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Links to reference material and software

• https://www.perossi.net/home/bsm-1

• https://link.springer.com/referenceworkentry/10.1007/

978-3-319-05542-8_24-1

• https://CRAN.R-project.org/package=bayesm

• https://mc-stan.org/

• I teach a semester long course on Bayesian modeling in Goethe U.’s
Ph.D. program. Remote participation is possible.
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The Bayesian take-off in Marketing

• Demand creating conditions:

1. Relatively short time series, many heterogeneous units (e.g. panel
data, conjoint experiments)

2. Limited dependent variables
3. Optimal actions, e.g. profit maximizing product lines, are nonlinear

functions of model parameters
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The Bayesian take-off in Marketing

Demand creating conditions Bayesian answer
Relatively short time series,
many heterogeneous units (e.g.
panel data, conjoint
experiments)

Adaptive shrinkage or pooling of
information

Limited dependent variables Data augmentation / Metropolis
Hastings algorithm

Optimal actions, e.g. profit
maximizing product lines, are
nonlinear functions of model
parameters

Represent posterior through a finite
sample; compute optimal actions
for arbitrarily non-linear loss-
functions
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The Bayesian take-off in Marketing

• Industry loves how Bayes helps here

• Demand from academia (on top)

• Basic interest in formulating and estimating quantitative models
tailored to existing theory

• Decision support from counterfactual simulations taking account of
uncertainty
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Truths about Bayesian Analysis

• Bayesian analysis:
• ... reverses the data generating process exactly, therefore is coherent

(implies that one can and should test one’s own and others’
algorithms for Bayesian inference using simulated data)

• ... is clear about uncertainty due to limited data
• ... is fundamentally tied to decision making
• ... is facilitated by a set of relatively simple, powerful algorithms that

work on difficult surfaces
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The Goal of Inference

• Make inferences about unknown quantities using available
information.

• inferences - make probability statements
• unknown quantities - parameters, functions of parameters, states or

latent variables, future outcomes, outcomes conditional on an action
(”counterfactuals”)

• information
• data-based
• non data-based
• theories of behavior; subjective views there is an underlying structure
• parameters are finite or in some range
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Benefits and Costs of Bayes Inference

• Benefits
• finite sample answer to right question
• full accounting for uncertainty
• integrated approach to inference and decision making

• Costs
• computational (true any more?)
• prior (cost or benefit?) esp. with many parameters

(hierarchical/non-parametric problems)
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Bayesian inference builds on the likelihood principle

p(D|θ) ≡ ℓ(θ)

• LP: the likelihood contains all information relevant for inference.
That is, as long as I have same likelihood function, I should make
the same inferences about the unknowns.

• Implies analysis is done conditional on the data, in contrast to the
frequentist approach, where the sampling distribution is determined
through hypothetical replications of the data

• Implies efficiency, but requires specification

• Allows for straightforward inference from adaptive designs (see e.g.,
Liu et al., MarkSci 2007)

• Note: any function proportional to data density can be called the
likelihood.

8 / 33



Bayes theorem

p(θ|D) =
p(D, θ)

p(D)
=

p(D|θ)p(θ)
p(D)

p(θ|D) ∝ p(D|θ)p(θ)
Posterior ∝ Likelihood× Prior

• Modern Bayesian computing - simulation methods for generating
draws from the posterior distribution p(θ|D)

9 / 33



Summarizing the posterior

• Output from Bayesian inference: p(θ|D)
• A high dimensional distribution

• Summarize this object via simulation:
• marginal distributions of θ, h(θ)
• don’t just compute E(θ|D),Var(θ|D)
• directly compute L (a|D,M) taking all posterior uncertainty into

account (e.g., to determine the optimal price)

• Contrast with Sampling Theory:
• point estimate with standard error
• summary of irrelevant distribution
• bad summary (normal)
• limitations of asymptotics
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Prediction

• See D, compute: p(D̃|D) Predictive Distribution

p(D̃|D) =

∫
p(D̃|θ)p(θ|D)dθ

( ̸= p(D̃|θ̂)!!!)
assumes p(D̃,D|θ) = p(D̃|θ)p(D|θ)
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Decision theory

• Loss: L(a, θ), where a = action, θ = state of nature

• Bayesian decision theory:

min
a
{L̄(a) = Eθ|D [L(a, θ)] =

∫
L(a, θ)p(θ|D)dθ}

• Estimation problem is a special case:

min
θ̂
{L̄(θ̂)}; typically, L(θ̂, θ) = (θ̂ − θ)′A(θ̂ − θ)

• Accounting for model uncertainty:

L (a|D,M1, . . . ,MK ) =
∑
k

p (D|Mk) Pr (Mk)

∫
L (a,θ) p (θ|D,Mk) dθ
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Identification

R = {θ : p(Data|θ) = k}
where k = max

θ
p(Data|θ)

• If dim(R) > 1, then we have an identification problem. That is,
there are a set of observationally equivalent values of the model
parameters. The likelihood is flat or constant over R.

• Practical implications
• likelihood can have flats or ridges
• Issue for both the Bayesian (is it?) and non-Bayesian
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Identification

• Is this a problem?
• no, I have a proper prior
• no, I don’t maximize

• Classical solution:
• impose enough constraints so that constrained parameter space is

identified

• Bayesian solution:
• use proper prior and recognize that some functions of θ are

determined entirely by prior
• essentially always the case when learning from data occurs

sequentially through time
• or when learning from data involves (partial) pooling over smaller,

individually ill-conditioned data sets

• simulation based inference will allow you to ”see” and directly
investigate identification from the data and the lack thereof

• set-identification no problem for Bayesian inference
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Bayes Inference: Summary

• Bayesian Inference delivers an integrated approach to:
• Inference - including estimation and testing
• Prediction - with a full account of uncertainty
• Decision - with likelihood and loss (these are distinct!)

• Bayesian Inference is conditional on available info

• The right answer to the right question

• Bayes estimators are admissible. All admissible estimators are Bayes
(Complete Class Thm). Which Bayes estimator?
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Bayes/Classical Estimators

• Does MLE obey LP? YES

• Does theory of maximum likelihood estimator obey LP? No! who
cares about an infinite amount of irrelevant data!

• Is there any relationship?

• Investigate asymptotic behavior of the posterior
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Bayes/Classical Estimators

• Prior washes out - locally uniform!!! Bayes is consistent unless you
have dogmatic prior.

p(θ|D) ∼ N(θ̂MLE , [−Hθ=θ̂MLE
]−1)
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Beta-Binomial model

yi ∼ Bern(θ)

ℓ(θ) =
n∏

i=1

θyi (1− θ)1−yi

= θy (1− θ)n−y where y =
n∑

i=1

yi

p(θ|y) =? Need a prior!
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Beta distribution

Beta(α, β) ∝ θα−1(1− θ)β−1

E [θ] =
α

α+ β
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Posterior

p(θ|D) ∝ p(D|θ)p(θ)
= [θy (1− θ)n−y ]× [θα−1(1− θ)β−1]

= θα+y−1(1− θ)n−y+β−1

∼ Beta(α+ y , n − y + β)
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Modern Bayesian inference I

• relies on computationally intensive algorithms to generate draws
from (generally analytically intractable) joint posterior distributions

• Gibbs sampling generates draws by cycling through a complete set
of conditional posterior distributions that uniquely characterize the
joint posterior distribution (by the Hammersley-Clifford theorem9.

• requires that conditionals are tractable (”recognized as known
distributions”); data augmentation can help

• Metropolis-Hastings sampling can generate draws from
distributions only known up to an (intractable) normalizing constant
(”the posterior is proportional to the likelihood times the prior”).

• in its simplest form requires that likelihood and prior are analytically
tractable

• generally, these sampling techniques only yield non-iid samples

• therefore, some burn-in from arbitrary starting values is required
before summarizing draws for valid inference
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Modern Bayesian inference II

• Hamiltonian-Monte-Carlo sampling as implemented in Stan is
based on automatic derivatives of the log-posterior and very
effectively navigates the posterior

• again requires that likelihood and prior are analytically tractable

• Pseudo-marginal MH-sampling can help when the likelihood is
intractable but can be ”forward-simulated” (see Andrieu and
Roberts 2009, Annals of Statistics)

• The exchange algorithm can help when the normalizing constant
of the likelihood is intractable (see Kosyakova et al. 2020, MarkSci
for an example)

• However, in a recent project with Tetyana Kosyakova, Max Pachali,
and Adam Smith we find that the requirement for iid exchange
proposals is not innocuous
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A note on software, programming environments

• I am currently relying heavily on R in combination with Rcpp in my
own research.

• However, the No U-turn Sampler (NUTS) as implemented in Stan is
a major break-through towards the goal of focusing on the
specification of models (almost) exclusively.

• I have heard tremendous things about Julia
(https://julialang.org/) from colleagues at the Frankfurt
Institute for Advanced Studies (FIAS) but still have to use it myself

• SPSS, STATA, or SAS have started to include options for Bayesian
estimation of well established ”standard” statistical models such as
ANOVA and generalized linear regression models.

• WinBUGS (OpenBUGS) is an earlier example of an attempt to
automate Bayesian inference, with the idea that the user should be
able to concentrate on the specification of a model
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Binomial Probit example

p (yi = 1|β) =

∫ x′iβ

−∞
N (z |0, 1) dz =

∫ ∞

0

N (z |x′iβ, 1) dz

p (yi = 0|β) =

∫ ∞

x′iβ

N (z |0, 1) dz =

∫ 0

−∞
N (z |x′iβ, 1) dz

p
(
β|y ,β0,Σ0

)
∝

exp

(
−1

2

(
β − β0

)′ (
Σ0

)−1 (
β − β0

)) n∏
i=1

(Φ (x′iβ))
yi (Φ (−x′iβ))

1−yi

Data generation: yi = I (zi > 0) where zi ∼ N (x′iβ, 1)
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Bayesian models excel at pooling information from
different sources

Example: Pachali et al. (2022), ”Omitted Budget Constraint Bias and
Implications for Competitive Pricing”, available at https:
//papers.ssrn.com/sol3/papers.cfm?abstract_id=3044553

25 / 33

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3044553
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3044553


Bayesian models excel at pooling information from
different sources

Figure: Distribution of respondents’ stated budgets.
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Notes: Respondents were asked in the survey about the maximum amount able to
spend for their next laptop purchase prior to evaluating the choice tasks. Budget axis
in 1, 000 EUR.
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Bayesian models excel at pooling information from
different sources

Figure: Posterior predictive demand curve for the Apple laptop.
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Bayes Theorem is awesome

Example: De Bruyn, Arnaud and Thomas Otter (2022), ”Bayesian
Consumer Profiling: How to Estimate Consumer Characteristics from
Aggregate Data,” Journal of Marketing Research, 59(4), 755-774.

• Can we determine the prevailing political preference in a target list
with shared preferences for political candidates based on Zip code
information only?

• Solution: Use reference list (population information): Detailed
results of the elections for each of the 36,239 voting districts
(Interior Minister’s Web site), and apply Bayes Theorem
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Who was supported by list members?

1
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Bayesian Inference can deal with otherwise intractable
problems

Example: Kosyakova, Tetyana, Thomas Otter, Sanjog Misra, and
Christian Neuerburg (2020), ”Exact MCMC for Choices from Menus –
Measuring Substitution and Complementarity among Menu Items,”
Marketing Science, 39, (2), 427-447.

Yi = {Yi,1, . . . ,Yi,k , . . . ,Yi,K} ,

Pr (Yi ) =
exp (U (Yi ;X,Ψi ))∑

Y ′∈Y exp (U (Y′
i ;X,Ψi ))

=
exp (U (Yi ;X,Ψi ))

Z (X,Ψi )

For, say K = 20, the sum in the denominator has 220 = 1, 048, 576 terms.
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Bayesian inference can deal with otherwise intractable
problems

αexchange
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Takeaways for someone entering the field

• Bayes theorem immensely useful, even if you don’t fully convert to
Bayesian inference

• Priors are your friends in high-dimensional inference problems
(subjectively informed regularization)

• The Bayesian approach uniquely supports decision making based on
a (necessarily) imperfect understanding of how ”the world works”
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