
Training (and pre-training) a Neural Network for
Structural Model Estimation

Max Wei1 Zhenling Jiang2

1Marshall School of Business, University of Southern California

2Wharton School, University of Pennsylvania

Use Machine Learning to Estimate Structural Models

Three broad types of empirical models:

▶ Structural estimation
▶ Machine learning
▶ Reduced-form analysis

Today at a high level:

▶ Use machine learning techniques to make structural estimation as accessible as
reduced form analysis.

Neural Networks

Neural networks are good at predictive tasks.

Example: image recognition

Pretrained Model for Image Recognition

A neural net maps an image to the label “cat”.

This Paper

Training (and pretraining) a neural network to estimate structural
model.

Given your data 7→ parameter θ (based on a specific model)

Neural Network to Map Dataset to Model Parameter θ

For model estimation: treat a dataset as “images”, and model parameter θ as
the label.

Some Intuitions

Many structural papers show data patterns (e.g. reduced-form results), which
are informative of model parameter θ.

▶ Higher-ranked items are searched more → search cost increases with ranking.
▶ Lower-price items are searched more → utility decreases with price.

So an “expert” familiar with search model can guesstimate its parameter θ
after seeing data patterns.

We can train such an “expert” using neural net.

Some Intuitions

Many structural papers show data patterns (e.g. reduced-form results), which
are informative of model parameter θ.

▶ Higher-ranked items are searched more → search cost increases with ranking.
▶ Lower-price items are searched more → utility decreases with price.

So an “expert” familiar with search model can guesstimate its parameter θ
after seeing data patterns.

We can train such an “expert” using neural net.

Structural Models and Computational Challenges

Structural model: y = g(x, ε; θ).
▶ E.g., discrete choice, search model.

θ is typically estimated by (simulated) MLE/GMM.

▶ Often high computational cost because of simulation burden, non-smooth
objective functions, etc.

▶ Steep learning / coding costs for researchers.

Overview

A review of Neural Net Estimator (NNE)1

Extend to a pre-trained estimator (pNNE)

Conclusion

1Yanhao (Max) Wei, Zhenling Jiang (2024) Estimating Parameters of Structural Models Using Neural Networks. Marketing Science

NNE vs. pNNE

pNNE

like using a pre-trained image classifier

“Off-the-shelf”, as easy as running a
regression and very fast.
Trained for a specific structural model.
Accommodate a wide range of
datasets.
Best for fairly standardized models.

NNE

like training own image classifier

Requires coding by researchers.
Compared to SMLE/SMM, can have
lighter computational cost and robust
to redundant moments.
Users train for their own (structural)
model and specific data.
A wider range of applications.

Overview of NNE

Key idea: use neural nets to learn the mapping {y i , x i}n
i=1 7→ θ.

train a
neural net f (·)


θ(1) g(x i ,ε

(1)
i ;θ(1))

−−−−−−−−→ {y (1)
i , x i }n

i=1
moments−−−−−→ m(1) neural net−−−−−→ θ̂

(1)

θ(2) −−−−−−−−→ {y (2)
i , x i }n

i=1 −−−−−→ m(2) −−−−−→ θ̂
(2)

...
θ(L) −−−−−−−−→ {y (L)

i , x i }n
i=1 −−−−−→ m(L) −−−−−→ θ̂

(L)

apply f (·)
on real data { y i , x i︸︷︷︸

real data

}n
i=1

moments−−−−−→ m neural net−−−−−→ θ̂︸︷︷︸
estimate

Notation: θ(ℓ) drawn from a space Θ; y i = g(x i , εi ; θ) a structural model;
y (ℓ) simulated outcome; m(ℓ) simulated moments; θ̂ neural net prediction.

Generate Training Datasets

Draw θ(ℓ) uniformly from a parameter space Θ.

Use the structural model to generate training datasets.

Repeat L times to get L number of training datasets.

train a
neural net f (·)


θ(1) g(x i ,ε

(1)
i ;θ(1))

−−−−−−−−→ {y (1)
i , x i }n

i=1
moments−−−−−→ m(1) neural net−−−−−→ θ̂

(1)

θ(2) −−−−−−−−→ {y (2)
i , x i }n

i=1 −−−−−→ m(2) −−−−−→ θ̂
(2)

...
θ(L) −−−−−−−−→ {y (L)

i , x i }n
i=1 −−−−−→ m(L) −−−−−→ θ̂

(L)

Summarize with Data Moments

Summarize {y (ℓ)
i , x i}n

i=1 with data moments m(ℓ).

▶ Mean, variance, cross-covariance, etc.
▶ The parameters need to be identified by the moments (same as in GMM).

train a
neural net f (·)


θ(1) g(x i ,ε

(1)
i ;θ(1))

−−−−−−−−→ {y (1)
i , x i }n

i=1
moments−−−−−→ m(1) neural net−−−−−→ θ̂

(1)

θ(2) −−−−−−−−→ {y (2)
i , x i }n

i=1 −−−−−→ m(2) −−−−−→ θ̂
(2)

...
θ(L) −−−−−−−−→ {y (L)

i , x i }n
i=1 −−−−−→ m(L) −−−−−→ θ̂

(L)

Train a Neural Net f : m 7→ θ

Train a neural net to predict θ from moments m with MSE loss function
C =

∑L
ℓ=1∥θ̂

(ℓ)
− θ(ℓ)∥2.

train a
neural net f (·)


θ(1) g(x i ,ε

(1)
i ;θ(1))

−−−−−−−−→ {y (1)
i , x i }n

i=1
moments−−−−−→ m(1) neural net−−−−−→ θ̂

(1)

θ(2) −−−−−−−−→ {y (2)
i , x i }n

i=1 −−−−−→ m(2) −−−−−→ θ̂
(2)

...
θ(L) −−−−−−−−→ {y (L)

i , x i }n
i=1 −−−−−→ m(L) −−−−−→ θ̂

(L)

Obtain Estimates

Once the neural net f is trained, plug real data moments to obtain estimates.

train a
neural net f (·)


θ(1) g(x i ,ε

(1)
i ;θ(1))

−−−−−−−−→ {y (1)
i , x i }n

i=1
moments−−−−−→ m(1) neural net−−−−−→ θ̂

(1)

θ(2) −−−−−−−−→ {y (2)
i , x i }n

i=1 −−−−−→ m(2) −−−−−→ θ̂
(2)

...
θ(L) −−−−−−−−→ {y (L)

i , x i }n
i=1 −−−−−→ m(L) −−−−−→ θ̂

(L)

apply f (·)
on real data { y i , x i︸︷︷︸

real data

}n
i=1

moments−−−−−→ m neural net−−−−−→ θ̂︸︷︷︸
estimate

Theoretical Results

Proposition: Under conditions, as the number of training datasets L → ∞,
the trained neural net converges to limited-info Bayesian posterior mean
E(θ|m) and covariance matrix Cov(θ|m).

▶ “Limited information” because conditional on m not whole data.
▶ This result holds for any fixed data size n.

Key Benefits Compared to Existing Methods

Lighter simulation cost than traditional estimators.

▶ No need to evaluate likelihood or moment functions; can be costly (many
simulations at every θ trial) and introduce inaccuracy.

Robust to redundant moments.

▶ Learn which moments are useful during training.

NNE Recap

Train a neural net to estimate structural models.

Code available at nnehome.github.io.

User still needs to

▶ 1) simulate y i = g(x i , εi ; θ)
▶ 2) generate moments
▶ 3) train a neural net

http://nnehome.github.io

Overview

A review of Neural Net Estimator (NNE)

Extend to a pre-trained estimator (pNNE)

Conclusion

Pretrained Estimator

Benefit: Requires minimal coding and computation time of users.

Scope:

▶ Trained for a specific structural model (e.g., consumer search).
▶ Applies to a wide range of data.

Key innovations on top of NNE:

▶ In training, x is simulated instead of taken from data.
▶ m includes reduced-form regressions in addition to summary moments.

Build a pretrained estimator for sequential search model as a proof of
concept.

Consumer Sequential Search Model

Consumer optimal sequential search model (Weitzman 1979).
▶ Consumer utility: uij = β′x(prod)

ij + eij + ϵij

▶ Outside option: ui0 = η0 + η′x(cons)
i + ϵi0

▶ Consumer pay search cost cij to know ϵij : log(cij) = α0 + α′x(ads)
ij

Optimal search strategy: which options to search, when to stop, and what to
buy.

Observe consumer search and purchase decisions.

Estimate parameters: {y , x} 7→ [α0, α, η0, η, β] .

Estimation via MLE

Very challenging to estimate: millions of search-buy combinations for each
consumer:

L =
N∏

i=1

∫ {
zi1 > zi2 > ... > ziH > max

j′ /∈(1,...,H)
(zij′),

max(ui0, ui1) < zi2, ..., max(ui0, ui1, ..., ui,H−1) < ziH , max(ui0, ui1, ..., uiH) > max(zij′),
j′ /∈(1,...,H)

uij⋆ ≥ max(ui0, ui1, ..., uiH)
}

J
Π

j=1
dF (eij)

J
Π

j=0
dF (ϵij)

Directly simulating likelihood is nearly impossible.

Survey by Ursu, Seiler and Honka 20242

2Ursu, Raluca and Seiler, Stephan and Honka, Elisabeth (2024), The Sequential Search Model: A Framework for Empirical Research. Quantitative

Marketing and Economics.

pNNE Demo
Off-the-shelf: use on your data.

(Beta-version) available at pnnehome.github.io.

Python package coming very soon!

http://pnnehome.github.io

Monte Carlo

Benchmark: MLE with a GHK-type estimator (Jiang et al. 20213).

pNNE has lower RMSE than MLE with the number of simulations S = 1000.

pNNE is much faster (4-5 orders of magnitude difference).

RMSE

0.0

0.3

0.6

0.9

MLE
R=50

MLE
R=1000

pNNE

R
M

S
E

Compute Time

0

5

10

SMLE
R=50

SMLE
R=1000

pretrained
 NNE

co
m

pu
te

 ti
m

e
(h

ou
rs

)

3Jiang, Zhenling, Tat Chan, Hai Che, and Youwei Wang (2021). "Consumer search and purchase: An empirical investigation of retargeting based on

consumer online behaviors." Marketing Science.

Monte Carlo: Fourteen Datasets from Different Domains

number of
consumers

product
attributes

consumer
attributes

“advertising”
attributes

Taobao
iPad mini 10,000 3 5 0
iPad 4 10,000 3 5 0

Expedia (Kaggle)
Destination 1 1,258 6 2 1
Destination 2 8,97 6 2 1

Expedia (WCA)
Cancun 2,135 6 0 1
Manhattan 1,369 6 0 1

Trivago
PC channel 2,082 7 0 1
mobile channel 2,726 7 0 1

JD
PC channel 5,896 4 2 0
mobile channel 4,069 4 2 0
app channel 10,000 4 2 0

Anonymous eCommerce
laptop 10,000 6 0 0
vacuum 10,000 4 0 0
washer 10,000 5 0 0

Monte Carlo Results
■: MLE (R=50) ■: MLE (R=1e3) ■: pretrained NNE

Taobao: iPad mini

0.0

0.3

0.6

0.9

MLE
R=50

MLE
R=1000

pNNE

R
M

S
E

Taobao: iPad 4

0.00

0.25

0.50

0.75

MLE
R=50

MLE
R=1000

pNNE

R
M

S
E

Expedia (Kaggle): Destination 1

0.0

0.2

0.4

0.6

0.8

MLE
R=50

MLE
R=1000

pNNE

R
M

S
E

Expedia (Kaggle): Destination 2

0.00

0.25

0.50

0.75

1.00

MLE
R=50

MLE
R=1000

pNNE

R
M

S
E

Expedia (WCA): Cancun

0.0

0.5

1.0

1.5

2.0

MLE
R=50

MLE
R=1000

pNNE

R
M

S
E

Expedia (WCA): Manhattan

0.0

0.5

1.0

1.5

2.0

2.5

MLE
R=50

MLE
R=1000

pNNE

R
M

S
E

Trivago: PC channel

0.0

0.5

1.0

1.5

MLE
R=50

MLE
R=1000

pNNE

R
M

S
E

Trivago: mobile channel

0.0

0.5

1.0

1.5

2.0

MLE
R=50

MLE
R=1000

pNNE

R
M

S
E

JD: PC channel

0.00

0.25

0.50

0.75

MLE
R=50

MLE
R=1000

pNNE

R
M

S
E

JD: mobile channel

0.00

0.25

0.50

0.75

MLE
R=50

MLE
R=1000

pNNE

R
M

S
E

JD: app channel

0.0

0.2

0.4

0.6

0.8

MLE
R=50

MLE
R=1000

pNNE

R
M

S
E

eCommerce: laptop

0.0

0.2

0.4

0.6

MLE
R=50

MLE
R=1000

pNNE

R
M

S
E

eCommerce: vacuum

0.0

0.1

0.2

0.3

0.4

MLE
R=50

MLE
R=1000

pNNE

R
M

S
E

eCommerce: washer

0.0

0.2

0.4

0.6

MLE
R=50

MLE
R=1000

pNNE

R
M

S
E

Real Data with Diverse Search Patterns

number of
consumers

buy rate search rate number of
searches

Taobao
iPad mini 10,000 1.16% 10.82% 1.14
iPad 4 10,000 1.23% 9.58% 1.12

Expedia (Kaggle)
Destination 1 1,258 11.53% 8.66% 1.18
Destination 2 8,97 3.79% 6.02% 1.13

Expedia (WCA)
Cancun 2,135 1.31% 30.82% 1.56
Manhattan 1,369 3.07% 28.71% 1.52

Trivago
PC channel 2,082 2.83% 40.01% 2.03
mobile channel 2,726 2.46% 29.09% 1.62

JD
PC channel 5,896 16.35% 26.46% 1.44
mobile channel 4,069 11.16% 12.17% 1.15
app channel 10,000 7.96% 12.88% 1.17

Anonymous eCommerce
laptop 10,000 5.9% 21.5% 1.36
vacuum 10,000 8.5% 19.0% 1.29
washer 10,000 7.8% 22.1% 1.38

Real Data Estimation Results
■: MLE (R=1e3) ■: pretrained NNE

Taobao: iPad mini

−5

0

5

α0 η0 η1 η2 η3 η4 η5 β1 β2 β3

Taobao: iPad 4

−4

0

4

8

α0 η0 η1 η2 η3 η4 η5 β1 β2 β3

Expedia (Kaggle): Destination 1

−4

−2

0

2

α0 α1 η0 η1 η2 β1 β2 β3 β4 β5 β6

Expedia (Kaggle): Destination 2

−6

−4

−2

0

2

α0 α1 η0 η1 η2 β1 β2 β3 β4 β5 β6

Expedia (WCA): Cancun

−10

−5

0

5

α0 α1 η0 β1 β2 β3 β4 β5 β6

Expedia (WCA): Manhattan

−10

−8

−5

−2

0

α0 α1 η0 β1 β2 β3 β4 β5 β6

Trivago: PC channel

−10

−5

0

α0 α1 η0 β1 β2 β3 β4 β5 β6 β7

Trivago: mobile channel

−15

−10

−5

0

α0 α1 η0 β1 β2 β3 β4 β5 β6 β7

JD: PC channel

−4

−2

0

2

4

α0 η0 η1 η2 β1 β2 β3 β4

JD: mobile channel

−2

0

2

4

α0 η0 η1 η2 β1 β2 β3 β4

JD: app channel

−2

0

2

5

α0 η0 η1 η2 β1 β2 β3 β4

eCommerce: laptop

−5

−4

−3

−2

−1

0

α0 η0 β1 β2 β3 β4 β5 β6

eCommerce: vacuum

−4

−3

−2

−1

0

α0 η0 β1 β2 β3 β4

eCommerce: washer

−6

−3

0

3

α0 η0 β1 β2 β3 β4 β5

Overview of pNNE

Generate training examples, construct data patterns, and train a neural net
to predict θ.

train
pNNE



θ(1), x(1) g(x(1)
i ,ε

(1)
i ;θ(1))

−−−−−−−−−→ {y (1)
i , x(1)

i }n
i=1

reduced form−−−−−−−→
regressions

m(1) neural net−−−−−→ θ̂
(1)

θ(2), x(2) −−−−−−−−→ {y (2)
i , x(2)

i }n
i=1 −−−−−−−→ m(2) −−−−−→ θ̂

(2)

...
θ(L), x(L) −−−−−−−−→ {y (L)

i , x(L)
i }n

i=1 −−−−−−−→ m(L) −−−−−→ θ̂
(L)

apply to
real data { y i , x i︸︷︷︸

real data

}n
i=1

reduced form−−−−−−−→
regressions

m neural net−−−−−→ θ̂︸︷︷︸
estimate

Overview of pNNE: Generate x

Generate diverse x to cover possible values in real applications.

train
pNNE



θ(1), x(1) g(x(1)
i ,ε

(1)
i ;θ(1))

−−−−−−−−−→ {y (1)
i , x(1)

i }n
i=1

reduced form−−−−−−−→
regressions

m(1) neural net−−−−−→ θ̂
(1)

θ(2), x(2) −−−−−−−−→ {y (2)
i , x(2)

i }n
i=1 −−−−−−−→ m(2) −−−−−→ θ̂

(2)

...
θ(L), x(L) −−−−−−−−→ {y (L)

i , x(L)
i }n

i=1 −−−−−−−→ m(L) −−−−−→ θ̂
(L)

apply to
real data { y i , x i︸︷︷︸

real data

}n
i=1

reduced form−−−−−−−→
regressions

m neural net−−−−−→ θ̂︸︷︷︸
estimate

How to Generate Diverse x?

Draw the data dimensionality from a range.
Specified Ranges for Data Dimensions

d (prod) d (ads) d (cons) J n
min 2 0 0 15 1e3
max 8 2 5 35 ∞

Draw from correlated multivariate normal distributions.

Randomly transform to different non-normal distributions.
▶ Dummy
▶ A scale of 1 to 5
▶ A skewed continuous distribution

Standardize each attribute.

Overview of pNNE: Draw θ

Draw θ from a prior distribution.

▶ Working with standardized x is very helpful.
▶ Need the prior to be wide enough to cover possible values but not too wide.

train
pNNE



θ(1), x(1) g(x(1)
i ,ε

(1)
i ;θ(1))

−−−−−−−−−→ {y (1)
i , x(1)

i }n
i=1

reduced form−−−−−−−→
regressions

m(1) neural net−−−−−→ θ̂
(1)

θ(2), x(2) −−−−−−−−→ {y (2)
i , x(2)

i }n
i=1 −−−−−−−→ m(2) −−−−−→ θ̂

(2)

...
θ(L), x(L) −−−−−−−−→ {y (L)

i , x(L)
i }n

i=1 −−−−−−−→ m(L) −−−−−→ θ̂
(L)

apply to
real data { y i , x i︸︷︷︸

real data

}n
i=1

reduced form−−−−−−−→
regressions

m neural net−−−−−→ θ̂︸︷︷︸
estimate

Overview of pNNE: Generate Training Data

With x(l) and θ(l), use the structural model to generate y (l).

Repeat L times to get L number of training datasets.

train
pNNE



θ(1), x(1) g(x(1)
i ,ε

(1)
i ;θ(1))

−−−−−−−−−→ {y (1)
i , x(1)

i }n
i=1

reduced form−−−−−−−→
regressions

m(1) neural net−−−−−→ θ̂
(1)

θ(2), x(2) −−−−−−−−→ {y (2)
i , x(2)

i }n
i=1 −−−−−−−→ m(2) −−−−−→ θ̂

(2)

...
θ(L), x(L) −−−−−−−−→ {y (L)

i , x(L)
i }n

i=1 −−−−−−−→ m(L) −−−−−→ θ̂
(L)

apply to
real data { y i , x i︸︷︷︸

real data

}n
i=1

reduced form−−−−−−−→
regressions

m neural net−−−−−→ θ̂︸︷︷︸
estimate

Overview of pNNE: Construct Data Patterns

Summarize the key information with m.

train
pNNE



θ(1), x(1) g(x(1)
i ,ε

(1)
i ;θ(1))

−−−−−−−−−→ {y (1)
i , x(1)

i }n
i=1

reduced form−−−−−−−→
regressions

m(1) neural net−−−−−→ θ̂
(1)

θ(2), x(2) −−−−−−−−→ {y (2)
i , x(2)

i }n
i=1 −−−−−−−→ m(2) −−−−−→ θ̂

(2)

...
θ(L), x(L) −−−−−−−−→ {y (L)

i , x(L)
i }n

i=1 −−−−−−−→ m(L) −−−−−→ θ̂
(L)

apply to
real data { y i , x i︸︷︷︸

real data

}n
i=1

reduced form−−−−−−−→
regressions

m neural net−−−−−→ θ̂︸︷︷︸
estimate

How to Construct Informative Data Patterns?

Regression coefficients:
▶ Search decisions: Logit regression of y (search)

ij on product and consumer
attributes.

▶ Purchase decisions: Multinomial logit regression of y (buy)
ij among searched

products.
▶ Similar regressions at the consumer level.

Summary statistics:
▶ Buy rate, search rate, average number of searches.

Overview of pNNE: Train a Neural Net

Train a neural net to predict θ from moments m.

▶ MSE loss function C =
∑L

ℓ=1∥θ̂
(ℓ)

− θ(ℓ)∥2

train
pNNE



θ(1), x(1) g(x(1)
i ,ε

(1)
i ;θ(1))

−−−−−−−−−→ {y (1)
i , x(1)

i }n
i=1

reduced form−−−−−−−→
regressions

m(1) neural net−−−−−→ θ̂
(1)

θ(2), x(2) −−−−−−−−→ {y (2)
i , x(2)

i }n
i=1 −−−−−−−→ m(2) −−−−−→ θ̂

(2)

...
θ(L), x(L) −−−−−−−−→ {y (L)

i , x(L)
i }n

i=1 −−−−−−−→ m(L) −−−−−→ θ̂
(L)

apply to
real data { y i , x i︸︷︷︸

real data

}n
i=1

reduced form−−−−−−−→
regressions

m neural net−−−−−→ θ̂︸︷︷︸
estimate

Overview of pNNE: Obtain Estimates

Users plug in their data to the pretrained model.

train
pNNE



θ(1), x(1) g(x(1)
i ,ε

(1)
i ;θ(1))

−−−−−−−−−→ {y (1)
i , x(1)

i }n
i=1

reduced form−−−−−−−→
regressions

m(1) neural net−−−−−→ θ̂(1)

θ(2), x(2) −−−−−−−−→ {y (2)
i , x(2)

i }n
i=1 −−−−−−−→ m(2) −−−−−→ θ̂

(2)

...
θ(L), x(L) −−−−−−−−→ {y (L)

i , x(L)
i }n

i=1 −−−−−−−→ m(L) −−−−−→ θ̂
(L)

apply to
real data { y i , x i︸︷︷︸

real data

}n
i=1

reduced form−−−−−−−→
regressions

m neural net−−−−−→ θ̂︸︷︷︸
estimate

“Privacy-preserving” Structural Estimation

Researchers only need to know the aggregated data moments m to estimate
the model.

train
pNNE



θ(1), x(1) g(x(1)
i ,ε

(1)
i ;θ(1))

−−−−−−−−−→ {y (1)
i , x(1)

i }n
i=1

reduced form−−−−−−−→
regressions

m(1) neural net−−−−−→ θ̂(1)

θ(2), x(2) −−−−−−−−→ {y (2)
i , x(2)

i }n
i=1 −−−−−−−→ m(2) −−−−−→ θ̂

(2)

...
θ(L), x(L) −−−−−−−−→ {y (L)

i , x(L)
i }n

i=1 −−−−−−−→ m(L) −−−−−→ θ̂
(L)

apply to
real data {y i , x i }n

i=1
reduced form−−−−−−−→
regressions

m︸ ︷︷ ︸
company compiles moments

neural net−−−−−→
ff

θ̂estimate︸ ︷︷ ︸
researchers apply pNNE

Conclusion

One can train (and use a pre-trained) neural network model to estimate
structural models.

Key idea: learn the mapping from reduced-form patterns to parameters.

pNNE is trained for a specific structural model (consumer search as a proof
of concept) while NNE can be applied to a wide set of applications.

Potential Applications of pNNE

Privacy sensitive scenarios: Estimation without access to individual-level data.

▶ The (aggregated) reduced-form patterns serve as sufficient statistics for the
structural model.

A fast “package” for model estimation.

▶ Scalable to larger data.
▶ Larger models where search model is a component and needs to be estimated

repeated (e.g., dynamic models).
▶ Incorporate search model into algorithms (e.g., Bandit) that are updated in

real time.

