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This is the fifth report from the three-year project, The Innovative 
Internet, which is funded by the Internet Foundation in Sweden (IIS - 
Internetstiftelsen i Sverige) and for which we are very grateful. In this project 
our primary objective is to examine how the Internet and digitalization have 
influenced entrepreneurship and innovation in Sweden. This report focuses 
on how technology and the Internet can impact the dynamics of the labor 
markets with a particular focus on Sweden.

We welcome feedback on the report of any kind as we believe that 
transparency and cooperation outside our research team are key to ensuring 
that our research is as thorough as possible. Furthermore, if you think you 
could help us in anyway, please do not hesitate to contact us so we could 
discuss a possible cooperation. If you like the report, we would be more than 
happy if you could help us to spread it so that as many as possible can access 
the results if they are interested.

We hope you will find the report interesting and that you will enjoy the read!

Foreword
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1 Introduction

This report, which illustrates the potential of a number of technologies to 
replace labor, begins with a brief overview of digitalization and automation 
and the three primary technologies enabling job automation: artificial 
intelligence (AI), machine learning (ML) - a subcategory of AI, and 
robotics, in order to create a solid understanding of the concepts.  We then 
proceed to discuss the distinct human capabilities that are required in the 
workplace and to what degree the three primary technologies can substitute 
these capabilities based on their current state of development. We then turn 
to a categorization of job tasks based on a commonly-used framework of 
routine vs. non-routine and cognitive vs. manual tasks and map the human 
capabilities in the workplace from the previous section onto this matrix. In 
the next section, we discuss the resulting automation potential of tasks, jobs, 
and industries. We then turn to discuss a set of factors beyond technological 
feasibility that influence the pace and scope of job automation. The report 
concludes with a brief summary of the findings that support our prospects 
for the future of labor.
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2 Brief Overview of Digitalization and 
Automation

Before one can make a proper judgment on the substitution potential 
of specific tasks, or even complete jobs, it is essential to first develop a 
solid understanding of the processes and technologies that underlie this 
substitution. This section aims to create the first part of this understanding 
by exploring the definition and history of each of the involved technologies 
and processes. 

First, it will touch upon the process of Digitalization as it is technology-led 
and it arguably has had, and will continue to have, a significant influence 
on labor. We then turn to Automation, which is the overarching concept 
describing the substitution of human labor by machines. Subsequently, 
artificial intelligence and its subfield of machine learning along with robotics 
will be discussed as these have been identified as the three most prevalent 
technological areas within Automation. 

2.1 Digitalization

2.1.1 Definition of Digitalization
Of all the topics in this report, digitalization is arguably the broadest 
concept with the most dispersed definition. Concepts such as Internet of 
Things (IoT), big data, mobile applications, augmented reality, social media, 
and many others all fall within the scope of digitalization. 

In business, digitalization is generally used to describe the process of 
improving or changing business models and processes by leveraging digital 
technologies and digitized resources in order to create new sources of value 
creation. 

At the core of this process lies the rise of data-driven, networked business 
models (Collin et al., 2015), also known as digital businesses. 
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Digitalization is also used to describe the wider global trend of adopting 
digital technologies and the effects of this adoption throughout all parts of 
society (I-Scoop, 2017).

The term digitalization is frequently used interchangeably with digitization 
and digital transformation. However, it is helpful to make a clear distinction 
between the three. In this report, digitization will refer solely to the process 
of transferring analogue data (like pictures, sounds, etc.) into a digital 
format, i.e. binary code (Khan, 2016; I-Scoop, 2017; Oxford Dictionaries, 
2017b). 

With digitalization, we will refer to the business process described above. 
Lastly, digital transformation is both used to describe a company’s journey 
to become a digital company as well as the larger effects of digitalization on 
society at large.

Digitalization is also occasionally confused with concepts like 
mechanization, automation, industrialization, and robotization. However, 
these terms usually refer to improving existing processes, such as workflows, 
whereas digitalization refers to the development of new sources of value 
creation (Moore, 2015).

2.1.2 A Brief History of Digitalization
The history of digitalization began with the development of the modern 
binary system by Gottfried Wilhelm Leibniz in 1703. However, 
digitalization, as we refer to it today, started with the introduction of the 
first digital computers in the 1940s and accelerated with the widespread 
adoption of the personal computer in the second half of the century (Press, 
2015; Vogelsang, 2010).

Digitalization surged with the establishment and development of the World 
Wide Web in the 1990s, which revolutionized the access to and diffusion of 
information around the world. Today, with the rapid development of digital 
technologies like the Internet of Things, big data, and AI, this transformation 
is happening at an unprecedented pace. Though digitization has caught the 
attention of both the public and private sector, most organizations are still 
insufficiently prepared for a digital future, according to IBM (Berman et al., 
2013).
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2.2 Automation

2.2.1 Definition of Automation
The term Automation refers to the process of introducing technologies to 
automatically execute a task previously performed by a human or impossible 
to perform by a human (Grosz et al., 2016). The field is closely related to 
mechanization, which refers to the replacement of human labor by machines 
(Groover, 2017). This is different from systems operating autonomously, 
which relates to the achievement of a goal without predefined execution 
rules provided by humans. The term Automation therefore suggests that 
the system follows a fixed set of rules to complete its goal (Sklar, 2015). 
Automated systems are typically made up of three building blocks (Groover, 
2017):

1. Power sources: Power sources, such as electricity, are necessary to 
execute the required action. In general, power sources are used to 
execute two types of actions: processing, which relates to the mutation/
transformation of an entity, and transfer and positioning, which relates 
to the movement of an entity. 

2. Feedback control systems: Feedback control systems monitor whether 
the required action is performed correctly or not. An example is a 
thermostat, which monitors the temperature in a room to match a 
target temperature, and adjusts the heating element’s output if this is 
not the case. 

3. Machine programming: This comprises the programs and commands 
that determine the system’s aspired output and the required execution 
steps. Typical methods for machine programming are using paper/
steel cards, tapes, and computer software. Automation by computer-
controlled-equipment is also known as computerization (Frey et al., 
2013).
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One of the most prevalent use cases for Automation is within manufacturing. 
Automation in this field is also known as Industrial Automation (PHC, 
2016). There are three types of Industrial Automation (Groover, 2017): 

1. Fixed automation. The equipment configuration is fixed and cannot be 
adapted to perform another process. Hence, the sequence of processing 
operations is permanent. 

2. Programmable automation. The equipment can be reprogrammed 
to perform another process, but the reconfiguration takes time and 
requires human interference.

3. Flexible automation. The system is controlled by a central computer and 
can be reprogrammed automatically and instantly. Therefore, the system 
can perform different processes simultaneously. 

Modern, complex automated systems comprise several technologies 
(Robinson, 2014). Consequently, developments in the field of automation 
are closely related to advances in these technological sub-fields. Examples 
are artificial intelligence, neural networks, and robotics (Chui et al., 2016). 
These will be discussed later in the report. 

2.2.2. A Brief History of Automation
The term automation was coined in 1946, but its history stretches back to 
the dawn of humanity. As mentioned previously, automated systems usually 
comprise three building blocks. The history of automation can be explained 
by the development of these three blocks (Groover, 2017):

The first large development in automation came with the invention of tools 
that utilized a power source other than human muscle. This development 
started in the early stages of humanity with the creation of tools that 
magnified human muscle power, like the cart wheel and the lever. 

Subsequently, devices were invented that could operate in complete absence 
of human power by harnessing the energy of wind, water, and steam. 

In the 19th and 20th century, stronger power sources, like electricity, were 
incorporated into the machines, which significantly increased their power.   
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The growing machine power gave rise to the need for control mechanisms 
to regulate the output. At first, human operators were needed to control the 
energy input to the machine. However, the invention of the first negative 
feedback system removed human involvement from the process. These 
systems monitor whether the output of the machine corresponds to the 
desired level and enable a machine to self-correct its input if the output is 
off. Developments in this field from the 17th century onwards gave rise to 
modern feedback control systems. 

The third large development in the history of automation was the 
introduction of programmable machines. The first was developed by Joseph-
Marie Jacquard in 1801, who used steel cards with different hole patterns to 
determine the output of his automatic loom. Subsequently, machines were 
programmed by using paper cards with whole patterns and later computers. 

The combination of these three developments ultimately led to the rise 
of automation. The introduction of electrical power enabled a surge in 
automation at the turn of the 19th century. During the second half of 
the 20th century and the start of the 21st century, the capabilities of 
automated systems increased significantly following several technological 
advancements. Firstly, automated systems became much more sophisticated 
and faster after the introduction and incorporation of the digital computer. 
This increase in power accelerated following advances in computer science, 
programming language, and storage technology.  Meanwhile, the prices 
of these technologies decreased exponentially. Secondly, developments 
in mathematical control theory and sensor technologies amplified 
the capabilities and power of feedback control systems, increasing the 
systems’ versatility and ability to operate autonomously in unstructured 
environments. 

2.3 Artificial Intelligence

2.3.1 Definition of Artificial Intelligence
Artificial intelligence (AI) is a technological field that arguably holds 
considerable potential for the future. It is such a broad field that it is hard 
to define precisely what it really is. A famous and useful definition made by 
Nils J. Nilsson (2009) reads, “Artificial intelligence is that activity devoted 
to making machines intelligent, and intelligence is that quality that enables 
an entity to function appropriately and with foresight in its environment”. 
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In other words, AI is computers performing tasks that normally require 
human intelligence (Oxford Dictionaries, 2017a). However, “intelligence” is 
a complex phenomenon that has been studied in several different academic 
fields, including psychology, economics, biology, engineering, statistics, and 
neuroscience. Over the years, advancements within each of these fields have 
benefitted AI significantly. For example, artificial neural networks were 
inspired by discoveries within biology and neuroscience (Grosz et al., 2016). 

The field of AI research has grown significantly over the past few decades 
and it has been used for a variety of applications, from beating professionals 
in board games such as chess and Go to the navigation of self-driving cars 
(Marr, 2016a). Terms such as big data, machine learning, robotics and 
deep learning all fall within the scope of AI, alluding to the breadth of the 
technology.

There are several ways to divide and categorize the different methods, sub-
sets, and applications within AI. One way is to distinguish between general 
and applied AI. Applied AI, also known as weak or narrow AI, is more 
common and refers to algorithms solving specific problems and programs 
completing specified tasks (Aeppel, 2017). For example, a computer may 
excel in one specific board game that is bounded by specific rules, but 
outside this task it is useless (MathWorks, 2017c). General AI, or strong AI, 
aims to build machines that can think and perform almost any task without 
being specifically programmed for it (Copeland, 2017). This means that 
the machine has a mind of its own and can make decisions, whereas under 
weak AI, the machine can only simulate human behavior and appear to be 
intelligent (Difference Wiki, 2017). 

Another way of dividing AI is into research areas that are currently “hot”. 
This is an appropriate division as AI arguably suffers from the “AI effect”, 
or “odd paradox”, which means that once people get accustomed to an 
AI technology, it is no longer perceived as AI. Today, “hot” research areas 
include large-scale machine learning, deep learning, reinforcement learning, 
neural networks, robotics, computer vision, natural language processing 
(NLP), collaborative systems, crowdsourcing and human computation, 
algorithmic game theory and computational social choice, Internet of things 
(IoT), and neuromorphic computing (Grosz et al., 2016). 
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Robotics, deep learning, and machine learning are all discussed further on 
in this report; however, NLP is also a sub-set that has made substantial 
progress in the last few years. 

NLP applications attempt to understand natural human communication, 
written or spoken, and to reply with natural language (Marr, 2016b). The 
research in this field is shifting from reactiveness and stylized requests 
towards developing systems that can interact with people through dialogue 
(Grosz et al., 2016). The other sub-fields will not be discussed individually.

2.3.2 A Brief History of Artificial Intelligence
The term artificial intelligence was first used by John McCarthy in 1956 
at the Dartmouth Conference, the first conference in history on artificial 
intelligence (Childs, 2011). The goal of the conference was to discover 
ways in which machines could be made to simulate aspects of intelligence. 
Although this was the first conference on AI, the technical ideas that 
characterize AI existed long before. During the eighteenth century, the 
study on probability of events was born; in the nineteenth century, logical 
reasoning could be performed systematically, which is much the same as 
solving a system of equations; and by the twentieth century, the field of 
statistics had emerged, enabling inferences to be drawn rigorously from data 
(Grosz et al., 2016). 

Despite its long history, AI has only recently begun to pick up speed in 
research advancements. Between the 1950s and 1970s, many focal areas 
within AI emerged, including natural language processing, machine 
learning, computer vision, mobile robotics, and expert systems. 

However, by the 1980s, no significant practical success had been achieved 
and the “AI winter” had arrived; interest in AI dropped and funding dried 
up. 

A decade later, collection and storage of large amounts of data were enabled 
by the Internet and advances in storing devices. Moreover, cheap and more 
reliable hardware had stimulated the adoption of industrial robotics and 
advances in software allowed for systems to operate on real-world data. As a 
confluence of these events, AI was reborn and became a “hot” research field 
once again (Grosz et al., 2016).
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2.4 Machine Learning

2.4.1 Definition of Machine Learning
A plethora of papers discuss machine learning (ML), but none truly succeed 
in explaining what it is or what sub-divisions there are. As a result, the term 
machine learning is often misused and confused with artificial intelligence. 

According to the Oxford Dictionary, ML is a sub-set of artificial intelligence 
and is defined as “the capacity of a computer to learn from experience, 
i.e., to modify its processing on the basis of newly  aquired information” 
(Copeland, 2017). This definition describes what machine learning is, but 
it does not explicitly explain what the field encompasses. The following 
paragraphs attempt to explain what machine learning comprises. 

Machine learning has grown into a fundamental research topic with several 
different approaches and algorithms to be used depending on the problem. 
One way of dividing the field is into supervised and unsupervised learning. 
In supervised learning, the answer is known (found in past or completed 
data), whereas in unsupervised learning it is not (QuantDare, 2016). 
Supervised learning uses a known dataset (a training dataset that is a set of 
labeled objects) to make predictions for datasets in the future. Unsupervised 
learning, on the other hand, draws inferences from datasets where input 
data have no labelled response (MathWorks, 2017b). 

Unsupervised learning allows computers to reason and plan ahead in the 
future, even for situations they have not yet encountered or for which they 
have been trained (Bengio, 2017). 

For example, both types of ML can be used for image recognition, a 
common machine learning problem in which the system has to classify 
objects based on their shape and color. If supervised learning is used, the 
computer has already been taught how to identify and cluster the objects. 
It will know that an octagon has eight sides and will hence cluster all eight 
sided objects as octagons. Under unsupervised learning, the system does 
not follow a predefined set of clusters or object characteristics. The system 
must create these clusters itself by identifying logical patterns between the 
objects; it will notice that several objects have eight sides and cluster them if 
the characteristics are deemed prevalent (MathWorks, 2017a). 



15

The Substitution of Labor - Innovative Internet Report 5

Supervised learning itself has two distinct categories of algorithms: 1) 
Classification - used to separate data into different classes, and 2) Regression 
- used for continuous response values (Mathworks, 2017a). 

Unsupervised learning can also be divided into two different categories: 

1) Cluster Analysis - used to find hidden patterns or groupings in data based 
on similarities or distances between them (MathWorks, 2017b), and 

2) Dimensionality Reduction - where smaller subsets of original data are 
produced by removing duplicates or unnecessary variables (Ghahramani, 
2004).

Supervised learning is the least complicated of the two since the output is 
known, and it is therefore more universally used. Nonetheless, unsupervised 
learning is currently one of the key focus areas for AI (Bengio, 2017). 

One of the machine learning techniques that has been widely covered the 
last few years is deep learning (Deng and Yu, 2014). Deep learning is used 
within both supervised and unsupervised learning and teaches computers to 
learn by example, something that comes naturally to humans. Deep learning 
uses deep neural networks, a network consisting of several layers of neurons 
loosely shaped after the brain, to recognize very complex patterns by first 
detecting and combining smaller simpler patterns. 

The technology can be used to recognize patterns in sound, images, and 
other data. Deep learning, is, among others, used to predict the outcome of 
legal proceedings, for precision medicine (medicine genetically tailored to 
an individual’s genome), and to transcribe words into English text with as 
little as a seven percent error rate (Marr, 2016b).

2.4.2 A Brief History of Machine Learning
Arthur Samuel coined the term machine learning in 1959, three years after 
AI (Ferguson, 2016), but, just as for AI, the technical ideas around ML were 
developed long before. The two major events that enabled the breakthrough 
of machine learning were the realization that computers could possibly teach 
themselves, made by Arthur Samuel in 1989, and the rise of the Internet, 
which increased the amount of digital information being generated, stored 
and made available for analysis. 
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The focus point within machine learning has changed over time. During 
the 1980s, the predominant theory was knowledge engineering with basic 
decision logic. Between 1990s and 2000, research focused on probability 
theory and classification, while in the early to mid 2010s, focus switched 
to neuroscience and probability. More precise image and voice recognition 
technologies had been developed which made it easier. Memory neural 
networks, large-scale integration, and reasoning over knowledge are 
currently the predominant research areas. The recent discoveries within 
these fields is what has brought services such as Amazon Echo and Google 
Home into scores of households, particularly within the US market (Marr, 
2016a).

2.5 Robotics

2.5.1 Definition of Robotics
The field of Robotics comprises the science and technology of robots and 
aims to develop, operate, and maintain robots by researching the connection 
between sensing and acting (Siciliano and Khatib, 2016; Grosz et al., 2016). 

Robotics is a mix between several academic fields, including computer 
science, mechanical engineering, and electrical engineering, and is one of 
the primary technologies used for automation (Groover, 2017). The field 
is strongly related to AI (Encyclopaedia Britannica, 2017) and particularly 
to the fields of machine learning, computer vision, and natural language 
processing (Grosz et al., 2016).

Developing an overall definition for robots is difficult as robots differ widely 
in terms of purpose, level of intelligence, and form (Wilson, 2015). The 
Oxford Dictionary defines a robot as “a machine capable of carrying out a 
complex series of actions automatically, especially one programmable by a 
computer” (Oxford Dictionaries, 2017c). The International Federation of 
Robotics (IFR) makes a distinction between two types of robots: industrial 
robots and service robots.

The IFR has aligned its definition for industrial robots with the definition of 
the International Organization for Standardization (ISO) and refers to them 
as “automatically controlled, reprogrammable, multipurpose manipulators 
programmable in three or more axes, which may be either fixed in place or 
mobile for use in industrial automation applications”. 
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An example of an industrial robot is a robot arm used in a car manufacturer’s 
production process. Service Robots are defined as robots “that perform 
useful tasks for humans or equipment excluding industrial automation 
applications”. The IFR further distinguishes between personal service 
robots and professional service robots. The first are service robots that are 
not used for commercial purposes, for instance a domestic vacuum cleaning 
robot, while the latter include all service robots that are used for commercial 
purposes, such as delivery robots in hospitals and offices (International 
Federation of Robotics, 2017).

Combining the above definitions, Wilson (2015) defines robots as 
“artificially created systems designed, built, and implemented to perform 
tasks or services for people”. Moreover, he expands the definition of robots 
to include cognitive computing, which refers to automated computer 
programs. In other words, physicality is not a requirement and many robots 
solely consist of software (Deloitte, 2015). Examples of this are Twitterbots 
and IPSoft’s virtual assistant, Amelia.

For the purpose of this report, the term robot will refer to all artificially 
created systems that perform tasks and services for people, whether they have 
a physical state or not. We will also adhere to the split between industrial 
robots and service robots. In addition, while some authors distinguish 
between robots and automated vehicles, for the purpose of this report they 
will both fall under the umbrella of robotics.

2.5.2 A Brief History of Robotics
From Greek mythology to da Vinci’s machine designs, mankind has always 
fantasized about creating skilled and intelligent machines, but the word 
robot was only introduced in 1920 by Karl Capek, a Czech playwright 
(Siciliano and Khatib, 2016). The first electronic autonomous robots were 
created in the 1950s and the first industrial robot was developed in 1959. 
Nevertheless, it took two more years until the first industrial robot was 
acquired and installed in a manufacturing process (International Federation 
of Robotics, 2017). From that moment, robotics became widespread 
in industrial (Siciliano and Khatib, 2016), warehousing, and military 
applications (Bonston Consulting Group, 2014)

The first generations of robots consisted of large, immobile machines with a 
narrow skillset and limited power to adapt to their surroundings (Latxague, 
2013). 
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Over the past decade, the field of robotics has made a gigantic leap as 
advances in programming, sensors, AI, and robotic systems have significantly 
increased the intelligence, senses, and dexterity of robots (Decker et al, 
2017; Sander and Wolfgang, 2014; Manyika et al., 2013). This has resulted 
in robots that are more versatile (Decker et al., 2017), smaller, and better 
connected to each other. Consequently, it is much safer for robots and 
humans to work closely together and the range of applications for robots 
has increased significantly. For example, the technological advances have 
enabled robots to enter the realm of services, which was previously deemed 
impossible (Manyika et al., 2013). In the future, technological advances are 
expected to further increase the capabilities of robots and prices are expected 
to drop. As a result, the field of robotics is expected to surge (Sander and 
Wolfgang, 2014).
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3 The Current State of Three 
Technologies

The second step in assessing the technical feasibility of technologies 
posed to take over work activities is to analyze the technologies’ current 
capabilities. In other words, what are the technologies currently able to do? 
To do this, we follow a framework from Manyika et al (2017) that identifies 
five broader areas of capabilities: sensory perception, cognitive capabilities, 
natural language processing, social and emotional capabilities, and physical 
capabilities, which enable humans to perform 18 activities in the workplace. 
These categories were developed based on an analysis of 2000 distinct work 
activities across 800 occupations. The framework is displayed below in 
Figure 1. 

Figure 1. Capabilities required in the workplace (Manyika et al., 2017 p.4)
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This section discusses the current state of the technologies for each of these 
five broader areas of capabilities. The three technologies will be discussed 
simultaneously because they are closely related and are often used in 
combination to perform a single activity. It is important to note that many 
of these capabilities are still only proven in laboratories and are not yet 
available on the market.

3.1 Sensory Perception

The area of sensory perception, or machine perception, covers the sensing 
and processing of external information from sensors and includes the three 
subfields of visual, tactile, and auditory (Anderson et al., 2017). Sensory 
perception covers the capabilities of the sensors as well as the underlying 
software that processes and integrates the information. Sensory perception 
is essential for a variety of applications, including feedback control systems 
of automated systems and physical capabilities of robots (Grosz et al., 2016). 
Over the years, sensors and the underlying machine learning algorithms 
have become increasingly sophisticated (Hardesty, 2017), and in some fields 
machines have even reached a capability level that is at par with the human 
level, according to McKinsey (Anderson et al., 2017).

Computer vision has developed significantly over the past decade, enabled 
by advances in sensors, deep learning, and the abundance of data due to the 
Internet. In some narrow-classification tasks, computer vision systems can 
outperform their human counterparts. Meanwhile, developments in sensors 
and algorithms for 3D object recognition, for example LIDAR (Laser-
Imaging Detection and Ranging), allow for more precise distance measuring 
than ever before. Nonetheless, complex tasks, such as dealing with cluttered 
vision and fields, still present a challenge for the current technology (Frey et 
al., 2013; Manyika et al., 2013; Robinson, 2014). 

Computer vision is essential for machines to perceive and adapt to their 
environments and is one of the major enablers of autonomous vehicles. 
Advances in vision technology also enable progress in other applications, 
e.g., industrial and software robots. 

For example, it enables robots to manage patients at the front desk of a 
pharmacy and to assemble customized orders in pharmaceutical settings 
(Owais Qureshi and Sajjad, 2017; Manyika et al., 2013).
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“Machine Touch” refers to the processing of tactile/haptic information 
and is indispensable for a robot’s ability to grasp and manipulate objects 
(Hardesty, 2017; Izatt et al., 2017). Though progress is being made to 
develop sophisticated haptic sensors that mimic human capabilities, robots 
still struggle to obtain accurate local information. For example, it is hard to 
estimate how much force to apply when grabbing an object or to accurately 
estimate an object’s position once it is in the robot’s gripper and out of its 
camera’s sight. One recent development is robot skin, a development by 
Georgia Tech, which gives robots the ability to feel textures (Manyika et al., 
2017).

“Machine Hearing” refers to the processing of sound by computers. It is 
vital for natural language processing and auditory scene analyses, which is 
the ability to separate and group acoustic data streams (Hahn, 2017). The 
goal of machine hearing is for machines to be able to distinguish between 
different sounds, to organize and understand what they hear, and to react 
in real time (Lyon, 2017, pp.131–139). For example, a serving robot in a 
restaurant should be able to distinguish and group the voices of the different 
customers at a table and accurately take their orders. Today, machine hearing 
is still in its infancy stage compared to machine vision. For machine hearing 
models to be designed, analyzed, and understood, math, engineering, 
physics, and signal-processing are essential. 

Although some sub-fields of sensory perception have advanced rapidly, it 
remains a large challenge to integrate multiple sensor streams into a single 
system (Hahn, 2017), and it will take several years for the technology to 
completely surpass the human level (Manyika et al., 2017).

3.2 Cognitive Capabilities

This area covers a wide range of capabilities, including making tacit 
judgments, retrieving information, logical thinking, optimizing and 
planning, creativity, coordination with multiple agents, and recognizing and 
generating known and novel patterns/categories. Significant developments 
have been made within the area, but it is also where the most technical 
challenges lie (Manyika et al., 2017; Hodson, 2016). As of today, there are 
cognitive systems that beat humans in several activities. 
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For example, IBM’s Watson computer has a 90 percent success rate in 
diagnosing lung cancer compared to a human’s 50 percent (Steadman, 
2013). Watson also beat the reigning chess champion in 1997 and the 
champions in gameshow Jeopardy! in 2011 (Knight, 2016). Each individual 
capability will be discussed briefly.  

Optimizing and planning for objective outcomes across various constraints 
can currently be done by a computer with the same precision as the most 
skilled humans in this field (Manyika et al., 2017). It includes optimizing 
operations and logistics in real time, for example, optimizing power plants 
based on energy prices, weather, and other real-time data, or automating 
machinery to reduce errors and improve efficiency (Writing et al., 2016). 

Retrieving information includes being able to search and retrieve 
information from a wide variety of sources. Based on this information, a 
computer should also be capable of writing research reports. As of today, 
technologies are far more skilled at retrieving information than humans 
(Manyika et al., 2017) because computers are much faster than humans and 
can go through millions of sources in the blink of an eye. For example, IBM’s 
Watson searched through 20 million cancer research papers and diagnosed 
a patient with a rare form of leukemia in only 10 minutes, while the doctors 
had missed this for months at the University of Tokyo (NG, 2016). 

Recognizing known patterns/categories is identical to the concept of 
supervised learning. As explained earlier, supervised learning uses known 
patterns to categorize and predict for datasets in the future (Mathworks, 
2017). The use and power of supervised learning has increased considerably 
with the growing availability of large data sets following the Internet and 
advances in sensors. The capability of recognizing patterns is one where 
computers already outperform humans. For example, a deep-learning based 
lip-reading system, created by Google’s DeepMind and the University of 
Oxford, trained by watching over 5,000 hours of BBC programs, easily 
outperformed a professional human lip-reader (Frey et al., 2013; Manyika 
et al., 2017). 

Technology has not come as far in generating novel patterns/categories 
as it has with recognizing them; the field of unsupervised learning, which 
deals with this problem, is still in an early stage and the capability level of 
computers is below median human performance (Manyika et al., 2017). 
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One of the difficulties is that the creation of something new requires creative 
intelligence, which is highly difficult to codify, as will be discussed next. 
For example, mathematicians perform tasks involving “developing new 
principles and new relationships between existing mathematical principles 
to advance mathematical science” (Frey et al., 2013). 

This task requires a lot of creativity and is therefore very hard to automate. 
Creativity is currently one of the most difficult capabilities to automate. To 
be creative one must be able to make new combinations of familiar concepts, 
which requires a rich body of knowledge. The challenge for computers is 
to make combinations that “make sense” as they lack common knowledge. 
For this to happen, we must be able to specify our creative values precisely 
so that they can be codified. Another obstacle is the fact that these creative 
values vary between cultures and change over time. Despite the challenges, 
AI has already been used for some creative tasks, like creating music and 
staging performances (Grosz et al., 2016; Frey et al., 2013).

Logical reasoning and problem solving can be done on different levels of 
complexity; from limited knowledge domains with simple combinations 
of output to many contextual domains with multifaceted, potentially 
conflicting, inputs.  An example of such a task is the ability to recognize the 
individual parts of an argument and their relationships as well as drawing 
well-supported conclusions (LSAC, 2017). This capability is also one of 
the toughest for machines to perform, and performance is still at a low 
level compared to humans. However, the technologies are improving. Some 
activities requiring judgment might even be better off being computerized 
because AI algorithms make unbiased decisions while humans often may 
not. For example, it has been shown that experienced judges are considerably 
more generous in their rulings after a lunch break (Manyika et al., 2017; 
Frey et al., 2013). An algorithm would deliver the same output regardless of 
the time of day.

Coordination with multiple agents reflects a machine’s ability to work 
together with other machines as well as with humans. This capability, 
especially human-machine collaboration, is still underdeveloped (Manyika 
et al., 2017). Early stages of robot collaboration have been proven, but these 
are largely based on laboratory research (Perry, 2014; Kolling et al., 2016).  
For example, researchers at Carnegie Mellon University made two different 
types of robots collaborate by letting a mobile robot bring work to a static 
robot arm that was controlled by the latter robot (Sklar, 2015). 
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As pointed out earlier, the general focus has shifted from substitution 
towards human-machine collaboration. However, the ability of machines to 
collaborate with humans is currently at a low level (Manyika et al., 2017), 
limited, for example, by the inability of AI systems to explain their decisions 
and actions to humans (Gunning, 2017) and to understand and produce 
natural language. 

One early example is the humanoid robot Asimo, which has a limited ability 
to respond to voice commands and human gestures (Boston Dynamics, 
2017).

3.3 Natural Language Processing

Natural language processing comprises both the understanding and  
generation of natural language. Research within this field has shifted from 
reacting to clearly specified requests with a limited range of answers to 
developing refined and sophisticated systems that are able to have actual 
conversations with people. The generation of natural language is described 
as “the ability to deliver spoken messages, with nuanced gestures and 
human interaction” (Manyika et al., 2017). Natural language understanding 
is described as “the comprehension of language and nuanced linguistic 
communication in all its rich complexity” (Manyika et al., 2017). While 
computers’ current level of generation of natural language is comparable 
to humans, the understanding of natural language is still below. The 
development within this area is one of the key factors influencing the pace 
and extent of automation (Writing et al., 2016).

Natural language processing requires lexical, grammatical, semantic, and 
pragmatic knowledge. Despite the fact that computers currently possess 
some of this knowledge, they are still less capable than humans. 

Computers face difficulties in understanding multi-sentence language as 
well as fragments of language, while incomplete and erroneous language 
tends to be the norm in society (Bates and Weischedel, 2010). In addition, 
teaching computer systems and robots to detect sarcasm (Maynard, 2016), 
both in written and verbal conversations as well as the difference between 
polite and offensive speech (Steadman, 2013), currently proves to be very 
difficult. 
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In order to generate natural language, a machine must know what to say and 
how to say it. In order to know what to say, the machine must have data and 
should be able to determine what information from this data to include. The 
latter process, how to say it, requires a machine to know the language rules 
so that it can make a text (verbal or written) that makes sense. Currently, it 
is still very difficult for the software to produce grammatically correct and 
well-formed texts that have natural flows and that fit into an individual’s 
context and needs (Coupel, 2014). 

There have been some recent developments within the field, and companies 
such as Google, Amazon, and Apple use NLP in their products. Every time 
you ask Alexa, Siri or Google Home what weather is like at your location or 
where to find a Japanese restaurant, NLP allows the program to understand 
your speech and answer in verbal language (Hunckler, 2017).

3.4 Social and Emotional Capabilities

This area deals with human social intelligence, which includes a machine’s 
capability to sense and reason about social and emotional states as well as 
the ability to generate emotionally suitable output. These are essential 
capabilities for daily (human) interaction and for tasks like negotiation, 
persuasion, and caring. Among the five broader capability areas, social and 
emotional capabilities is currently the least advanced and will probably not 
surpass human level for at least two more decades (Manyika et al., 2017; 
Frey et al., 2013).

Advances in machine learning and sensing have given machines a limited 
ability to recognize human emotions. 

However, the current capabilities of these software programs are still 
far below human levels and face significant challenges with regards to 
instantaneous and accurate recognition of emotions. It is even more difficult 
for machines to comprehend and reason about the social and emotional 
states of humans. 

Existing techniques analyze facial expressions, physiological factors (e.g., 
heart rate or blood pressure), text, and spoken dialogues to detect human 
emotions. 
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These techniques hold great future potential for several applications like 
automated call centers (Picard, n.d.) and targeted advertisements based on 
emotional states (Doerrfeld, 2015). 

Several emotion recognition software programs are already in use. Affectiva, 
for example, applies facial expressions analysis to adapt mobile applications 
to adjust to the emotional state of the user (Turcot, 2015). 

To date, even the most advanced algorithms are not capable of 
communicating in a way that is indistinguishable from humans, and no 
machine has ever passed the Turing Test. The generation of emotionally 
suitable output is complicated by the existence of “common sense”, which 
is tacit or implicit knowledge possessed by humans and ingrained in human 
interaction and emotions. 

This knowledge is hard to define and articulate and therefore almost 
impossible to incorporate in algorithms (Frey et al., 2013; Manyika et al., 
2017; Hager et al., 2015). Communicating, in absence of common sense, 
results in awkwardness or feelings of unnaturalness. There are some robots 
on the market that have a limited ability to mimic human emotions, like the 
humanoid Pepper, which can express joy, surprise, anger, doubt and sadness, 
but the actual creation of emotions is far away (Murphy, 2015).

3.5 Physical Capabilities

This area includes fine and gross motor skills, navigation, and mobility. 
It is closely related to the area of sensory perception, which provides the 
information input for physical activities (Manyika et al., 2013). Machines 
have already surpassed humans in terms of gross motor skills and the use of 
robots is widespread in industrial and warehousing settings, for example for 
picking and placing, welding, packaging, and palletizing. Amazon has even 
completely automated some of its warehouses using robots. 

However, on the frontier of fine motor skills and dexterity, technology is 
lagging behind significantly (Manyika et al., 2017; Ritter and Haschke, 
2015). Manual skills are deeply integrated into the human cognitive system. 
Therefore, grasping and manipulation of smaller and deformable objects are 
still large sensorimotor challenges for the current technology. 
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Robot dexterity is constrained by the strength of miniaturized actuators as 
well as visual and tactile sensors, which currently perform far below human 
levels (Hardesty, 2017; Ritter and Haschke, 2015; Frey et al., 2013). 

Moreover, robots do not yet have the same degrees-of-freedom as human 
hands and current control systems are not yet capable of dealing with the 
multifaceted and unstructured nature of manual tasks. Nevertheless, there 
are several anthropomorphic robot hands with human-like capabilities on 
the market. The most advanced of these is the Shadow Dexterous Hand 
(Ritter and Haschke, 2015), which can perform delicate tasks such as 
opening a bottle cap and grabbing strawberries without crushing them. 

Empowered by advances in machine vision and machine learning, navigation 
has already surpassed human capabilities. Advanced GPS systems, supported 
by vast amounts of spatial data, enable the pinpointing of exact locations 
and navigation towards almost every destination imaginable. 

These capabilities are already widely used for example in (partly) 
autonomous cars and navigation apps, like Google Maps. 

Despite advances in computer vision, robot mobility is still at a low level, 
especially autonomous mobility. Autonomous movement through static 
environments, e.g., specially designed warehouses, has largely been solved 
(Grosz et al., 2016; Manyika et al., 2017), but adapting motion to new and 
dynamic environments remains a substantial challenge (Heess et al., 2017). 

Some of the reasons for this are technical challenges, including balance 
and control (Electronics Teacher, 2017), as well as insufficiently developed 
algorithms (Heess et al., 2017). Moreover, a lack of research on robot 
mobility in indoor settings has hampered progress in the area of indoor 
mobile robots (Grosz et al., 2016). 

However, progress is being made on algorithms, as is shown by the 
DeepMind computer which recently taught itself to move through new, 
complex environments in a computer simulation (Heess et al., 2017). Real 
life examples of advanced mobile robots are Boston Dynamics’ Atlas, a 
humanoid robot which can move to various unknown terrains on two 
legs (Boston Dynamics, 2017), and Asimo, a humanoid robot capable 
of running, walking, kicking a ball, and reacting to human instructions 
(Honda, 2017).
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3.6 The Overall State of Current Technologies

Though substantial progress is being made in all five capability areas, several 
capabilities currently remain out of reach for the available technologies. 
Most notably, technology is underdeveloped for processing and generating 
natural language and social/emotional output, autonomous mobility, 
fine motor skills, and a range of cognitive capabilities. On the other hand, 
technology is excelling in fields such as recognizing known patterns, gross 
motor skills, and navigation, and is largely at par with humans in the field of 
sensory perception. Moreover, further advances are expected in all areas, and 
machines will likely be at or above human levels for most capabilities within 
one to two decades (Chui, Manyika and Miremadi, 2015).

However, current technological progress is mainly focused on narrow, 
individual capabilities. 

The integration of several capabilities into well-functioning holistic 
solutions is another significant challenge that needs to be overcome and will 
probably take much longer than for the individual capabilities (Frey et al., 
2013).

On the other hand, environmental control can mitigate the current 
limitations of machines. This concept refers to the alteration of the 
environment or the task to make it simpler and more structured, for example 
by breaking it down into smaller tasks or by transforming an unstructured 
environment into a structured one. Environmental control can obviate the 
need for advanced flexibility, mobility, manual dexterity, and cognitive 
capabilities. For example, Amazon placed bar-code stickers on the floor 
of its warehouses to assist the robots in their warehouse navigation. They 
adapted the environment so it would become structured. 

However, although environmental control is applied in warehouses and 
other local environments, countries and cities are still lagging behind in 
adapting their infrastructures to accommodate the new technologies (Frey 
et al., 2013; Grosz et al., 2016).
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4 The Substitution of Job Tasks

Having discussed the current technological capabilities in the previous 
section, the ensuing section aims to relate these capabilities to their potential 
of substituting labor, focusing on the individual tasks that constitute jobs, 
rather than jobs in their entirety. The reason for this is that jobs include 
several different types of tasks, which all have a different relation to the 
current capabilities of technologies. Consequently, some types of tasks can 
already by automated while others cannot. Hence, it is essential to first 
understand which individual tasks can be substituted before one analyzes 
the effect on jobs and labor in general. 

The different types of tasks are introduced below, following the Task Model 
by Autor et al. (2003), and the substitution potential of each task category 
will be discussed in relation to the capabilities above. In the next section, 
The Impact on Labor, we utilize our findings to make a judgment on the 
overall effect of automation on a selection of jobs and industries. 

4.1 Four Types of Job Tasks 

To determine the job substitution potential of computers, Autor et al. 
(2003) conceptualized work as a series of tasks rather than complete jobs. 
Specifically, the paper distinguishes routine tasks from non-routine tasks 
and manual from cognitive tasks. This classification results in a 2x2 matrix, 
which is displayed in Figure 2. Routine tasks are defined as tasks that follow 
explicit rules, which can be exhaustively specified and, hence, translated into 
code. For non-routine tasks, these rules are not understood sufficiently well, 
which makes them much harder to codify. As a corollary of this definition, 
routine tasks are automatically classified as tasks that are easily substituted 
by technology while non-routine tasks are not. 

Manual tasks are physical activities that require motor skills and mobility 
whereas cognitive task relate to mental processes. 
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Figure 2. Four Categories of Job Tasks (Autor et al., 2003)

In addition to the above matrix, there are several other task classifications. 
For example, Manyika et al. (2017) have developed seven broader activity 
categories:  
1. Predictable physical
2. Processing data
3. Collecting data 
4. Unpredictable physical 
5. Interfacing with stakeholders 
6. Expertise
7. Managing and developing others. 

These seven categories fit largely within the 2x2 matrix of Autor et al., 
(2003). Predictable and unpredictable physical activities are aligned with 
the routine manual and non-routine manual task classification of Autor 
et al. (2003). Data collecting and processing largely fall under routine 
cognitive tasks, whereas interfacing with stakeholders, applying expertise, 
and managing and developing others can be placed under non-routine 
cognitive tasks. 

Each of the four categories are discussed in more detail below.

4.1.1 Routine Manual Tasks
The routine manual task category includes physical activities that require 
systematic repetition of a consistent procedure, i.e., structured physical 
tasks that take place in predictable environments. The primary capabilities 
required to perform these types of activities are gross and fine motor skills, 
sensory perception, and, to some extent, mobility. 
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Examples of activities include assembling, picking and sorting, welding, 
and cooking. These tasks are easily translatable into computer programs and 
the technology to perform them is at an advanced level, especially for gross 
motor skills, where machines have been outperforming humans for a long 
time. 

Consequently, this task category has the highest technological potential for 
substitution by machines (Manyika et al., 2017; Frey et al., 2013; Autor et 
al, 2003). Manyika et al. (2017) even predict that in the United States as 
much as 81 percent of the tasks in this category can be substituted.

The substitution of routine manual tasks has a long history and goes back 
to the introduction of the first machines that were capable of functioning 
automatically. Since then, machines have continuously pushed out humans, 
and a vast number of manual activities have been automated in the 20th 
century (Finnigan, 2016). For example, many processes in the agriculture 
and car manufacturing industries are currently performed by machines. As 
a corollary, Autor et al. (2003) found that the percentage of people active in 
jobs with large proportions of routine manual activities declined between 
1960 and 1998.

More recently, advances in sensory perception and manual dexterity have 
made it possible for robots to be assigned to tasks that require higher 
precision, e.g., slicing meat, assembling customized orders, manufacturing 
electronic components (Sander and Wolfgang, 2014; Sirkin et al, 2015). 
Robots have also become safer and much more flexible to use, which allows 
them to quickly switch between different tasks and to safely work next to 
humans. Furthermore, the advances in mobility and navigation allow robots 
to move autonomously in static environments like warehouses.

In addition, robots are increasing their presence in the service industry. 
Simple service tasks, like cleaning, have been performed by robots for over a 
decade, the most notable example being the robot vacuum cleaner. However, 
with their increased dexterity and mobility, robots are increasingly able 
to take on complex routine manual tasks in the service industry. A prime 
example is the food sector where robots can be deployed to prepare and 
serve food and beverages (Frey et al., 2013; Manyika et al., 2017). 
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For instance, the pizza delivery company Zume Pizza has automated its 
production process almost completely using sophisticated robots (Zume 
Pizza, 2016). Nonetheless, robot deployment is still in an early stage in this 
industry and the substitution potential remains limited.

Many routine manual tasks can and most likely will be performed by 
robots in the future and the share of repetitive, rule-based activities in jobs 
will decrease. With advances in sensors and increasing robot dexterity, 
more high-precision tasks will become candidates for substitution, such as 
manufacturing tasks in the electronics sector. As robots become safer, they 
will likely take up more positions next to their human co-workers. Further 
engineering advances are necessary to increase the flexibility of robotic 
systems by decreasing the reconfiguration time (Robotics Technology 
Consortium, 2013).

4.1.2 Non-routine Manual Tasks
Non-routine manual tasks are non-structured physical tasks that take place 
in unpredictable environments, often involving situational adaptability and 
in-person interaction. They require capabilities like sensory perception, fine 
and gross motor skills, social and emotional capabilities, natural language 
processing, navigation, and mobility. The majority of these capabilities have 
not yet reached human level performance and the incorporation of flexibility 
remains a considerable challenge (Autor, 2015; IPsoft, 2017). Consequently, 
the automation potential of this category is low, only 26 percent according 
to Manyika et al. (2017). Examples of tasks include operating a crane, 
assisting with surgery, janitorial work, and making hotel beds.

Recent advances in sensory perception and physical capabilities as well as 
machine learning have enabled machines to take over an increasing number 
of manual non-routine tasks. Improvements in sensor technology and 
manual dexterity allow robots to perform high precision, non-standardized 
tasks, such as the manipulation of delicate products like fruit and vegetables. 
By incorporating advanced sensors, computer programs can also take over 
condition monitoring tasks, such as checking the state of an aircraft engine 
or examining the moisture level in a field of crops. When alerted by the 
program, human operators can perform the required maintenance. Even 
some maintenance tasks are being substituted. 

For example, General Electric has developed robots to climb and maintain 
wind turbines (Frey et al., 2013).
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Another well-known new application of machines for non-routine 
manual tasks is the autonomous vehicle. Autonomous driving was deemed 
impossible not so long ago as it requires activities such as parking, switching 
lanes, and adapting to traffic lights, other vehicles, and pedestrians (Autor et 
al,, 2003; Manyika et al., 2017). 

However, today, facilitated by machine learning and advanced sensors, 
Google’s autonomous car is driving the streets completely by itself and is 
even seen by some as safer than human-controlled cars (Frey et al., 2013; 
Grosz et al., 2016). Autonomous mobility has also entered the warehousing 
industry (Autor, 2015). Here, enabled by environmental control, many 
warehouses, such as Amazon’s warehouses, have become largely automatic. 

Nonetheless, most non-routine manual tasks remain out of reach for 
machines for now and the near future. Despite the advances in the field 
of autonomous cars, autonomous mobility in general remains a significant 
challenge. Likewise, significant progress in perception and dexterity 
technologies is required before autonomous manipulation is viable in 
unstructured and delicate settings (Robotics Technology Consortium, 
2013). Moreover, tasks that require human interaction demand further 
advances in language recognition, social and emotional capabilities, and user 
interfaces. One example is walking a patient down a hospital (or nursery) 
hallway (Grosz et al., 2016). This requires a robot to help a patient get out of 
bed, which requires that the robot communicate with the person based on 
his or her emotional state, possess fine motor skills and sensory perception, 
to know where to hold/touch the patient and how much force to apply, and 
to navigate through an unstructured environment. The activity is therefore 
not likely to be automated in a near future.  

4.1.3 Routine Cognitive Tasks
Routine cognitive tasks include all mental (non-physical) tasks that repeat 
a certain procedure in a predictable environment. To a large extent, this 
relates to the different aspects of processing structured information, such as 
data collection, organization, and storage (Autor et al., 2003). 

The required capabilities for these tasks are retrieving information, 
recognizing known patterns, optimizing and planning, logical reasoning/
problem solving, and natural language processing. 
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Examples of tasks are data processing tasks such as calculating and 
bookkeeping but also routine customer service activities performed by 
people such as cashiers, telephone operators, and bank tellers. Because 
of their routine nature, these tasks have a high potential for machine 
substitution, ranging from 64 percent for tasks relating to data collection 
to 69 percent for tasks relating to data processing in the US, according to 
Manyika et al. (2017). 

The automation of cognitive tasks started with the introduction of the 
computer (Autor el al., 2003), which enabled the digitization and automatic 
processing of information. Subsequently, many processes, including 
administrative tasks, bookkeeping, invoicing, optimizing resource needs, 
and numerous others, have already been automated (Acemoglu and Autor, 
2011).

Today, technological advances and the current focus on digitalization have 
brought the automation of routine cognitive tasks to an unprecedented 
scope and pace. Many companies have embarked on so-called “digital 
transformations”, which refer to the simplification, standardization, and 
digitalization of an entire organization (Ketterer et al., 2016). 

At the front-end, this means that large parts of customer interaction 
interfaces can be automated. Examples range from the automation of 
customer data collection for mortgage brokers to the employment of 
full-fletched, AI-based, virtual employees who can take over all aspects of 
customer interaction (IPsoft, 2017). At the back-end, the restructuring of the 
organization’s IT landscape obviates many processes and activities (Ketterer, 
Himmelreich and Schmid, 2016). In addition, for some structured processes 
that remain in existence, robotic process automation can be employed, 
which uses software robots to automate well-defined transactions/user 
actions normally performed by humans (Ketterer et al., 2016; Bughin et 
al., 2017). These software robots can be seen as virtual employees who work 
with existing applications in a similar fashion to humans (Forrester Research 
Inc., 2014).

The further proliferation of automated data collection and processing 
activities depends on the pace of digitalization. 

As companies progress on their digital transformations, more data and 
processes will be digitized and therefore likely automated. 
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Moreover, further automation of customer service activities will depend on 
the machines’ capability to interact with customers and thus depends on 
advances in natural language processing and emotional capabilities.

4.1.4 Non-routine Cognitive Tasks
Non-routine cognitive tasks are mental (non-physical/abstract) tasks that 
do not follow a structured procedure and/or take place in unpredictable 
environments (Autor et al.,, 2003). These types of tasks require several 
cognitive capabilities, including creativity, logical reasoning, generating 
novel patterns, and coordination with multiple agents. In addition, natural 
language processing and social and emotional capabilities are often of high 
importance (Acemoglu and Autor, 2011). These types of tasks include 
activities that relate to interfacing with stakeholders, applying expertise, 
and managing and developing others. Examples of activities include legal 
writing, negotiations, teaching, and diagnosing diseases. 

Historically, these types of tasks have been the most difficult to automate 
(Frey et al., 2013; Autor et al, 2003). However, the availability of big data 
and recent advances in machine learning (pattern recognition in particular) 
have enabled machines to enter the realm of unstructured tasks. By applying 
unsupervised learning, a computer can create its own structure in an 
unstructured setting. Moreover, developments in the field of user interfaces, 
like language recognition, enable computers to respond directly to voice and 
gesture instructions (Manyika et al., 2013). 

One of the tasks that can now be automated is fraud detection, a task that 
requires the ability to detect trends in data as well as to make decisions (Frey 
et al., 2013). By using machine learning to build models based on historical 
transactions, social network information, and other external sources, the 
system can use pattern recognition to detect anomalies, exceptions, and 
outliers. This means fraudulent behavior can be spotted and fraudulent 
transactions can be prevented (Wellers et al., 2017). 

The legal domain is another area that machines are entering; nowadays, 
computers can analyze and order thousands of legal documents swiftly and 
present their findings graphically to the attorneys and paralegals (Frey et al., 
2013). 
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Yet, most of the involved capabilities remain far under human level for 
now. Especially tasks that require creativity, problem solving, and complex 
communication (a confluence of natural language processing and social and 
emotional capabilities) have a very low substitution potential (Manyika et 
al., 2017; Autor et al., 2003). 

Even in fields in which machines can outperform people on narrow tasks, 
like route planning, humans are often still required to set the target, interpret 
the outcomes, and perform commonsense checks. Arguably there, major 
advances are required before machine learning and artificial intelligence 
become mature technologies. For example, there are several examples of 
failing AI systems, like Microsoft’s Tay Chatbot, who had to be shut down 
only 16 hours after launch because of the highly controversial messages it 
tweeted. Correspondingly, the three categories identified by Manyika et 
al. (2017), interfacing with stakeholders, applying expertise, and managing 
others, all have a substitution potential of below 20 percent.

Besides other required advances in cognitive, social, and emotional 
capabilities, the availability of a sufficient amount of task-specific information 
is essential for the automation of cognitive non-routine tasks. In absence of 
this information, pattern recognition cannot be applied. In addition, as with 
the other types of tasks, environmental control, or task simplification, can 
be applied to mitigate engineering bottlenecks. For example, self-checkout 
stations in supermarkets obviate the need for advanced customer interaction 
(Frey et al., 2013; Autor et al., 2003). 

4.2 The Overall Substitution of Job Tasks

As is evident from the previous discussion, technologies can take over an 
increasing number of activities. Routine, both manual and cognitive, tasks 
have been in the automation process for some time, whereas machines have 
only just acquired the ability to substitute for human labor in some non-
routine tasks. The substitution potential for routine tasks is high and will 
only increase with technological advances. The substitution of non-routine 
tasks, on the other hand, remains largely limited to narrow applications for 
which human involvement is still required. A summary of the discussion for 
each of the job task categories is provided in figure 3. 
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To bring the automation of non-routine tasks to the next level, significant 
advances in all five capability areas are necessary, with natural language 
processing capabilities being the most important according to Manyika et 
al. (2017). 

Figure 3. Summary of Required Capabilities, Sample Tasks, and Predicted 
Substitution Rate (in the USA) for each Job Task Category
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5 The Impact on Labor

Though several books and papers argue that technology will take over 
many jobs resulting in mass unemployment (Berg, Buffie and Zanna, 2016; 
OECD, 2016), as of yet, this scenario seems unlikely to happen (Frey et 
al., 2013; Arntz, Gregory and Zierahn, 2016; Manyika et al., 2017). Many 
activities can currently not be substituted by machines, and machines are 
not capable of performing several types of activities in an integrated way 
(Manyika et al., 2017; Autor, 2015). Hence, they are generally not capable 
of substituting labor for entire jobs, which usually include many bundled 
activities. Rather, to determine the substitution potential of a particular job, 
it is better to focus on the substitution of the individual activities within 
that job. A large body of research aligns with this approach and suggests that 
technology will take over significant parts of every job across all industries 
and levels of society (Manyika et al., 2017; Arntz et al., 2016; OECD, 2016).

The following section will first analyze the automation potential of 
individual occupations and broader occupation categories and subsequently 
the nature of work and the impact of technology on industries.

5.1 The Potential of Job Automation

Estimations of the potential of job automation differ significantly across 
studies. Frey and Osborne (2013) estimate that as much as 46 percent of all 
occupations in the United States consist of more than 70 percent activities 
that can be automated and are therefore highly automatable. By using the 
same methodology but with a task approach rather than an occupation 
approach, Arntz et al (2016) find that only nine percent of jobs in the US 
have an automation potential of more than 70 percent. 

While Manyika et al. (2017) does not use 70 percent as a threshold for 
high automation potential, one can deduct from their study that around 
25 percent of all jobs are more than 70 percent automatable in the United 
States.
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Clearly, making an accurate estimation of automation potential is difficult 
and largely depends on subjective judgment of the capability of technologies 
and the task structure of occupations. Despite this variance, however, several 
high-level observations can be made.

Firstly, jobs that can be automated completely are likely to consist entirely 
of routine manual and routine cognitive tasks that require no human 
interaction or manual dexterity. Examples of these types of occupations are 
sewing machine operators and order clerks. 

Secondly, jobs with a high risk of automation also largely consist of routine 
manual and routine cognitive tasks but will most likely include some degree 
of human interaction or unpredictable/high precision physical activities. 
Occupation categories that include many highly automatable jobs are, for 
example, manufacturing and production because of their high degree of 
manual routine tasks, as well as sales, office, and administrative support jobs 
because of their high dependence on information collecting and processing 
(World Economic Forum, 2016). Other occupation categories with large 
elements of routine manual activities are transportation (Frey et al., 2016) 
and material moving as well as food and accommodation services. According 
to Manyika et al. (2017), the latter even has the highest automation potential 
of all categories.

Lastly, the higher the proportion of non-routine tasks, the lower the 
automation potential of the job. This effect is enhanced if capabilities such 
as human interaction (requiring natural language processing and emotional 
and social capabilities), creativity, logical reasoning/problem solving, 
high-level dexterity, or mobility are required. Jobs that consist entirely, or 
to a large extent, of these kinds of capabilities are not at all susceptible to 
automation (Arntz et al., 2016; Manyika et al., 2017). For example, the 
job of a choreographer mainly consists of the creative task to develop a 
choreography and on human interaction to deal with stakeholders and train 
the dancers to bring it to life. 

A dentist, on the other hand, requires high-level dexterity and sensory 
perception as well as emotional and social capabilities to interact with 
their clients. Hence, both occupations have almost no activities that can be 
automated.
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Still, the majority of occupation categories fall somewhere in between, 
including both routine and non-routine tasks. Therefore, they can be 
partly automated. For example, cognitive tasks are the core value drivers for 
investment bankers, yet a large proportion of their job consists of gathering 
and analyzing information and could thus be automated. The same holds for 
many legal professions. It is likely that these types of jobs will not disappear, 
rather, they will harness technology to improve efficiency of humans and the 
quality of output (Frey et al., 2013). 

It is important to note that this is a generalized view. The aforementioned 
occupation categories also include substantial proportions of jobs with low 
levels of automation potential, and the substitution potential of a job varies 
significantly across industries. For example, while supermarket cashiers 
and specialized software sales agents both fall under the sales occupation 
category, the substitution potential of the first is high while that of the latter 
is low because of the required technical expertise and emotional intelligence 
(World Economic Forum, 2016).

Furthermore, the substitution potential of similar jobs varies across different 
countries due to alterations in the structure of the jobs, industries, and 
education, and previous investments in technology (Arntz et al., 2016). 
For example, the automation potential in Sweden might be lower than 
average because Sweden sits at the forefront of technology investment. 
Consequently, technology will already have been included in many 
processes, making it difficult to automate large parts of the remaining 
activities. In addition, Sweden has a strong focus on high-skilled employees, 
who typically perform fewer tasks that are automatable. Correspondingly, 
Arntz et al. (2016) estimate that only seven percent of jobs in Sweden is 
at high risk of being substituted, compared to nine percent for all OECD 
countries. A discussion of other considerations such as these is provided in 
the next section. 
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5.2 The Future Nature of Work

The large-scale substitution of individual tasks will likely change the nature 
of work and of all jobs (Frey et al., 2013). As machines start to take over 
routine manual and routine cognitive tasks, human employees will be able 
to spend more time on complementary tasks where they hold a comparative 
advantage, such as activities involving creativity and human interaction 
(Autor, 2015; Finnigan, 2016; Arntz et al., 2016). 

Moreover, for many of these tasks, humans will be augmented by machines, 
and a closer collaboration between technology and humans is expected 
(International Federation of Robotics, 2017). For example, while a doctor 
is likely to remain responsible for the final diagnosis of a patient in the 
next decades, they will be able to base a decision partly on the automated 
diagnosis advice provided through AI. 

As a result, jobs will require more training and a higher understanding 
of technology. In addition, as the incorporation of technology increases 
productivity, human employees might spend less of their time on work, 
resulting in shorter workweeks.

5.3 The Effects on the Labor Market

The automation of activities has caused a well-documented shift in the 
labor market over the past decades. As part of this shift, scholars observed 
a polarization of the labor market in both the United States and Europe 
(Autor, 2015; Autor and Dorn, 2013). This polarization included a sharp 
decline in the share of middle-skilled jobs accompanied by increases in the 
share of low-skilled service jobs and high-skilled jobs (Frey et al., 2013; Autor 
and Dorn, 2013). These middle-skilled jobs could be automated because 
they consisted primarily of routine manual and routine cognitive tasks, 
such as collecting and processing data. Tasks that could not be automated 
included non-routine manual and cognitive tasks. The first are usually found 
on the low-skill side of the spectrum while the latter are usually found on the 
high-skill side. 
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Consequently, the increase in general demand for labor following the 
productivity growth from automation mostly affected low-skilled jobs, e.g., 
hairdressers, janitors, and high-skilled jobs, e.g., computer scientists, causing 
an overall polarization effect (Autor, 2015).

However, because of recent and future technological developments, this 
polarization is expected to taper off. The reason for this is three-fold. Firstly, 
many remaining mid-level jobs require a combination of non-routine 
tasks and capabilities, including emotional skills, problem solving, and 
flexibility, that cannot yet be performed by machines. Secondly, the rise 
of new technologies has created several new types of middle-skilled jobs, 
such as healthcare technicians and has stimulated demand for others, such 
as managers of eating establishments. Lastly, as discussed in this report, 
machines are increasingly able to take over low-skilled service jobs and high-
skilled cognitive jobs (Holzer, 2015; Autor, 2015; World Economic Forum, 
2016).

There has also been a global debate on the effect of technology on offshoring 
and reshoring initiatives, especially within the US manufacturing industry. 
Because the implementation of robotics obviates the need for cheap labor 
(Robotics Technology Consortium, 2013; International Federation of 
Robotics, 2017), many argue that it would give rise to a trend of reshoring 
manufacturing activities to the Western world while the offshoring trend 
would slow (Van den Bossche et al., 2016). However, more recently, 
opposing views have arisen, arguing that technology is also enabling the 
offshoring of many services and simplifying the management of complex 
global supply chains, leading to an increase in offshoring of manufacturing 
activities. The latter effects seem to be stronger and the reshoring trend, for 
example advocated by the consultancy BCG (2015), seems to have already 
ended. Meanwhile, offshoring is only found to increase (Van den Bossche et 
al., 2016). 

Accurately estimating the overall effect of the above change drivers on 
the labor market is nigh on impossible and estimates range from mass 
unemployment to increases in labor demand. As large parts of jobs can 
be automated, fewer people will be needed to deliver the same output 
(Finnigan, 2016). 
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Consequently, automation could lead to unemployment in the short-term 
(OECD, 2016) before gains in overall productivity raise the demand for 
labor again. 

Historically, technological progress has not significantly increased 
unemployment in the long run, but it remains to be seen whether this time 
will be the same (Autor, 2015). What is certain is that technology will cause 
large labor displacements, especially in high-routine occupation categories. 
Organizations and employees will need to increase their focus on education 
and training in order to be able to keep up with the increasing pace of 
change.

5.4 The Automation Potential of Industries

The automation potential of work varies across industries because different 
industries have different job constellations and similar jobs in different 
industries might comprise different sets of tasks. In addition, there are also 
significant differences among countries regarding the job constellation of 
their industries. For example, an attorney in Sweden might perform very 
different tasks on a daily basis than an attorney in the United States. 

As mentioned before, according to Manyika et al. (2017), the accommodation 
and food industry has the highest proportion of automatable tasks globally. 
These findings are supported by a study in the US from Osborne and Frey 
and Citi Bank (2015) on the relation between innovation and employment. 
The sector has such a high automation potential because food preparation 
consists of highly predictable manual tasks. For instance, tasks such as order 
taking and order serving do not require high levels of emotional intelligence, 
making them both susceptible to automation. The fast food chain 
McDonald’s, for example, has automated its ordering and payment processes 
using digital screens, and many casual dining operators are implementing 
tabletop tablet systems in their restaurants.  

Other industries with large proportions of automatable tasks identified by 
both studies are transportation and warehousing, retail trade, wholesale 
trade, and manufacturing. For example, Amazon has already shown that 
robots can run entire warehouses and the technology for autonomous 
vehicles is largely ready, creating the opportunity to automate truck 
transportation. 
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On the low-end of the automation spectrum are industries such as 
educational services and the management of companies and enterprises. 
For many jobs in these sectors, emotional intelligence and complex 
communications are large and essential parts of daily activities, which 
substantially decreases automation potential. 

The studies also disagree on the automation potential of several industries. 
For example, for some of the mining, real estate rental, administrative 
and support services, and construction industries, automation potential 
is estimated as average by Manyika et al. (2017) and high by Osborne and 
Frey (2015) while for other industries it is exactly the other way around. For 
example, the agriculture and information sectors are hardly automatable 
according to Osborne and Frey while they are averagely automatable 
according to Manyika et al. (2017). 

Manyika et al. (2017) has also performed a study on the Swedish economy. 
According to the study, three industries have the highest proportions of 
automatable tasks. These are manufacturing, mining, and transportation 
and warehousing. The industries with the lowest automation potential are 
educational services, the information sector, and the arts, entertainment, 
and recreational sector. 

In terms of the absolute number of employees who could be substituted, 
the manufacturing sector has by far the largest share. The study estimates 
that the work of as many as 420,000 people could potentially be automated. 
Other industries representing large numbers of people are healthcare and 
social assistance, administrative support and government, and retail trade. 
Overall, Manyika et al. (2017) estimates that 46 percent of activities could 
be automated in Sweden, representing a potential redundancy of 2.1 million 
employees.
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6 Other Considerations for 
Automation

Though it is technically feasible to substitute human labor with machines 
in many jobs and job tasks, there are several other factors affecting the 
pace and extent of automation. Five of these factors are discussed below: 
commercial availability cost of implementation, economic benefits, labor 
market dynamics, and social, legal, and ethical acceptance. We have based 
these factors on the five factors affecting the pace and extent of automation 
identified by Manyika et al. (2017). However, we renamed their first factor 
of technical feasibility as commercial availability in order to remove any 
confusion with our use of the term technological feasibility in this report. 

6.1 Commercial Availability 

Although the previously discussed technologies have been proven in 
laboratories, the majority of them are yet to be commercialized. Many 
technologies are still in the early or middle stages of their development; 
they have not yet reached full maturity and require more scientific research. 
An example of this is artificial general intelligence (AGI). Despite the vast 
amount of research in this technology and the demonstration of some 
applications, much more scientific research is needed and academics estimate 
it might be 2050 before we can expect widespread adoption of robust AGI 
platforms (Vorhies, 2016). 

Moreover, there is a distinct difference between technological feasibility and 
commercial adoption. Whereas basic (scientific) research focuses on broad 
generalizable cases, applied research focusses on developing engineering 
solutions for specific use cases. Developing viable products out of new 
technological concepts takes time and effort. 

For example, predictive engineering for aircraft engines and predictive 
healthcare could be seen as similar scientific problems since both predict the 
failure of a system. 
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However, both applications would need entirely different software, models, 
and hardware to work and each would take years to be developed (Manyika 
et al., 2017). 

Moreover, the ability to diagnose diseases can already be performed to some 
extent by computers, but computers diagnosing all types of diseases in the 
near future is unlikely due to technical difficulty (Bughin et al., 2017).

6.2 Cost of Implementation

Besides the availability of commercially ready applications, there must 
be a solid business case for a company to implement automation and 
digitalization technologies. Hence, the development and implementation 
costs of new technologies are an important determinant of their adoption 
speed and scope. When analyzing these costs, there is a profound difference 
between the cost size and structure of hardware and software solutions. 
 
6.2.1 Hardware
Hardware includes all physical components involved in a technological 
solution and often requires sensory perception, fine motor skills, gross motor 
skills, and/or mobility. The capital expenditures for these components are 
often high and require significant upfront investments. This makes the 
business case more challenging and raises the need for available capital. 
Large companies in advanced countries, such as Sweden, are expected to 
have the fastest adoption rates of these solutions because they face high labor 
costs and are in the possession of readily available capital. Furthermore, the 
adoption cycles for industries facing high capital intensity are likely to be 
longer (Chui et al., 2017). 

The primary example of a hardware solution is an industrial robot. The cost 
of sophisticated robots has been declining over the past decades (Manyika 
et al., 2013; Frey et al., 2013) and is expected to continue to decline in the 
future (Sirkin et al., 2015). 

This price drop has been enabled by significant cost decreases of advanced 
sensors and actuators. In addition, due to increases in production volumes of 
robots, economies of scale might lead to further cost reductions (Manyika et 
al., 2013; Grosz et al., 2016).
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Despite the price drops, the cost of reliable mechanical devices remains high, 
and most industrial robots are still relatively expensive, ranging from several 
tens of thousands to hundreds of thousands of dollars. Moreover, besides 
the costs of the robot itself, large investments are required for engineering 
the robot’s work cell (Robotics Technology Consortium, 2013). For 
example, to be able to work safely, an industrial robot often needs advanced 
safety equipment, and if a robot arm is to work with different tools, a 
tool-changing system needs to be in place. This kind of equipment is very 
expensive and can more than double the price of the robot’s implementation 
(Slepov, 2016).

However, with the introduction of simpler general purpose robots, the 
automation costs for simple tasks might drop significantly. Besides being 
cheaper themselves, these robots are more flexible and do not require 
extensive work cells. Likewise, they are safer for humans to work with, 
obviating the need for expensive safety equipment. The proliferation of 
this type of robots could significantly impact the adoption rate of robots. 
Service robots are, in general, cheaper than their industrial brothers and do 
not require surrounding equipment (Frey et al., 2013; Manyika et al., 2013).

6.2.2 Software
For software solutions, the capital requirements are much lower, especially 
for solutions that are cloud-based. These low costs are enabled by increasing 
performance and decreasing costs of computing power, data storage, and 
cloud computing. Often, the marginal cost of an additional software unit is 
negligible (Manyika et al., 2013; Autor, 2015). 

However, the deployment of software can also incur highly taxing 
implementation costs, especially if legacy software systems are in place. 

These implementation processes comprise activities such as software 
customization, staff training, and new process architecture, and they can 
be more expensive than the software itself (Forrester Research Inc., 2014). 
Moreover, the talent required to develop, customize, and implement 
advanced solutions is scarce and therefore extremely expensive. 

For example, a study by Paysa, a career consultancy firm, estimated that, 
in the United States alone, there are currently 10,000 open positions for 
AI talent, and that companies such as Alphabet and Microsoft are paying 
millions to acquire talented employees (Ketterer et al., 2016).
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Robotic process automation forms a cheaper and quicker solution than the 
implementation of expensive new software solutions. This technology can 
automate workflows and substitute human labor without major investments. 
However, the overall benefits are limited compared to a complete system 
redesign (Deloitte, 2015).

6.3 Economic Benefits 

Another component in making a solid business case for the adoption of 
new technologies are the derived economic benefits from implementation. 
Companies will only be inclined to incorporate new technologies into their 
organizations if the benefits exceed the costs. 

The first and most obvious economic benefit from the implementation of 
automation technologies is the reduction of labor costs, resulting from the 
substitution of human labor. As previously discussed, it is unlikely that many 
jobs will be substituted completely, but it is likely that fewer employees will 
be necessary to achieve the same output due to increased productivity.

The economic benefits of automation do, however, not only show in forms 
of saved labor costs but also in the form of new value creation. Examples 
include benefits such as increased throughput and productivity, improved 
safety, reduced waste, and higher quality, all of which can increase profit in 
one way or another. These additional benefits can sometimes even exceed 
the benefits of labor substitution. 

For example, implementing autonomous trucks would not only reduce labor 
costs but would also improve safety, fuel efficiency, and productivity as there 
is no driver that requires stops. In turn, these improvements lead to increased 
profit. Google DeepMind is another example; the implementation of AI 
from DeepMind machine learning in Google’s data centers has reduced 
energy consumption by 40 percent resulting in increased profit (Grosz et al., 
2016; Manyika et al., 2017). 

Furthermore, due to the advancements in robotics, robots have become 
more economically viable options for tasks that were once seen as too 
expensive or delicate to automate, such as robotic surgery assistance.
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As mentioned in the section, Definition of Digitalization, digitalization is a 
means to create and capture new value within an organization. For example, 
it allows companies to open new digital customer channels and to develop 
new customer insights and products and services, leading to the creation of 
new value for the customer and the company. Moreover, the automation 
of routine processes enables employees to spend a larger amount of their 
time on high-value tasks. For example, within the finance sector, by letting 
a computer monitor existing processes and learn to recognize different 
situations (e.g., matching a payment with an order number), finance staff 
is freed from this activity and can instead focus on more valuable strategic 
tasks (Wellers et al., 2017). Consequently, companies and industries 
that have digitalized to a larger extent, such as media, financial services, 
and technology, often show higher productivity and wage growth than 
industries that have digitalized to a lesser extent, such as education, retail, 
and healthcare.

Besides increased profits for companies, society as a whole can 
gain substantial benefits from the implementation of technologies. 
Transportation is a prime example. As mentioned before, the automation 
of truck transportation will lead to higher productivity, higher safety, and 
lower fuel consumption. Higher productivity means that fewer trucks will 
be necessary, leading to higher fuel reductions and less congested roads. As a 
result, the public will benefit from lower pollution, fewer traffic jams, fewer 
accidents, and lower spending on road maintenance. 

The benefits mentioned above drive the pace of automation. However, it is 
important to note that most industries are still in very early stages of the 
adoption cycle of technologies such as AI, ML, and robotics. Because of the 
small number of existing implementations, it is difficult to estimate what the 
overall benefits of these technologies will be. Moreover, it often takes years 
before the indirect economic benefits become visible. This timelag between 
investment and benefits is especially large in capital-intensive industries 
where investments in hardware are required. Consequently, it is difficult 
for companies and regulators to understand the cost-benefit tradeoffs of 
implementing new technologies (Grosz et al., 2016). 

An example is an AI-based system. According to a survey by Bughin et al. 
(2017), most business leaders do not know what AI can do for them, where 
to use it, how to integrate it, and what the benefits and costs will be.
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6.4 Labor Market Dynamics

Since labor costs form an integral part of the business case for companies, 
the dynamics of the labor market is an important factor influencing the 
adoption rate of these technologies. These dynamics include the supply and 
demand and cost of human labor and are closely related to the demographics 
of a country and the skill-level of its citizens.

The supply and demand of labor have a large influence on the cost of labor 
and therefore on the economic benefits derived from the substitution of 
labor (Frey et al., 2013). A high supply of labor in combination with low 
demand leads to a decrease in wages. Subsequently, low wages will decrease 
the economic benefits from labor substitution and thus decrease the 
incentive for companies to automate. For example, the food industry was 
identified as one of the industries in the United States with the highest 
automation potential based on current technologies. However, wages have 
historically been low in comparison to most other industries due to an 
oversupply of labor. Consequently, this industry has had little incentive to 
automate and the current level of automation is low. The opposite holds true 
when supply of labor is low and demand is high.

The supply of labor is a function of a country’s demographics and the skill 
level of the working population (Manyika et al., 2017). The first influences 
the number of people on the labor market. In countries with a large working 
population, there will be an over-supply of labor in many industries and 
the incentive to automate will be low. On the contrary, for countries with 
shrinking working populations, such as Sweden and many other Western 
countries, the incentive to automate is larger (Manyika et al., 2013).

The skill level of the working population determines in which industries 
there are labor surpluses and deficits. For example, if a significant number of 
people have followed an education to become an English teacher, the market 
for English teachers will be saturated and wages will drop. Meanwhile, the 
market for French teachers could face a deficit of supply, increasing the 
wages. 
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If activities are substituted by technology, it enables a higher level of human 
productivity, which would increase the labor supply. These workers can be 
redeployed if there is demand for activities within their skill range. 

However, there is often a mismatch between the skills in demand and 
the skills that are in oversupply. In such a situation, people are required 
to reskill themselves through education and training before they can be 
redeployed. This takes time, money, and effort. Consequently, the adoption 
of labor-substituting technology often leads to short-term unemployment 
and subsequently a period in which people need to re-educate themselves. 
However, as the pace of technological change and adoption is increasing, 
the question is whether the educational and training systems can keep pace. 
This is particularly difficult for people at the low-end of the skill spectrum. 

A labor market polarization emerges when low-skill workers and high-
skill workers represent the majority of the working population. In Sweden, 
technology has changed the labor market over the past 10-20 years as it 
has in other similar countries. Some argue that the Swedish labor market 
is undergoing a substitution of labor and that the Swedish regulatory and 
social security system is not ready for these changes. This will lead to an 
increased polarization and Sweden will face a difficult time redeploying 
employees if timely investments in training plans are not made (Breman, 
2015).

Lastly, one can never really predict the future of the labor market. One year 
it can be steady with low unemployment and the next year it can be instable 
with high unemployment and a large degree of polarization. Unfortunately, 
the labor market is unlikely to benefit everyone equally when automation 
technologies are adopted. Some people will be negatively affected by either 
losing their job or facing wage pressure while others might see wage increases 
and new job openings. However, government policies, the way organizations 
choose to work, and how individuals seek to learn new skills and jobs can all 
reduce the disparity in provided benefits across the labor spectrum (Grosz et 
al., 2016). 
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6.5 Social, Legal and Ethical Acceptance

In order for the substitution of human labor to truly occur, applications of 
new technologies must be socially and legally accepted. This factor is one 
of the most central influencing the pace of automation, perhaps second 
only to technological feasibility. Social acceptance and legal acceptance are 
closely connected, and both largely depend on the related concept of ethical 
acceptance. Therefore, these three concepts will be discussed in combination.

Legal and social acceptance of new technologies are both processes that 
take a long time. For example, a patient accepting a robot as a nurse or for 
a government to implement self-driving buses is not something that will 
happen overnight. It is therefore inevitable that it will take years for new 
technology to be completely adopted and adapted into society. Some of 
the requirements that must be fulfilled are decision makers realizing the 
potentials and benefits of AI as well as employees and workers adapting to 
the technologies once they are installed.

One of the major barriers for the automation process is privacy concerns. In 
order for new technologies and solutions to develop in the best interest of 
society, a large amount of data is needed. However, due to privacy concerns 
and regulations, data are difficult to access or anonymize. In addition, 
people are afraid of giving out their personal information because they do 
not know who will have access to it, who will use it, and for what purpose 
(Bughin et al., 2017). It also becomes an ethical question when, for example, 
an employer has access to one’s medical records. If someone is ill for some 
reason, or because they are overweight, an employer may not be interested 
in hiring this person.

The ethical issue also comes into consideration when technologies are, 
for example, used for predictive policies. It is a technical challenge to not 
feed the systems with biased information – e.g., racial, sexist or religious 
discrimination - to avoid innocent people being unjustifiably monitored 
and discriminated, when the real world is in fact biased (Grosz et al., 2016). 
However, when predictive hiring processes are performed with caution, and 
through careful design, testing, and deployment, there is a chance that AI 
algorithms will make less biased decisions than humans.



53

The Substitution of Labor - Innovative Internet Report 5

As mentioned, the extent and pace of automation rely on the social 
acceptance and trust for technology and AI. For example, many of the 
activities a nurse performs can theoretically be automated, but both 
coworkers and patients will likely have a difficult time to accept it initially. 
Arguably a majority of patients expect to be greeted by humans and have 
human contact when they have their meal delivered to them. In order for 
the activity to actually be substituted, patients and co-workers have to 
accept and trust the machines. This can only be accomplished if hospitals 
exhaustively integrate the automation technologies and make sure that 
the interaction between intelligent computers and humans feels natural 
(Manyika et al., 2017; Grosz et al., 2016). 

This trust and acceptance is also important for security systems to be able to 
use the innovative technologies. Today, cities in North America have already 
deployed AI technologies in border administration and law enforcement 
and will heavily rely on these techniques in the future. For example, 
autonomous cars, drones, and cameras will be used for surveillance as well as 
algorithms to detect financial fraud and create predictive policies. However, 
this is only possible if there is broad social acceptance. Furthermore, 
regulatory acceptance is also necessary for full-scale adoption. For example, 
while autonomous vehicles are fully usable they will first be adopted when 
regulators accept them (Manyika et al., 2017).

Furthermore, questions are raised about accountability when implementing 
the technologies. Issues such as who is responsible for the actions and 
conclusions made by robots and AI have never been dealt with before, 
making them difficult to tackle (Bughin et al., 2017). For example, who is 
responsible for a traffic accident where an autonomous vehicle is involved 
and maybe caused it? Is it the owner of the car, the automaker, the city, one of 
the many software or hardware providers, or one of the many programmers 
who wrote some of the lines of software code?

Once the technologies are adopted, there may be consequences. For 
example, there is no way to know if AI would optimize the labor market 
without regard for nuanced social preferences or sell treasured documents 
about people’s skills to private companies or political parties. However, it 
is unlikely that AI would autonomously choose to inflict harm on people, 
but there nonetheless remains a real risk that it can be used by people for a 
harmful purpose. 
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To summarize, the social, legal, and ethical acceptance are important factors 
that impact the adoption of automation technologies. It is understandable 
that social acceptance of new technologies is difficult due to the fear that a 
lot of people will lose their jobs. However, as discussed earlier in this report, 
it is activities within jobs that will be substituted rather than entire jobs. 
Regulators must clearly state this fact and that only certain people will have 
access to personal information, in order for the social acceptance to increase. 
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7 Conclusion

This report aimed at investigating the substitution potential of labor by a 
selection of technologies. We first discussed the technological feasibility 
of artificial intelligence, machine learning, and robotics to substitute for 
labor. We found that technology can perform an increasingly wider variety 
of job activities and that automation is no longer confined to routine tasks. 
Nevertheless, the automation potential for non-routine tasks remains 
limited, especially for tasks involving autonomous mobility, creativity, 
problem solving, and complex communication. 

For jobs themselves, we concluded that the majority of jobs will be affected 
by the automation of individual activities, but that only a few have the 
potential to be completely substituted. The jobs most at risk are those 
that consist largely of routine tasks and do not rely on mobility or human 
interaction. Though few jobs can be substituted completely, automation 
could still lead to short-term unemployment, often leading to re-training 
and further education. In addition, we concluded that the nature of jobs 
will change as mundane tasks will be substituted and people will work more 
closely together with machines. The industries that have a large potential for 
activity substitution are food and accommodation services, transportation 
and warehousing, retail trade, wholesale trade, and manufacturing.

In the last section of the report, we discussed five major factors that come 
into play before automation potential turns into actual automation: 
commercial availability, cost of implementation, economic benefits, labor 
market dynamics, and social and legal acceptance. All five of these factors 
have a significant influence on the speed and scope of technology adoption. 
In particular, a lack of applied research, low wages, high costs, and legal and 
ethical boundaries hamper the adoption of technology. 

Overall, technology is advancing rapidly and the pace of change is increasing. 
Consequently, an increasing number of activities will have the potential to 
be performed by machines rather than by humans. 
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Though the extent and speed of adoption are reduced by several factors, it 
is inevitable that technology will have a stronger presence in the workplace. 
It is unlikely that this will cause long-term unemployment, but in the short-
term reskilling will be required to enable the reemployment of displaced 
labor. To cope with the pace of automation, an increased focus on education 
and training will be required - for individuals, organizations, regions, and 
countries.
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