% 1.52

Trivago
PC channel 2,082 2.83% 40.01% 2.03
mobile channel 2,726 2.46% 29.09% 1.62

JD
PC channel 5,896 16.35% 26.46% 1.44
mobile channel 4,069 11.16% 12.17% 1.15
app channel 10,000 7.96% 12.88% 1.17

Anonymous eCommerce
laptop 10,000 5.9% 21.5% 1.36
vacuum 10,000 8.5% 19.0% 1.29
washer 10,000 7.8% 22.1% 1.38



Real Data Estimation Results
■: MLE (R=1e3) ■: pretrained NNE
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Overview of pNNE

Generate training examples, construct data patterns, and train a neural net
to predict θ.

train
pNNE



θ(1), x(1) g(x(1)
i ,ε

(1)
i ;θ(1))

−−−−−−−−−→ {y (1)
i , x(1)

i }n
i=1

reduced form−−−−−−−→
regressions

m(1) neural net−−−−−→ θ̂
(1)

θ(2), x(2) −−−−−−−−→ {y (2)
i , x(2)

i }n
i=1 −−−−−−−→ m(2) −−−−−→ θ̂

(2)

...
θ(L), x(L) −−−−−−−−→ {y (L)

i , x(L)
i }n

i=1 −−−−−−−→ m(L) −−−−−→ θ̂
(L)

apply to
real data { y i , x i︸︷︷︸

real data

}n
i=1

reduced form−−−−−−−→
regressions

m neural net−−−−−→ θ̂︸︷︷︸
estimate



Overview of pNNE: Generate x

Generate diverse x to cover possible values in real applications.

train
pNNE



θ(1), x(1) g(x(1)
i ,ε

(1)
i ;θ(1))

−−−−−−−−−→ {y (1)
i , x(1)

i }n
i=1

reduced form−−−−−−−→
regressions

m(1) neural net−−−−−→ θ̂
(1)

θ(2), x(2) −−−−−−−−→ {y (2)
i , x(2)

i }n
i=1 −−−−−−−→ m(2) −−−−−→ θ̂

(2)

...
θ(L), x(L) −−−−−−−−→ {y (L)

i , x(L)
i }n

i=1 −−−−−−−→ m(L) −−−−−→ θ̂
(L)

apply to
real data { y i , x i︸︷︷︸

real data

}n
i=1

reduced form−−−−−−−→
regressions

m neural net−−−−−→ θ̂︸︷︷︸
estimate



How to Generate Diverse x?

Draw the data dimensionality from a range.
Specified Ranges for Data Dimensions

d (prod) d (ads) d (cons) J n
min 2 0 0 15 1e3
max 8 2 5 35 ∞

Draw from correlated multivariate normal distributions.

Randomly transform to different non-normal distributions.
▶ Dummy
▶ A scale of 1 to 5
▶ A skewed continuous distribution

Standardize each attribute.



Overview of pNNE: Draw θ

Draw θ from a prior distribution.

▶ Working with standardized x is very helpful.
▶ Need the prior to be wide enough to cover possible values but not too wide.

train
pNNE



θ(1), x(1) g(x(1)
i ,ε

(1)
i ;θ(1))

−−−−−−−−−→ {y (1)
i , x(1)

i }n
i=1

reduced form−−−−−−−→
regressions

m(1) neural net−−−−−→ θ̂
(1)

θ(2), x(2) −−−−−−−−→ {y (2)
i , x(2)

i }n
i=1 −−−−−−−→ m(2) −−−−−→ θ̂

(2)

...
θ(L), x(L) −−−−−−−−→ {y (L)

i , x(L)
i }n

i=1 −−−−−−−→ m(L) −−−−−→ θ̂
(L)

apply to
real data { y i , x i︸︷︷︸

real data

}n
i=1

reduced form−−−−−−−→
regressions

m neural net−−−−−→ θ̂︸︷︷︸
estimate



Overview of pNNE: Generate Training Data

With x(l) and θ(l), use the structural model to generate y (l).

Repeat L times to get L number of training datasets.

train
pNNE



θ(1), x(1) g(x(1)
i ,ε

(1)
i ;θ(1))

−−−−−−−−−→ {y (1)
i , x(1)

i }n
i=1

reduced form−−−−−−−→
regressions

m(1) neural net−−−−−→ θ̂
(1)

θ(2), x(2) −−−−−−−−→ {y (2)
i , x(2)

i }n
i=1 −−−−−−−→ m(2) −−−−−→ θ̂

(2)

...
θ(L), x(L) −−−−−−−−→ {y (L)

i , x(L)
i }n

i=1 −−−−−−−→ m(L) −−−−−→ θ̂
(L)

apply to
real data { y i , x i︸︷︷︸

real data

}n
i=1

reduced form−−−−−−−→
regressions

m neural net−−−−−→ θ̂︸︷︷︸
estimate



Overview of pNNE: Construct Data Patterns

Summarize the key information with m.

train
pNNE



θ(1), x(1) g(x(1)
i ,ε

(1)
i ;θ(1))

−−−−−−−−−→ {y (1)
i , x(1)

i }n
i=1

reduced form−−−−−−−→
regressions

m(1) neural net−−−−−→ θ̂
(1)

θ(2), x(2) −−−−−−−−→ {y (2)
i , x(2)

i }n
i=1 −−−−−−−→ m(2) −−−−−→ θ̂

(2)

...
θ(L), x(L) −−−−−−−−→ {y (L)

i , x(L)
i }n

i=1 −−−−−−−→ m(L) −−−−−→ θ̂
(L)

apply to
real data { y i , x i︸︷︷︸

real data

}n
i=1

reduced form−−−−−−−→
regressions

m neural net−−−−−→ θ̂︸︷︷︸
estimate



How to Construct Informative Data Patterns?

Regression coefficients:
▶ Search decisions: Logit regression of y (search)

ij on product and consumer
attributes.

▶ Purchase decisions: Multinomial logit regression of y (buy)
ij among searched

products.
▶ Similar regressions at the consumer level.

Summary statistics:
▶ Buy rate, search rate, average number of searches.



Overview of pNNE: Train a Neural Net

Train a neural net to predict θ from moments m.

▶ MSE loss function C =
∑L

ℓ=1∥θ̂
(ℓ)

− θ(ℓ)∥2

train
pNNE



θ(1), x(1) g(x(1)
i ,ε

(1)
i ;θ(1))

−−−−−−−−−→ {y (1)
i , x(1)

i }n
i=1

reduced form−−−−−−−→
regressions

m(1) neural net−−−−−→ θ̂
(1)
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Overview of pNNE: Obtain Estimates

Users plug in their data to the pretrained model.

train
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“Privacy-preserving” Structural Estimation

Researchers only need to know the aggregated data moments m to estimate
the model.

train
pNNE


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...
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i , x(L)
i }n
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m︸ ︷︷ ︸
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neural net−−−−−→
ff

θ̂estimate︸ ︷︷ ︸
researchers apply pNNE



Conclusion

One can train (and use a pre-trained) neural network model to estimate
structural models.

Key idea: learn the mapping from reduced-form patterns to parameters.

pNNE is trained for a specific structural model (consumer search as a proof
of concept) while NNE can be applied to a wide set of applications.



Potential Applications of pNNE

Privacy sensitive scenarios: Estimation without access to individual-level data.

▶ The (aggregated) reduced-form patterns serve as sufficient statistics for the
structural model.

A fast “package” for model estimation.

▶ Scalable to larger data.
▶ Larger models where search model is a component and needs to be estimated

repeated (e.g., dynamic models).
▶ Incorporate search model into algorithms (e.g., Bandit) that are updated in

real time.


