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Abstract

Using comprehensive auto loan data from Europe, we document a gap in financing
terms between Electric Vehicles (EVs) and non-EVs. EVs, compared to non-electric
models in the same car family or pair, are financed with higher interest rates, lower
loan-to-value ratios, and shorter loan durations. We show that the primary driver of
this EV financing gap is the technological risk associated with EVs. The rapid and
uncertain evolution of EV technologies accelerates technology obsolescence, diminishing
the resale value of EVs. In response, lenders charge higher interest rates on EV loans.
Consumer demographics, lenders’ market power, and macroeconomic factors contribute
minimally to the EV financing gap.
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1 Introduction

Electric vehicles are anticipated to be a key component of future global mobility systems,

helping to reduce the impacts of transportation on climate change and air quality. The

European Union adopted a law in 2023 that requires carmakers to achieve a 100 percent

reduction in CO2 emissions from new cars sold by 2035. This regulation would effectively

prohibit the sale of new fossil fuel-powered vehicles in the 27-country bloc. The law also

establishes a 55 percent reduction in CO2 emissions for new cars sold from 2030 compared to

2021 levels. Concurrently, the U.S. White House announced public and private commitments

to have 50 percent of all new vehicle sales be electric by 2030 as part of a historic transition

to electric vehicles (EVs) under the EV Acceleration Challenge.1

In discussions surrounding the global transition to electric mobility, there is a lack of

emphasis on the significance of consumer financing in the adoption of electric vehicles. This

void occurs despite the crucial role that financing terms play in households’ decisions to pur-

chase durable assets. When considering car purchases, prior research shows that consumers

are highly sensitive to both the prices of vehicles and the financing terms offered by auto

loans.2 Importantly, consumers mention a lack of affordability as the primary concern when

considering the adoption of EVs.3 To this end, the consumer financing channel may play a

key role in the speed of the transition to electric mobility.

In this paper, we provide a comprehensive analysis of the rapidly growing EV loan market

and document a signifiant, systematic gap in the financing terms—interest rate, loan-to-value

ratio, maturity—between EVs and conventional cars. EVs, compared to non-electric models

in the same car family or pair, are financed with a higher interest rates, lower loan-to-value

ratios, and shorter loan durations. We then investigate the factors that drive the gap in the

1See “Fit for 55: Council adopts regulation on CO2 emissions for new cars and vans” and “FACT SHEET:
Biden-Harris Administration Announces New Private and Public Sector Investments for Affordable Electric
Vehicles”.

2There has been extensive work on demand elasticity to loan terms in the auto loan markets (see Charles
et al., 2008; Adams et al., 2009; Einav et al., 2012; Argyle et al., 2020, 2021, for example).

3See, for example, “New data reveals that many Europeans struggle to afford electric cars” and “Deloitte:
Affordability Concerns Slow the Road to an Electrified Future”.
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EV financing terms. Can this gap be explained by specific technological risks associated with

EVs, the strenghtening demand for green products among consumers, or the market power

of car manufacturers and lenders? Answering these questions will help us better understand

magnitudes and sources of economic costs of green financing.

We utilize comprehensive data covering 15 million car loans in Europe, sourced from

public disclosures made by issuers of auto loan asset-backed securities. This dataset provides

information on loan terms, borrower and lender characteristics, and vehicle models associated

with each loan. Our analysis focuses on comparing the financing terms between EV and non-

EV loans within the same car family or pair.4 This approach ensures that the underlying

vehicle models are similar in all characteristics except for the type of engine. To illustrate the

comparisons we perform, for example, in family “x3” offered by Bayerische Motoren Werke

AG (BMW) we compare the non-EV version model “x3 xDrive30d” to its PHEV counterpart

“x3 xDrive30e”. Similarly, for Toyota Motor Corporation (TOYOTA), we compare the non-

EV version model “Camry Business Edition 2,5-l-VVT-i” to its HEV counterpart “Camry

Business Edition Hybrid: 2,5-l-VVT-i”. We create these car pairs manually from millions of

car loans, which is a novel and distinct contribution of our analysis.

We document a systematic gap in the financing terms between EV and non-EV models.

EV loans exhibit a 0.29-percentage-point higher interest rate, a 4.7-percentage-point lower

loan-to-value ratio, and a 2.5-month shorter loan maturity. These differences represent 6.5%,

6.7%, and 5.4% of the respective sample averages. We demonstrate the robustness of the

‘EV financing gap’ by employing a wide range of alternative methodologies. This includes

estimating different regression specifications, using different sets of control variables at both

borrower and loan levels, and examining different subsamples and sample periods. Even

when conducting the most stringent fixed-effect comparison—incorporating fully interacted

fixed effects for car model family, finely defined geographic regions, lender, and year—the

observed gap in financing terms remains quantitatively similar to our baseline results.
4We consider a car model to be EV if it is plug-in hybrid (PHEV), non-plug-in hybrid (HEV), battery

powered (BEV), and general hybrid (GHEV).
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The rest of our analysis examines explanations for the EV financing gap. We demon-

strate that the relatively higher cost of financing for EVs is primarily driven by the risks

associated with the technologies integrated in these vehicles. Several reasons can explain why

technological risks result in higher financing costs for EVs. First, lenders may perceive EVs

as risky due to the limited availability of reliable long-term performance and maintenance

data. Second, rapid advancements in battery technology may shorten the lifespan of EVs. If

lenders are concerned that the technology powering EVs may become outdated in the near

future, they increase the financing cost to account for this additional collateral risk. Third,

lenders may worry about reduced resale prices for EVs, as the circular economy necessary

for the success of EVs is still in its early stages, resulting in a lack of a well-functioning

secondary market. Due to these factors, lenders face heightened risk when financing EVs

and likely assign lower residual values to EVs compared to non-EVs.

To test this hypothesis, we construct measures of the intensity and dispersion of innova-

tions in EV-related technologies. The intensity measure captures the speed of technological

change, while the dispersion captures the uncertainty surrounding the direction of advance-

ments in EV-related technologies. Both intensity and dispersion affect the pace at which

existing EV technologies become obsolete. To construct the intensity measure, we use the

list of clean auto industry patent groups from Aghion et al. (2016) to calculate the number

of patents granted in these technology groups every month and normalize it by the total

number of patents in the parent category, i.e., subclasses.

We focus on battery technology to measure dispersion of innovations. While the first

modern lithium-ion battery was commercialized in the early 1990s, recent innovations have

increasingly opened new avenues for more efficient and renewable energy storage solutions

such as the flow battery, solid-state battery, and metal battery, which were first patented

in 2012, 2015, and 2018, respectively. To construct the measure, we identify the universe

of USPTO patents that mention the term “battery” in their titles and aggregate the titles

to extract all battery-related bigrams. The count of unique battery-related bigrams in each
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month serves as a proxy for the number of technological directions in battery technology

being pursued at that month. We also construct the Herfindahl-Hirschman Index (HHI)

using the quantity of unique bigrams and their corresponding frequencies exctrated from

patents in each month. A lower HHI corresponds to a greater number of distinct directions

for technological advancement that are comparable in size. A greater number of unique

bigrams or a lower HHI thus both proxy higher uncertainty/disagreement about the future

direction of battery technologies.

Using these two sets of innovation measures, we show that the presence of technological

risks specific to EV cars is the primary explanation for why EV-loans are pricier. We focus

on interest rate while controlling for the LTV and maturity of the loan and refer to the gap

in interest rate between EVs and non-EVs as the “EV spread”. We show that the EV spread

disappears when our measures of the intensity and dispersion of innovations in EV-related

technologies have values in the lowest quartile. In both cases, the point estimates are both

statistically and economically insignificant. More importantly, a higher level of our measures

of the intensity and dispersion of innovations in EV-related technologies is associated with a

larger EV spread. A one quartile increase in the intensity of clean patenting widens the EV

spread by 0.148 p.p. Similarly, a one quartile increase in the dispersion of battery-related

technological directions widens the EV spread by 0.136 p.p.

To establish a stronger connection between technological risks and the EV spread, we

leverage the monthly residual value assessments provided by lenders for all vehicle leases, a

practice mandated by public disclosure requirements. Consistent with the amplified techno-

logical risks inherent to EVs in contrast to non-EVs, we show that lenders attribute lower

residual value estimates to EVs at the commencement of the lease. Importantly, these initial

estimates are more susceptible to downward revisions for EVs compared to non-EVs through-

out the lease duration, particularly during periods of heightened intensity and dispersion of

innovations in EV-related technologies cptures by our measures.

One may argue that other factors might contribute to the high financing costs of EVs.
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Loans with EVs as the underlying asset may have higher default risk. Buyers of EV cars

may exhibit a lower demand sensitivity with respect to price and are thus willing to pay a

higher price for their loans. Also, possible differences in lender market power in the EV vs.

non-EV loan market segment may contribute to the documented EV spread. Finally, EV

and non-EV loans may have differential exposures to macro factors that drive interest rates.

We present evidence that these alternatives explanations account for either little or only a

small fraction of the EV spread.

First, we compare the future performance of EV and non-EV loans within the same

car model family while controlling for loan and borrower characteristics and including an

extensive set of fixed effects. Our estimation yields close to zero and insignificant difference

in the default probability between EV and non-EV loans. Therefore, the EV spread cannot

be driven by higher default risk of EV loans.

Second, EV purchasers might have different characteristics from traditional vehicle buy-

ers. For example, if EV purchasers have a lower demand elasticity with respect to the interest

rate or a higher willingness to pay for the loan, lenders would charge a higher price for EV

loans in an imperfect competition setting. To test this hypothesis, we exploit variations in

regional (Nomenclature of Territorial Units for Statistics three digit level or NUTS3-level)

demographic composition, assuming that the demand for EVs are functions of these demo-

graphic factors. We detect a significant and positive EV spread across a wide range of NUTS3

regions that differ in demographic composition, suggesting that the EV spread is prevalent

regardless of the buyer characteristics. While we find that the EV spread is positively as-

sociated with GDP per capita as well as median population age, and negatively associated

with the share of the female population, the economic significance of these relationships is

relatively minor. For example, dividing the localities into four quartiles by the share of the

female population, we estimate a 0.435-p.p. EV spread in the first quartile and a 0.329-p.p.

spread in the last quartile. Hence, the difference in the demographic composition of EV

versus non-EV purchasers cannot account for the majority of the EV spread.
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Third, we rule out market power as an explanation for the documented EV spread. If

EV lenders have more market power in the local auto loan market than non-EV lenders,

they might be able to charge a higher price for loans. To measure market power, we use

the respective number of lenders that originate loans in the EV and the non-EV markets in

each region (NUTS3-level). We also calculate the HHI specific to each loan market based on

both the number and amount of loans extended by every lender. In addition, we count the

number of active lenders and compute HHI in any given region (regardless of whether they

operate in the EV or non-EV loan market), to account for the entry of existing lenders into

the EV/non-EV loan segment. We find, if anything, that the EV spread tends to be lower

when competition in the loan market is less fierce.

Overall, we document a systematic gap in financing terms between EVs and non-EVs

— EV are financed with a higher interest rate, a lower loan-to-value ratio, and a shorter

maturity. Risks associated with clean or battery technologies explain most of the financing

gap. Our results inform public policies aimed at EV adoption, enabling governments to

effectively steer our society to a low-carbon sustainable future.

Literature review

We contribute to the literature on climate change that is concerned with the pricing of climate

change risk. Bolton and Kacperczyk (2023) highlight the importance of climate transition

risk—the uncertain rate of adjustment toward carbon neutrality—and estimate the size of a

carbon-transition risk premium present in international firms? stock returns. We add to this

work by studying the pricing of carbon-transition risk in the context of household finance

and identifying a specific channel by which shocks to technological innovation contribute

to this transition risk. We show that rapid technological changes create uncertainty about

the collateral value of EVs, which makes lenders demand premium on financing of these

“green” durable assets.5 The evidence we provide is consistent with arguments in Lanteri
5Related work on climate change and debt contracts studies how climate risks affect the financing cost of

firms. For example, Huynh and Xia (2021) study climate change news risk and Seltzer et al. (2022) examine
regulatory risks. Ivanov et al. (2022) show that carbon pricing policies lead to worsening debt financing
conditions for high-emission firms as banks mitigate their exposure to climate transition risks.
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and Rampini (2023) that, if both “clean” and “dirty” technologies are used in equilibrium,

clean capital is more difficult to finance due to capital’s limited collateralizability. We show

that EV loans have lower loan-to-value ratios, which is a direct prediction of their model.

We also provide evidence on an additional collateral financing channel that is not present in

Lanteri and Rampini (2023). Specifically, we show that EVs depreciate relatively faster and

their collateral value is often revised downward due to technological progress, which further

contributes to higher financing cost associated with EVs.6 Moreover, while previous studies

focus on the cost of financing for green production, our research complements this literature

by studying the cost of financing for green consumption in the form of EV car purchases.

Our study also relates to the empirical literature investigating returns on green versus

brown assets. Using bond yields as proxies for expected future returns, prior work estimates

a negative “greenium” where yields on green bonds are lower than those of their non-green

counterparts (Pástor et al., 2022).7 Observing lower expected returns on green assets is

consistent with equilibrium models where investors have green tastes and/or green assets

are a better hedge against climate risk (Pástor et al., 2021). We differ from this work by

studying ex ante returns on car loans contracts that are popular among households. Using

loans on pairs of EVs and non-EVs, we detect a positive greenium. This finding might seem

inconsistent with the arguments in Pástor et al. (2021), but it is not. We show that EVs,

relative to non-EVs, are expected to have a lower residual value in the future and that their

residual value is further revised downward due to technological risks. We argue that, via

this technological obsolescence risk channel, there is a difference in loan profitability between

6In a related paper, Atanasova and Schwartz (2019) examine the uncertainty about the depreciation of
stranded assets and their impact on firm value due to climate policy risk in the oil and gas industry.

7Baker et al. (2022) and Zerbib (2019) also estimate negative greenium using different samples and
methodologies. In contrast, Larcker and Watts (2020) document economically identical pricing for green and
non-green issues of municipal bonds and concludes that investors appear unwilling to forgo wealth to invest
in environmentally sustainable projects.
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EVs and non-EVs that is reflected in the loan terms at loan origination.8 Our results are

consistent with this channel dominating auto lenders’ willingness to accept a lower return in

exchange for financing “green” cars, if they have green tastes.

To the best of our knowledge, we are the first to document the systematic gap between

EV and non-EV loans. There has been extensive work on demand elasticity to loan terms in

the auto loan markets (see Charles et al., 2008; Adams et al., 2009; Einav et al., 2012; Argyle

et al., 2020, 2021, for example). Yet, empirical work on the EV loan segment is scarce due to

the nascency of this market segment. In a recent paper, Kontz (2023) shows that auto asset

backed securities with low-emissions have a 6.5% higher issuance spread, which is consistent

with our finding.

At last, our work complements prior research on the factors influencing EV demand,

which so far has focused on the direct cost of EVs, government subsidies, and intrinsic con-

sumer preferences (Archsmith et al., 2022). Muehlegger and Rapson (2022) and Muehlegger

and Rapson (2023) study the causal impact of EV subsidies on the demand for EVs in

California. Gallagher and Muehlegger (2011) evaluate how hybrid vehicle sales respond to

various tax and non-tax incentives in the US. Li et al. (2017) show that a dollar spent on

charging infrastructure will induce more EV demand than a dollar spent on consumer pur-

chase subsidies. Other work examines how demand for EVs varies across demographic groups

and finds income and education to be strongly correlated with EV adoption (Borenstein and

Davis, 2016; Archsmith et al., 2022). Our research contributes to this strand of literature by

documenting low-cost auto financing as a potential enabling factor for EV adoption.

8Our study is related to the literature investigating asset-pricing effects of innovation, particularly the
adoption of new technologies and displacement risk. Gârleanu et al. (2012) study asset prices throughout
the technology-adoption cycle in the presence of large infrequent technological innovations which are em-
bodied into new capital vintages. Gârleanu et al. (2012) argue that innovation introduces an unhedgeable
displacement risk due to lack of intergenerational risk sharing. Kogan et al. (2020) explore behavior of asset
prices when technological progress leads to losses through creative destruction as new technologies make old
capital and processes obsolete.
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2 Data and Variable Construction

2.1 Data sources

European Data Warehouse (EDW) EDW GmbH is part of the ABS Loan Level Data

initiative established by the European Central Bank (ECB) to provide data warehousing ser-

vices and full disclosure for investors in asset-backed securities. EDW provides standardized

loan-level data for car loans securitized by European banks and captive lenders since 2013.

EDW has collected over 20 million records and relevant documentation for car loans from

over 300 distinct asset-backed securities issued by 19 lenders. For each loan, the dataset

covers more than 70 variables. These variables include loan terms (loan amount, interest

rate, maturity, and LTV), the manufacturer and model of each car, and borrower charac-

teristics as of the loan origination date (credit score, income, location, etc.), as well as loan

performance histories over the entire life of each loan.

We also construct measures of local loan market competition using the EDW loan

datasets. For each NUTS3-level region, we compute the number of lenders, market

concentration (HHI) based on the number of loans originated by each lender and the volume

of loans originated by each lender. Moreover, we construct this set of measures for the

EV-specific loan market and non-EV-specific loan market, respectively. We refer to them as

the segment-specific competition measures.

EV-volumes EV-volumes is a database for global electric vehicle sales. It offers monthly

registrations on all types of electric vehicles by country and model. We use this dataset to

examine the coverage of our sample of cars in asset-backed securities.

PatentsView PatentsView provides detailed bibliographical information on all the patents

applied through U.S. Patent & Trademark Office (USPTO). Using this data, we identify EV-

related technological advancements based on the International Patent Classification (IPC)

and title of each patent.
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VentureXpert The commercialization of technological improvements or breakthroughs

often starts from venture capital (VC) investment in new technologies. VentureXpert pro-

vides company insights from early-stage start-ups and their financing rounds. We narrow

down to start-ups in the auto industry and compute the amount of VC investment and the

relative importance of these investment out of all VC investment.

data.europa.eu We construct various control variables at the NUTS3-level regions. These

regions generally have a population of 150,000 to 800,000 inhabitants. We collect the follow-

ing demographics information that are available at NUT3-level and that may affect consumer

preferences for EVs: population, population density, income, age, gender, and birth rate.

In addition to common demographic variables, we obtain NUTS-level election results

from Schraff et al. (2023). We then use the regional share of votes for green parties in

European parliamentary elections as the proxy for the local green preferences. We identify

green parties as parties with green ideology. Examples include The Greens - The Green

Alternative from Austria (abbreviated as BRUNE), Europe Ecology – The Greens from

France (EELV), Greens / Alliance 90 – Citizens’ Movement from Germany (GRUNE). The

electoral cycle is five years and most of the variations in this variable, therefore, comes from

the cross-section.

FRED We obtain various macroeconomic indicators from the Federal Reserve Bank

of Saint Louis. These indicators include the 10-Year Treasury Yield Minus 3-Month

Treasury Yield (“T10Y3M”), Moody’s Seasoned Aaa Corporate Bond Minus Federal Funds

Rate (“AAAFF”), Moody’s Seasoned Aaa Corporate Bond Minus Baa Corporate Bond

(“AAABAA”), CBOE Volatility Index (“VIXCLS”), log return on the S&P 500 index

(“SPXret”), Crude Oil Returns (calculated based on Crude Oil Prices: Brent - Europe, or

“DCOILBRENTEU”). These macroeconomic factors may differentially affect the pricing of

EV versus non-EV loans.
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2.2 Key variable construction

EV indicator An important step is to disentangle EVs from non-EVs using reported

information on car manufacturers and models. The “manufacturer” and “model” fields in

the EDW data are noisy. For each manufacturer, there can be thousands of unique values

in the model field, since lenders report this field following their own format with different

precision levels. For example, for the same model BMW 330e, one lender reports “330e” but

another one reports “BMW 330e i Performance 190kw”. Different languages might also be

used since many banks in the sample, such as Santander and Deutsche Bank, are not from

English-speaking countries.

We follow a couple of steps to clean up car model names and flag EVs. First, we compile

a complete list of official model names for EVs using information from EV-volumes. Second,

for each manufacturer, we use regular language expressions to match all the unique model

values to the list of official model names. We set different thresholds for each manufacturer

and for each lender to determine a match vs. a non-match, depending on the level of accuracy

and the language of the model field. We set rather conservative thresholds given the noise

in the data. Third, for any non-matches, we manually check each case and decide whether

the reported model is an EV or not.

Car model family and pair To ensure that EVs and non-EVs are comparable in all other

aspects except for their engine type, we manually bundle car models that belong to the same

family and determine if they are close pairs. More importantly, some manufacturers have

introduced hybrid versions of their gasoline cars. This allows us to form pairs and compare

EVs and non-EVs that are otherwise identical. We go through all the car models of the ten

manufacturers to identify their naming conventions. For example, for BMW, we categorize

all models into the following families: 1 series, 2 series, 8 series, X series, Z series, and

i series. For example, “BMW X3 xDrive30e” is the plug-in hybrid version of “BMW X3

xDrive30”. We provide a detailed description of all the car families and pairs that contain
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EVs in Appendix A.

EV-related technological risks We measure the risks associated with technologies em-

bedded in EVs using a wide array of variables. We employ both patent data and VC in-

vestment data to capture both the intensity and dispersion of innovation in EV-related

technologies.

We start by constructing three sets of variables to capture the intensity of relevant

innovations. First, we consider the number of patents granted in the five- to eight-digit

IPC, referred to IPC “main groups”, that have been identified as clean technology groups

in Aghion et al. (2016) (henceforth “ADHMV2016") in each calendar month. Second, we

expand the aforementioned clean technology classes using the co-classification of patents,

following the approach in Yan and Luo (2017).9 We then similarly compute the number of

patents in the expanded clean technology groups in each month.

Second, in addition to absolute level of clean patenting, we are also interested in the

importance of these patents relative to innovation in comparable technology space. To

achieve this, for both the ADHMV2016 list and the expanded list, we scale the number of

patents in clean technology groups over the total number of patents in the corresponding

technology subclasses (four-digit IPC). The subclasses that encompass the clean technology

groups are mostly auto-related technology. Both variables are calculated for each calendar

month.

Third, to capture the commercialization of these technologies, we compute the dollar

value of VC investments in the EV-related startups and the share of that relative to total

VC investment in each calendar month. To identify EV-related startups, we perform keyword

search in their company descriptions. We use the following keyword list: “EV(s)”, “battery”,

9The co-classification between any technology group pair (at IPC “main groups” level) is defined as the
count of shared patents normalized by the total count of unique patents in each pair of groups. We calculate
this relevance ratio and update the list of relevant IPCs on a yearly basis. The technology groups that
have a higher-than-90-percentile relevance ratio with any ADHMV2016 technology group are included in the
expansion of the original list.
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“batteries”, “electric vehicle(s)”, “electric car(s)”, “automobile(s)”, “fuel cell(s)”, “lithium”.

We continue by considering the dispersion in battery-related innovations. The dispersion

captures the uncertainties about the directions of future advancements in EV and battery

technologies. To measure dispersion, we first identify the universe of USPTO patents that

mention “battery” in the title. We pool all these titles together and consider each battery-

related bigram (e.g., lithium battery, solid battery, flow battery, metal battery) as a direction

of future battery technology. We then count the number of unique battery-related bigrams as

a proxy for the number of technological directions regarding battery. Next, using the unique

number of bigrams and their respective frequency in each calendar month, we construct the

monthly HHI of technological directions in battery. A greater number of unique bigrams or

a lower HHI corresponds to higher uncertainties and more disagreement about the future

direction of battery technologies.

2.3 Sample and EV growth

Our sample contains car loans originated between January 2010 and August 2021 and se-

curitized by European lenders.10 We focus on 10 brands of manufacturers that produce

both EVs and non-EVs: BMW, Ford, Honda, Hyundai, Lexus, Mercedes, Peugeot, Toyota,

Volkswagen, and Volvo.11

Table 1 shows the EV loan volume and share for the 10 manufacturers that have a presence

in the EV market. The largest three car manufacturers in the EDW dataset are Volkswagen,

Peugeot, and BMW, while the top three EV manufacturers are Toyota, Volkswagen, and

BMW. In terms of the percentage of EVs, Lexus, Toyota, and BMW top the ranking.

We evaluate the coverage of EVs in our sample using external EV sales data from EVvol-

umes. Between 2015-2019, EV loans in our sample represent 6.8%, 7.2%, 6.5%, 8.3%, and

7.9% of all EV sales in the 11 countries covered by EDW. The stable coverage suggests that

10Although the EDW started to provide data in 2013, some loans in the securitized portfolios were
originated years before 2013. We downloaded the data in August 2021.

11Other manufacturers are either insignificant in EDW data or produce in one market only, such as Tesla.
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lenders do not significantly change their securitization practices regarding EVs loans.12

Figure 1 depicts the total number of EV loans and the share of EV loans over all auto

loans by year. Both series reveal the exponential growth of the EV loan originations. This

is not surprising given the same trend in EV sales in Europe and globally, which we show in

Appendix Figure B.1, using market-level data from EVvolumes.

2.4 Summary statistics

In Table 2, we show the loan terms for EV loans and non-EV loans separately. The average

EV loan has a 4.55% annual interest rate, 70% LTV ratio, and a 46-month maturity, while

the average non-EV loans have a higher rate of 4.95%, a higher LTV ratio of 83%, and

a longer maturity of 47-month maturity. Although the average loan terms appear more

favorable for EV loans, we show below that once we account for borrower-, lender-, market-,

and car model-specific characteristics, the gap flips signs.

We also examine the performance of EV and non-EV loans. EV loans appear to be less

likely to default than non-EV loans as of August 2021, the end of our sample period. For

example, the share of non-performing (defaulted) loans is 5% (1%) for non-EV, it is 4% (0%)

for EV.

Panel a of Table 3 shows the summary statistics of the technological risk measures. The

average monthly log number of clean patents granted based on the ADHM2016 definition

is 5.65, which accounts for 2% of the auto-related patents. Expanding the ADHM2016

definition to include other relevant technology groups, we find that the average log number

of clean patents granted increases to 8.91. The dispersion in battery innovation is substantial,

with the average monthly number of battery bigrams reaching 25, and the respective HHI

of battery bigrams being 0.11.

At the three-digit NUTS level, the markets for EV and non-EV loans exhibit different

degrees of competition. The average number of EV lenders is 3, and it is 8.9 for non-EV

12We focus on the data after 2015 because the data points from EVvolumes before 2015 is sparce. We
do not report the coverage in 2020 as some loans originated in 2020 are yet to be securitized at the time of
data collection.
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loans. A similar pattern can be found in the HHI based on either the number of loans or

loan volume. The average market has an HHI of 0.81 for EV loans and 0.43 for non-EV

loans. Market power, therefore, plays a potential role in loan pricing.

3 The Gap in Financing Terms Between EV and Non-EVs

This section formally compares the contractual terms of EV and non-EV loans. We identify

the gap in the financing terms between EV and non-EV within the same model family or

model pair, defined in the previous section. Specifically, we estimate the following regression:

Yi = γg + θregion,t + αlender + αdeal + βEVi + θ′Xi + εi. (1)

where i denotes car loan, t denotes the loan origination year, g denotes model family or pair.

region is defined at NUTS3-level. We consider various outcome variables, denoted by Yi, in-

cluding the interest rate of the loan, LTV, and maturity. EVi is a dummy variable that equals

one when the car is an EV and zero otherwise. Variables capturing borrower and other loan

characteristics are summarized in vector Xi. We include car value, borrower income, income

verification status, customer type, employment status, rate basis, loan origination channel,

product type, amortization type, payment frequency, and payment method in the most ex-

tensive specification. We further include high-dimensional fixed effects in the regression.

γg control for model-family-specific demand or supply shocks, and θregion,t absorb regional

time-varying shocks. In our tightest specification, we also include family×region×year fixed

effects, γg,region,t, to absorb any supply or demand shocks at the NUTS-3 regional level that

are specific to each car family of a particular brand. In addition, we include lender fixed

effects, αlender, to control for any time-invariant lender characteristics. Similarly, we include

deal fixed effects, αdeal, to control for deal-specific factors that influence loan terms. The

coefficient of interest is β, which captures the difference in loan terms of an EV relative to

a non-EV within the same brand, model family or model pair, originated in the same mar-

ket at the same time by the same lender to borrowers that are similar based on observable
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characteristics. Standard errors are double clustered by at the deal and region (NUTS3)

level.

Table 4 reports the regression results. The identification of the coefficient of interest β

relies on the comparisons of EVs and non-EVs within the same car model family. In the

last three columns of each panel, we include the income of the borrower and a variable

indicating whether this income is verified (or self-reported without verification) as control

variables. The financing terms offered to EVs are consistently less favorable compared to

non-EVs within the same brand, model family, and model pair. For example, in columns

4-6 of panel a, where we add borrower controls, EVs loans have a 0.29 p.p higher interest

rate, a 4.7 p.p. lower LTV ratio, and a 2.5-month shorter maturity. These differences are

economically sizeable, representing 6.5%, 6.7%, and 5.4% of the sample average for interest

rate, LTV, and maturity. In panel b and c, we use tighter fixed effect structures – model

family×NUTS3×month fixed effects and model family×NUTS3×year×lender fixed effects,

respectively. This ensures that our results are not driven by shocks specific to a car model

family in a given region in certain year or month and financed by a certain lender. In other

words, we control for the changes in the market structure of lenders or car dealers as well as

shifts in the demographics of car buyers of certain models and liquidity shocks to the lender

(Benetton et al., 2022). The point estimates under the tighter fixed effect structures (Panels

b-c, columns 4-6) are similar to those in our main specification.

In Table 5, we repeat the analysis with model-pair fixed effects. This reduces the sample

size by 3/4 because we require the EV models to have a non-EV close counterpart that shares

common features in all observable dimensions except for the engine type. The results remain

similar in the restricted sample: EV loans have a higher rate, a lower LTV, and a shorter

maturity. To maintain a larger sample size and a broader coverage of car manufacturers, we

use the within-family comparison as our main specification and refer to the fixed effects in

Panel a of Table 4 as our “baseline FE”.
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Robustness checks In Figure 2, we show that our results are robust to various alter-

native samples and specifications. We first consider five alternative samples, starting with

a regression sample of loans originated from 2015 and 2018 onwards. This was motivated

by the surge of consumer interests in EVs in more recent years, which may affect the loan

pricing. Second, we drop leases from the regression sample, which account for 30% of the

sample, and focus on car loans. Next, we apply the sampling criteria in Benetton et al.

(2022).13 Last, we restrict the sample to EV and non-EV loans that fall on the common

support of control variables and fixed effect units. Put it differently, this ensures that we

are strictly comparing the EVs and non-EVs from the same model family, originated by the

same lender in the same year, to similar consumers from the same region, and the that the

loans are included in the same deal.

In addition, we apply alternative regression specifications, including replacing the family

fixed effect with make (i.e., manufacturer) fixed effects, adding product type fixed effects,

and controlling for additional borrower characteristics such as customer type, employment

status, rate basis, loan origination channel. We also replace NUTS3 × year fixed effects with

NUTS3 × year-month fixed effects and lender × NUTS3 × year fixed effects to control for

local shocks that vary within a given year and differential exposure to local shocks across

lenders, respectively. Finally, we double cluster the standard errors by lender and NUTS3

instead of deal and NUTS3.

The point estimates and their 95% confidence intervals from these alternative regressions

are displayed in Figure 2. At the top of each panel, we show the baseline point estimate for

ease of comparison. For all three outcome variables — interest rates, LTV, and maturity —

the magnitudes of the estimated coefficient of the EV indicators are largely similar across

these robustness tests and are always significant at 5% level. Based on this, we conclude

that our results are not driven our choice of a particular sample and specification.

Last, we exclude each of the 10 manufacturers or each of the top 10 lenders from the
13Specifically, we only keep loans associated with cars purchased by individuals and priced in Euros, and

that have monthly payment schedule and fixed rates.
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sample and repeat the analysis. Appendix Figure C.1 report the estimation results for the

three outcome variables, interest rate, LTV, and maturity, separately. The stability of the

estimated coefficients ensures that our results are not driven by any specific manufacturers or

lenders. The point estimates are statistically indistinguishable from our baseline estimates.

4 Economic Mechanism

What drives the persistent gap in financing terms between EVs and non-EVs? In this section,

we investigate potential explanations for the less favorable loan terms for EVs. We focus on

the interest rate dimension while controlling for LTV and maturity. We refer to the gap in

interest rate as the “EV spread”. In turn, we show that the following factors can explain

either little or only a small fraction of the EV spread: (1) higher default risks among EV

loans, (2) lower demand sensitivity with respect to the loan price, (3) higher market power

of EV lenders, and (4) distinct exposure of EV and non-EV to macro factors. Instead, we

find robust evidence that the EV spread is primarily driven by the risks associated with

technologies embedded in EVs.

4.1 Default risk

One may argue that borrower attributes such as income only partially capture borrowers’

riskiness and the EV spread may originate from higher default risks associated with EV loans.

To investigate this possibility, we use the monthly loan performance reports in the EDW

data. This information is mandatory and is available once a loan enters the securitized loan

portfolio and till the loan matures or exit from the portfolio. Specifically, to capture default

risks, we use the account status field, which can take ten different values, from performing

to defaulted and arrears.14. Based on the monthly account status as of August 2021, we

construct four ex-post performance measures indicating if a loan is ever (1) non-performing

or repurchased by seller, (2) non-performing, (3) in arrears, or (4) in default. A loan is

considered non-performing either when it is in arrears or in default. A loan is repurchased
14The ten possible account statuses are: Performing (1); Restructured-no arrears (2); Restructured -

arrears (3); Defaulted (4); Arrears (5); Repurchased by Seller - breach of reps and warranties (6); Repurchased
by Seller - restructure (7); Repurchased by Seller - special servicing (8); Redeemed (9); Other (10).
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by sellers when it is in default or the loan has been restructured due to forbearance.

We provide summary statistics in Table 2 and we find that EV loans seem to experience a

lower, instead of higher, unconditional default probability. We formally test this by regressing

the four performance measures on the EV indicator using the regression specification in

Equation 1 and the baseline fixed effect in Table 4 Panel b. we include origination year fixed

effects to compare loans from the same vintage. The results are reported in Table 6. Columns

1-4 show that there is no significant difference in the default risks of EV and non-EV loans.

The point estimates of the coefficient for EV are always insignificant both statistically and

economically. In columns 5-8, we additionally include interest rate, LTV, and maturity as

explanatory variables and find similar results. Therefore, the EV spread cannot be explained

by higher default risks.

4.2 Demand elasticity

EV purchasers and traditional vehicle buyers might have different characteristics. For ex-

ample, if EV purchasers have a lower demand elasticity with respect to the interest rate or

a higher willingness to pay for the loan, lenders could charge a higher price for EV loans

as long as they have some market power. To test this hypothesis, we exploit variations in

regional demographic composition, assuming that the demand for EVs are functions of these

demographic factors. We study the following variables that are widely available at NUT3-

level: population size, population density, GDP per capita, share of females, median age,

birth rates, and share of votes for green parties.

We perform the test in two ways. First, we estimate our baseline regression equation

for each of the NUTS3-level region, which yields a region-specific EV spread.15 Then we

plot in scatter the region-specific EV spread against an array of demographics to visually

inspect the relationship between the two. Figure 3 presents the results, where each subfigure

concerns one demographic variable and each dot in the figure represents a NUTS3-level

region. Significant and insignificant EV spread estimates are denoted in blue circles and red

15This requires replacing the NUTS3 × year fixed effects with year fixed effects.
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diamonds, respectively.

Two patterns are worth noting. First, the point estimates are mostly above zero, suggest-

ing that EV spread persistently exists across regions that vary widely in their demographics.

This also confirms that the baseline estimate of EV spread is not driven by a small set of re-

gions. Second, across all figures, we fail to find strong, visually evident relationships between

the magnitude of the EV spread and the six local demographic attributes. This suggests

that the differences in the demographic composition of EV versus non-EV purchasers cannot

account for the majority of the EV spread.

Next, we examine the relationship between EV spread and demographics using the fol-

lowing regression equation, where we add the interaction term EVi ×Dregion,t to the baseline

specification in Equation 1:

Yi = γg + θregion,t + αl + βEVi + δEVi × Dregion,t + θ′Xi + εi. (2)

This specification includes the baseline fixed effects and borrower characteristics, as well as

the LTV and maturity of the loan. Our coefficients of interest are δ and β. To facilitate

the interpretation of the coefficients, we use the quartiles of the continuous demographic

variables Dregion,t and code it as a categorical variable that takes values from 0 to 3 instead

of 1 to 4. With this transformation, we can conveniently interpret β as the average EV

spread for the regions in the first quartile of a specific demographic distribution. δ then

captures the change in the EV spread moving from a lower quartile to the next quartile.

Table 7 presents the results. We first find that the magnitude the EV spread does

not depend on local population size (column 1), population density (column 2), birth rates

(column 6), and share of votes for green parties in European parliamentary elections (column

7). Based on the estimated coefficient of the EV in the respective columns, the average EV

spread in regions with non-missing demographic information ranges between 0.3 and 0.4

percentage points. Next, GDP per capita and median age have a positive but economically
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small association with the spread. For example, column 3 suggests that the average EV

spread in regions in the lowest quartile of GDP is 0.272 p.p., and moving to the last quartile,

we observe an average spread of 0.373 p.p. (= 0.272 + 0.035 × 3). Last, EV spread is

negatively associated with the share of the female population, with the spread in the first

quartile being 0.435 p.p., and that in the last quartile being 0.329 p.p..

The small coefficients of the interaction terms suggest that while the differential demand

elasticity or willingness to pay for EV versus non-EV has an impact on the EV spread, it

cannot explain the majority of it.16

One may argue that the regional demographic profiles are too coarse a proxy for local

consumers’ willingness to pay (WTP) for EVs and EV loans. To address this concern, we

construct two additional sets of measures of WTP. Our first set of measures leverages the

car purchase price available at the loan level. First, to gauge whether consumers pay an EV

price premium, we compute the average price difference between EVs and non-EVs within

the same model family in any given year. This EV price premium therefore varies at the

family-year level. Second, we compute the degree to which consumers overpay for a certain

car model. We take the difference between the purchase price and a benchmark price, the

latter of which is the average price paid by consumers in the same year, or in the same

year and NUTS3-level region, for the same car model (same family and engine type). Note

that these variables vary at the loan level and can be alternatively interpreted as consumer

sophistication. The idea is that consumers who shop around for the best car sale deal are

presumably more sophisticated than those who overpay relative to the benchmark price.

Our second set of measures for WTP is the monthly Media Climate Change Concerns

Index, constructed by Ardia et al. (2022). The MCCC index is a proxy for unexpected

changes in climate change concerns computed from news articles published on the same

day. It takes into account factors the quantity of climate-related news stories as well as

the extent of negativity in these news stories and the emphasis placed on risk. Besides the
16In untabulated regressions, we find that controlling for all demographic variables simultaneously does

not change the finding.
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MCCC aggregate index, we also consider the four subindexes based on new article themes:

business impact, environmental impact, societal debate, and research. To the extent that

climate concerns exert an influence on consumers’ WTP for EVs and EV loans, the temporal

fluctuations in the indexes should result in time-series variations in the WTP for EVs and

EV loans.

Following the same regression specification, we find that these additional proxies for

WTP for EVs or consumer sophistication do not explain the EV spread: the interaction

terms are consistently insignificant. The results are reported in Appendix Table D.1 and

Appendix Table D.2 .

4.3 Lenders’ market power

Lenders’ market power could also contribute to the EV spread. If EV lenders have more

market power than non-EV lenders in the local auto loan market, they might charge a

higher price for loans. To measure market power, we use the respective number of lenders

that originate EV and non-EV loans in each region (NUTS3-level). We also calculate the

HHI specific to each loan market based on both the number and amount of loans extended by

every lender. In addition, to capture potential market competition, we calculate the number

of active lenders and HHI in a given region (regardless of whether they operate in the EV or

non-EV loan market). This measure is useful because existing lenders that did not originate

EV loans in the past may enter the EV loan markets or vice versa.

We find that market power does not explain the EV spread. If anything, the relationship

is the opposite of our prediction. Table 8 reports the regression results of Equation 2,

where we replace the demographic variables with measures of competition. We apply the

same quartile transformation to facilitate the interpretation of the estimates. Moreover, we

replace HHI with 1−HHI so that a larger value corresponds a higher level of competition.

The coefficients on the interaction terms in Table 8 are all positive and sometimes significant,

suggesting that the EV spread tends to be lower when competition in the EV loan market

is less fierce or when lenders have more market power.
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We also visualize the relationship between region-specific EV-spread and the degree of

competition in the respective region. In Figure 4, we observe only a weak relationship

between market power and NUTS3-level EV spread, corroborating our claim that the higher

financing cost of EVs is unlikely to be driven by market power.

4.4 Macroeconomic factors

EV sales are affected by supply chain disruptions, macroeconomic uncertainty, as well as

commodity and energy prices. When the price of EVs is high or the supply is low, consumers

that choose to pay for an expensive EV may have a high willingness to pay for the loan as

well. To rule out the possibility that differential exposure to macro factors can lead to the EV

spread, we examine the role of various macro indicators described in Section 2 and report the

results in Appendix Table D.3. None of the coefficients on the interaction term between the

EV indicator and the macro factors are significant, suggesting that macroeconomic factors,

including energy prices, do not impact the EV spread.

4.5 EV-related technological risks

Now we present evidence to establish technological risks as the key mechanism. As a new

and fast-evolving product, EVs are presumably perceived by lenders to be a riskier type of

collateral than non-EVs. First, lenders lack reliable data on EV performance regarding its

range, asset life, and maintenance requirements. More importantly, EV-related technology,

particularly battery technology, has advanced significantly in the past decade, with ongoing

progress being made at a remarkable pace. In 2022 alone, over 100,000 patents related to

battery technology are filed globally. The assets underlying auto loans today could become

obsolete in a few years. The generous warranties provided on EVs compared to non-EVs

suggest that EVs are indeed subject to more technological risks. Table B.1 and Table B.2

summarize the warranty by car make and engine type. While the median warranty for EV

is 96 months/160,000 miles, it is 48 months/100,000 for non-EVs. We, therefore, conjecture

that the EV spread reflects the higher residual value risks faced by EV lenders.
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4.5.1 EV spread and technological risks

To establish the role of technological risks in financing EVs, we investigate the relationship

between our measures of advancements in battery technologies or other technologies that

are instrumental to EVs. We show that both the intensity and dispersion of EV-related

innovations explain a substantial part of the EV spread. Similar to the tests above, we use

the quartile transformation of the technological risk measures. In addition, we gradually add

the interaction terms between the EV indicator and the demographic factors or competition

measures that have a significant association with the EV spread. We standardize these

controls to have a zero mean and a standard deviation of one to keep the key coefficients

comparable across specifications.

Table 9 focuses on the intensity of EV-related innovation using the ADHMV2016 list.

Panel a. reports the results on the log number of clean patents, and Panel b. on the share of

patents in the clean technology groups relative to all patents in the subclasses. In column 1,

we only include the baseline fixed effects, and borrower and loan characteristics. In column

2, we add the interaction terms between EV and standardized log(GDP), the share of female

population, and median age. In column 3, we control for the interaction between the EV

and the NUTS3-level HHI based on loan volume. In column 3, we include all these control

variables that exhibit a significant association with the EV spread in previous analysis.

The patterns are consistent across all specifications. The coefficient on the standalone

EV dummy is not significantly different from zero, suggesting negligible EV spread in the

months where technological risks are in the lowest quartile. For example, once we control

for the impact of demographics and competition, as shown in column 4, the point estimate

of the EV coefficient becomes very close to zero. However, moving up in the distribution

by one quartile increases the EV spread substantially, by 0.148 percentage points. This

suggests a close to 0.5 p.p. higher EV spread between the highest and the lowest quartile of

technological risks. Results are quantitatively similar when we use the share of clean patents

to measure the intensity of EV-related innovations, as in Panel b.
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In Table 10, we present evidence that the dispersion in battery innovation plays an equally

important role in determining the EV spread. In Panel a, we measure the dispersion using the

HHI of battery-related bigrams in the titles of all patents. In Panel b, we use the number

of unique battery-related bigrams. A lower HHI or a greater number of unique bigrams

corresponds to higher uncertainties and more disagreement about the future direction of

battery technologies.

According to Panel a. of Table 10, there is a moderate EV spread (0.17 p.p) in the

months where the dispersion in battery innovation is in the lowest quartile. Moving up in

the distribution of dispersion by one quartile increases the EV spread by 0.136 p.p. Including

the interaction between lenders’ market power and the EV indicator eliminate the EV spread

in columns 3 and 4 for lowest quartile of dispersion. In Panel b, the baseline EV spread is

statistically insignificant throughout specifications and the inter-quartile difference in the

EV spread ranges between 0.160 and 0.180 p.p..

In Appendix Section E, we show that our results are robust to other measures of tech-

nology advancements. The first set of alternative measures are based on the expanded list of

clean technology groups, described in Section 2. Table E.1 presents the results. Similar to our

main results, we find that the EV spread is zero in the month with the lowest quartile of the

log number of clean patents. The spread even turns negative when we normalize the number

of clean patents by the number of patents in the corresponding technology subclasses.

Moreover, we gauge the technology advancements using the amount of VC investments

in EV-related startups that we identify based on the company descriptions. As such, we

expect to find a higher EV spread in months with more VC investments. Table E.2 presents

results consistent with our prediction.

4.5.2 Residual values and technological risks

To further tighten the link between technological risks and EV spread, we take advantage of

the monthly residual value estimates on each vehicle lease in EDW. We find strong evidence

that EVs depreciate more compared to non-EVs over the same financing contract length,
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especially during periods with heightened technological risks. More specifically, for all se-

curitized leases, lenders are required to report the vehicle’s residual value, which reflects

lenders’ estimates of the vehicle value at the end of the lease term. The residual value at

loan origination depends on the concurrent market conditions, new technological advances,

general economic conditions, and the vehicle’s perceived reliability, safety and resale value.

Lenders closely monitor these factors and keep these estimates up to date.17

We exploit the residual value data in two ways. First, we show that EVs have lower

residual value than non-EVs at loan origination and that the likelihood of a downward ad-

justment in residual value estimates is higher for EVs over the course of the lease. Table 11

reports the results from estimating Equation 1, where the outcome variables are all related

to the residual value of the vehicle or the adjustment of this value. Specifically, we construct

the five measures: (i) the percentage of residual value over vehicle price, (ii) the monthly

depreciation rate (in p.p.), calculated as total depreciation (in p.p.) divided by the length of

the financing contract, (iii) an indicator for whether the lender has revised the residual value

estimate during the course of the loan, (iv) an indicator for whether the lender revised the

residual value estimate downwards during the course of the loan, and (v) whether the lender

has never adjusted the residual value estimate downwards (i.e., only upward adjustments in

the residual value estimate).

We find consistent results that lenders estimate the residual value of EVs to be lower

than that of non-EVs within the same model family (columns 1-2), controlling for other

financing terms such as interest rate and LTV. Importantly, lenders are more likely to adjust

the residual value of EVs during the course of the financing contract (column 3). These

adjustments tend to be downward adjustments and not upward ones (columns 4-5).

Moreover, we take advantage of the panel structure of the residual value estimates and

examine the evolution of these estimates in relation to the technological risks. We estimate

17Based on our interviews with Autovista, the largest company that sells residual value estimates to
lenders in Europe, lenders hire technology experts and typically have quarterly or even monthly meetings to
review their residual value estimates.
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the following regression equation:

Yi,t = γi + θt + δEVi × Techt + εi,t, (3)

where Yi,t captures the residual value estimate of loan i in calendar month t. We consider two

measures for each car, the estimated residual value in log dollar terms and an indicator for

whether the residual value estimate in a given month is lower than that at loan origination.

We include loan fixed effects to absorb any time-invariant car- or loan-level characteristics.

We also add year-month fixed effect to control for the impact of macroeconomic factors

and market conditions on residual values. The key variable of interest is the interaction

term between technological risks and the EV indicator. Its coefficient, δ, captures how the

residual value estimates of EVs respond to technological shocks relative to that of non-EVs.

As before, we use quartiles of the continuous technological risk variables Techt and code it

as a categorical variable that takes values from 0 to 3.

Table 12 reports the results, where measures of technological risks are constructed using

the clean patent definition in ADHMV2016 in Panel a. and battery-related bigrams in

patent titles in Panel b. Across all technological risk measures and outcome variables, we

find that when the intensity and dispersion of innovation in EV technologies go up, lenders

are more likely to revise the residual value estimates of EVs downward relative to non-EVs.

For example, according to column 3 of panel a., the residual value of EVs decreases by 0.9%

more relative to non-EVs, if the number of clean patents moves up by one quartile in the

distribution. Similar results are found in panel b. when we examine the dispersion in battery

technology. In the presence of higher uncertainties or more disagreement about the future

direction of battery technologies, lenders become more pessimistic in their residual value

estimates.

Taking stock, the analysis of the residual value, especially its dynamics, lends strong

support to the relationship between EV-specific technological risks and the EV spread.
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5 Conclusion

We provide the first comprehensive analysis of the rapidly growing EV loan market and

document a significant, systematic gap in the financing terms—interest rate, maturity, loan-

to-value ratio—between EVs and non-EVs. EVs are costlier to finance and this financing

gap can be explained by the risks associated with technologies embedded in EVs. While

most policy discussions of the global shift to electric mobility focus on the affordability of

EVs in terms of their purchase price, less attention is paid to the role of consumer financing

of EVs. Our research fills this gap and can inform public policies that aim at making EV

financing more accessible. Some early initiatives include Bank Australia’s decision to stop

offering loans for new fossil fuel cars from 2025.
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Figure 1: Growth of EV Loans
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Note.—Figure 1 illustrates the total number of EV loans originations (left axis) and the percentage of
EV loan (right axis) over all auto loans in our sample period 2010-20.
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Figure 2: Alternative Samples and Specifications

a. Interest Rate

b. LTV c. Maturity

Note.—Figure 2 presents the point estimates of the EV indicator using alternative regression samples and
regression specifications for each of the three outcome variables: interest rate, LTV, and maturities in the

three panels.
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Figure 3: Demographics and EV Spread by NUTS3

a. population (log) b. population density

c. GPD per capita (log) d. share of female

e. median age f. birth rate

g. green vote%

Note.— This figure plots the NUT3-level cross-sectional relationship between the estimated EV spread and
local demographics. The NUTS3 level EV spread is estimated using all loans originated in a given NUTS3
over our sample period. 34



Figure 4: Market Power and EV Spread by NUTS3

a. number of lenders

b. HHI (#loans)

c. HHI ($loans)

Note.— This figure plots the NUT3-level cross-sectional relationship between the estimated EV spread and
measures of local market power. The NUTS3 level EV spread is estimated using all loans originated in a
given NUTS3 over our sample period.

35



Table 1: Loan Origination by Car Make

#EV loans #non-EV loans %EV loans
bmw 26,916 1,204,727 2.23
ford 1,049 1,218,112 0.09
honda 2,325 109,564 2.12
hyundai 5,679 589,120 0.96
lexus 3,271 6,114 53.50
mercedes 850 577,041 0.15
peugeot 15,215 2,083,269 0.73
toyota 94,498 545,624 17.32
volkswagen 30,170 8,752,623 0.34
volvo 2,594 165,066 1.57

Note.—This table presents the number of EV loans, number of auto
loans, and the percentage of EV loans. Panel a. includes EV loans
and Panel b non-EV loans. The sample period is January 2010 to
August 2021.
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Table 2: Loan Characteristics

Panel a. EV loans
mean sd p10 p25 p50 p75 p90 count

rate 4.55 1.90 3.00 3.50 4.00 5.50 6.90 182,567
LTV 70.23 24.19 37.46 52.04 75.00 90.00 100.00 159,432
maturity 46.13 14.52 35.00 36.00 48.00 60.00 60.00 180,934
car value (log) 9.90 0.55 9.19 9.57 9.92 10.30 10.54 182,567
income (log) 10.26 0.81 9.39 10.04 10.24 10.69 11.18 128,028
income verified 0.33 0.47 0.00 0.00 0.00 1.00 1.00 182,567
non-performing or repurchased by seller 0.08 0.28 0.00 0.00 0.00 0.00 0.00 182,567
non-performing 0.04 0.20 0.00 0.00 0.00 0.00 0.00 182,567
arrears 0.04 0.20 0.00 0.00 0.00 0.00 0.00 182,567
default 0.00 0.06 0.00 0.00 0.00 0.00 0.00 182,567

Panel b. non-EV loans
mean sd p10 p25 p50 p75 p90 count

rate 4.95 2.46 2.00 3.50 4.99 6.00 8.50 15,068,693
LTV 82.96 24.09 48.00 70.00 90.00 100.00 100.00 14,398,559
maturity 47.13 14.60 36.00 36.00 48.00 49.00 60.00 15,017,068
car value (log) 9.63 0.61 8.86 9.28 9.66 10.04 10.34 15,068,693
income (log) 10.18 0.73 9.41 9.80 10.17 10.62 11.00 8,179,249
income verified 0.45 0.50 0.00 0.00 0.00 1.00 1.00 15,068,693
non-performing or repurchased by seller 0.08 0.26 0.00 0.00 0.00 0.00 0.00 15,068,693
non-performing 0.05 0.21 0.00 0.00 0.00 0.00 0.00 15,068,693
arrears 0.04 0.21 0.00 0.00 0.00 0.00 0.00 15,068,693
default 0.01 0.09 0.00 0.00 0.00 0.00 0.00 15,068,693

Note.—This table presents summary statistics for our key explanatory and outcome variables. Panel a. includes EV loans and
Panel b non-EV loans. The sample period is January 2010 to August 2021.
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Table 3: Summary Statistics of explanatory and control variables

Panel a. Technological risk

mean sd p10 p25 p50 p75 p90 count
Intensity of battery innovation
number of clean patents ADHM2016 (log) 5.65 0.31 5.24 5.59 5.73 5.82 5.94 2,924,417
share of clean patents ADHM2016 0.02 0.00 0.01 0.02 0.02 0.02 0.02 2,924,417
number of clean patents (log) 8.91 0.20 8.73 8.81 8.92 9.06 9.16 2,924,417
share of clean patents 0.53 0.03 0.47 0.52 0.54 0.55 0.56 2,924,417

Dispersion in battery innovation
HHI of battery bigrams (monthly) 0.11 0.02 0.09 0.09 0.11 0.13 0.14 2,924,417
number of battery bigrams (monthly) 35.00 6.58 27.00 31.00 35.00 40.00 43.00 2,924,417
HHI of battery trigrams (monthly) 0.04 0.01 0.03 0.04 0.04 0.05 0.06 2,924,417
number of battery trigrams (monthly) 60.20 11.20 45.00 53.00 60.00 68.00 73.00 2,924,417

VC investments
VC investment in EV (log) 4.84 5.50 0.00 0.00 0.00 10.45 13.18 2,924,417
share of VC investment in EV 0.01 0.02 0.00 0.00 0.00 0.00 0.05 2,924,417

Panel b. Other control variables
mean sd p10 p25 p50 p75 p90 count

Demographics
population (log) 12.87 1.13 11.64 12.03 12.63 13.52 14.48 2,924,417
population density 727.53 1297.48 86.20 135.30 258.60 788.70 2095.90 2,924,417
GDP per capita (log) 10.31 0.34 9.90 10.09 10.29 10.47 10.73 2,924,417
share of female 0.51 0.01 0.50 0.50 0.51 0.51 0.52 2,924,417
median age 44.94 3.07 40.90 42.60 45.50 46.90 48.60 2,924,417
birth rate 9.10 1.43 7.50 8.20 9.00 9.80 10.80 2,924,417
green votes% 0.08 0.05 0.00 0.04 0.08 0.11 0.14 2,866,532

Competition
number of lenders 8.87 2.93 4.00 7.00 10.00 11.00 11.00 2,924,417
HHI (#loans) 0.42 0.11 0.29 0.35 0.41 0.49 0.55 2,924,417
HHI ($loans) 0.38 0.11 0.27 0.32 0.37 0.44 0.49 2,924,417
number of EV lenders 3.01 1.41 1.00 2.00 3.00 4.00 5.00 38,068
EV HHI (#loans) 0.81 0.14 0.60 0.73 0.83 0.91 1.00 38,068
EV HHI ($loans) 0.77 0.16 0.53 0.65 0.79 0.88 1.00 38,068
number of non-EV lenders 8.85 2.94 4.00 7.00 10.00 11.00 11.00 2,886,349
non-EV HHI (#loans) 0.43 0.11 0.29 0.35 0.41 0.49 0.55 2,886,349
non-EV HHI ($loans) 0.39 0.11 0.27 0.32 0.37 0.44 0.50 2,886,349

Macro indicators
T10Y3M 1.65 0.59 0.89 1.16 1.58 2.14 2.52 2,924,417
AAAFF 3.14 0.76 2.03 2.42 3.27 3.83 4.07 2,924,417
AAABAA 0.89 0.23 0.67 0.69 0.87 0.99 1.27 2,924,417
VIXCLS 14.93 3.64 10.54 12.40 14.20 16.79 19.39 2,924,417
SPXret 0.01 0.02 -0.03 -0.01 0.01 0.02 0.03 2,924,417
Crude Oil return -0.02 0.10 -0.13 -0.06 0.01 0.06 0.08 2,924,417

Note.—This table presents the summary statistics of the measures of EV-related technological risks and NUT3-level
control variables. The sample period is January 2010 to August 2021.
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Table 4: Financing Terms of EVs and non-EVs: Baseline

Panel A. within-family comparison

(1) (2) (3) (4) (5) (6)
rate LTV maturity rate LTV maturity

EV 0.175** −6.776*** −2.228*** 0.294*** −4.704*** −2.480***
(0.08) (1.18) (0.53) (0.06) (0.87) (0.50)

lender FE Y Y Y Y Y Y
deal FE Y Y Y Y Y Y
family FE Y Y Y Y Y Y
nuts3 × year FE Y Y Y Y Y Y
borrower controls N N N Y Y Y
Observations 14,765,390 14,087,065 14,713,677 7,906,809 7,458,371 7,906,823
R-sq 0.693 0.391 0.373 0.720 0.327 0.327

Panel B. within-family comparison, family×geography×month FE

(1) (2) (3) (4) (5) (6)
rate LTV maturity rate LTV maturity

EV 0.116** −6.053*** −1.784*** 0.236*** −4.462*** −2.327***
(0.06) (1.18) (0.39) (0.05) (0.96) (0.44)

lender FE Y Y Y Y Y Y
deal FE Y Y Y Y Y Y
family × nuts3 × month FE Y Y Y Y Y Y
borrower controls N N N Y Y Y
Observations 13,409,107 12,723,168 13,359,861 6,726,222 6,264,739 7,746,956
R-sq 0.784 0.537 0.538 0.821 0.510 0.398

Panel C. within-family comparison, family×geography×year×lender FE

(1) (2) (3) (4) (5) (6)
rate LTV maturity rate LTV maturity

EV 0.146** −5.914*** −2.102*** 0.239*** −4.616*** −2.223***
(0.06) (1.11) (0.44) (0.06) (1.02) (0.46)

deal FE Y Y Y Y Y Y
family × nuts3 × year × lender FE Y Y Y Y Y Y
borrower controls N N N Y Y Y
Observations 14,260,895 13,586,590 14,209,386 7,471,046 7,028,766 7,471,057
R-sq 0.755 0.478 0.479 0.783 0.430 0.443

Note.—This table shows the difference in financing terms between EVs and non-EVs within the same model family. In all columns,
we include deal FE and car value in log form. In columns 4-6, we control for borrower income and the verification status of income.
EV is an indicator variable for whether the car model is classified as electric. Panel a includes lender and NUT3×year fixed effects;
panel b includes lender and family×month×NUTS3 FE; panel c include family×month×NUTS3×lender FE. The sample period is
January 2010 to August 2021. Standard errors double clustered by security and NUTS3-level region are reported in parentheses. ***,
**, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.
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Table 5: Financing Terms of EVs and Non-EVs: A Within-Car-Pair Comparison
(1) (2) (3) (4) (5) (6)
rate LTV maturity rate LTV maturity

EV 0.051 −2.636 −1.666*** 0.128** −3.792** −1.708**
(0.06) (1.74) (0.57) (0.05) (1.80) (0.79)

lender FE Y Y Y Y Y Y
deal FE Y Y Y Y Y Y
pair FE Y Y Y Y Y Y
nuts3 × year FE Y Y Y Y Y Y
borrower controls N N N Y Y Y
Observations 3,857,198 3,540,581 3,856,455 3,147,949 2,983,847 3,147,961
R-sq 0.708 0.374 0.365 0.701 0.394 0.354

Note.—This table shows that our results hold when we compare EV and non-EVs within the same car model
pair. We apply the same controls and fixed effect structure as the baseline specification. In columns 4-6, we
control for borrower income and the verification status of income. EV is an indicator variable for whether the
car model is classified as electric. The sample period is January 2010 to August 2021 in Panels a and b and
January 2015 to August 2021 in Panel c. Standard errors double clustered by security and NUTS3-level re-
gion are reported in parentheses. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels,
respectively.
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Table 6: Performance of EV and non-EV loans
non-performing

repurchased by seller non-performing arrears default
non-performing

repurchased by seller non-performing arrears default
(1) (2) (3) (4) (5) (6) (7) (8)

EV −0.004 −0.006 −0.006 0.000 0.000 −0.003 −0.003 0.001
(0.01) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00)

rate 0.003*** 0.003*** 0.002*** 0.001***
(0.00) (0.00) (0.00) (0.00)

LTV 0.001*** 0.001*** 0.001*** 0.000***
(0.00) (0.00) (0.00) (0.00)

maturity 0.000** 0.000*** 0.000*** 0.000***
(0.00) (0.00) (0.00) (0.00)

lender FE Y Y Y Y Y Y Y Y
deal FE Y Y Y Y Y Y Y Y
family FE Y Y Y Y Y Y Y Y
nuts3 × year FE Y Y Y Y Y Y Y Y
borrower controls Y Y Y Y Y Y Y Y
mean outcome var. 0.076 0.041 0.039 0.006 0.076 0.041 0.039 0.006
Observations 7,458,362 7,458,362 7,458,362 7,458,362 7,458,362 7,458,362 7,458,362 7,458,362
R-sq 0.203 0.033 0.032 0.009 0.208 0.042 0.040 0.011

Note.—This table shows the difference in performance between EV and non-EV loans. In columns 1-4, we use as outcome variable whether the loan is non-performing or repur-
chased by sellers, non-performing, in arrears, or in default. A loan is non-performing either because it is in arrears or it is in default status. In columns 5-8, we additionally include
loan rate, LTV, and maturity as control variables. In all columns, we include lender-, deal-, car family-, NUT3×year- fixed effects, and control for car value (in log form), borrower
income, and the verification status of income. We additionally control for LTV and term of the loan. The sample period is January 2010 to August 20gij uyn8y6.66nl21 in Panels
a and b and January 2015 to August 2021 in Panel c. Standard errors double clustered by security and NUTS3-level region are reported in parentheses. ***, **, and * denote
statistical significance at the 1%, 5%, and 10% levels, respectively.
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Table 7: Demographics do not Explain the EV Spread
interest rate

(1) (2) (3) (4) (5) (6) (7)
EV 0.399*** 0.330*** 0.272*** 0.425*** 0.322*** 0.316*** 0.361***

(0.10) (0.07) (0.05) (0.07) (0.05) (0.09) (0.06)
EV × population (log) −0.014

(0.02)
EV × population density 0.021

(0.02)
EV × GDP per capita (log) 0.035***

(0.01)
EV × share of female −0.032**

(0.01)
EV × median age 0.061***

(0.01)
EV × birth rate 0.029

(0.02)
EV × green votes% 0.007

(0.02)
lender FE Y Y Y Y Y Y Y
deal FE Y Y Y Y Y Y Y
family FE Y Y Y Y Y Y Y
nuts3 × year FE Y Y Y Y Y Y Y
borrower controls Y Y Y Y Y Y Y
loan controls Y Y Y Y Y Y Y
Observations 5,272,999 4,801,024 4,012,753 5,272,999 4,018,758 4,798,651 5,184,418
R-sq 0.763 0.770 0.768 0.763 0.787 0.770 0.758

Note.—This table shows that consumer demographics do not explain the EV spread. We interact various demographic variables with
the EV indicator. In all columns, we include lender-, deal-, car family-, NUT3×year- fixed effects, and control for car value (in log form),
borrower income, and the verification status of income. We additionally control for LTV and term of the loan. The sample period is Jan-
uary 2010 to August 2021 in Panels a and b and January 2015 to August 2021 in Panel c. Standard errors double clustered by security and
NUTS3-level region are reported in parentheses. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.
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Table 8: Market Power does not Explain the EV Spread
interest rate

(1) (2) (3) (4) (5) (6)
EV 0.228*** 0.253*** 0.154** 0.228*** 0.257*** 0.153**

(0.06) (0.07) (0.07) (0.06) (0.06) (0.06)
EV × number of segment lenders 0.080

(0.06)
EV × 1-segment HHI (#loans) 0.078

(0.06)
EV × 1-segment HHI ($loans) 0.133**

(0.06)
EV × number of lenders 0.085*

(0.05)
EV × 1-HHI (#loans) 0.045

(0.04)
EV × 1-HHI ($loans) 0.102***

(0.03)
lender FE Y Y Y Y Y Y
deal FE Y Y Y Y Y Y
family FE Y Y Y Y Y Y
nuts3 × year FE Y Y Y Y Y Y
borrower controls Y Y Y Y Y Y
loan controls Y Y Y Y Y Y
Observations 7,458,362 7,458,362 7,458,362 7,458,362 7,458,362 7,458,362
R-sq 0.728 0.728 0.728 0.728 0.728 0.728

Note.—This table shows that market power of lenders do not explain the EV spread. We interact various measures of local
competition with the EV indicator. In all columns, we include lender-, deal-, car family-, NUT3×year- fixed effects, and control
for car value (in log form), borrower income, and the verification status of income. We additionally control for LTV and term
of the loan. The sample period is January 2010 to August 2021 in Panels a and b and January 2015 to August 2021 in Panel c.
Standard errors double clustered by security and NUTS3-level region are reported in parentheses. ***, **, and * denote statis-
tical significance at the 1%, 5%, and 10% levels, respectively.
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Table 9: Technological Risks and the EV Spread: Intensity of Clean Patenting

Panel A. The number of clean patents (in log form) - ADHMV2016

interest rate
(1) (2) (3) (4)

EV 0.101 0.099 −0.000 0.009
(0.10) (0.11) (0.10) (0.12)

EV × number of clean patents ADHMV2016 (log) 0.162*** 0.154*** 0.156*** 0.148***
(0.03) (0.03) (0.03) (0.03)

baseline FE, borrower & loan controls Y Y Y Y
EV × demographic controls N Y N Y
EV × competition controls N N Y Y
Observations 2,816,501 2,816,501 2,816,501 2,816,501
R-sq 0.805 0.805 0.805 0.805

Panel B. The share of clean patents relative to all auto patents - ADHMV2016

interest rate
(1) (2) (3) (4)

EV 0.039 0.044 −0.048 −0.033
(0.08) (0.10) (0.09) (0.11)

EV × share of clean patents ADHMV2016 0.169*** 0.159*** 0.161*** 0.152***
(0.02) (0.03) (0.02) (0.03)

baseline FE, borrower & loan controls Y Y Y Y
EV × demographic controls N Y N Y
EV × competition controls N N Y Y
Observations 2,816,501 2,816,501 2,816,501 2,816,501
R-sq 0.805 0.805 0.805 0.805

Note.— This table shows the role of technological risks in explaining the EV spread. We interact various measures of
EV-related technological risks with the EV indicator. In Panel a.we measure the intensity of innovation in EV-related
technologies using the number of clean patents (in log form), and in panel b using the share of clean patents relative to
all patents in the corresponding parent groups (subclasses). Both measures are derived using the classification of clean
patents in Aghion et al. (2016). To facilitate the interpretation of the coefficients, we divide these measures based on the
quartiles and use the categorical values (0, 1, 2, 3). We include the interaction terms of EV indicator and demographic
variables (population density, GDP per capita, median age) in column 2, the interaction term of that with competi-
tion (segment HHI - $loans) in column 3, and both in column 4. In all columns, we include lender-, deal-, car family-,
NUT3×year- fixed effects, and control for car value (in log form), borrower income, and the verification status of income.
We additionally control for LTV and term of the loan. The sample period is January 2010 to August 2021 in both panels.
Standard errors double clustered by security and NUTS3-level region are reported in parentheses. ***, **, and * denote
statistical significance at the 1%, 5%, and 10% levels, respectively.
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Table 10: Technological Risks and the EV Spread: Dispersion in Battery Technology

Panel A. HHI of the unique bigrams in battery patent titles

interest rate
(1) (2) (3) (4)

EV 0.170** 0.166* 0.079 0.085
(0.08) (0.09) (0.08) (0.10)

EV × 1-HHI of battery bigrams 0.136*** 0.129*** 0.129*** 0.123***
(0.02) (0.02) (0.02) (0.02)

baseline FE, borrower & loan controls Y Y Y Y
EV × demographic controls N Y N Y
EV × competition controls N N Y Y
Observations 2,816,501 2,816,501 2,816,501 2,816,501
R-sq 0.805 0.805 0.805 0.805

Panel B. number of unqiue bigrams in battery patent titles

interest rate
(1) (2) (3) (4)

EV 0.074 0.077 −0.010 0.002
(0.09) (0.10) (0.10) (0.11)

EV × number of battery bigrams 0.180*** 0.169*** 0.170*** 0.160***
(0.03) (0.03) (0.03) (0.03)

baseline FE, borrower & loan controls Y Y Y Y
EV × demographic controls N Y N Y
EV × competition controls N N Y Y
Observations 2,816,501 2,816,501 2,816,501 2,816,501
R-sq 0.805 0.805 0.805 0.805

Note.— This table shows the role of technological risks in explaining the EV spread. We interact various
measures of EV-related technological risks with the EV indicator. In Panel a., we measure the intensity
of innovation in EV-related technologies using the number of clean patents (in log form) and the share of
clean patents relative to all patents in the corresponding parent groups (subclasses). In Panel b., we use
the HHI of battery-related bigrams in the title of patents and the unique number of battery-related bi-
grams in the title of all patents (in log form). All measures are constructed at the monthly frequency. To
facilitate the interpretation of the coefficients, we divide these measures based on the quartiles and use
the categorical values (0, 1, 2, 3). In all columns, we include lender-, deal-, car family-, NUT3×year- fixed
effects, and control for car value (in log form), borrower income, and the verification status of income. We
additionally control for LTV and term of the loan. The sample period is January 2010 to August 2021 in
both panels. Standard errors double clustered by security and NUTS3-level region are reported in paren-
theses. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.
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Table 11: Residual Values of EVs and non-EVs
(1) (2) (3) (4) (5)

RV/price
%

depreciation rate
(monthly p.p.)

RV adjustment ever
(0/1)

RV adj. down ever
(0/1)

RV adj. down never
(0/1)

EV −0.048*** 0.179*** 0.025*** 0.023*** 0.002
(0.01) (0.02) (0.01) (0.01) (0.00)

rate 0.000 0.000 0.001 0.001 −0.000
(0.00) (0.00) (0.00) (0.00) (0.00)

LTV 0.000 0.003*** 0.001** 0.001** 0.000***
(0.00) (0.00) (0.00) (0.00) (0.00)

maturity 0.001 0.003*** 0.003*** 0.000**
(0.00) (0.00) (0.00) (0.00)

lender FE Y Y Y Y Y
deal FE Y Y Y Y Y
family FE Y Y Y Y Y
nuts3 × year FE Y Y Y Y Y
mean outcome var. 0.403 1.743 0.125 0.114 0.011
Observations 1,261,987 1,261,987 1,370,360 1,370,360 1,370,360
R-sq 0.357 0.220 0.293 0.284 0.070

Note.—This table compares the residual value estimates of EVs and non-EVs. The outcome variables from left to right are the percentage
of residual value over vehicle price, the monthly depreciation rate (in p.p.), an indicator for whether the lender has revised the residual value
estimate during the course of the financing contract, an indicator for whether the lender has ever revised the residual value estimate down-
ward, and whether the lender has never adjusted the residual value estimate downward (i.e., only upward adjustments), respectively. In all
columns, we include lender-, deal-, car family-, NUT3×year- fixed effects. We additionally include the interest rate, LTV, and maturity of
the loan as explanatory variables (except for column 2 since maturity serves as the denominator in calculating monthly depreciation rate).
The sample period is January 2010 to August 2021. Standard errors double clustered by the month of loan origination and NUTS3-level
region are reported in parentheses. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.
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Table 12: Technological Risks and Residual Values

Panel A. Intensity of clean patenting - ADHMV2016

below origination RV (0/1) RV (log)
(1) (2) (3) (4)

EV × number of clean patents ADHMV2016 (log) 0.032*** −0.009***
(0.01) (0.00)

EV × share of clean patents ADHMV2016 0.028** −0.004*
(0.01) (0.00)

loan FE Y Y Y Y
Year-motnh FE Y Y Y Y
mean outcome var. 0.296 0.296 9.384 9.384
Observations 20,891,354 20,891,354 20,734,647 20,734,647
R-sq 0.938 0.938 0.990 0.990

Panel B. Dispersion in battery technology

below origination RV (0/1) RV (log)
(1) (2) (3) (4)

EV × 1-HHI of battery bigrams (monthly) 0.022** −0.006***
(0.01) (0.00)

EV × number of battery bigrams (monthly) 0.020** −0.006**
(0.01) (0.00)

loan FE Y Y Y Y
Year-motnh FE Y Y Y Y
mean outcome var. 0.296 0.296 9.384 9.384
Observations 20,891,354 20,891,354 20,734,647 20,734,647
R-sq 0.938 0.938 0.990 0.990

Note.— This table shows the relationship between technological risks and the residual value estimates of EVs and non-
EVs. Two measures related to residual values are constructed for each car over the course of the financing contract: an
indicator for whether the residual value estimate in a given month is lower than that at loan origination (column 1 and
2) and the estimated residual value in log dollar terms (column 3 and 4). We interact various measures of EV-related
technological risks with the EV indicator. In Panel a., we measure the intensity of innovation in EV-related technologies
using the number (in log form) and the share of clean patents relative to all patents in the corresponding parent groups.
In panel b., we measure the dispersion in battery technology using the number (in log) and HHI of battery-related bi-
grams in the title of patents. All measures are constructed at the monthly frequency. To facilitate the interpretation
of the coefficients, we divide these measures based on the quartiles and use the categorical values (0, 1, 2, 3). In all
columns, we include loan and year-month fixed effects. The sample period is January 2010 to August 2021 in both
panels. Standard errors double clustered by loan and calendar year-month are reported in parentheses. ***, **, and *
denote statistical significance at the 1%, 5%, and 10% levels, respectively.
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A Classification of EVs, model family, and model pair

In this Appendix section, we describe the classification of EVs, car model family, and car

model pairs. Different car manufactures follow different naming conventions. We refer to

as “family” the series or the most general car model categories within a brand. For BMW,

family will be the 1 to 8 series, X, Z, and i series. For Toyota, family will be the different

car model names, like Corolla, Camry, and RAV4.

We refer to as “pair” the combination of family and engine displacement provided in the

data field AA45. Models within the same pair are identical in all observable specifications

except for motor type. When the displacement information is not provided in the original

data, we code pair as missing. Therefore, the pair variable is only coded for loans with

detailed car model specifications.

We manually code the EV indicator for all unique model names available in the EDW

data, based on the combination of make, family, and model specifications in data field AA45.

A car model is assigned a EV flag if it is plug-in hybrid (PHEV), non-plug-in hybrid (HEV),

battery powered (BEV), and general hybrid (GHEV).

Below we illustrate how we classify family and pair using BMW as an example. Table A.1

shows the exhaustive list of model families and pairs that offer both EV and non-EV models.

There are eight model families (series) that offer EV options. For example, in family “x3”,

BMW offers the non-EV version “x3 xDrive30d” and the EV counterpart “x3 xDrive30e”.

These two models only differ in the engine type, where d stands for diesel and e for electric.
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Table A.1: BMW - EV Family and Pair
Family Pair Non-EV example EV example

2er 2er 225 BMW 2-sarja 225 F45 Active Tourer 225i A xDrive Business
Sport

BMW 2-SARJA F45 Active Tourer 225xeA Business Luxury
Navi Plus Panorama Glass Roof Driving Asst. P

2er active-
tourer

2er-Reihe Active Tourer Diesel (F45 2er-Reihe Active T. Allrad Hybrid (

3er 3er 320 BMW 320 d A Luxury TwinPower Turbo F30 Sedan *Huip-
putarjous korko 2.9% ilman kuluja + kasko 0e vuode

BMW 320 F31 Touring 320e A Business M Sport

3er 330 BMW 330 Gran Turismo F34 330i A xDrive Gran Turismo
Business Exclusive M Sport

BMW 3-SARJA F30 Sedan 330eA Business Exclusive Edition
Sport Navi HiFi

3er 335 BMW 335 I A E93 CABRIO **OIKEALLA V?RILL? JA
VOIMAKONEELLA**

BMW 335i ACTIVEHYBRID SEDAN A

3er f30 BMW 3-sarja F30 Sedan A xDrive Business Exclusive 3er-Reihe Hybrid (F30)

5er 5er 520 BMW 5-SARJA 520d Turbo A F11 Touring Busin Auto Lux-
ury Line / Navi / HIFI / Vetokoukku / Mukautuvat

520 ACTIVE HYBRID GA

5er 530 BMW 530 F07 Gran Turismo TwinPower Turbo M-Sport
xDrive 190Kw Autom. Webasto Prof.Navi Comfort Ac

BMW 5-SARJA G30 Sedan 530e A iPerformance Launch Edi-
tion Sport # 20 -tuumaset / HIFI / Sport-Line

5er 545 BMW 545 IA E60/N62 545e xDrive Limousin
5er f10 BMW 5-sarja i TwinPower Turbo F10 Sedan Busi18 SERIE 5 F10 ACTIVEHYBRID 5
5er g30 5er-Reihe Diesel Allrad (G30) 5er-Reihe Hybrid Allrad (G30)
5er g31 5er-Reihe Kombi Allrad Diesel (G31) 5er-Reihe Kombi Hybrid Alrrad (G31)

7er 7er 730 BMW 730 D TwinPower Turbo AUT FACELIFT K. WE-
BASTO ADAPT.

730I Active Hybrid

7er 740 BMW 740 D AUT XDRIVE M-SPORT LASERVALOT BMW
HUOLTOSOPIMU

BMW 7-sarja 740 Le iPerformance A xDrive G12 Sedan Busi-
ness Exclusive M-Sport Automaatti Neliveto

7er 745 Baureihe 7 (E65/E66) (2001->) 745i BMW 745Le xDrive Sedan (AA) 4ov 2998cm3 A
7er f01 7er-Reihe Allrad Diesel (F01) 7er-Reihe Hybrid (F01)
7er f02 7er-Reihe Allrad Diesel (F02) 7er-Reihe Hybrid (F02)
7er g11 7er-Reihe Allrad Diesel (G11) 7er-Reihe Hybrid (G11)

x1 x1 25 BMW X1 xDrive25d TwinPower Turbo A E84 Business Sport
160kW

BMW X1 F48 xDrive25e A Charged Edition M Sport

x2 x2 25 X2 25D XDRIVE MSPORT AUTO BMW X2 F39 xDrive 25e A Charged Edition M sport

x3 x3 30 BMW X3 xDrive30d TwinPower Turbo A F25 M-Sport - Lhes
kaikin saatavissa olevin varustein-

BMW X3 xDrive30e Farmari (AC) 4ov 1998cm3 A

x5 x5 40 BMW X5 xDrive40d A TwinPower Turbo E70 SAV - HUD -
IMUOVET - Adaptiivinen vakkari

BMW X5 F15 xDrive40e PURE EXCELLENCE
ADAPT. LED-AJOVALOT 360-KAMERAT PANORAMA
COMFORT-PENKIT NA

x5 f15 X5-Reihe Diesel Allrad (F15) X5-Hybrid (F15)
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Table A.2: Toyota - EV Family and Pair
Family Pair Non-EV example EV example

auris auris 18 Toyota TOYOTA AURIS Monikyttajoneuvo (AF) 4ov
1364cm3

Toyota Auris 1 8 HSD Linea Sol Plus 5ov. Nyt korko 2 9%
ilman kuluja ja kasko 0EUR vuodeksi 5.-10.9

camry camry 25 Camry Business Edition 2,5-l-VVT-i, 131 kW (178 PS) Limou-
sine Stufenloses Automatikgetriebe

Camry Business Edition Hybrid: 2,5-l-VVT-i, 131 kW (1
Limousine Stufenloses Automatikgetriebe

chr chr 18 CHR ADVANCE 122 CC TOYOTA C-HR 1 8 Hybrid Premium Edition Musta-ruskea
osanahkaverhoilu - Bi-LED-ajovalot - Navi - L

chr 20 C-HR Style Selection 2,0 Toyota C-HR 2 0 Hybrid Limited Launch Edition

corolla corolla 18 Toyota COROLLA VERSO 1.8 VVT-i Sol LOHKO+SP
KAHDET HYVT RENKAAT AUT. ILMASTOINTI HYV HK
SUOMIA

Corolla Business Edition 1,8-l-Hybrid Touring Sports Stufen-
loses Automatikgetriebe

corolla 20 Toyota Corolla Verso 2 0 D-4D 116 Linea Sol 7p Business Corolla Business Edition 2,0-l-Hybrid Touring Sports Stufen-
loses Automatikgetriebe

rav4 rav4 25 RAV 4 2.5 HDF SQUARE COLLECTION+FP Toyota RAV4 2 5 Hybrid AWD Premium - Vetokoukku Adap-
tiivinen vakionopeudensdin Peruutuskamera N

yaris yaris 15 Yaris Style Selection White 1,5-l -VVT-iE 5-TÃŒrer stufen-
loses Automatikgetriebe

TOYOTA Yaris 1 5 Hybrid Launch Edition 5ov Toyota Touch
with Go -mediakeskus suomenkielisell na
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Table A.3: Volkswagen - EV Family and Pair
Family Pair Non-EV example EV example

golf golf 10 Volkswagen GOLF Variant Comfortline 1 0 TSI 85 BLUEM
DSG - Suomiauto 1-omistaja Lohkolmmitin

VOLKSWAGEN Golf Variant Variant 1 0 eTSI (MHEV) 81
kW DSG-automaatti

golf 14 VOLKSWAGEN Golf Variant Comfort 1.4 Tsi 103 kw Dsg-aut
Nyt korko 2 9% ilman kuluja + kasko 0 e vuode

Volkswagen GOLF GTE 1.4 TSI 150kW/204hv DSG-
AUTOMAATTI

golf 15 VOLKSWAGEN Golf Sportsvan Comfortline 1 5 TSI EVO 96
kW (130 hv) DSG-automaatti Football Edition

VOLKSWAGEN GOLF First Edition 1 5 eTSI 110 kW
(MHEV) DSG-automaatti

jetta jetta 14 VOLKSWAGEN Jetta Comfort 1 4 TSI 92 kW (125 hv) Blue-
Motion Technology DSG-automaatti

VOLKSWAGEN Jetta Hybrid 1 4 TSI 110 kW (150 hv) DSG-
automaatti

passat passat 14 Volkswagen Passat Variant Comfortline 1 4 TSI 90 kW (122
hv) DSG-automaatti BlueMotion Technology Hy

Volkswagen Passat 1.4 GTE Variant Plug-In Hybrid 160kW
Autom.Navi LED-Valot Adapt.Cruise CarPlay

touareg touareg 30 VOLKSWAGEN Touareg 3 0 V6 TDI 180 kW (245 hv) 4MO-
TION BlueMotion Technology Tiptronic-automaatti R-L

TOUAREG 3.0 HYB

Table A.4: Peugeot - EV Family and Pair
Family Pair Non-EV example EV example

3008 3008 16 PEUGEOT 3008 Active Pack 120 VTi (Korko 1 69% ja 1. er?
kes?kuussa!)

3008 1.6 HYBRID ALLURE PACK E-EAT8

3008 20 3008 BUSINESS PACK 2.0L HDI 150CH FAP BVM6 +OPT 3008 HYBRID4 104G 2.0L HDI 163 CH FAP BMP6 +ACC

308 308 16 PEUGEOT 308 SW Premium Plus 1.6 HDi 110 FAP Korko 1
69% ja 1. er? kes?kuussa!

308 1.6 PureTech 225 SW GT Kb

508 508 16 Peugeot 508 1.6 8V E-HDI ALLURE S&S ""CIEL"" SW ROBO 508 SW 1.6 HYBRID GT LINE E-EAT8
508 20 Peugeot 508 2.0 16V HDI ACTIVE ""CIEL"" 163CV SW AUT 508 RXH 2.0 HDI HYBRID4 LIMITED EDITION
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Table A.5: Hyundai - EV Family and Pair
Family Pair Non-EV example EV example

i30 i30 16 Hyundai I30 1 6 GDI ISG iNNOVATION **Korko 1% ja 3 kk
lyhennysvapaata**

i30 Kombi 1.6 CRDI 48V-Hybrid DCT N-Line

kona kona 10 Hyundai Kona Monikyttajoneuvo (AF) 5ov 998cm3 1.0 TGDI
FRESH MY 20

Hyundai Kona N-Line 1.0 T-GDI Hybrid 48V

kona 16 HYUNDAI Kona 1.6 T-GDI 177 hv 4WD 7-DCT-aut. Comfort
MY19 WLTP

Hyundai KONA 1 6 hybrid 141 hv 6-DCT Comfort MY20

tucson tucson 20 Hyundai 5D TUCSON MPV 2.0 J-81BP-4X4/263 2.0i GLS
4WD A/C

HYUNDAI Tucson 2.0 CRDi 48V hybrid 4WD 8AUT Pre-
mium Exclusive MY19

Table A.6: Lexus - EV Family and Pair
Family Pair Non-EV example EV example

es es 300 Lexus ES300 Executive LEXUS ES300 2 5 Hybrid Comfort Navi

gs gs 300 Lexus 4D GS300 SEDAN 3.0 AUTOMATIC-GRS190L-
BETQHW/285

GS 300H NG LUXE 17

gs 450 LEXUS GS450 0 Lexus GS 450h V6 Executive A KORKO NYT ALK.1 99%

is is 200 LEXUS IS SALOON 200t F-Sport 4dr Aut Lexus Is200h
is 300 Lexus IS 300 LEXUS IS 300h F-SPORT PREMIUM SPORT+ ALUS-

TANS??T? AVAIMETON NAVI L?MM + ILMAST. S?HK.
PENKIT MUIS

nx nx 25 LEXUS NX 2.5H ECVT 4WD MY15 LEXUS NX ESTATE 300H 2.5 LUXURY 5DR
nx 300 NX 300 EXECUTIVE Lexus NX 300h Hybrid A AWD Executive NAHKAT NAVI

LASIKATTO ACC CRUISE YMS.

rc rc 300 RC 300 Lexus LEXUS RC300H Coup (AD) 2ov 2494cm3

rx rx 400 LEXUSRX40033V6PRESIDENT LEXUS RX 400hybrid 4WD Nyt korko 2.9% ilman kuluja
+kasko 0e vuodeksi 1.7 saakka !

rx 450 RX TOUS CHEMIN 450 LEXUS RX 450h Hybrid 4WD A F Sport Lhes kaikilla
varusteilla / Led / ML Premium Surround / 360
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Table A.7: Honda - EV Family and Pair
Family Pair Non-EV example EV example
civic civic 13 CIVIC 1.3 DSI I-VTEC HY.EL.EC CIVIC 1.3 DSI I-VTEC HYBRID EXECUTIVE

civic 14 HONDA Civic 1 4i Sport Business 5d *Korko 2 9 % ilman
kuluja ja kasko vuodeksi 0 ? 10.9.asti *

HONDA Civic 4D 1.4i CVT AT Hybrid (ESITTELY)

crv crv 20 HONDA CR-V 2 0i Elegance Plus Automaatti neliveto Xenon-
valot lasikatto ym..

HONDA CR-V ESTATE 2000 2.0 I-MMD HYB

jazz jazz 13 Jazz 1.3 CVT-Automatikgetriebe Comfort Jazz 1,3 IMA Hybrid Exclusive CVT
jazz 14 Honda JAZZ 1.4i LS 5d AT 1-OMISTAJALTA HUOLLETTU

AUTOMAATTIVAIHTEINEN
JAZZ 1.4 HYBRID ELEGANCE
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Table A.8: Ford - EV Family and Pair
Family Pair Non-EV example EV example

cmax cmax 20 Ford Grand C-Max 2 0 TDCi 163 hv PowerShift autom. Ti-
tanium Business A6 5-ovinen(webasto 7henk)

FORD Grand C-Max 2 0 TDCi 140 hv PowerShift autom.
Titanium Business A6 5-ovinen

cmax cb3 Grand C-Max (CB7)(2010->) Champions Edit CMAX 2010 GD C-MAX 2TDCI140FAP

fiesta fiesta 11 Ford Fiesta 1 1 85hv M5 Titanium 5-ov. Driving Asst. Pack
7 Comfort Pack 1 AAC

Fiesta Cool & Connect 1.1 l 63 kW / 85 P

fiesta 12 Ford FIESTA Viistoper (AB) 4ov 1242cm3 1.2 Trend FIESTA 3-TÃŒRER 1,2 44KW 5
fiesta 125 Ford FIESTA VAN 1 25 82 Trend (MY13)Korko 1 9% ja 3 kk

lyhennysvapaata
Fiesta Viva, 1.25 60 kW 5

fiesta 13 Ford FIESTA 1.3i Ambiente 5-OVINEN! JUURI KAT-
SASTETTU!

Fiesta 1.3 l 8V, 51 kW, 3

fiesta 14 Ford FIESTA 1 4 96hv Titanium Autom 5ov **Korko 2 9% ja
1. er? hein?kuussa!**

FIESTA 1,4 59KW

focus focus cb8 Focus Turnier (CB8)(2011->) Champions Ed Focus Lim. (CB8)(2011->) ELECTRIC

galaxy galaxy 22 Ford Galaxy 2 2TDCi 200 hv autom. Ghia Business A6 5-
ovinen

FORD GALAXY 2,2 147KW

kuga kuga 20 FORD Kuga 2 0 EcoBlue 190hv A8 AWD Titanium X Launch
Edition 5-ovinen

FORD Kuga 2 0 TDCi 150 hv Diesel PowerShift AWD Tita-
nium Business Automaatti NELIVETO

kuga 25 Kuga 2,5 Turbo Titanium 4x4 Aut. FORD Kuga 2 5 Ladattava hybridi (PHEV) 225hv CVT FWD
Titanium X Launch Edition 5-ovinen

mustang mustang 46 2D Mustang 4.6 GT Hatcbag -T82H/272 FORD MUSTANG 4.6 GT 235KW

puma puma 10 Puma ST Line X 1.0 E FORD Puma 1 0 EcoBoost Hybrid (mHEV) 155hv M6 ST-
Line X Launch Edition 5-ovinen

transit transit 125 AMBULANCE G-MAX TYPE A1 TRANSIT 125CV FINI-
TION TRE

FORD Transit Custom 340 (1 0 EcoBoost 125 hv) PHEV 1-
AUTO Etuveto Trend Van N1 L1H1

transit 20 FORD Transit Van etuveto 300M 2 0TDI 100 av.3300. Nyt
korko 2 9% ilman kuluja ja kasko 0EUR vuodeksi

FORD Transit Custom 320 2 0TDCi 130 hv mHEV M6 Etu-
veto Trend Van N1 L2H1
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Table A.9: Volvo - EV Family and Pair
Family Pair Non-EV example EV example

v60 v60 d2 Volvo V60 D2 Momentum Business A (MY13.4) Volvo V60 PLUG IN HYBRID 2.4D Autom.
v60 d3 Volvo V60 D3 Automat. City Safety Webasto Vetokoukku

2alut. Hihna vaihdettu
V60 T6 AWD 304ch Summum Gear

v60 d5 VOLVO V60 D5 Momentum A *Korko 2 9% ilman kuluja ja
ilmainen kasko vuodeksi 31.7.asti*

VOLVO V60 D5 AWD Plug in hybrid

v60 d6 Volvo V60 D6 AWD Pure Edition nro.53 VOC + Driver Sup-
port

Volvo V60 D6 AWD Twin Engine R-Design plug in hybrid
162kW Autom. Webasto Navi P.kamera Volvo on

v70 v70 d5 Volvo V70 D5 AWD Summum aut. AC seats Dynaudio Pre-
mium Audio BLIS Adaptive Cruise Bluetooth.

Volvo 5D 5D V70 Plug In Hybrid

xc90 xc90 20 VOLVO XC90 DIESEL ESTATE 2.0 D5 Powe VOLVO XC90 2.0 T8 Plug-in Hybrid Inscription ACC 7-paik
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Table A.10: Mercedes - EV Family and Pair
Family Pair Non-EV example EV example

aclass a250 MERCEDES-BENZ A 250 BE A AMG-LINE 211HV *KUN-
NON KARKKI! NIGHT PANORAMA HARMAN KARDON
ILS COMAND

MERCEDES-BENZ A 250 e A sedan Business Style Edition
EQ Power

bclass b180 Mercedes-Benz B 180 CDI 5d Autom. Siisti kuntoinen Suomi-
Auto Rahoituskorko alk.1 9 % voimassa 31.1

B-Klasse (BM 246)(11.2011->) B 180 Score

b250 Classe B / B 250 AUTOMATIC 4MATIC PREMIUM MERCEDES-BENZ B 250 Electric Drive Aut

cclass c200 MERCEDES-BENZ C 200 CDI BE A Premium Business
Facelift Korko 1 95 / kotiintoimitus 0 EUR / ILS /

Mercedes-Benz C 200 T A Hybrid Business Avantgarde

c205 MERCEDES-BENZ C-farmari (S205) Mercedes-AMG C 43
4Matic T A WLTP

C-Klasse Kombi Diesel/Hybrid (S205)

c300 MERCEDES-BENZ C 300 CDI BE T 4MATIC A AVANT-
GARDE KORKO 1.9%

MERCEDES-BENZ C 300 e 4Matic A Business Avantgarde
Edition EQ Power

c350 Mercedes-Benz C 350 CDI 4MATIC Farmari (AC) 4ov
2987cm3 A

MERCEDES-BENZ C 350 E AUTOMAT TOURING
AVANTGARDE NAVIGAATTORI BURMESTER AUDIO
360 KAMERA ILS-VAL

eclass e212 E-Klasse Kombi Diesel Allrad (W212) E-Klasse Kombi Diesel/Hybrid (W212)
e213 E-Klasse Kombi Diesel Allrad (W213) E-Klasse Diesel Hybrid (W213)
e250 Mercedes-Benz E 250 CDI BE Avantgarde 204 hv Autom.

AMG-Sport Pack SUOMI-AUTO ! LUUTA LAKAISI HINNA
E 250 Elegance BlueEfficiency CDI Aut.

e300 MERCEDES-BENZ E 300 Bluetec 7G-Tronic Plus Avantgarde Mercedes-Benz E 300 de A AMG-Line EQ Power Plug In Hy-
brid Distronic Plus Widescreen HUD 360 Pan

e350 Mercedes-Benz E 350 CDI BE A Tydellinen merkkiliikeen
huoltohistoria Kilometreihin nhden hienoss

MERCEDES-BENZ E 350 AVANTGARDE Limousine Plug-
in Hybrid Benzin/Elektro AMG AMG Styling paketti -

gla gla 250 MERCEDES-BENZ GLA 250 4Matic A Premium Business MERCEDES-BENZ GLA 250 e A Business EQ Power

glc glc 253 GLC CoupÃ© Diesel Allrad (C253) GLC CoupÃ© Hybrid Allrad (C253)
glc 300 MERCEDES-BENZ GLC 300 d 4Matic A Business Facelift Mercedes-Benz C GLC 300 e 4MATIC Viistoper (AB) 5ov

1991cm3 A
glc 350 MERCEDES-BENZ GLC GLC 350 D 4MATIC Viistoper (AB)

5ov 2987cm3 A
Mercedes-Benz GLC 350 e 4Matic Luxury Package Burmester
Sporttinahat IHC+ Comand 360

gle gle 350 Classe GLE / GLE 350 D 4M EXCLUSIVE PLUS (DA1/DA2)
COUP+

MERCEDES-BENZ GLE 350 350e COUPE 4MATIC EQ
POWER

gle 500 Mercedes Benz GLE 500 0 MERCEDES-BENZ GLE 500 e 4matic A 442hv Ladattava Hy-
bridi Airmatic Tutkat Park Assist Kulutus 3

sclass s221 MERCEDES-BENZ S 4D S 500 SEDAN 4MATIC-221186-
4X4/317

S-Klasse Lang Hybrid (V221)

s222 S-Klasse Lang Allrad Diesel (W222) S-Klasse Lang Hybrid (V222)
s300 S 300 Mercedes-Benz S 300 BLUETEC HYBRID Sedan (AA) 4ov

2143cm3 A
s400 Classe S / S 400D 4MATIC PREMIUM PLUS Mercedes-Benz S 400 HYBRID Sedan 0
s500 Mercedes-Benz S 500 4MATIC Sedan (AA) 4ov 4663cm3 A Mercedes-Benz S 500 PLUG IN HYBRID Sedan (AA) 4ov

2996cm3 A
s560 Classe S / S 560 PREMIUM PLUS MERCEDES-BENZ S S 560 e Sedan (AA) 4ov 2996cm3 A
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B EV Growth

B.1 Sales by vehicle type and region

a. Europe only b. Worldwide
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B.2 Loan by make

a. Toyota b. Volkswagen
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Table B.1: Warranty Summary
manufacturer power type after year coverage components months distance km

BMW green - hybrid/electric 2022 powertrain - battery Extensive Battery Warranty 96 160000
BMW green - hybrid/electric 2022 powertrain - used Powertrain Limited Warranty - Certified

Pre-Owned Hybrid/Electric (from the ve-
hicle in-service date)

60 unlimited

Ford green - hybrid/electric 2022 powertrain hybrid/electric unique components 96 160000
Honda green - hybrid/electric 2022 powertrain Hybrid system 36 60000
Honda green - hybrid/electric 2022 powertrain Hybrid system (some parts, see mannual

p13-14)
96 160000

Hyundai green - hybrid/electric 2019 powertrain HEV and PHEV system 96 160000
Hyundai green - hybrid/electric 2019 powertrain EV system 96 160000
Lexus green - hybrid/electric NA powertrain Hybrid-related components 96 160000
Lexus green - hybrid/electric NA powertrain - battery Hybrid High Voltage battery 120 240000
Mercedes green - hybrid/electric NA overall EQB SUV 96 160000
Mercedes green - hybrid/electric NA overall EQE, EQS 120 250000
Peugeot green - hybrid/electric NA powertrain - battery traction battery 96 unlimited
Toyota green - hybrid/electric 2023 powertrain Hybrid-Related Components Warranty (in-

cludes Battery Control Module, Hybrid
Control Module, Inverter with Converter)

96 160000

Toyota green - hybrid/electric 2023 powertrain - battery Hybrid Battery Warranty 120 240000
Toyota green - hybrid/electric 2023 powertrain BEV Specific Components Warranty (inl-

cudes Transaxle, Inverter with Converter)
96 160000

Toyota green - hybrid/electric 2023 powertrain - battery Electric Vehicle Battery Warranty 96 160000
Toyota green - hybrid/electric 2023 powertrain - battery Electric Vehicle Battery Capacity War-

ranty (applied to battery capacity below
70% of original capacity)

96 160000

Volkswagen green - hybrid/electric NA overall New Vehicle Limited Warranty (wear &
tear items and adjustments excluded after
initial 12 months / 20,000 km)

48 80000

Volkswagen green - hybrid/electric NA powertrain Mechanical Powertrain 60 100000
Volkswagen green - hybrid/electric NA powertrain - battery High Voltage System Limited Warranty 96 160000
Volvo green - hybrid/electric 2022 powertrain - battery any material defect of the hybrid Lithium

battery pack (Loss of battery capacity due
to or resulting from normal gradual capac-
ity loss is not covered)

96 150000
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Table B.2: Warranty Summary - Cont’d
manufacturer power type after year coverage components months distance km

BMW all 2022 overall Basic New Vehicle Limited Warranty 48 80000
Ford all 2022 overall Basic New Vehicle Limited Warranty 36 60000
Ford all 2022 powertrain powertrain 60 100000
Ford conventional - diesel 2022 powertrain diesel engine 60 160000
Ford conventional - diesel 2022 powertrain diesel engine unique powertrain 60 160000
Honda all 2022 powertrain Powertrain 60 100000
Honda all 2022 overall basic new vehicle parts (distributor’s war-

ranty)
36 60000

Honda all 2022 powertrain - battery battery 100% 24 unlimited
Honda all 2022 powertrain - battery battery 50% retail price (excluding labor) 36 unlimited
Hyundai all 2019 overall Basic New Vehicle Limited Warranty 60 100000
Hyundai all 2019 powertrain Powertrain 60 100000
Hyundai all 2019 powertrain - battery battery 24 40000
Lexus all NA overall Comprehensive Coverage (any original

Lexus part)
48 80000

Lexus all NA powertrain Powertrain & Safety Restraints 72 110000
Mercedes all 2014 overall Basic New Vehicle Limited Warranty 48 80000
Peugeot all NA overall Defective parts, except normal wear and

tear
36 unlimited

Toyota all 2023 overall Basic New Vehicle Limited Warranty 36 60000
Toyota all 2023 powertrain Powertrain New Vehicle Limited Warranty

(Hybrid Transaxle (w/motors) is covered
by Powertrain Warranty)

60 100000

Volkswagen conventional 2018 overall New Vehicle Limited Warranty (wear &
tear items and adjustments excluded after
initial 12 months / 20,000 km)

48 80000

Volkswagen conventional 2018 powertrain Powertrain Limited Warranty 60 100000
Volvo all 2022 overall any component failure attributable to

faulty materials or workmanship during
manufacture

36 100000

12



C Additional Robustness Checks

Figure C.1: Robustness Checks Across Makes and Lenders

Make Lender
a. Interest Rate

b. LTV

c. Maturity

Note.—Figure C.1 presents the point estimates of the EV indicator using alternative regression samples,
in which we exclude one significant car manufacturer or lender at a time. We study each of the following

three outcome variables: interest rate (panel a), LTV (panel b), and maturity (panel c).
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D Additional Measures of WTP and Macroeconomic Factors

Table D.1: WTP for EVs does not Explain the EV Spread: Vehicle Price
interest rate

(1) (2) (3)
EV 0.157* 0.238** 0.280***

(0.08) (0.11) (0.09)
EV × EV price premium 0.007

(0.04)
EV × Overpay (family-year) 0.044

(0.04)
EV × Overpay (family-year-NUTS3) 0.024

(0.03)
lender FE Y Y Y
deal FE Y Y Y
family FE Y Y Y
nuts3 × year FE Y Y Y
borrower controls Y Y Y
loan controls Y Y Y
Observations 633,339 2,245,924 2,245,920
R-sq 0.839 0.792 0.792

Note.— This table shows that consumers’ WTP for EVs do not explain the EV spread in
financing terms. We interact various measures of WTP for the vehicles with the EV indica-
tor. These measures include the average price difference between EV and non-EVs within
the same model in a given year (column 1), the difference between the purchase price and
average price of cars in the same family-engine-type combination in the same year (col-
umn 2), and the difference between the purchase price and average price of cars in the
same family-engine-type combination in the same year and NUTS3-level region (column
3). To facilitate the interpretation of the coefficients, we divide these measures based on
the quartiles and use the categorical values (0, 1, 2, 3). In all columns, we include lender-,
deal-, car family-, NUT3×year- fixed effects, and control for car value (in log form), bor-
rower income, and the verification status of income. We additionally control for LTV and
term of the loan. The sample period is January 2010 to August 2021 in both panels. Stan-
dard errors double clustered by deal and NUTS3-level region are reported in parentheses.
***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.
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Table D.2: WTP for EVs does not Explain the EV Spread: Media Climate Change Con-
cerns Index

interest rate
(1) (2) (3) (4) (5)

EV 0.257** 0.268*** 0.259*** 0.253** 0.354***
(0.10) (0.09) (0.09) (0.11) (0.06)

EV × MCCC index - aggregate 0.038
(0.04)

EV × MCCC subindex - bus. impact 0.034
(0.03)

EV × MCCC subindex - environ. impact 0.037
(0.04)

EV × MCCC subindex - societal debate 0.041
(0.05)

EV × MCCC subindex - research −0.015
(0.02)

lender FE Y Y Y Y Y
deal FE Y Y Y Y Y
family FE Y Y Y Y Y
nuts3 × year FE Y Y Y Y Y
borrower controls Y Y Y Y Y
loan controls Y Y Y Y Y
Observations 7,458,362 7,458,362 7,458,362 7,458,362 7,458,362
R-sq 0.728 0.728 0.728 0.729 0.728

Note.— This table shows that consumers’ WTP for EVs do not explain the EV spread in financing terms. We measure
WTP for EV using the Media Climate Change Concerns Index from Ardia et al. (2022). The MCCC index is a proxy for
unexpected changes in climate change concerns computed from news articles. We interact various MCCC indexes with the
EV indicator. From column 1 to column 5, we use the aggregate MCCC index, the subindexes based on the business impact
theme, the environmental impact theme, the societal debate theme, and the research theme, respectively. To facilitate the
interpretation of the coefficients, we divide these measures based on the quartiles and use the categorical values (0, 1, 2,
3). In all columns, we include lender-, deal-, car family-, NUT3×year- fixed effects, and control for car value (in log form),
borrower income, and the verification status of income. We additionally control for LTV and term of the loan. The sample
period is January 2010 to August 2021 in both panels. Standard errors double clustered by deal and NUTS3-level region
are reported in parentheses. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.
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Table D.3: Macroeconomic Factors do not Explain the EV Spread
interest rate

(1) (2) (3) (4) (5) (6)
EV 0.434*** 0.443*** 0.303*** 0.308*** 0.326*** 0.305***

(0.09) (0.09) (0.05) (0.06) (0.07) (0.11)
EV × T10Y3M −0.108

(0.08)
EV × AAAFF −0.117

(0.09)
EV × AAABAA 0.017

(0.02)
EV × VIXCLS 0.013

(0.02)
EV × SPXret 0.001

(0.01)
EV × Crude Oil return 0.015

(0.03)
lender FE Y Y Y Y Y Y
deal FE Y Y Y Y Y Y
family FE Y Y Y Y Y Y
nuts3 × year FE Y Y Y Y Y Y
borrower controls Y Y Y Y Y Y
loan controls Y Y Y Y Y Y
Observations 7,458,362 7,458,362 7,458,362 7,458,362 7,458,362 7,458,362
R-sq 0.728 0.728 0.728 0.728 0.728 0.728

Note.—This table shows that macroeconomic factors do not explain the EV spread. We interact various macroeconomic fac-
tors with the EV indicator. In all columns, we include lender-, deal-, car family-, NUT3×year- fixed effects, and control for
car value (in log form), borrower income, and the verification status of income. We additionally control for LTV and term of
the loan. The sample period is January 2010 to August 2021 in Panels a and b and January 2015 to August 2021 in Panel c.
Standard errors double clustered by deal and NUTS3-level region are reported in parentheses. ***, **, and * denote statistical
significance at the 1%, 5%, and 10% levels, respectively.

E Alternative Measures of Technological Risk
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Table E.1: Battery Technological Risks and the EV Spread: Clean Patents Expanded

Panel A. The number of clean patents (in log form) - ADHMV2016 expanded

interest rate
(1) (2) (3) (4)

EV −0.018 −0.014 −0.091 −0.079
(0.11) (0.12) (0.11) (0.13)

EV × number of clean patents (log) 0.221*** 0.211*** 0.210*** 0.201***
(0.04) (0.04) (0.04) (0.04)

baseline FE, borrower&loan controls Y Y Y Y
EV × demographic controls Y Y
EV × competition controls Y Y
Observations 2,816,501 2,816,501 2,816,501 2,816,501
R-sq 0.805 0.805 0.805 0.805

Panel B. The share of clean patents - ADHMV2016 expanded

interest rate
(1) (2) (3) (4)

EV −0.350** −0.337** −0.362** −0.346**
(0.14) (0.16) (0.15) (0.17)

EV × share of clean patents 0.326*** 0.315*** 0.311*** 0.301***
(0.06) (0.06) (0.06) (0.06)

baseline FE, borrower&loan controls Y Y Y Y
EV × demographic controls Y Y
EV × competition controls Y Y
Observations 2,816,501 2,816,501 2,816,501 2,816,501
R-sq 0.805 0.805 0.805 0.805

Note.— This table shows the role of technological risks in explaining the EV spread. We interact var-
ious measures of EV-related technological risks with the EV indicator. In Panel a. we measure the
intensity of innovation in EV-related technologies using the number of clean patents (in log form), and
in panel b using the share of clean patents relative to all the patents in the corresponding parent groups
(subclasses). Both measures are derived using the expanded classification of clean patents in Aghion
et al. (2016). To facilitate the interpretation of the coefficients, we divide these measures based on the
quartiles and use the categorical values (0, 1, 2, 3). We include the interaction terms of EV indicator
and demographic variables (population density, GDP per capita, median age) in column 2, the interac-
tion term of that with competition (segment HHI ($loans)) in column 3, and both in column 4. In all
columns, we include lender-, deal-, car family-, NUT3×year- fixed effects, and control for car value (in
log form), borrower income, and the verification status of income. We additionally control for LTV and
term of the loan. The sample period is January 2010 to August 2021 in both panels. Standard errors
double clustered by deal and NUTS3-level region are reported in parentheses. ***, **, and * denote
statistical significance at the 1%, 5%, and 10% levels, respectively.
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Table E.2: Battery Technological Risks and the EV Spread: VC Investments

Panel A. The dollar amount of VC investment in the EV-related firms (in log form)

interest rate
(1) (2) (3) (4)

EV 0.301*** 0.285*** 0.181** 0.180**
(0.06) (0.07) (0.07) (0.09)

EV × VC investment in EV (log) 0.068*** 0.066*** 0.065*** 0.063***
(0.01) (0.01) (0.01) (0.01)

baseline FE, borrower & loan controls Y Y Y Y
EV × demographic controls N Y N Y
EV × competition controls N N Y Y
Observations 2,816,501 2,816,501 2,816,501 2,816,501
R-sq 0.805 0.805 0.805 0.805

Panel B. The share of dollar amount of VC investment in the EV-related firms
interest rate

(1) (2) (3) (4)
EV 0.330*** 0.311*** 0.201*** 0.198**

(0.06) (0.07) (0.07) (0.09)
EV × share of VC investment in EV 0.054*** 0.053*** 0.054*** 0.054***

(0.01) (0.01) (0.01) (0.01)
baseline FE, borrower & loan controls Y Y Y Y
EV × demographic controls N Y N Y
EV × competition controls N N Y Y
Observations 2,816,501 2,816,501 2,816,501 2,816,501
R-sq 0.805 0.805 0.805 0.805

Note.— This table shows the role of technological risks in explaining the EV spread. We interact various
measures of EV-related technological risks with the EV indicator.. In Panel a. we measure the inten-
sity of innovation in EV-related technologies using the dollar amount of VC investment in the EV-related
firms (in log form), and in panel b using the share of dollar amount of VC investment in the EV-related
firms relative to all firms. To facilitate the interpretation of the coefficients, we divide these measures
based on the quartiles and use the categorical values (0, 1, 2, 3). We include the interaction terms of EV
indicator and demographic variables (population density, GDP per capita, median age) in column 2, the
interaction term of that with competition (segment HHI ($loans)) in column 3, and both in column 4.
In all columns, we include lender-, deal-, car family-, NUT3×year- fixed effects, and control for car value
(in log form), borrower income, and the verification status of income. We additionally control for LTV
and term of the loan. The sample period is January 2010 to August 2021 in both panels. Standard er-
rors double clustered by deal and NUTS3-level region are reported in parentheses. ***, **, and * denote
statistical significance at the 1%, 5%, and 10% levels, respectively.
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