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This work develops maximum likelihood-based unit root tests in the noncausal autoregressive (NCAR) model with a non-
Gaussian error term formulated by Lanne and Saikkonen (2011, Journal of Time Series Econometrics 3, Issue 3, Article 2).
Finite-sample properties of the tests are examined via Monte Carlo simulations. The results show that the size properties of
the tests are satisfactory and that clear power gains against stationary NCAR alternatives can be achieved in comparison with
available alternative tests. In an empirical application to a Finnish interest rate series, evidence in favour of an NCAR model
with leptokurtic errors is found.
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1. INTRODUCTION

Testing for the unit root hypothesis is an important part in the analysis of economic time series and has attracted
an enormous amount of interest during the past decades. In this context, the most widely used model is the con-
ventional (causal) autoregressive (AR) model where the current observation is expressed as a weighted average
of past observations and an error term. An essential assumption of the conventional AR model is that the error
term is unpredictable by the past of the considered time series. However, in (say) economic applications, this
assumption may break down because the impact of omitted variables, interrelated with the considered (univari-
ate) time series, is ignored. More specifically, if relevant variables are omitted, their impact goes (at least partly)
to the error term of the model, and, as the considered time series may help to predict the omitted variables, the
assumed unpredictability condition may break down. As economic variables are typically interrelated, this point
appears particularly pertinent in economic applications. In cases like this, the noncausal AR (NCAR) model may
provide a viable alternative, for it explicitly allows for the predictability of the error term by the past of the
considered series.

Early studies of NCAR models and their extensions, noncausal and (potentially) noninvertible AR moving
average (ARMA) models, were mainly motivated by applications to natural sciences and engineering [see, e.g.
Breidt et al. (1991), Lii and Rosenblatt (1996), Huang and Pawitan (2000), Rosenblatt (2000), Breidt et al. (2001),
& Wu and Davis (2010) and the references therein]. More recently, a slightly different formulation of the NCAR
model was considered by Lanne and Saikkonen (2011) (hereafter L&S) and further studied by Lanne et al. (2012a,
2012b, 2012c), Lanne and Saikkonen (2013) & Gouriéroux and Zakoian (2013). These papers demonstrate that
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the NCAR model can successfully describe and forecast many economic time series, and it often outperforms its
conventional causal alternative in terms of model fit and forecasting accuracy.

(Basawa and Scott, 1983, Ch. 2)
Even though the properties of the stationary NCAR model are by now well understood and asymptotic dis-

tribution theory for various parameter estimators [typically maximum likelihood (ML) estimators] have been
developed, the nonstationary case and tests for a unit root have not yet been studied in the literature. As unit root
type nonstationarity appears quite common (particularly) in economic time series, and hence potential applica-
tions of the NCAR model, this work aims at proposing unit root tests in the context of the NCAR model of L&S.
We develop Wald-type unit root tests by assuming that the possible unit root appears in the causal AR polynomial
of the model, and to this end, we first derive asymptotic properties of a (local) ML estimator of the parameters
of the model under the unit root hypothesis. As in the stationary case, a non-Gaussian error term is required to
achieve identification [see, e.g. Brockwell and Davis (1987, pp. 124–125) and Rosenblatt (2000, pp. 10–11)]. This
renders the estimation problem nonlinear, which, in turn, makes the derivation of limiting distributions straightfor-
ward than in the context of conventional unit root tests, where estimation is carried out by linear least squares (LS)
techniques. To address this issue, we use ideas similar to those used in statistical models whose likelihood ratios
satisfy the so-called locally asymptotically mixed normal (LAMN) condition (Basawa and Scott, 1983, Ch. 2).
It turns out that the limiting distributions of our tests are not distribution free and appear, in general, very com-
plicated depending on a number of nuisance parameters. To obtain tests with manageable limiting distributions,
we assume that the error term of the model has a symmetric distribution. Then the limiting distributions of our
tests only depend on a single nuisance parameter determined by the distribution of the error term, and this prob-
lem can be rather easily circumvented by using estimated critical values (described in Section 5.1). Extending this
approach to skewed errors appears infeasible so that a bootstrap procedure (described in Section 5.2) is discussed
in order to relax the symmetry assumption.

We examine the practical relevance of our asymptotic tests by means of Monte Carlo simulations. The results
show that our tests perform satisfactorily in terms of size, and their power against correctly specified stationary
NCAR alternatives is very good in comparison with conventional Dickey–Fuller (DF) tests, the M -tests of Lucas
(1995) and the likelihood-based unit root tests of Rothenberg and Stock (1997). We also demonstrate that our
bootstrap procedure works very well in cases where the error distribution is skewed. To illustrate the practical
implementation of our tests, we present an application to a Finnish interest rate series for which a stationary NCAR
model with Student’s t-distributed errors (symmetric or skewed) is found to provide a good description.

The plan of the paper is as follows. Section 2 defines the considered NCAR model and discusses the test-
ing problem. Parameter estimation and related asymptotic results are presented in Section 3 and used in Section
4 to obtain our unit root tests. Section 5 reports the results of the Monte Carlo simulations, and Section 6
presents the empirical application. Section 7 concludes. Appendices A–C contain mathematical proofs and some
technical details.

Finally, the following notation is used throughout the paper. The notation
p
! signifies convergence in probability,

and
d
! is used for convergence in distribution and also for weak convergence in a function space. We writeB .u/ �

BM .�/ for a Brownian motion B .u/ with indicated variance or covariance matrix. Unless otherwise stated, all
vectors will be treated as column vectors, and, for notational convenience, we shall write x D .x1; : : : ; xn/ for the
(column) vector x where the components xi may be either scalars or vectors (or both).

2. MODEL AND TESTING PROBLEM

Following L&S, we consider the NCAR model

� .B/ '
�
B�1

�
yt D �t ; t D 1; 2; : : : ; (1)

where �t is a sequence of i.i.d. random variables with mean 0 and finite variance �2 > 0, B is the usual backward
shift operator (Byt D yt�k for k D 0;˙1; : : : ;), and � .B/ D 1��1B�� � ���rBr and '

�
B�1

�
D 1�'1B

�1�

� � � � 'sB
�s . L&S assume that the polynomials � .´/ and ' .´/ .´ 2 C/ have their roots outside the unit circle
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in which case the difference equation (1) has a stationary solution. In this paper, we allow for the possibility that,
owing to a unit root in the causal AR polynomial � .´/, the process yt is a nonstationary integrated process.

Thus, we assume that r > 0 and proceed in the conventional way by writing the lag polynomial � .B/ as

� .B/ D � � �B � �1�B � � � � � �r�1�B
r�1; (2)

where � D 1 � B is the difference operator. Our focus is in testing for the unit root null hypothesis H0 W � D 0

against the stationary alternative H1 W � < 0. At this point, we abstract from any deterministic terms such as a
constant term or linear time trend in the process. These extensions will be discussed in Section 4.2.

Unless otherwise stated, we assume throughout the paper that the null hypothesisH0 holds and that the roots of
the polynomials � .´/ D 1 � �1´ � � � � � �r�1´r�1 and ' .´/ lie outside the unit circle or, formally, that

� .´/ ¤ 0 for j´j � 1 and ' .´/ ¤ 0 for j´j � 1: (3)

Using equation (2), we can write equation (1) as

�yt D �yt�1 C �1�yt�1 C � � � C �r�1�yt�rC1 C vt ; t D 1; 2; : : : ; (4)

where the process vt D � .B/ yt D '
�
B�1

��1
�t has the forward moving average representation

vt D

1X
jD0

ˇj �tCj ; ˇ0 D 1: (5)

Here, ˇj is the coefficient of ´�j in the Laurent series expansion of '
�
´�1

��1
. By the latter condition in

(3), this expansion is well defined for j´j � b' with some b' < 1 and with the coefficients ˇj decaying to
zero at a geometric rate as j ! 1. Equation (4) shows that our testing problem can be thought of as test-
ing for a unit root in an AR.r/ process with stationary errors following the purely noncausal AR.0; s/ process
'
�
B�1

�
vt D �t [as in L&S, we use the acronym AR.r; s/ for the model defined in equation (1)]. When r D 1,

the lagged differences vanish from the right-hand side of equation (4), which becomes a special case of a first-
order autoregression with general stationary (or short-memory) errors. Testing for a unit root in such contexts
has been considered in a number of papers since the work of Phillips (1987) & Phillips and Perron (1988). That
the errors in (4) are generated by a purely noncausal AR.0; s/ process distinguishes our formulation from its
previous counterparts.

For later use, we also introduce the (causal) AR.r/ process ut D '
�
B�1

�
yt or � .B/ ut D �t (t D 1; 2; : : : ;).

Under the null hypothesis, � .B/�ut D �t , and the former condition in (3) yields the conventional backward
moving average representation

�ut D

1X
jD0

˛j �t�j ; ˛0 D 1; (6)

where the coefficients ˛j of the power series representation of � .´/�1 decay to zero at a geometric rate as j !1
for j´j � b� and some b� > 1. Thus, ut is a nonstationary I(1) process.

Finally, note that equation (1) and the conditions in (3) imply that there exist initial values such that the
differenced process �yt has the two-sided moving average representation

�yt D

1X
jD�1

 j �t�j ; (7)
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where  j is the coefficient of ´j in the Laurent series expansion of � .´/�1 '
�
´�1

��1 def
D  .´/ so that

 .´/ D
P1
jD�1  j´

j exists for b' � j´j � b� with b' < 1 < b� defined earlier and with  j decay-
ing to zero at a geometric rate as jj j ! 1. The representation (7) implies that �yt is a stationary and ergodic
process with finite second moments. Hence, the invariance principle and weak convergence results of sample
covariance matrices given in Phillips (1988) apply to yt for any (random or nonrandom) initial value y0. This
implies that the usual asymptotic results needed to develop limit theory for unit root tests are available. To simplify
presentation, we assume that, under the null hypothesis, the processes �yt and �ut are stationary and not only
asymptotically stationary.

We derive a unit root test in a likelihood framework similar to that in L&S [for the employed assumptions, see
also Andrews et al. (2006)]. Thus, we impose the following assumption on the error term in (1).

Assumption 1. The zero mean error term �t is a sequence of non-Gaussian i.i.d. random variables with a
(Lebesgue) density ��1f

�
��1xI�

�
, which depends on the (finite and positive) error variance �2 and (possibly)

on the parameter vector � (d � 1) taking values in an open set ƒ � Rd .

As discussed in Breidt et al. (1991), Rosenblatt (2000, pp. 10–11), L&S and others, causal and noncausal
autoregressions are statistically indistinguishable if the error term (and hence the observed process) is Gaussian.
This explains why Assumption 1 includes the requirement of non-Gaussian errors. Further assumptions on the
density function f .xI�/ will be made later.

We close this section with a remark on the conceivable possibility of testing for a unit root in the noncausal
polynomial ' .�/. As equation (4) and the subsequent discussion indicate, a possible unit root in the causal poly-
nomial � .�/ makes the testing problem conceptually very similar to its previous counterpart, where the existence
of a unit root means that yt , the value of the considered process at time t , can be expressed as a sum of the cur-
rent and past values of a stationary process and an initial value y0. If a unit root were in the noncausal polynomial
' .�/, the counterpart of this would (presumably) be that yt should be expressed as a sum of the current and future
values of a stationary process. However, without truncation, such a sum does not converge and, therefore, cannot
be used to define a process for all t > 0. For purposes of unit root testing, one could truncate the sum at the last
value of the considered series, yT say, although such an approach may not lend itself a natural interpretation. A
potential technical difficulty is that conventional invariance principles are not directly applicable to the resulting
process and its functions, such as the components of the score and Hessian of the log-likelihood function involv-
ing the unit root parameter, implying that the problem of testing for a unit root in the noncausal polynomial may
lead to a rather involved asymptotic distribution theory. In this article, we therefore confine ourselves to the case
where a unit root appears in the causal AR polynomial.

3. PARAMETER ESTIMATION

3.1. Approximate likelihood function

To obtain our tests, we first discuss the likelihood function based on the observed time series ¹y1; : : : ; yT º gen-
erated by the AR.r; s/ process (1). Proceeding in the same way as in Section 3.1 of L&S suggests approximating
the log-likelihood function by

lT .�/ D

T�sX
tDrC1

gt .�/ ; (8)

where

gt .�/ D logf
�
��1 .�ut .'/ � �ut�1 .'/ � �1�ut�1 .'/ � � � � � �r�1�ut�rC1 .'// I�

�
� log �

D logf
�
��1 .vt .�; �/ � '1vtC1 .�; �/ � � � � � 'svtCs .�; �// I�

�
� log �:
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Here, ut .'/ and vt .�; �/ signify the series ut D '
�
B�1

�
yt and vt D � .B/ yt , respectively, treated as functions

of the parameters ' D .'1; : : : ; 's/ and .�; �/ D .�; �1; : : : ; �r�1/, and the parameter vector � D .�; �; '; �; �/
..r C s C 1C d/ � 1/ contains the parameters of the model. Maximizing lT .�/ over permissible values of � gives
an (approximate) ML estimator of � . In what follows, we drop the word ‘approximate’ from the ML estimator and
related quantities.

Earlier, we assumed unrealistically that the orders of the model, r and s, are known. As in Breidt et al. (1991)
and L&S, we specify these orders in practice as follows. First, we fit a conventional causal AR model by LS and
determine its order by using conventional procedures such as model selection criteria and residual diagnostics. We
deem a causal model adequate when its residuals show no signs of autocorrelation. Owing to the aforementioned
identifiability issue, we also need to check for the non-Gaussianity of the residuals because otherwise there is no
point to consider noncausal models. If non-Gaussianity is supported by the data, a non-Gaussian error distribution
is adopted, and all causal and noncausal models of the selected order are estimated. Of these models, the one that
maximizes the likelihood function is selected, and its adequacy is evaluated by conventional diagnostic tools.

In practice, a purely noncausal model .r D 0; s > 0/may turn out to be the most appropriate choice, but owing
to the assumption r > 0, it is not in accordance with the assumed formulation. If one wants to perform a formal
test in a case like this, one may augment the model with a first-order causal polynomial and base the test on the
AR.1; s/ model.

3.2. Score vector and Hessian matrix

As our goal is to derive a Wald-type test for the unit root hypothesis, we have to assume that the likelihood function
satisfies conventional differentiability conditions similar to those used in the related previous work of Andrews et
al. (2006) and L&S. Thus, we impose the following assumption.

Assumption 2. For all .x; �/ 2 .R; ƒ/, f .xI�/ > 0 and f .xI�/ is twice continuously differentiable with
respect to .x; �/ and an even function of x, that is, f .xI�/ D f .�xI�/.

Unlike the aforementioned previous authors, we require that the function f .�I�/ is even. As will be discussed in
Section 4.1, this assumption is imposed to simplify the limiting distribution of the obtained unit root test. However,
in Appendix B, we derive the asymptotic distribution of our unit root test when this assumption is relaxed. These
derivations make evident that this limiting distribution is of no or only little practical use. For cases where a skewed
error distribution is expected to be plausible, a bootstrap procedure is suggested to obtain an approximation to the
asymptotic distribution of our test. An example of such a bootstrap procedure is outlined in Section 5.2.

For the derivation of the Wald-type test, we need to estimate the unrestricted model and derive the limiting
distribution of the ML estimator of � under the null hypothesis. Because the data are assumed to be generated
by a nonstationary I(1) process, the derivation of the limiting distribution of the ML estimator involves features
different from those in the previous literature on stationary NCAR models. Moreover, as the estimation prob-
lem is nonlinear, the presence of an I(1) process implies that methods used in the context of conventional unit
root tests based on linear LS estimation are not directly applicable. Therefore, we use ideas similar to those
developed for likelihood-based statistical models whose estimation theory is nonstandard in the sense that the
information matrix is random even asymptotically. Such nonergodic models are discussed in Basawa and Scott
(1983) & Jeganathan (1995) among others, and to facilitate their treatment, we introduce the notation �0 for the
true value of � and similarly for its components. As the null hypothesis is assumed to hold, the true value of
� is zero.

We shall now derive weak limits of (appropriately standardized versions of) the score vector and Hessian matrix
associated with the log-likelihood function evaluated at the true parameter value. We use a subscript to signify a
partial derivative indicated by the subscript; for instance, g�;t .�/ D @gt .�/ =@� , fx .xI�/ D @f .xI�/ =@x, and
f� .xI�/ D @f .xI�/ =@�. Denote VtC1 D .vtC1; : : : ; vtCs/ and �Ut�1 D .�ut�1; : : : ; �ut�rC1/, where vt
are �ut have the representations (5) and (6) with the coefficients replaced by their true values ˇ0;j and ˛0;j so
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that the latter, for example, is obtained from �0 .´/
�1 D

P1
jD0 ˛0;j´

j . The first and second partial derivatives
of gt .�/, the log-likelihood function based on a single observation, are presented in Appendix A. When evaluated
at the true parameter value, the vector of first partial derivatives is

g�;t .�0/ D

2666664
g�;t .�0/

g�;t .�0/

g';t .�0/

g�;t .�0/

g�;t .�0/

3777775 D
2666664
���1

0
ex;tut�1

���1
0
ex;t�Ut�1

���1
0
ex;tVtC1

���2
0
.ex;t�t C �0/

e�;t

3777775 ;

where ex;t D fx
�
��1
0
�t I�0

�
=f
�
��1
0
�t I�0

�
and e�;t D f�

�
��1
0
�t I�0

�
=f
�
��1
0
�t I�0

�
.

To obtain the weak limit of the score, we have to assume that the error density f .xI�/ satisfies regular-
ity conditions such as those employed by Andrews et al. (2006) and L&S. Rather than presenting the needed
conditions explicitly, we simplify the presentation by using suitable ‘high level’ assumptions that can be veri-
fied by using the regularity conditions given in the aforementioned papers. To this end, it is convenient to write
� D .�; #/ D .�; #1; #2/, where #1 D .�; '/ and #2 D .�; �/. The score of # (evaluated at �0) is clearly a
stationary and ergodic process similar to the score in L&S. We make the following assumption.

Assumption 3. (i) E Œex;t 	 D 0 and E
�
e2x;t

�
D J , where J D

R
.fx .xI�0/

2 =f .xI�0//dx > 1 is finite.
Moreover, Cov Œ�t ; ex;t 	 D ��0.
(ii) The score vector g#;t .�0/ D .g#1;t .�0/ ; g#2;t .�0// has zero expectation and finite positive definite covari-
ance matrix† D diag.†1; †2/, where†i D Cov Œg#i ;t .�0/	 (i D 1; 2) and the partition is conformable to that of
g#;t .�0/.

Part (i) of this assumption can be verified by using the definition of ex;t , the regularity conditions in Andrews
et al. (2006) and L&S, and direct calculation. Specifically, the expression of Cov Œ�t ; ex;t 	 is obtained from the
definition of ex;t and condition (A2) of these papers, whereas condition (A5) implies that the inequality J > 1

holds if and only if the distribution of �t is non-Gaussian. This inequality and the explicit expressions of the
matrices †1 and †2 obtained from L&S can further be used to verify the positive definiteness of the covariance
matrix†1 in part (ii), whereas, owing to the generality of the error distribution, the positive definiteness of†2 has
to be assumed. The other conditions in part (ii) can be verified by using the regularity conditions imposed on the
density function f .xI�/ in the aforementioned papers.

Assumption 3(i) and a standard functional central limit theorem for i.i.d. sequences yield

T�1=2
ŒTu�X
tD1

.ex;t ; �t /
d
! .Bex .u/ ; B� .u// � BM

��
J ��0
��0 �2

0

�	
; (9)

where the covariance matrix is positive definite when �t is non-Gaussian. Using Assumptions 1–3, we can further
derive the limiting distribution of the score vector of � . The result is presented in the Lemma 1.

Lemma 1. Suppose that Assumptions 1–3 hold. Then,

T�1
T�sX
tDrC1

g�;t .�0/
d
! Z1 D �

1

�0�0 .1/

Z 1

0

B� .u/ dBex .u/ (10)
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and

T�1=2
T�sX
tDrC1

g#;t .�0/
d
! Z2 � N .0;†/ : (11)

Moreover, joint weak convergence applies with Z1 and Z2 independent.

The proof of this lemma is presented in Appendix B. As discussed therein, the requirement that the function
f .�I�/ is even is needed to establish the independence statement (further discussion on this issue will be given at
the end of Section 4.1).

Next, consider the Hessian matrix associated with the log-likelihood function lT .�/. Expressions for the
required second partial derivatives are obtained from Appendix A. Similar to the first partial derivatives,
we use notations such as g��;t .�/ D @2gt .�/ =@�@�

0, fxx .xI�/ D @2f .xI�/ =@x2 and fx� .xI�/ D

@2f .xI�/ =@x@�. We also define

exx;t D
fxx

�
��1
0
�t I�0

�
f
�
��1
0
�t I�0

� � e2x;t
and

e�x;t D
f�x

�
��1
0
�t I�0

�
f
�
��1
0
�t I�0

� � f� ���10 �t I�0
�

f
�
��1
0
�t I�0

� ex;t ;
and make the following assumption.

Assumption 4. E Œexx;t 	 D �E
�
e2x;t

�
and E Œg##;t .�0/	 D �† with † given in Assumption 3(ii). Moreover,

E Œexx;t�t 	 D 0 and E Œe�x;t 	 D 0.

Similar to Assumption 3, this assumption can be verified by using the regularity conditions in Andrews et
al. (2006) and L&S. The first moment equality is obtained from Assumption (A3) of these papers, whereas the
second one states that the negative of the Hessian matrix of the log-likelihood function with respect to the short-
run parameter # equals the covariance matrix of the score of # , a fact that can be established by direct calculation
(see L&S). As for the last two moment conditions, both exx;t�t and e�x;t are odd functions of �t so that, given
Assumption 2, only finiteness of the expectations is required. This in turn can be obtained from condition (A7) of
Andrews et al. (2006) and L&S.

Now we can prove Lemma 2.

Lemma 2. Suppose that Assumptions 1–4 hold. Then,

� T�2
T�sX
tDrC1

g��;t .�0/
d
!

J
�2
0
�0 .1/

2

Z 1

0

B2� .u/ d .u/
def
D g�� .�0/ ; (12)

� T�1
T�sX
tDrC1

g##;t .�0/
p
! †; (13)
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and

� T�3=2
T�sX
tDrC1

g�#;t .�0/
p
! 0: (14)

Moreover, the weak convergences in (12) and in Lemma 1 hold jointly, and g�� .�0/ and Z2 are independent.

Using the limits obtained in Lemmas 1 and 2, we defineZ D .Z1; Z2/ andG .�0/ D diag.g�� .�0/ ; †/, and we
also introduce the matrix DT D diag

�
T; T 1=2IrCsCd

�
. The following proposition is an immediate consequence

of Lemmas 1 and 2.

Proposition 1. Suppose that Assumptions 1–4 hold. Then,

ST .�0/
def
D D�1T

T�sX
tDrC1

g�;t .�0/
d
! Z (15)

and

GT .�0/
def
D �D�1T

T�sX
tDrC1

g��;t .�0/D
�1
T

d
! G .�0/ ; (16)

where the weak convergences in (15) and (16) hold jointly with .Z1; G .�0// and Z2 independent.

In the next section, we derive the limiting distribution of the ML estimator of the parameter � by using Proposi-
tion 1 and arguments similar to those used by Basawa and Scott (1983, Ch. 2.4) in the context of statistical models
whose likelihood ratios satisfy the LAMN condition.

3.3. Limiting distribution of the ML estimator

To obtain the limiting distribution of the ML estimator of the parameter � , we have to supplement the assumptions
made so far by conditions on the standardized Hessian matrix GT .�/

def
D �D�1

T

PT�s

tDrC1 g��;t .�/D
�1
T

. A suf-
ficient ‘high level’ condition, used by Basawa and Scott (1983, pp. 33–34) in a more general form, requires that,
for all c > 0,

sup
�2NT;c

kGT .�/ �GT .�0/k
p
! 0; (17)

where NT;c D ¹� W DT k� � �0k � cº. As discussed in Appendix C, this condition can be verified by using
assumptions similar to those used by Lii and Rosenblatt (1996) in the context of (stationary) noncausal and
noninvertible ARMA models and by Meitz and Saikkonen (2013) in the context of a (stationary) noninvertible
ARMA model with conditionally heteroskedastic errors. Proposition 1 combined with condition (17) enables us
to establish the limiting distribution of the ML estimator of � under the unit root hypothesis.

Proposition 2. Suppose that Assumptions 1–4 and condition (17) hold. Then, with probability approaching one,
there exists a sequence of local maximizers of the log-likelihood function O�T D . O�T ; O#T / such that


DT . O�T � �0/; GT .�0/
�
d
!


G .�0/

�1Z;G .�0/
�
:

Moreover, GT . O�T / �GT .�0/
p
! 0.
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Proposition 2 can be proved along the same lines as Theorems 1 and 2 of Basawa and Scott (1983, pp. 56–59).
An outline of the needed arguments is provided in Appendix B. Now, all ingredients for the derivation of our unit
root tests are available.

4. TEST PROCEDURES

4.1. Test statistic

With Proposition 2 at hand, it is straightforward to derive Wald-type unit root tests. As we are interested in one-
sided (stationary) alternatives, we use a ‘t-ratio’ type test statistic defined as


T
def
D

T O�Tq
G1;1
T
. O�T /

;

where G1;1
T
. O�T / abbreviates the (1,1)-element of GT . O�T /�1. The following proposition presents the asymptotic

distribution of 
T .

Proposition 3. Suppose that Assumptions 1–4 and condition (17) hold. Then


T
d
!

 
J
Z 1

0

W 2
� .u/ d .u/

!�1=2  Z 1

0

W� .u/ dW� .u/ � .J � 1/1=2
Z 1

0

W� .u/ dW .u/

!
def
D 
 .J / ; (18)

where W�.u/ D ��10 B� .u/ � BM .1/ and W .u/ � BM .1/ is independent of W�.u/.

To see how this result can be obtained, note that Proposition 2 and the continuous mapping theorem yield


T
d
! �

 
J
Z 1

0

B2� .u/ d .u/

!�1=2 Z 1

0

B� .u/ dBex .u/ :

The stated result is obtained by replacing the Brownian motion Bex .u/ on the right-hand side by the expression

Bex .u/ D ��
�1
0 B� .u/C .J � 1/1=2W .u/ D �W�.u/C .J � 1/1=2W .u/ ;

obtained via a Cholesky decomposition of the covariance matrix in (9).
Proposition 3 implies that the limiting distribution of test statistic 
T is free of nuisance parameters except for

the parameter J . For subsequent analysis and discussions, we notice that for Student’s t-distributed errors with
� > 2 degrees of freedom,

J D � .�C 1/

.� � 2/ .�C 3/
: (19)

Of course, the obtained limiting distribution is of limited practical use because it depends on the nuisance
parameter J . Fortunately, this problem is rather easily circumvented and is further discussed in Section 5.1.
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The distribution of the limiting variable 
 .J / is a weighted average of a standard normal distribution and a
Dickey–Fuller type of distribution. More specifically, letting J ! 1 in (18), a standard normal distribution is
obtained, as

lim
J!1


 .J / D
 Z 1

0

W 2
� .u/ d .u/

!�1=2 Z 1

0

W� .u/ dW .u/ D � � N.0; 1/;

where the second equality holds true because
R 1
0
W� .u/ dW .u/ is a scale mixture of normal distributions and

can be written as
R 1
0
W� .u/ dW .u/ D


R 1
0
W 2
� .u/ d .u/

�1=2
�. On the other hand, letting J ! 1 in (18), the

Dickey–Fuller type of distribution is obtained as

lim
J!1


 .J / D
 Z 1

0

W 2
� .u/ d .u/

!�1=2 Z 1

0

W� .u/ dW� .u/ :

That the limiting distribution of 
T is relatively simple, depending only on the nuisance parameter J , is achieved
by assuming that the function f .�I�/ is even. This assumption is used to establish the independence of g�� .�0/
and Z2 in Lemma 2 and further the independence of .Z1; G .�0// and Z2 in Proposition 1, and it is also used to
justify the block diagonality of G .�0/ (see the proof of Lemma 2 for some details). If these results do not hold,
the limiting distribution of 
T will be a considerably more complicated function of the short-run parameters of the
model (Appendix B), making the implementation of the resulting test very difficult.

4.2. Tests allowing for deterministic terms

The result of Proposition 3 only applies to mean-zero data. To accommodate series with trend components, we
consider the model

xt D �C ıt C yt ; t D 1; 2; : : : ;

where xt is the observed time series and yt is a noncausal AR.r; s/ process. The trend coefficients � and ı are
estimated by LS to obtain the estimates O� and Oı after which the test statistic 
T introduced in the preceding section
is formed by using yt D xt � O� in the case of demeaned data and yt D xt � O� � Oıt in the case of detrended
data. As in other unit root tests, the distribution of the resulting test statistic depends on the trend component
chosen, and therefore, we denote the test statistic by 
T .m/, where m D 0, m D 1 and m D 2 refer to mean-zero,
demeaned, and detrended data, respectively. The result of Proposition 3 applies even for 
T .1/ and 
T .2/ as long
as the Brownian motion W� .u/ is replaced by a corresponding detrended Brownian motion [see, e.g. Park and
Phillips (1988)].

5. SIMULATION STUDIES

5.1. Estimated critical values

The problem of the nuisance parameter J (2 .0;1/) appearing in the limiting distribution of test statistic 
T .m/
is addressed next. We shall first illustrate how the value of the parameter J affects the distribution of 
 .J / [see
(18)]. It turns out to be convenient to study this effect by using the correlation between the two Brownian motions
B� .u/ and Bex .u/, that is,  D J�1=2 2 .0; 1/ [see (9)]. Figure 1 displays the 1% (dotted lines), 5% (dashed
lines) and 10% (dashed-dotted lines) percentiles of the distribution of 
 .J / as a function of .
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Figure 1. Percentiles of the distribution of 
 .J / as a function of  D J�1=2. Notes: first percentiles (dotted lines), fifth
percentiles (dashed lines), and 10th percentiles (dash-dotted lines) for the asymptotic distribution of the 
T .m/ statistic. The
Brownian motions appearing in the limiting distribution of test statistic 
T .m/ are approximated using (appropriately scaled)

sums of normal IID.0; 1/ variables with T D 5000 and 500,000 replications.

In Figure 1, a monotonically decreasing relationship between the percentiles and  is seen. As already men-
tioned, the Dickey–Fuller distributions and the standard normal distribution are obtained as limiting cases by
letting J ! 1 ( ! 1) and J ! 1 ( ! 0), respectively. Thus, in Figure 1, the 1%, 5% and 10% crit-
ical values for the DF statistics and a standard normal variate are found at the leftmost and rightmost sides,
respectively.

Owing to the monotonicity of the percentiles in , it is obvious that if the value of J were known, Figure 1
could be used to determine (conventional) critical values. Taking a more rigorous approach, we proceed instead
with curve estimation of the percentiles by fitting a second-order polynomial cv˛;m./ D b0 C b1 C b2

2 for
˛ 2 ¹0:01; 0:05; 0:10º andm 2 ¹0; 1; 2º. The curve estimates, obtained by LS, yield the coefficients in Table I that
can be used to compute asymptotic critical values.

To exemplify how Table I can be used, assume that we wish to test the unit root hypothesis in the NCAR model
at a 10% significance level in the case of demeaned data with J D 2 ( D 1=

p
2). Then, the estimated asymptotic

critical value equals cv0:10;1.2/ D �1:276 � 1:584 � .1=
p
2/ C 0:289 � .1=

p
2/2 D �2:252. To this end, the

value of J is in practice obviously not known and must be estimated. In the case of Student’s t-distributed errors,
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Table I. Coefficients to compute asymptotic critical values cv˛;m./ of test statistic 
T .m/

Significance level
Case (˛) (%) b0 b1 b2 R2

Mean-zero data 1 �2:321 �0:492 0.251 0.998
(m D 0) 5 �1:639 �0:495 0.187 0.999

10 �1:276 �0:480 0.131 0.999

Demeaned data 1 �2:322 �1:578 0.474 1.00
(m D 1) 5 �1:639 �1:591 0.367 1.00

10 �1:276 �1:584 0.289 1.00

Detrended data 1 �2:324 �2:201 0.575 1.00
(m D 2) 5 �1:640 �2:230 0.462 1.00

10 �1:276 �2:231 0.381 1.00

Note: For each significance level and each trend specification, the coefficients b0, b1 and b2 are
obtained from the regression of cv˛;m.�) on .1; �; �2/ (using LS). R2 is the regression coefficient of
determination.

we can use equation (19) with the estimator O� used in place of �. More generally, in cases where the distribution
of the error term comprises less straightforward calculations of J , we may, by virtue of Assumption 3(i), use
the estimator

bJ D 1

T � r � s

T�sX
tDrC1

"
fx. O�

�1 O�t I O�/

f . O��1 O�t I O�/

#2
; (20)

where O�t D � Out � O� Out�1 � O�1� Out�1 � � � � � O�r�1� Out�rC1 with Out D O'.B�1/yt .

5.2. Bootstrapped p-values and critical values

As already mentioned, if the symmetry condition in Assumption 2 is relaxed, the limiting distributions of our unit
root tests depend on several nuisance parameters in a very complex way (for details, see Appendix B). In this
section, we discuss a bootstrap procedure that can be used to obtain approximations to the critical values and p-
values of our tests that do not rely on the symmetry condition of Assumption 2. Our approach closely follows the
bootstrap procedure described in Caner and Hansen (2001).

The bootstrap distribution of test statistic 
T (D 
T .1/) is obtained by the following simple steps:

(i) Use the observed time series ¹y1; : : : ; yT º and the assumed distribution for the error term �t to compute
O� D . O�; O�; O'; O�; O�/, the unrestricted ML estimate of � , and furthermore, the value of the unit root test
statistic 
T .

(ii) Generate T b random draws ¹�b
1
; �b
2
; : : : ; �b

Tb
º from the estimated error distribution with density

O��1f


O��1�t I O�

�
and insert these draws and the estimate .0; O�; O'/ into the NCAR specification (1)

to yield

O� .B/ O'
�
B�1

�
ybt D �

b
t ; t D 1; 2; : : : ; T b; (21)

where O� .B/ D � � O�1�B � � � � � O�r�1�B
r�1 D 1 � O�1B � � � � � O�rB

r , and the last equation defines
the coefficients O�1; : : : ; O�r , and O'

�
B�1

�
D 1 � O'1B

�1 � � � � � O'sB
�s . The reason for defining the lag

polynomial O� .B/ in this way is to ensure that the bootstrap samples obey the null hypothesis of a unit root.
A bootstrap sample ¹yb

1
; yb
2
; : : : ; yb

Tb
º is obtained via equation ( 21) by generating first the ‘noncausal’

part as
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vbt D O'1v
b
tC1 C � � � C O'sv

b
tCs C �

b
t ; t D T b; T b � 1; : : : ; 1;

where vb
TbC1

D � � � D vb
TbCs

D 0, and thereafter the ‘causal’ part as

ybt D
O�1y

b
t�1 C � � � C

O�ry
b
t�r C v

b
t ; t D 1; 2; : : : ; T

b;

where yb
�rC1

D � � � D yb
0
D 0.

(iii) Use the bootstrap sample
®
yb
1
; yb
2
; : : : ; yb

Tb

¯
to compute the value of our unit root test statistic denoted

by 
b
Tb

.
(iv) Repeat the resampling scheme in (ii) and (iii) BR times to yield the bootstrap distribution of the test statistic


T , from which, for example, approximate bootstrap p-values can be computed as the average number of
times 
b

Tb
is smaller than 
T .

In practice, the number of bootstrap replications BR is set relatively large in order to obtain reasonable approxi-
mations. The number of bootstrap draws T b may be set equal to the (effective) sample size. However, to eliminate
the effects of the terminal and starting values, one may generate 200 extra observations (say) and discard the first
and last 100 observations at the end and beginning of each realization. The properties of this bootstrap procedure
in the case of symmetric and skewed errors are examined in the next section.

5.3. Empirical size and power simulations

We examine finite sample properties of the 
T .m/-test for m 2 ¹0; 1; 2º by means of simulation experiments. The
nominal significance level employed is 5%, and the benchmark process is a noncausal AR process as defined in
(1) with r D s D 1, and with the i.i.d. error term �t having Student’s t-distribution with degrees of freedom
� equal to 3 and standard deviation � equal to 0.1. Realizations ¹y1; : : : ; yT º from this process are generated
as described in step (ii) of the bootstrap scheme (see the preceding section). To eliminate effects of the terminal
and starting values, 100 observations at the end and beginning of each realization are discarded. Finally, in all
experiments, the true order of the process is assumed known (i.e. r D s D 1), and the estimation of the parameter
O� D . O�; O'1; O�; O�/ is carried out in GAUSS 12 using the Berndt–Hall–Hall–Hausman algorithm in the Constrained
Maximum Likelihood (CML) library.

In the first experiment, the empirical size of the 
T .m/-test is examined in the case of Student’s t-distributed
errors when the parameter '1 is varied and estimated (asymptotic) critical values based on different estimates of
J are used. The parameter values and sample sizes considered are �1 D 1 (� D 0), '1 2 ¹0:1; 0:5; 0:9º and
T 2 ¹100; 250º, respectively. Moreover, all the results in this experiment are based on 10,000 realizations of the
¹y1; : : : ; yT º process, and for each realization, 5% critical values are obtained by the second-order polynomials in
Table II using (19) with O� (bJ 1), the estimate in (20) (bJ 2) and J D 2 (the true value) as estimates. The outcomes
of this experiment are reported in Table II.

In Table II, the reported estimates for J are (for each sample size) based on the average number of replications in
the case of demeaned data with '1 D 0:5. It is seen that these estimates are close to the true value even for moderate
samples sizes. For the other cases, the estimates of J are similar and therefore omitted. It is further noticed that the
empirical size is close to the nominal size for most of the cases considered, and the influence of the parameter '1
appears to be modest. One exception, though, is for T D 100 and '1 D 0:9, where the test is somewhat over-sized
so that some cautiousness is required. Taking the results in Table II together, it appears that the asymptotic distribu-
tions of the 
T .m/-test, also with the values of J estimated, yield reasonable approximations to the finite sample
distributions even for relatively small sample sizes, various trend components and a wide range of parameter values
for '1.

In the second experiment, the empirical size of the 
T .m/-test is examined in the case where the error term has
a skewed Student’s t-distribution but the regular Student’s t-distribution is (incorrectly) assumed in the test. In
this experiment and the subsequent experiments, critical values are based on the estimate bJ 2 in (20). The skewed
t-distribution employed is the one of Azzalini and Genton (2008), which, in addition to the parameters � and � ,
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Table II. Empirical size of the 
T .m/-test in the case of a symmetric error distribution

Mean-zero data Demeaned data Detrended data
Sample (m D 0) (m D 1) (m D 2)
size '1 '1 '1

T 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

100 J D 2 0.053 0.053 0.083 0.059 0.059 0.086 0.058 0.056 0.098bJ 1 � 2:127 0.052 0.052 0.083 0.054 0.054 0.080 0.056 0.059 0.097bJ 2 � 2:122 0.052 0.052 0.083 0.054 0.053 0.080 0.055 0.059 0.097

250 J D 2 0.054 0.047 0.045 0.063 0.061 0.055 0.057 0.052 0.056bJ 1 � 2:183 0.053 0.046 0.044 0.058 0.058 0.054 0.056 0.052 0.057bJ 2 � 2:181 0.053 0.046 0.044 0.058 0.058 0.054 0.056 0.052 0.057

Note: The results are based on 10,000 replications, and the nominal size of the tests is 5%. Reported estimated values for J are based on the
average value over the number of replications for each sample size in the case of demeaned data with '1 D 0:5.

also includes a skewness parameter ˛s .1 The skewness parameter ˛s is assumed to take on the values ˛s D 0

(symmetric errors), ˛s D 0:66 (errors with skewness 1.33) and ˛s D 2 (errors with skewness 3). The setup for
this experiment is the same as in the first experiment except that, to conserve space, the results with zero mean
data are excluded (these results are available upon request from the authors). As before, we let � D 0:1 but choose
� D 4 to make the conventional skewness measure well defined. Finally, we also report the empirical size of the
bootstrap version of our tests based on the correctly specified skewed error distribution. The bootstrap version of
our test, denoted by 
b

T
.m/, is based on 500 bootstrap replications and on 1000 Monte Carlo replications. The

outcomes of this experiment are reported in Table III.
The results in Table III indicate that, except for the case T D 100 and '1 D 0:90, the 
T .m/-test is not

very sensitive to violations of the symmetry condition in Assumption 2. From Table III, it is also seen that the
performance of the 
b

T
.m/ test is very satisfactory for all sample sizes and all values of ˛s considered. Thus, one

could consider using it always in combination with a distribution allowing for skewed errors. However, limited
simulation experiments (results available upon request from the authors) indicate that in the case of symmetric
errors, this leads to a slight loss of power compared with using the 
T -test that assumes symmetric errors.

In our third Monte Carlo experiment, the power of the 
T .m/-test is examined. The data are generated as
described in our earlier first experiment with '1 D 0:5 and �1 2 Œ0:6; 1:0	 (� 2 Œ�0:4; 0	). The sample sizes
considered are T 2 ¹100; 250º. For comparison, we also report the outcomes of the conventional Dickey–Fuller
unit root t-test based on an AR.2/ process, the t-type unit root test of Lucas (1995) based M -estimation
in an AR.1/ model and an assumption of strictly stationary strong-mixing errors, and the unit root test of
Rothenberg and Stock (1997) based on the ML estimation of an AR(2) model and an assumption of Student’s
t-distributed errors. These tests are denoted by 
DF.m/, M.m/ and RS.m/, respectively.2 The 
DF.m/-test is a
natural alternative to our test in that it is widely used among practitioners, and it has also been shown to be
rather robust against various misspecifications. The M.m/-test can also be viewed as a natural alternative, for

1 The density of the skewed t-distribution of Azzalini and Genton (2008) parameterized to have mean zero and variance �2 takes the following
form:

f
�
´t I�m.˛s; �/ s

�1 .˛s; �/ ; �s
�1 .˛s; �/ ; ˛s; �

�
D 2s .˛s; �/ �

�1t .´t ; �/T


˛s�

p
.�C 1/ = .�C �2/I�C 1

�
;

where m.˛s; �/ D ˛s.1 C ˛
2
s /
�1=2 .�=�/

�1=2
�..� � 1/=2/=�.�=2/, s2 .˛s; �/ D .�=2/�..� � 2/=2/=�.�=2/-m2 .˛s; �/,

and ´t D s .˛s; �/ �
�1
�
�t C �m.˛s; �/ s

�1 .˛s; �/
�
. Furthermore, t and T denote the Student’s t density and distribution function,

respectively.
2 Following Lucas (1995), we use the Huber  -function  .x/ D min ¹c;max.�c; x/º with c D 1:345 to obtain the M-estimator. Further-
more, to operationalize theM.m/-test, nuisance parameters are estimated by the Newey–West estimator with the lag-truncation parameter set
at
�
4.T=100/2=9

�
. Finally, in the computations of the M-estimator, a scale-free version is used (Lucas, 1995, p. 337), and an iterative weighted

LS algorithm similar to the one described in Van Dijk et al. (1999, p. 219) is applied.
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Table III. Empirical size of the 
T .m/-test and its bootstrap version in the case of skewed errors

Sample ˛s D 0 ˛s D 0.66 ˛s D 2
size '1 '1 '1

T Test 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

Demeaned data
(m D 1)

100 	T (1) 0.051 0.053 0.075 0.052 0.057 0.079 0.047 0.056 0.109
	bT (1) 0.050 0.048 0.051 0.053 0.047 0.051 0.051 0.055 0.053

250 	T (1) 0.054 0.046 0.046 0.059 0.043 0.050 0.056 0.047 0.060
	bT (1) 0.051 0.053 0.049 0.048 0.049 0.052 0.049 0.049 0.054

Detrended data
(m D 2)

100 	T (2) 0.045 0.053 0.087 0.049 0.056 0.071 0.042 0.051 0.075
	bT (2) 0.047 0.049 0.053 0.052 0.051 0.050 0.046 0.048 0.051

250 	T (2) 0.052 0.051 0.056 0.048 0.050 0.048 0.051 0.049 0.059
	bT (2) 0.045 0.053 0.050 0.047 0.053 0.049 0.054 0.055 0.051

Note: 	bT signifies the bootstrap version of our test in the case of skewed t-distributed errors. All results are based
on 1000 replications, and the number of bootstrap replications for the 	bT test is 500. Nominal sizes of the tests are
5%. Estimated critical values for the 	T -test are based on the estimatebJ 2 in (20).

it is designed to be robust against innovation outliers (fat-tailed distributions). Finally, the RS.m/ is a natural
alternative in the sense that it explicitly assumes nonnormal errors. The results of this experiment are summarized
in Figure 2.

Figure 2 shows that, in general, the 
T .m/-test is more powerful than the three alternatives considered, and in
some cases, its superiority is quite substantial. For instance, in the case of detrended data with T D 250 and �1 D
0:95, the differences in power between the 
T .2/-test and the 
DF.2/,M.2/ andRS.2/-tests are (approximately) as
large as 0.40, 0.25 and 0.15 units, respectively. The good performance of the 
T .m/-test is of course not surprising
because, unlike the other tests considered, the 
T .m/-test is based on the correctly specified NCAR model. In
practice, its application requires choosing two orders, r and s, as well as specifying the error distribution, which
involves pretesting, not taken into account, in our power simulations. This should be kept in mind when one
compares the power of the 
T .m/-test with the considered alternatives, especially with the Dickey–Fuller test
whose application only requires choosing one AR order.

We also examined the power of the bootstrap version of our tests with the errors having both symmetric and
skewed t-distribution. Results of these experiments are available upon request from the authors. Here, we only
note that, overall, the results were similar to those obtained in the symmetric case in Figure 2.

6. EMPIRICAL APPLICATION

We provide an empirical illustration of our test by analysing a Finnish interest rate series (government bonds).
These data range from 1988:Q1 to 2012:Q4 (quarterly observations) and yield a sample size of 100 observations.
The series, obtained from International Monetary Fund’s International Financial Statistics, is shown in Figure 3.

For interest rate series (in general), it is most natural to use demeaned data. But, as the Finnish interest rate
series is trending in the sample, we will also consider the case of detrended data. As a first step in our analysis,
we fit an AR.p/ model to the data by LS and thereafter check if the residual series appears non-Gaussian. For
the case of demeaned data, both the Akaike and Bayesian information criteria select an AR.3/ model, whereas
for the case of detrended data, an AR.2/ model is selected by both the Akaike and Bayesian information cri-
teria (the maximum lag considered was pmax D

�
4.T=100/2=9

�
D 4). Even though the null hypothesis of no

fourth-order remaining serial correlation is not rejected by the Ljung–Box (LB) test for the two residual series
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Figure 2. Empirical power of the tests 
T .m/, 
DF.m/, M.m/ and RS.m/. Notes: 
T .m/-test, solid line; 
DF .m/-test, dotted
line; M.m/-test, dashed-dotted line; RS.m/-test, dashed line; and nominal size, short-dashed line. The results are based on
10,000 replications, and the nominal size of the tests is 5%. Estimated critical values for the 
T -test are based on the estimate

OJ2 in (20).

Figure 3. Finnish government bonds

(p-values: 0.492 and 0.811 for demeaned and detrended residual series, respectively), we find that the normal-
ity assumption is strongly rejected by the Lomnicki, Jarque and Bera (LJB) test (p-values: <0.001 and <0.001
for demeaned and detrended residual series, respectively), and some evidence of fourth-order autoregressive con-
ditional heteroskedastic effects are also found by the McLeod–Li (McL) test (p-values: 0.089 and 0.250 for
demeaned and detrended residual series, respectively).3 In addition, quantile–quantile plots of the residuals of
the AR.3/ and AR.2/ models (not shown here) indicate that a normal distribution is not appropriate because

3 The skewness part of the LJB test is significant at 7.6% and 8.8 % levels for demeaned and detrended data, respectively, indicating that the
rejection of Gaussian errors mainly stems from the kurtosis part of the LJB test.
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Table IV. Unit root testing for demeaned and detrended Finnish interest rate series

T� D 97 m D 1
Model Test Outcome cv0:05;1 cv0:05;1. O�1/ cv0:05;1. O�2/

AR(3) 	DF �1.041 �2.860
AR(1) M 0.038 �3.060
AR(3)-t RS 0.213 �2.750
AR(2,1)-t 	T �5.101*** �2.558 �2.577
AR(1,2)-t 	T �5.997*** �2.542 �2.531
AR(2,1)-St 	T �4.811(<0.001)
AR(1,2)-St 	T �5.845(<0.001)

T� D 98 m D 2
Model Test Outcome cv0.05,2 cv0.05,2. O	1/ cv0.05,2. O	2/

AR(2) 	DF �3.213* �3.410
AR(1) M �1.435 �3.660
AR(2)-t RS �1.620 �3.280
AR(1,1)-t 	T �5.379*** �3.072 �3.048
AR(1,1)-St 	T �6.482(<0.001)

Note: T � is the effective sample size. AR.r; s/ abbreviates an AR model with r th-order and sth-order poly-
nomials 
.B/ and '.B�1/, respectively.N , t and St refer to Gaussian, t-distributed and skewed t-distributed
errors, respectively. ��� and � denote significance at the 1% and 10% levels, respectively. cv0:05;m (m D 1,2)
is the 5% critical value for the 	DF-test, the M-test, and the RS -test, and cv0:05;m. O�1/ and cv0:05;m. O�2/
(m D 1,2) are the 5% estimated critical values obtained by letting O�1 D bJ�1=21 and O�2 D bJ�1=22 (bJ 1 andbJ 2 are estimators of J using (19) and (20), respectively). In the case of skewed errors, bootstrap p-values
(using 500 bootstrap replications) are reported in parentheses for the 	T -test.

excess kurtosis in the data is left unexplained. Taking these results together, it seems worthwhile to proceed with
estimation and unit root testing of NCAR specifications, and to capture the leptokurtic behaviour of the resid-
uals series, we will adopt t-distributed errors. More specifically, for demeaned and detrended data, we consider
an AR.r; s/ model with r C s D p D 3 and r C s D p D 2, respectively, and conduct unit root testing
for the AR.1; 2/ and AR.2; 1/ specifications in the former case and for the AR.1; 1/ specification in the latter
case. As will be discussed later, these noncausal models are supported by the specification strategy discussed
in Section 3.1. For comparison, we also employ the 
DF -test, the M -test and the RS.m/-test based on AR.3/
and AR.2/ models in the case of demeaned and detrended data, respectively. Finally, for the aforementioned
NCAR specifications, we will also report the outcomes of our unit root tests when the errors are assumed to
have the skewed version of Student’s t-distribution discussed in the preceding section. The outcomes of these
unit root tests as well as various estimation results and LB, LJB and McL misspecification tests are reported in
Tables IV and V.4

In Table IV we see that the 
T -tests based on NCAR specifications give rise to strong rejections (in the case
of demeaned data the strongest rejection arises from the NCAR.1; 2/ model). On the other hand, the 
DF -test
fails to reject the unit root hypothesis in the case of demeaned data and yields a rejection only at the 10%
level using detrended data, whereas the M and RS -tests strongly support the unit root hypothesis irrespective of
detrending procedure.

By the results in Table V we conclude that in the case of demeaned data the log-likelihood (LL) is maximized
for an AR.1; 2/ model with t -distributed errors (in general), albeit closely followed by an AR.2; 1/ model with
t-distributed errors (in general). In the case of detrended data the LL is maximized for an AR.1; 1/ model with
t-distributed errors (in general). The maximized LL’s of causal and pure noncausal models are substantially lower
than those of the aforementioned three NCAR models. Moreover, according to the LB test and the McL test

4 As discussed in L&S (p. 12), we use least absolute deviation estimators to find starting values for 
, � and ' ( Q
, Q� and Q', say) and,
thereafter maximize lT . Q
; Q�; Q'; �; �/ to also find starting values for � and �.
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Table V. Continued

m D 2 AR(r,s) specifications

T� D 98 AR(2,0)-N AR(2,0)-t AR(1,1)-t AR(0,2)-t AR(2,0)-St AR(1,1)-St AR(0,2)-St


 �0.104 �0.052 �0.418 �0.050 �0.423
(0.032) (0.032) (0.078) (0.032) (0.065)

�1 0.505 0.563 0.565
(0.086) (0.085) (0.085)

'1 0.806 1.445 0.802 1.538
(0.057) (0.108) (0.048) (0.107)

'2 �0.521 �0.551
(0.103) (0.102)

� 0.433 0.442 0.440 0.451 0.442 0.441 0.486
(0.031) (0.073) (0.091) (0.071) (0.073) (0.086) (0.090)

� 3.861 3.293 3.966 3.866 3.368 3.737
(1.581) (1.058) (1.596) (1.563) (1.055) (1.491)

˛s �0.090 0.668 �0.487
(0.504) (0.544) (0.531)

LL �57:055 �48.998 �43.480 �51.528 �48.982 �42.570 �54.603
LB(4) 0.811 0.358 0.503 0.584 0.350 0.510 0.254
McL(4) 0.250 0.257 0.338 < 0.001 0.279 0.349 < 0.001
LJB < 0.001

Note: T � designates the effective sample. AR.r; s/ abbreviates an AR model with r th-order and sth-order polynomials 
.B/ and '.B�1/,
respectively. N , t and St refer to Gaussian, t-distributed and skewed t -distributed errors, respectively. The figures in parentheses are standard
errors computed using (16) and taking the square root of the diagonal elements of the matrix D�1T GT . O�T /

�1D�1T . LL denotes the value of
the log-likelihood evaluated at the ML estimates. LB.4/ and McL.4/ signify the LB test and the McLeod–Li test with four lags, and LJB is the
Lomnicki, Jarque and Bera normality test. The p-value of these tests are reported.

these NCAR models are satisfactory, and an inspection of their quantile–quantile plots (not shown here) lends
support to the choice of t-distributed errors (in general). The estimation accuracy of the parameters appears rea-
sonable perhaps with the exception of the degrees of freedom parameter �, whose small point estimates still
clearly point to a non-Gaussian error distribution, and the skewness parameter ˛s , which is only significant for the
NCAR(1,1) model in the case of detrended data. Altogether, the results in Tables IV and V suggest that a stationary
NCAR process with non-Gaussian leptokurtic errors provides a reasonable approximation for the Finnish interest
rate series.

7. CONCLUDING REMARKS

In this article, we develop likelihood-based unit root tests in the NCAR model of L&S. Using assumptions compa-
rable with those used in the previous literature on noncausal autoregressions, we find that the limiting distributions
of the obtained unit root tests become infeasible unless a symmetric error distribution is assumed. With this
assumptions, the limiting distributions of our tests are shown to depend on a single nuisance parameter, the effect
of which can readily be eliminated by using estimated critical values. For cases where a skewed error distribution
is needed, a bootstrap procedure is suggested.

According to the Monte Carlo simulations performed, the size properties of our tests are satisfactory even when
estimated critical values or critical values based on the suggested bootstrap procedure are used. Our simulations
also demonstrate that, compared with conventional DF-tests, the M -tests of Lucas (1995) and the RS -tests of
Rothenberg and Stock (1997), our tests have good power against correctly specified stationary NCAR alternatives.

In an application to a Finnish interest rate series, we demonstrate how the tests are implemented in practice. In
this application, we find that NCAR models with t-distributed errors fit the data better than causal AR models and
that our tests clearly reject the unit root hypothesis, whereas no evidence or only week evidence against a unit root
is obtained by using DF-tests, M -tests and RS -tests. All in all, this application and our simulations demonstrate
the gains that can be achieved in unit root testing with a careful investigation of the possibility that the considered
series is better described by a NCAR model than its conventional causal alternative.
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APPENDIX A: PARTIAL DERIVATIVES OF THE LOG-LIKELIHOOD FUNCTION

First partial derivatives. As in Section 3.2, we use a subscript to denote a partial derivative indicated by the
subscript. For notational brevity, denote

ex;t .�/ D
fx
�
��1�t .�/ I�

�
f
�
��1�t .�/ I�

� and e�;t .�/ D
f�
�
��1�t .�/ I�

�
f
�
��1�t .�/ I�

� ;
where �t .�/ D � .B/ '

�
B�1

�
yt is treated as a function of the parameters � and ' (for notational convenience,

we do not make explicit that �t .�/ is independent of the parameters � and �). Note also the alternative expressions

�t .�/ D �ut .'/ � �ut�1 .'/ � �1�ut�1 .'/ � � � � � �r�1�ut�rC1 .'/

D .vt .�; �/ � '1vtC1 .�; �/ � � � � � 'svtCs .�; �// ;

where ut .'/ D '
�
B�1

�
yt and vt .�; �/ D � .B/ yt [see (2)]. We also set Ut�1 .'/ D

.ut�1 .'/ ; : : : ; ut�rC1 .'// and VtC1 .�; �/ D .vtC1 .�; �/ ; : : : ; vtCs .�; �//. With straightforward differenti-
ation, one now obtains from (8)

g�;t .�/ D

2666664
g�;t .�/

g�;t .�/

g';t .�/

g�;t .�/

g�;t .�/

3777775 D
2666664
���1ex;t .�/ ut�1 .'/

���1ex;t .�/�Ut�1 .'/

���1ex;t .�/ VtC1 .�; �/

���2 .ex;t .�/ �t .�/C �/

e�;t .�/

3777775
Second partial derivatives. To simplify notation, define

exx;t .�/ D
fxx

�
��1�t .�/ I�

�
f
�
��1�t .�/ I�

� �  fx ���1�t .�/ I��
f
�
��1�t .�/ I�

� !2

e�x;t .�/ D
f�x

�
��1�t .�/ I�

�
f
�
��1�t .�/ I�

� � f� ���1�t .�/ I��
f
�
��1�t .�/ I�

� fx ���1�t .�/ I��
f
�
��1�t .�/ I�

�
e��;t .�/ D

f��
�
��1�t .�/ I�

�
f
�
��1�t .�/ I�

� � f� ���1�t .�/ I��
f
�
��1�t .�/ I�

� f� ���1�t .�/ I��0
f
�
��1�t .�/ I�

� ;
and let Yt stand for the .r � 1/ � s matrix with elements yt�iCj .i D 1; : : : ; r � 1, j D 1; : : : ; s/, whereas Y 0

1t

.1 � s/ is used to signify the first row of Yt .
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The following five 2nd partial derivatives involve the long-run parameter �:

g��;t .�/ D �
�2exx;t .�/ u

2
t�1 .'/

g��;t .�/ D �
�2exx;t .�/ ut�1 .'/�Ut�1 .'/

g'�;t .�/ D �
�2exx;t .�/ ut�1 .'/ VtC1 .�; �/C �

�1ex;t .�/ Y1t

g��;t .�/ D �
�3exx;t .�/ �t .�/ ut�1 .'/C �

�2ex;t .�/ ut�1 .'/

g��;t .�/ D ��
�1ut�1 .'/ e�x;t .�/ :

The remaining partial derivatives are as in L&S expect that r is replaced by r � 1 and differences of Ut�1 .'/ and
Yt are used. We have

g��;t .�/ D �
�2exx;t .�/�Ut�1 .'/�U

0
t�1 .'/

g'';t .�/ D �
�2exx;t .�/ VtC1 .�; �/ V

0
tC1 .�; �/

g��;t .�/ D 2�
�3ex;t .�/ �t .�/C �

�4exx;t .�/ �
2
t .�/C �

�2

g��;t .�/ D e��;t .�/

g�';t .�/ D �
�2exx;t .�/�Ut�1 .'/ V

0
tC1 .�; �/C �

�1ex;t .�/�Yt

g��;t .�/ D �
�3exx;t .�/ �t .�/�Ut�1 .'/C �

�2ex;t .�/�Ut�1 .'/

g'�;t .�/ D �
�3exx;t .�/ �t .�/ VtC1 .�; �/C �

�2ex;t .�/ VtC1 .�; �/

g��;t .�/ D ��
�1e�x;t .�/�U

0
t�1 .'/

g�';t .�/ D ��
�1e�x;t .�/ V

0
tC1 .�; �/

g��;t .�/ D ��
�2e�x;t .�/ �t .�/ :

These partial derivatives form the matrix g##;t .�/.

APPENDIX B: PROOFS FOR SECTION 3

Proof of Lemma 1. Recall the notation �ut D
P1
jD0 ˛0;j �t�j and vt D

P1
jD0 ˇ0;j �t�j . Using the expres-

sion of the components of g�;t .�0/, one obtains ( 10) as a straightforward application of the theorem in Phillips
(1988), whereas (11) can be justified by a central limit theorem for stationary ergodic processes [see Breidt et
al. (1991) or L&S]. The stated joint convergence holds because both g�;t .�0/ and g#;t .�0/ are generated by the
same i.i.d. sequence �t .

To establish the independence of the limits, let F�t signify the �-algebra generated by .�t ; �t�1; : : :/ and consider
the random vector wt D .ex;t ; �t ; g#;t .�0//. Using the definitions of ex;t and g#;t .�0/, and Assumption 3, it is
straightforward to check that

�
wt ;F�t

�
is an L2-mixingale with size �1 [for the definition of an L2-mixingale and

its size, see Davidson (1994, p. 247)]. Thus, Theorem 3 of Scott (1973) and the Cram ér-Wold device imply that a
functional central limit theorem applies to wt and the resulting limiting Brownian motion, Q.u/ say, determines
the limits in (10) and (11). Thus, it suffices to show that the first two components of Q.u/ are independent of the
remaining components, which in turn follows if the long-run covariance matrix between the component vectors
.ex;t ; �t / and g#;t .�0/ of wt is zero.

That the long-run covariance matrix between .ex;t ; �t / and .g�;t .�0/ ; g';t .�0// is zero is easy to see. For
instance, g';t .�0/ D ���10 ex;tVtC1 is uncorrelated with .ex;t ; �t / because VtC1 is independent of .ex;t ; �t /
and has zero mean, and g';t .�0/ is also uncorrelated with .ex;tCk ; �tCk/ ; k ¤ 0; because ex;t is independent
of .VtC1; ex;tCk ; �tCk/ and has zero mean. This implies the desired result, and a similar reasoning applies to
g�;t .�0/ D ��

�1
0
ex;t�Ut�1. Note that here we do not need the assumption that the function f .�I�/ is even.

The long-run covariance matrix between .ex;t ; �t / and .g�;t .�0/ ; g�;t .�0// reduces to the ordinary covariance
matrix. Assumption 2 and the definition of ex;t imply that ex;t is an odd function of �t . Thus, asE Œg�;t .�0/ �t 	 D
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���2
0
E
�
ex;t�

2
t

�
, the fact that ex;t�2t is an odd function of �t yields E Œg�;t .�0/ �t 	 D 0. In the same way, it

is seen that E Œg�;t .�0/ ex;t 	 D ���20 E
�
e2x;t�t

�
D 0. Furthermore, g�;t .�0/ is an even function of �t so that

E Œg�;t .�0/ �t 	 D 0 andE Œg�;t .�0/ ex;t 	 D 0. Thus, we have shown that the long-run covariance matrix between
.et ; �t / and g#;t .�0/ is block diagonal.

In the derivations of the preceding paragraph, the assumption that the function f .xI�/ is even is needed because
otherwise, for instance, the expectation

E Œg�;t .�0/ ex;t 	 D ��
�3
0

Z
x

 
fx
�
��1
0
xI�0

�
f
�
��1
0
xI�0

� !2 f ���10 xI�0
�

dx

D ���20

Z
´
.fx .´I�0//

2

f .´I�0/
d´

need not vanish. We now demonstrate how the result of the lemma changes when the function f .xI�/ is not even.
First, note that the aforementioned functional central limit theorem by Scott (1973) now reads as

T�1=2
ŒTu�X
tD1

wt
d
! Q.u/ D .Bex .u/ ; B� .u/ ; B#1 .u/ ; B#2 .u// � BM .˝/ ;

where the covariance matrix ˝ is given by

˝ D Cov ŒQ1 .1/	 D

26664
J ��0 0 !0

#2;ex

��0 �2
0

0 !0
#2;�

0 0 †1 0

!#2;ex !#2;� 0 †2

37775
with !#2;ex D E Œg#2;t .�0/ ex;t 	 and !#2;� D E Œg#2;t .�0/ �t 	 (possibly) nonzero. If desired, expressions of
!#2;ex and !#2;� in terms of the density function f .xI�0/ and its partial derivatives can be obtained as performed
earlier for E Œg�;t .�0/ ex;t 	. The zeros in ˝ are obtained from Assumption 3(ii) and the aforementioned fact
that the long-run covariance matrix between .ex;t ; �t / and .g�;t .�0/ ; g';t .�0// is zero even when the function
f .xI�/ is not even.

From the preceding discussion, we can now conclude that the (joint) limit .Z1; Z2/ [see (10) and (11)] satisfies

.Z1; Z2/ �

 
�

1

�0�0 .1/

Z 1

0

B� .u/ dBex .u/ ; B#1 .1/ ; B#2 .1/

!
def
D QZ D

�
QZ1; QZ2; QZ3

�
; (B1)

where the covariance structure of the involved Brownian motions is as shown earlier. Note that when the function
f .xI�/ is even, QZ1 D Z1 and

�
QZ2; QZ3

�
D Z2 are independent, but this is generally not the case, although

independence of QZ2 and
�
QZ1; QZ3

�
clearly holds generally.

Proof of Lemma 2. First, conclude from the definitions that the elements of the matrix g##;t .�0/ (Appendix A)
are (jointly) stationary and ergodic so that an application of a law of large numbers yields (13). Thus, it suffices to
consider (12) and (14). We use the well-known fact that a functional central limit theorem applies to the process

�ut [see (6)] and that T�1=2uŒT ��
d
! �0 .1/

�1 B� .�/ [see the discussion at the beginning of the proof of the
theorem in Phillips (1988)]. Similarly, it is seen that T�1=2yŒT �� obeys a functional central limit theorem.
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As exx;t D exx;t .�0/, the expression of g��;t .�/ in Appendix A yields

g��;t .�0/ D �
�2
0

fxx
�
��1
0
�t I�0

�
f
�
��1
0
�t I�0

� u2t�1 � ��20 e2x;tu
2
t�1;

where

E

 
fxx

�
��1
0
�t I�0

�
f
�
��1
0
�t I�0

� ! D 0
by Assumption 4. As T�1=2uŒT �� converges weakly, the continuous mapping theorem implies that the same is
true for

�
T�1=2uŒT ��

�2
, so that from Theorem 3.3 of Hansen (1992), we obtain

T�2
T�sX
tDrC1

fxx
�
��1
0
�t I�0

�
f
�
��1
0
�t I�0

� u2t�1 D op .1/ :
Hence,

T�2
T�sX
tDrC1

g��;t .�0/ D ��
�2
0 J T�2

T�sX
tDrC1

u2t�1 � �
�2
0 T�2

T�sX
tDrC1

.e2x;t � J /u2t�1 C op .1/

D ���20 J T�2
T�sX
tDrC1

u2t�1 C op .1/ ;

where the second equality can again be justified by Theorem 3.3 of Hansen (1992) and the assumption E
�
e2x;t

�
D

J . Thus, as T�1=2uŒT ��
d
! �0 .1/

�1 B� .�/, an application of the continuous mapping theorem yields (12).
To establish (14), first, consider

g��;t .�0/ D �
�2
0

fxx
�
��1
0
�t I�0

�
f
�
��1
0
�t I�0

� ut�1�Ut�1 � e2x;tut�1�Ut�1;
where

E

 
fxx

�
��1
0
�t I�0

�
f
�
��1
0
�t I�0

� �Ut�1! D 0 and E
�
e2x;t�Ut�1

�
D 0

because E .�Ut�1/ D 0 and �Ut�1 is independent of .�t ; ex;t /. Thus, Theorem 3.3 of Hansen (1992) can again
be used to obtain

T�3=2
T�sX
tDrC1

g��;t .�0/ D op .1/ :

As T�1=2yŒT �� converges weakly, arguments similar to those already used yield

T�3=2
T�sX
tDrC1

g'�;t .�/ D ��20 T�3=2
T�sX
tDrC1

exx;tut�1VtC1 C �
�1
0 T�3=2

T�sX
tDrC1

ex;tY1t

D op .1/ :
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Note, however, that the summand in the first term on the right-hand side of the former equation differs from its
counterpart in g��;t .�0/ in that, unlike �Ut�1, the zero mean stationary process VtC1 depends on �tCj , j > 0.
Hence, the process exx;tVtC1 is not adapted to F�t and does not satisfy the assumptions imposed on the sequence
¹eiº in Hansen’s (1992) Theorem 3.3. However, an inspection of the proof of that theorem reveals that this theorem
applies even if ¹eiº is a general mixingale such as exx;tVtC1 instead of the assumed special type of mixingale
[that exx;tVtC1 is a mixingale, see Davidson (1994, p. 247)]. Note also that the preceding derivations apply even
if the function f .xI�/ is not assumed even.

Finally, arguments similar to those used for g��;t .�0/ apply to g��;t .�0/ and g��;t .�0/. Because
E Œexx;t�t 	 D 0, E Œex;t 	 D 0 and E Œe�x;t 	 D 0 by Assumption 4, Hansen’s (1992) Theorem 3.3 can be used
to obtain

T�3=2
T�sX
tDrC1

g��;t .�0/ D op .1/ and T�3=2
T�sX
tDrC1

g��;t .�0/ D op .1/ :

Thus, we have established (14). Note that here we also need the assumption that the function f .xI�/ is even,
which, for instance, guarantees that E Œexx;t�t 	 D 0, and hence a direct applicability of Hansen’s (1992) Theorem
3.3.

The stated independence follows in the same way as in the proof of Lemma 1 because the long-run covariance
matrix between �t and g#;t .�0/ is zero. This completes the proof of the lemma, but we still demonstrate how the
result looks like when the assumption of f .xI�/ being even is not made. According to what was said earlier, it
suffices to consider g��;t .�0/ and g��;t .�0/. Using Hansen’s (1992) Theorem 3.3 twice, we first obtain

T�3=2
T�sX
tDrC1

g��;t .�0/ D �
�3
0 T�3=2

T�sX
tDrC1

ut�1exx;t�t C �
�2
0 T�3=2

T�sX
tDrC1

ut�1ex;t

D ��30 T�3=2
T�sX
tDrC1

ut�1E Œexx;t�t 	C op .1/

d
! ��30

Z 1

0

B� .u/ duE Œexx;t�t 	

def
D g�� .�0/ :

Then, by the same argument

T�3=2
T�sX
tDrC1

g��;t .�0/ D ��
�1
0 T�3=2

T�sX
tDrC1

ut�1e�x;t
d
! ��30

Z 1

0

B� .u/ duE Œe�x;t 	
def
D g�� .�0/ :

From the preceding discussion, we also see that now the independence of g�� .�0/ and .g�� .�0/ ; g�� .�0// does
generally not hold.

Proposition 1. As indicated after Proposition 1, the proof follows the arguments in Basawa and Scott (1983, pp.
56–59) with suitable modifications. In particular, our probability statements assume that the true parameter value
�0 is a fixed point in the parameter space so that, instead of uniform and continuous weak convergence employed
by Basawa and Scott (1983, pp. 56–59), we employ ordinary weak convergence. A minor modification is that in
place of the scaling matrix In .�/ in Assumptions (B.2) and (B.3) of Basawa and Scott (1983, pp. 33–34), we have
the matrix DT that is independent of the parameter � . It is straightforward to check that, as far as the proof is
concerned, this replacement has no essential effect. The same applies to the fact that in our case the limits Z and
G .�0/ (Proposition 1) are not independent, implying that the LAMN condition does not hold.
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To see how the proof proceeds, note first that, with the preceding modifications, we can repeat the arguments in
the proof of Theorem 1 of Basawa and Scott (1983, pp. 56–58) and conclude that, with probability approaching
one, there exists a local ML estimator O�T such that DT . O�T � �0/ D Op .1/. Next, as in the proof of Theorem 2
of Basawa and Scott (1983, pp. 58–59), we find that

DT . O�T � �0/ �G
�1
T .�0/ ST .�0/ D op .1/ :

The first result now follows from Proposition 1 and the continuous mapping theorem. The second one can be
established by using arguments similar to those used to prove Proposition 3.2 of Saikkonen (1993, p. 161) modified
as above to concern ordinary weak convergence instead of continuous weak convergence [see also Remark 3.1 of
Saikkonen (1993, p. 161)].

We shall now demonstrate how the result is changed when the function f .xI�/ is not assumed even. From

the definition of ST .�0/, Lemma 1 and (B1), we find that ST .�0/
d
! QZ, whereas Lemma 2 and its extension

discussed at the end of the proof of that lemma yield

GT .�0/
d
!

24 g�� .�0/ 0 g#2� .�0/
0

0 †1 0

g#2� .�0/ 0 †2

35 def
D QG .�0/ ;

where g#2� .�0/ D .g�� .�0/ ; g�� .�0// (see the end of the proof of Lemma 2). Thus, Propositions 1 and
2 hold with Z and G .�0/ replaced by QZ and QG .�0/, respectively, but without the independence statement in
Proposition 1.

From the preceding extension of Proposition 2 and the continuous mapping theorem, it follows that when the
function f .xI�/ is not assumed even, the limiting distribution of test statistic 
T is given by


T
d
! �

 
J

�2
0
�0 .1/

2

Z 1

0

B2� .u/ d .u/ � g#2� .�0/
0†�12 g#2� .�0/

!�1=2

�

 
1

�0�0 .1/

Z 1

0

B� .u/ dBex .u/C g#2� .�0/
0†�12 B#2 .1/

!
:

Thus, when the function f .xI�/ is not required to be even, the limiting distribution of test statistic 
T becomes
complicated. Not only are the Brownian motions B� .u/ and Bex .u/ correlated, but the limiting distribution also
depends on several nuisance parameters in a complicated way.

APPENDIX C: SUFFICIENT CONDITIONS FOR ASSUMPTION (17)

To provide a discussion on sufficient conditions for the ‘high level’ condition (17), we first note that the regularity
conditions employed by Andrews et al. (2006) and L&S can be used to show that this condition holds for the lower
right-hand block of the Hessian,

PT�s

tDrC1 g##;t .�/. Thus, assuming these conditions, it suffices to consider the
blocks involving the parameter �, that is, g��;t .�/ and g#�;t .�/ (in what follows, the null hypothesis of a unit
root will also be assumed).

We denote by ƒ0 a neighbourhood of �0 and assume that, for all x 2 R, 4x 2 R and � 2 ƒ0, and for some
C <1 and d1; d2 > 0,

jw.x C4xI�/ � w.xI�/j � C
h
.1C jxj

d1/ j4xj C j4xj
d2
i

(C1)
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for the following choices of the function w.xI�/:

w.xI�/ D

8̂̂<̂
:̂
fx.xI�/

f .xI�/

fxx.xI�/

f .xI�/
�


fx.xI�/

f .xI�/

�2
f�x.xI�/

f .xI�/
� f�.xI�/

f .xI�/

fx.xI�/

f .xI�/
:

This assumption is an analogue of Assumption B of Lii and Rosenblatt (1996) who used it with the first two
choices of w.xI�/ and with f .xI�/ independent of � in the context of (stationary) noncausal and noninvertible
ARMA models. The third choice is a simplified analogue of Assumption 7 of Meitz and Saikkonen (2013) who
developed an estimation theory for a (stationary) noninvertible ARMA model with conditionally heteroskedastic
errors. Note that replacing the argument x with ��1�t .�/, the three choices of w.xI�/ become ex;t .�/, exx;t .�/
and e�x;t .�/ (Appendix A), and for the second one, for instance, condition (C1) implies

jexx;t .�/ � exx;t .�0/j � C
h

1C

ˇ̌
��10 �t .�0/

ˇ̌d1� ˇ̌
��1�t .�/ � �

�1
0 �t .�0/

ˇ̌
C
ˇ̌
��1�t .�/ � �

�1
0 �t .�0/

ˇ̌d2i
;

(C2)

where �t .�0/ D �t , and EŒj�t j
2Cd1 	 <1 and EŒj�t j

1Cd2 	 <1 is assumed.
It suffices to establish analogues of condition (17) for g
�;t .�/, � D �; �; '; �; � or to show that, for all c > 0,

sup
�2NT;c

������T�b

T�sX
tDrC1

Œg
�;t .�/ � g
�;t .�0/	

������ p
! 0; � D �; �; '; �; �; (C3)

where b
 D 2 for � D � and b
 D 3=2 otherwise. Establishing (C3) is straightforward but tedious. Details
for � D �; ' are published online only as Supporting Information, or are available from the authors on request
(the other cases can be handled with similar arguments).
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