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Abstract

We extend the Stahl-Rubinstein alternating-offer bargaining procedure to allow players,
prior to each bargaining round, to simultaneously and visibly commit to some share of the
pie. If commitment costs are small but increasing in the committed share, then the unique
outcome consistent with common belief in future rationality (Perea, 2010), or more restric-
tively subgame perfect Nash equilibrium, exhibits a second mover advantage. In particular,
as the smallest share of the pie approaches zero, the horizon approaches infinity, and com-
mitment costs approach zero, the unique bargaining outcome corresponds to the reversed
Rubinstein outcome (6/(1 4 6),1/(1 4 4)), where § is the common discount factor.
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1. Introduction

"...it has not been uncommon for union officials to stir up excitement and determination on the
part of the membership during or prior to a wage negotiation. If the union is going to insist
on 32 and expects the management to counter with $1.60, an effort is made to persuade the
membership not only that the management could pay $2 but even perhaps that the negotiators
themselves are incompetent if they fail to obtain close to $2. The purpose ... is to make clear to
the management that the negotiators could not accept less than $2 even if they wished to because
they no longer control the members or because they would lose their own positions if they tried."

In this quotation from his classic book, Schelling (1960) vividly illustrates that strategic
commitment is often an essential feature of bargaining tactics and that parties of negotiations
often have access to actions that commit them to some strategically chosen bargaining position.
During the 50 years that have followed, however, there has been fairly little progress in game
theoretic analysis of such commitments. Notable exceptions are Crawford (1982), Muthoo (1992,
1996), and more recently Ellingsen and Miettinen (2008, 2010) and Li (2010).

In this paper, we follow Muthoo (1992), Li (2010) and Ellingsen and Miettinen (2010) and
consider the effect of commitment strategies in a dynamic complete information bargaining
framework. We limit attention to the finite horizon alternating offer game (Stahl, 1972; Ru-
binstein, 1982) although we do study the infinite horizon limit. We model parties who can,
simultaneously and prior to each alternating offer, commit not to agree on any share smaller
than specified in the commitment. Strategic commitment is assumed to incur small costs. These
costs are increasing in the share to which the party commits reflecting the idea that more re-
sources must be invested to build a credible commitment when the opportunity cost of turning
down a deal is larger. After each round of bargaining, any prior commitments are relaxed and
players may again choose a commitment to any share they wish.

Our work builds heavily upon the work of Rubinstein (1982) and Ellingsen and Miettinen
(2008). The main insight of Rubinstein’s pioneering work on bargaining is that, under complete
information, equilibrium strategies are determined by the relative impatience of the bargaining
parties. In equilibrium, the proposer makes an offer so that the responder is indifferent between
accepting the offer and rejecting it, given the cost of waiting; and the responder accepts the
offer. Thus there is an efficient immediate agreement with a first-mover advantage. Ellingsen
and Miettinen (2008) recently illustrated how mutual attempts of aggressive incompatible com-
mitment may be unavoidable in bilateral bargaining, if commitments can only be attempted
prior to the negotiations and they are not certain to succeed. With certain commitments, it
is better to remain flexible and sign on the other’s offer than to commit oneself, especially if
commitment incurs a small cost. Yet, a very aggressive commitment is the best-response to not
committing at all. The opponent’s aggressive commitment leaves little room of manoeuvre and
thus even small loopholes in the opponent’s commitment invite betting on being the only one
to succeed in an aggressive commitment attempt despite the risk of an impasse.



In the present context we show that, in line with Rubinstein (1982) and contrary to Ellingsen
and Miettinen (2008), the deal is always stroke immediately. However, contrary to Rubinstein’s
outcome, there is a second-mover advantage rather than a first-mover advantage! This is sur-
prising, as both parties commit simultaneously at the beginning of every round and there are no
exogenous asymmetries in the commitment technology. The intuition for the result is the fol-
lowing: commitments are short-lasting and there is no uncertainty about who has the initiative
(pre-determined alternating offers structure). Thus, the first one to propose does not have to
worry about committing before her proposal; whatever share the second-mover commits to, it
is best for the first-mover to avoid any costs by refraining from committing. In equilibrium she
proposes the second-mover the share he commits to and takes the residual share herself, provided
that the residual makes her better off than waiting for the follow-up round. Knowing this, the
second-mover will commit up to the share that makes the first-mover indifferent between having
the residual share and waiting. Thus, the presence of symmetric commitment strategies entirely
reverses the bargaining power of the parties! In the limit, where the cost of commitment and the
smallest indivisible share of the pie approach zero, and where the number of rounds approaches
infinity, the outcome approaches the reversed Rubinstein (1982) outcome, (6/(1+4),1/(1+9)),
where ¢ is the common discount factor.

We analyze the game using the concept of common belief in future rationality (Perea, 2010),
meaning that both players always believe that the opponent will choose rationally now and in
the future, that both players always believe that both players always believe that the opponent
will choose rationally now and in the future, and so on. This concept is a typical backward
induction concept as it assumes that players, throughout the game, only reason about the
future, and not about the past. In fact, in generic games with perfect information, common
belief in future rationality leads to the unique backward induction strategy for every player.
The concept is weaker, but at the same time more basic, than subgame perfect equilibrium as
no equilibrium condition is being imposed!. As Perea (2010) has shown, the strategies that
may be chosen under common belief in future rationality can be computed by the algorithm
of backward dominance. Since every subgame perfect equilibrium of the game survives the
backward dominance procedure, it follows that the outcome of the bargaining game described
above is also the unique subgame perfect equilibrium outcome of the game.

Our analysis contributes to the agenda, initiated by Schelling (1956), of carefully analyzing
and understanding commitment institutions and mechanisms and their implications on the bar-
gaining outcomes. Among the related works, Crawford (1982) and Muthoo (1992, 1996) have
studied the effects of revocable commitments; in our model in contrast, commitments auto-

! Another non-equilibrium concept which has been developed for dynamic games is extensive form rationalizabil-
ity (Pearce (1984), Battigalli (1997), Battigalli and Siniscalchi (2002)). However, extensive form rationalizability
is a typical forward induction concept, which requires players also to critically reason about the opponents’ past
choices, and not only about the opponents’ present and future choices, as common belief in future rationality
does. In many dynamic games, extensive form rationalizability and common belief in future rationality lead to
different strategy choices for the players .



matically vanish but parties can make a costly recommitment to any share they like after each
round. Ellingsen and Miettinen (2008, 2010) analyze costly and long-lasting precommitment to
offers and thus they cannot be freely adjusted after each round. Also, unlike in Ellingsen and
Miettinen (2008, 2010), players do not commit directly to proposals in our model, but rather
to veto any deal where their share is smaller than their commitment. In this respect the model
resembles those of Muthoo (1992, 1996) and the endogenous commitment models analyzed in
Fershtman and Seidmann (1993), Li (2007), and Miettinen (2010), in which yet, the smallest
acceptable shares are determined by the bargaining history in some exogenously determined way
rather than freely chosen by players.

Schelling also mentions reputation as an important means of pre-commitment. Myerson
(1991) and Abreu and Gul (2000) analyze such reputation contexts where one party has in-
complete information about the opponent’s stubbornness not to accept anything less than an
exogenously given share of the pie. The opponent can then use commitment tactics that exploit
this incomplete information and strategically mimic stubbornness in order to force concessions
from the other party. This induces delay and influences the final sharing.

Outside options bear a close relation to the current complete information alternating offer
bargaining model. Compte and Jehiel (2002) show that exogenous outside options may alto-
gether eliminate the strategic effects of reputation for stubbornness. It has also been shown that,
when a party, by opting out, gets a payoff that is inferior to the equilibrium payoff he would
obtain in the game without outside options, then these latter have no effect on the equilibrium
outcomes (Binmore et al. 1989). In our setting deliberately chosen commitment strategies in-
fluence bargaining outcomes exactly because they are chosen so as to force concessions superior
to those in the Rubinstein outcome.

The results closest in spirit to ours are perhaps Dixit’s (1980) extension of the Spence-Dixit
excess capacity model and Ellingsen’s (1995) analysis of timing in oligopoly. Dixit shows that
an incumbent firm, who nevertheless is presumed to play the role of the follower, can use the
commitment, provided by an excess capacity investment, in seizing limited initiative back from
the entrant. Ellingsen shows in a Cournot duopoly setting that, if one of the firms alone can
choose to pile up investment later, that firm will endogenously end up in the Stackelberg follower
position, whereas the firm who can only invest at present will become the leader.?

The paper is organized as follows. In Section 2, we set up the model and the bargaining
procedure. In Section 3 we present the concept of common belief in future rationality, and the
associated algorithm of backward dominance. In Section 4 we analyze the model with one round
of bargaining. We will use it as a benchmark for our analysis of more than one round in Section
5. We also investigate the limit behavior of this outcome, when the commitment costs go to
zero and the number of rounds goes to infinity. We conclude in Section 6.

2These are the only strategies surviving iterated elimination of weakly dominated strategies.



2. The Bargaining Procedure

There are two players, 1 and 2, who must reach an agreement about the division of one unit
of some good. We assume that the smallest amount is 1/K for some integer number K. Let
X :={0,1/K,2/K,...,1}. Hence, the set of possible divisions is given by

D :={(z1,72) : 71,22 € X and z1 + 22 < 1}.

Players 1 and 2 use the following bargaining procedure, which can last for at most N rounds.

Round 1: At the beginning, both players simultaneously choose commitment levels c¢1,co €
X. The commitment levels become known to both players, and player 1 proposes a division
(z1,22) € D with &1 > ¢1. Subsequently, player 2 decides whether to accept or reject the
proposal under the condition that he can only accept offers with xo > ¢o. If he accepts, (z1,z2)
is the final outcome. If he rejects, the game moves to round 2.

Round 2: At the beginning, both players simultaneously choose new commitment levels ¢y, ¢y €
X. Afterwards, player 2 proposes a division (x1,x2) € D with z9 > co. Subsequently, player 1
decides whether to accept or reject (z1,x2), under the condition that he can only accept offers
with z1 > ¢;. If he accepts, (21, z2) is the final outcome. If he rejects, the game moves to round

3.
Round 3: This is a repetition of round 1. And so on.

This bargaining procedure goes on until an agreement is reached, or the process enters round
N + 1. In round N + 1, a given division (y1,y2) € D is realized.

We assume that both players incur a cost for commitment, and that this cost is increasing
in the amount to which the player commits. The reason for the latter is that the higher the
amount to which the player commits, the more difficult it will be to stick to this commitment.
More precisely, if player ¢ commits to an amount c¢;, this will cost him Ac¢;, where A is some small
positive number. For convenience, we assume that A is the same for both players. We finally
assume that both players discount future payoffs by a common discount factor 4.

So, in view of all the above, the players’ utilities are as follows: If the players reach an
agreement on division (z1,z2) in round n, then the utility for player i is

"oy — Ae! + 6 + ..+ 8",

where cf is the commitment level chosen at round k. If the game reaches round N + 1, his utility
would be

5Nyz-—)\(czl—l—éc?—i—...%—é]v_lcfv).

In order to avoid uninteresting indifferences, we assume that § is such that a player is never
indifferent between two outcomes that are realized at two different rounds. Note that for every
open interval (a,b) in [0, 1], we can always find such a § that lies in (a,b), since there are only



finitely many rounds, and finitely many divisions and commitment levels at every round. By
choosing ¢ is this way, we guarantee that a player will never be indifferent between accepting
and rejecting an offer. This, eventually, will lead to a unique outcome in the bargaining game,
which makes our analysis more transparent.

Within our bargaining procedure above, the interpretation of the commitment levels is thus
that the proposer commits to never offer less than his commitment level for himself, whereas the
responder commits to reject any offer that would give him less than his commitment level. With
this interpretation in mind, it makes intuitive sense that the cost of commitment is assumed
to be increasing in the commitment level. A higher commitment level, namely, more heavily
restricts the subsequent choice set of the player, and for higher commitment levels, makes it
more tempting for this player to break his commitment. The higher cost of commitment for
larger shares should in this way reflect the larger opportunity cost.

3. Common Belief in Future Rationality

The concept we use to analyze the game is common belief in future rationality (Perea, 2010). In
this concept, we assume that a player always believes that his opponent will choose rationally
now and in the future, that a player always believes that his opponent always believes that he
will choose rationally now and in the future, and so on. It is thus a typical backward induction
concept, as a player is only required to reason about the opponents’ choices in the future of
the game, and not about the opponents’ past choices. In that sense, is differs considerably
from the notion of extensive form rationalizability (Pearce, 1984; Battigalli, 1997; Battigalli
and Siniscalchi, 2002), which is a typical forward induction concept, requiring players also to
think critically about opponents’ past choices, and where possible try to draw conclusions from
these about possible future moves by this opponent. In many dynamic games, common belief
in future rationality and extensive form rationalizability select different strategy choices for the
players. In fact, in terms of strategy choices there is no general logical relationship between the
two concepts — in some games the former can be more restrictive, in other games the latter can
be more restrictive, and in yet some other games they may select completely opposed strategies
for a given player.

For a formal definition of common belief in future rationality within an epistemic model
the reader is referred to Perea (2010). In that paper, it is also shown that the strategies
that can rationally be chosen under common belief in future rationality are characterized by
an elimination procedure called backward dominance. For dynamic games with observed past

3_such as the game we consider in this paper, the backward dominance procedure works

choices
as follows: We start at the ultimate subgames, that is, those subgames after which the game

is over. At each of those subgames, we restrict to strategies that reach this subgame, and

3That is, games that may include simultaneous moves, but where the players always observe which choices
have been made by the opponents in the past.



apply iterated strict dominance (or, iterated elimination of strictly dominated strategies) to this
restricted game.

We then move to penultimate subgames, that is, subgames after which either the game is
over or an ultimate subgame starts. At each of those subgames, we restrict to strategies that
reach this subgame and that have not been eliminated yet by the procedure. We then apply
iterated strict dominance to these restricted games.

And so on, until we reach the beginning of the game. There, we restrict to strategies that
have not been eliminated yet, and apply iterated strict dominance to this restricted game. The
strategies that survive the final round of iterated strict dominance at the beginning of the game
are said to survive the backward dominance procedure.

For dynamic games with observed past choices, subgame perfect equilibrium is a strict refine-
ment of common belief in future rationality. That is, every strategy that is optimal in a subgame
perfect equilibrium can also be chosen rationally under common belief in future rationality, but
not vice versa (Perea, 2010). So, common belief in future rationality is weaker than subgame
perfect equilibrium. At the same time, we believe it is a more basic concept than subgame
perfect equilibrium, as no equilibrium condition is being imposed — we only require a player to
believe that his opponent chooses rationally now and in the future, that he believes that his
opponent reasons in this way as well, and so on. No other conditions are being imposed. If we
apply common belief in future rationality to generic games with perfect information, we obtain
the usual backward induction procedure, and hence the unique backward induction strategy for
every player. This confirms the intuition that it is indeed a backward induction concept.

4. The Case of One Round

We start with the easiest case, namely when there is only one round of bargaining. For this
case, we already encounter a surprising result: Under common belief in future rationality (and
hence also under subgame perfect equilibrium) the proposer faces a first-mover disadvantage,
rather than a first-mover advantage. Actually, we can say a little more, namely the proposer
gets exactly what he would obtain as a responder in the procedure without commitment. So,
introducing the possibility to commit reverses the outcome completely! All this is obtained
under the assumption that the commitment costs are sufficiently small. More precisely, we
require A < 1 — 4.

Theorem 4.1. (Case of one round) Consider the procedure with only one round of bargaining,
and suppose that A\ < 1 — . Then, under common belief in future rationality, player 1 chooses
commitment level 0, player 2 chooses commitment level 1 — dy1, player 1 proposes (dy1,1 — dy1)
and player 2 accepts.

Here, T denotes the smallest number in X larger than, or equal to, . Remember that (y1, y2)
is the outcome if the proposal is rejected. So, player 1, the proposer, gets the minimal amount



he would still accept, whereas player 2, the responder, gets all the surplus! Notice that in the
classical bargaining procedure without commitment, this would be exactly the outcome when
player 2 would be the proposer and player 1 the responder.

Proof. For every pair (c1,cz) of commitment levels, the subgame that starts after (c1,ce) is
a game with perfect information. Hence, applying backward dominance to this subgame is the
same as using backward induction. After every (ci,c2), the backward induction outcome is as
follows:

1. If g + ¢ > 1, or ¢; > 1 — dys, then player 2 will reject any proposal by player 1. Hence,
the outcome will be (y1,y2), with utility dy; — Acy for player 1, and utility dy2 — Acg for
player 2.

2. If co > 1 — dy1, then player 1 does not want to make any offer that player 2 would accept.
Hence, the outcome will be (y1,y2), with utility dy; — Acy for player 1, and utility dya — Aco
for player 2.

3. Suppose that c; + co < 1 and dys < c2 < 1 — dy1. Then, the best that player 1 can do
is to offer player 2 precisely co, which player 2 would accept. So, the outcome would be
(1 — cg,ca), with utility 1 — co — Ac; for player 1, and utility co — Acy for player 2.

4. Suppose that ¢; < 1—0dy2 and ¢z < dys. Then, the best that player 1 can do is to offer
player 2 exactly 0y, ~which player 2 would accept. So, the outcome would be (1= dyo,
dy2), with utility 1— dya — Acy for player 1, and utility dya2 — Aco for player 2.

It can easily be seen that this covers all possible cases. In Figure 1 we have depicted the
backwards induction utilities for both players after every possible pair (ci,c2). So, Figure 1
represents exactly the restricted game that the backward dominance procedure would consider
at the beginning of the game. In order to finish the backward dominance procedure, we must
apply iterated strict dominance to the game in Figure 1.

From player 1’s utilities in Figure 1 it is easily verified that, for every co, player 1’s utility
is decreasing in his commitment level ¢;. This means, however, that ¢; = 0 strictly dominates
every other ¢y for player 1. So, we eliminate all ¢; > 0 for player 1, which leaves only ¢; = 0.
But then, in the reduced game that remains, player 2’s best choice is co = 1 — dy;. Here, we use
the assumption that A < 1 — d. As we have seen above, the best that player 1 can do in this
case is to propose (6y1,1 — dy1), which player 2 would accept. So, by applying the backward
dominance procedure, we obtain that player 1 chooses commitment level ¢c; = 0, player 2 chooses
ca = 1 — dy1, player 1 proposes (0y1,1 — dy1) and player 2 accepts. This completes the proof. W

Theorem 4.1 illustrates two points. First, by setting y; = y2 = 0, one can see that in a
single round ultimatum bargaining game, the second mover will reap the entire pie. Second,
by setting y1 = 0/(1 +6) and y2 = 1/(1 + 6), we would effectively add a simultaneous move



C1

0y1 — Act, 0y2 — Aco

1—5y1

C2
1— Cy — )\01762 - )\02

0y

1 —dyz — Acr, 0y2 — ez

1 —dy2

Figure 1: The case of one round: Backward induction utilities after every pair (c1,¢1)




commitment stage to the alternating-offer protocol such that precommitments are valid only in
the first round of bargaining. Our result shows that this would in fact put the recipient of the
first offer in an even more advantageous position than where the proposer in the game without
commitments is: the recipient of the first proposal commits to 1 —62%/(1+0) = L0 4nd leaves

140
only 62/(1 + 6) to the first mover.

5. The Case of More Rounds

We now turn to the case of more than one round. Also in this case, common belief in future
rationality leads to a unique outcome, where the proposer at round 1 faces a first-mover dis-
advantage, rather than a first-mover advantage. Actually, when the commitment cost A\ tends
to zero, then the first proposer gets exactly what he would obtain as the first responder in the
procedure without commitment, and vice versa. So, again, introducing the possibility to com-
mit completely reverses the outcome as A tends to zero! As every subgame perfect equilibrium
satisfies common belief in future rationality (Perea, 2010), it follows that this outcome is also
the unique subgame perfect equilibrium outcome in the game.

Theorem 5.1. (Case of more than one round) Suppose that the bargaining procedure consists
of N potential rounds, and that A < 1 — ¢. Let p denote the proposer at round 1, and r the
responder at round 1. Then, common belief in future rationality leads to a unique outcome,
namely at round 1 proposer p commits to ¢, = 0, responder r commits to ¢, = quv , proposer p

proposes the division (:L‘i)v , xf,v ) and responder r accepts, where :B;JV , :L‘iv are recursively given by
1 < .1 <
T, = 0yp, z, =1—dyp,
:c;f,v = §(1—=XNzM ! and 2N =1-6(1 — N2,

for every N > 2.

If we let A tend to zero, then the recursive equations above would exactly yield the outcomes
for the players in the procedure without commitment, but with the roles of the proposer and
responder reversed! If the size of the smallest slice 1/K is small, then the amounts xf,v and zY
are approximately equal to

S o1 — A)li(c;(i)i(;:)(l —A)" + (=)L — Ay,
and 1 HO™(1 — A"
o w2 O gy,

10



Recall that g, is the amount that player p would get at the end of the game, when all proposals
have been rejected. These approximations are obtained by setting £ = z in the recursive
equations above, and solving them. If the number of rounds N becomes very large, then
ol — A 1
2~ # and 2N ~ —————
P 1+6(1—2A) 1+6(1—2A)

which shows that there is a clear first-mover disadvantage. If in addition the commitment cost
A would tend to zero, then in the limit we would obtain the reversed Rubinstein outcome

1
146

N

€T,

p 146

and z ~

Proof of Theorem 5.1. We prove the statement by induction on the number of rounds. If
N =1, then the statement follows immediately from Theorem 4.1.

Now, assume that N > 2, and that the statement holds for the procedure with N —1 rounds.
Let p be the proposer at round 1, and r the responder at round 1. Suppose that the proposal
at round 1 would be rejected. Then, the subgame that starts at round 2 is a procedure with
N — 1 rounds, where r is the first proposer and p is the first responder. The commitment costs
incurred at round 1 are sunk costs, and therefore do not affect the analysis in this subgame. By
our induction assumption we know that in this subgame, common belief in future rationality (or,
equivalently, the backward dominance procedure) leads to a unique outcome: player r chooses
commitment level ¢, = 0, player p chooses commitment level ¢, = a:,{v —1 player r proposes wév -1
for himself and acfﬂv ~1 for player p, and player p accepts. The corresponding utilities would be
aNL - xN=1 = (1 — X\)2z¥ ! for player p and .I;V_l for player 7.

Let us now move to round 1, the beginning of the game. If we apply the backward dominance
procedure, then we restrict to strategies that have not been eliminated yet, and perform iterated
strict dominance within this restricted game. By our induction assumption, the strategies that
have not been eliminated yet are such that, whenever the proposal at round 1 is rejected, then
the discounted utility for p is §(1 — A\)z¥~1, and the discounted utility for r is (5:)3;\[ 1. Bya
similar argument as in the proof of Theorem 4.1, we can then conclude that the restricted game
at round 1 is given by Figure 2. The only change compared to the proof in Theorem 4.1 is that
we substitute (1 —\)z¥ =1 for 31, and substitute xév ~1 for yo. In Figure 2, the first utility always
corresponds to player p, and the second utility to player r.

From Figure 2, it can easily be concluded that proposer p’s utility is strictly decreasing in
his commitment level c,. Hence, all choices but ¢, = 0 are strictly dominated for player p. So, we
obtain a reduced game in which player p only chooses ¢, = 0. But then, using the assumption that

A < 1—6, we see that player r’s best choice is ¢, = 1—38(1 — A\)z 1. So, the backward dominance
procedure (and hence also common belief in future rationality) leads to a unique outcome, in

which at round 1 player p commits to ¢, = 0, player r commits to ¢, =1—06(1 — )\)xﬂv -1 player

11



1—6(1— NNt

Tz

(5fo1

S(1—=N)aN=t = Acp, &Blj,v_l — e

1—c¢ = Aep,cr — Acy

1—8x) ™' — Aep, 02y ™1 — Aey

1— N1

Figure 2: The restricted game at round 1
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p proposes (1 — )\)xfnv ~1 for himself, player p proposes 1 — & (1-— )\)a:,N ~1 for player r, and player
r accepts. Since mzj)v = 0(1 = Nzt and ¥ =1 —6(1 — A\)zN "1, the statement of the theorem
follows for IV rounds. By induction on N, the statement holds for every N, and hence the proof
is complete. |

6. Concluding Remarks

6.1. Commitment Costs

In our model we have assumed that the commitment costs for both players are given by Ac,
where c is the amount committed to, and A is some fixed number less than 1 — §. In fact, we
do not really need this specific functional form for the commitment costs. Instead, we could
assume that the commitment costs are given by a more general function v(c), where ~v(0) = 0,
the function ~ is strictly increasing in the commitment level ¢, and (1) < 1 — 4. The reader
may verify that under these assumptions, common belief in future rationality would again lead
to a unique outcome, in which the proposer at round 1 faces a first-mover disadvantage. The
outcome can be computed by a recursive formula similar to the one used in Theorem 5.1. Also
under these assumptions we would obtain the reversed Rubinstein outcome (6/(146),1/(1+9))
if we let the number of rounds go to infinity, let the size of the smallest slice go to zero, and let
the commitment costs go to zero. However, in the paper we have chosen the specific functional
form Ac for the commitment costs as to keep the presentation and the analysis as simple as
possible.

6.2. Common Belief in Future Rationality

The reader may wonder why we have not chosen the more traditional concept of subgame perfect
equilibrium, instead of common belief in future rationality, to analyze the game. There are two
reasons.

First, common belief in future rationality is a more basic concept than subgame perfect
equilibrium, as it does not impose any equilibrium condition. It only requires that a player
always believes that his opponent will choose rationally now and in the future, that he always
believes that his opponent always believes that he will choose rationally now and in the future,
and so on. The concept of subgame perfect equilibrium also imposes these conditions, but
in addition requires some equilibrium conditions that are harder to justify, and which are not
assumed by common belief in future rationality.

Second, using common belief in future rationality as a concept makes our Theorem 5.1
stronger. Namely, common belief in future rationality is a weaker concept than subgame perfect
equilibrium. In fact, every subgame perfect equilibrium satisfies common belief in future ratio-
nality, but not vice versa. Therefore, our Theorem 5.1 implies that the outcome described there
is also the unique subgame perfect equilibrium outcome. However, the statement is stronger

13



than this: We do not need the equilibrium condition to arrive at this outcome. Imposing only
common belief in future rationality is already enough.

References
[1] Abreu, D., F. Gul (2000): "Bargaining and Reputation", Econometrica, 68, 85-118.
[2] Battigalli, P. (1997): "On rationalizability in extensive games", Journal of Economic
Theory, 74, 40-61.
[3] Battigalli, P. and M. Siniscalchi (2002): "Strong belief and forward induction reasoning",
Journal of Economic Theory, 106, 356-391.
[4] Binmore, K., Shaked, A., Sutton, J. (1989): "An Outside Option Experiment" Quarterly
Journal of Economics, 104, 753-770.
[5] Compte, O., P. Jehiel (2002): "On the Role of Outside Options in Bargaining with Obstinate
Parties", Econometrica 70, 1477-1517.
6] Crawford, V.P. (1982): "A Theory of Disagreement in Bargaining" Fconometrica, 50, 607-
y g g g
637.
[7] Dixit, A. (1980): "The Role of Investment in Entry-Deterrence", Economic Journal, 90,
95-106.
[8] Ellingsen (1995): "On Flexibility in Oligopoly", Economics Letters, 48, 83-89.
9] Ellingsen, T., T. Miettinen (2008): "Commitment and Conflict in Bilateral Bargaining"
[9] gsen, T., gaining",
American Economic Review 98, 1629-1635.
[10] Ellingsen, T., T. Miettinen (2010): "Temporary Commitment in Dynamic Bargaining"
Stockholm School of Economics, mimeo.
[11] Fershtman, C., D. Seidmann (1993): "Deadline Effects and Inefficient Delay in Bargaining
with Endogenous Commitment." Journal of Economic Theory 60, 306-321.
[12] Li, D. (2007): "Bargaining with History-Dependent Preferences", Journal of Economic
Theory 136, 695-708.
[13] Li, D. (2010): "Commitment and Compromise in Dynamic Bargaining", Chinese University
of Hong Kong, mimeo.
[14] Miettinen, T. (2010): "History-dependent Reciprocity in Alternating Offer Bargaining",

Finnish Economic Papers, 23, 1-15.

14



[21]

22]

23]

Muthoo, A. (1992): "Revocable Commitment and Sequential Bargaining", Eonomic Jour-
nal, 102, 378-387.

Muthoo, A. (1996): "A Bargaining Model Based on the Commitment Tactic", Journal of
Economic Theory, 69, 134-152.

Myerson, R. (1991). Game Theory: Analysis of Conflict, Harvard University Press, Cam-
bridge, MA /USA.

Pearce, D.G. (1984): "Rationalizable strategic behavior and the problem of perfection",
Econometrica ,52, 1029-1050.

Perea, A. (2010): "Belief in the Opponents’ Future Rationality" Working paper, Available
at: http://www.personeel.unimaas.nl/a.perea/

Rubinstein, A. (1982): "Perfect Equilibrium in a Bargaining Model" Econometrica 50, 97-
110.

Schelling, T. (1956): "An Essay on Bargaining." American Economic Review 46, 281-306.

Schelling, T. (1960): The Strategy of Conflict. Harvard University Press, Cambridge,
MA /USA.

Stahl, 1. (1972). Bargaining Theory. Stockholm School of Economics, Stockholm, Sweden.

15



