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Abstract

This paper shows that building characteristics-managed factors with firms’ asset

returns greatly reduces the number of factors necessary to explain the cross section.

A 5-factor model based on asset returns explains 62.4% of the variation in 100

factors, whereas an 88-factor model using equity returns explains only 38.6%. In

the out-of-sample, the asset-based implied mean-variance-efficient (MVE) portfolio

achieves a Sharpe ratio of 1.2, compared to 0.75 for its equity-based counterpart.

The parsimonious asset-based model explains equity returns better than the equity-

based model, as it reduces the number of equity anomalies to 15, compared to 23 for

the latter. The non-linear transformation of returns caused by leverage increases

the loadings of firms with high leverage on the equity-based factors, exposes these

factors to firm-level systematic risks that would not arise in asset-based factors,

and contributes to the factor zoo.
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Introduction

Starting with Fama and French (1993), researchers have proposed hundreds of candidate

factors based on firm characteristics to explain cross-sectional stock returns, forming the

factor zoo (Cochrane, 2011). The factors are typically characteristics-managed portfolios,

in which the weights of assets depend on conditioning characteristics such as size and

book-to-market ratio. This body of literature aims to understand the fundamental sources

of risk to which firms are exposed. However, empirical tests predominantly construct

factors using equity returns, which are non-linear transformations of firms’ asset returns.

Higher leverage increases the quantity of risk that equities are exposed to and overweights

highly-levered firms in the construction of the equity-based factors. This unintentionally

exposes factors to systematic risks that are not meant to be captured by the corresponding

characteristics and results in redundant factors. In this paper, I test whether a sparser

and more efficient representation of the stochastic discount factor (SDF) is feasible using

factors built with asset returns.

I perform a comparative analysis of 100 characteristic-managed factors built from eq-

uity returns versus the same factors built from asset returns. I employ a linear model with

coefficients regularization that allows the joint evaluation of a large number of factors.

This approach implements an economically founded optimization process that filters out

factors contributing less to the covariance matrix. By comparing the optimized model

structures and their out-of-sample performance between equity-based and asset-based fac-

tors, I find that the asset-based factor model is sparser and more efficient in explaining

not only asset returns but also equity returns.

I start by analytically showing that when the SDF can be represented by a single

factor built from asset returns, the corresponding equity-based model fails to explain the

cross section. Instead, an alpha arises and necessitates additional terms in the SDF to
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address the non-existent anomaly.

This raises the question to which extent is the proliferation of factors in the literature

attributed to this effect. To tackle the high-dimensional challenge, I adopt a Bayesian

approach following Kozak, Nagel, and Santosh (2020) (hereafter “KNS”) that allows me

to estimate the SDF’s coefficients on potentially hundreds of characteristics-managed fac-

tors, letting the data determine which and how many factors to include before estimating

their coefficients. Should my argument holds, the asset-based SDF should require fewer

factors and exhibits a higher Sharpe ratio than the equity-based SDF.

To implement the test, I build 100 firm-level predictive characteristics suggested

by Green, Hand, and Zhang (2017) for all non-financial firms listed in the U.S. from

1951 to 2022. I unlever equity returns using Merton (1974)’s model. Specifically, I es-

timate the market value of firms’ assets on each day following the iterative procedure

by Vassalou and Xing (2004). Then, I construct asset-based (equity-based) daily factors

managed by the 100 characteristics. Each factor is a zero-cost long-short portfolio of asset

(equity) returns weighted by the corresponding characteristic. I use Merton model as the

baseline because it is the simplest within the class of models that allow for a non-linear

relation between equity returns and leverage. This provides expositional convenience and

facilitates intuition regarding our empirical results.

As robustness tests, I adopt two alternative unlevering methods using the weighted

average cost of capital (WACC): In one approach, I assume all debts are risk-free and

approximate asset returns as the average of stock returns and the 3-month U.S. treasury

rates, weighted by market capitalization and book value of total liability. In another, I

approximate asset returns as the average of stock returns and corporate bond returns,

weighted by market capitalization and market value of corporate bonds. Firm-level bond

returns are aggregated from individual bonds’ month-over-month price change plus ac-

crued interest and coupon payments. The market value of a bond is estimated with
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amount outstanding, scaled by dollar volume to par-value volume ratio. Throughout the

paper, unless otherwise specified, the asset-based factors refer to the Merton method. I

also report the results for the other two unlevering methods, which are qualitatively sim-

ilar. Despite challenges using bond data — such as data quality, market segmentation,

and institutional details that might hinder the reconstruction of asset returns using stock

and bond returns — unlevering returns with bonds provides even stronger evidence that

many anomalies disappear once correctly accounting for the leverage effect.

With the sets of candidate factors established, I employ a Bayesian prior motivated

by KNS to shrink the cross section in search for a data-driven optimal SDF. Specifically,

the prior distribution links the first and second moments of the candidate factors, leading

the posterior to impose stronger penalties on the coefficient estimates for factors linked

to low-eigenvalue principal components (PCs).

To identify the optimal factor model, I employ a cross-validation procedure: I re-

peatedly partition the data by withholding a subset of samples and estimating the factor

model on the remaining data. In each iteration, I vary the number of factors included and

adjust the penalty levels applied to the coefficients. These two parameters that are fixed

before the estimation of coefficients are called hyperparameters. Each combination of the

two hyperparameters corresponds to one model. The procedure to estimate coefficients

follows the LARS-EN algorithm by (Zou and Hastie, 2005) that progressively removes

factors that contribute least to explaining the covariance matrix until the target number

of factors is achieved. I evaluate the performance of each model by measuring the R2 on

the withheld samples. This process allows me to assess how well each model generalizes to

unseen data. The model that achieves the highest R2 in these validation sets is considered

to provide the optimal SDF representation for this specific set of factors. Comparing the

number of factors and the out-of-sample (OOS) performance in their respective optimal

SDFs of shows which factors, asset-based or equity-based, are more efficient proxies for
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the underlying risks.

I find the optimal equity-based SDF consists of 88 factors but only explains 36.9%

of the cross-sectional variation. This result coroborates the work of KNS, who show an

optimal 49-factor model explains 23.5% of the cross-sectional variation among 50 factors.

It suggests that a large number of characteristics-managed factors are required in the SDF

to adequately capture the pricing information, and that sparsity is generally elusive in

the equity return space. In constrast, my analysis with asset-based SDF yields a distinct

outcome: the optimal asset-based SDF consists of only 5 factors that can explain 62.4%

of the variation. Only market, 12-month momentum, return on equity, asset growth, and

revenue surprise are required in the asset-based SDF.
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Figure 1

This figure compares asset-based and equity-based SDFs by their cross-validated R2 to explain the 100
characteristics-managed factors when the number of factors increases. Penalties are applied according to
KNS. Factor selection and coefficient estimation follows the LARS-EN algorithm. The red texts indicate
when corresponding factors first enter the asset-based SDF.
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I show that the asset-based SDF is closer to the efficient frontier than the equity-based

SDF, even though it entails a trading strategy that utilizes significantly fewer observable

firm characteristics. In the OOS test from 2005 to 2022, the asset-based implied MVE

portfolio achieves a Sharpe ratio of 1.20, compared to 0.75 for the equity-based portfolio,

similar to the 0.71 in KNS. Moreover, the asset-based MVE portfolio outperforms the

equity-based version by 7% in annualized alpha over the same period, irrespective of

the benchmark. On the other hand, as the benchmark shifts from the equity market

portfolio to the Fama-French 4 Factors and to the asset market portfolio, the magnitude
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and statistical significance of the alphas progressively decrease.

To better isolate anomalies from the market risk premium, I orthogonalize all factors

against the market factor and re-estimate the SDFs using beta-neutral factors. In the

optimized asset-based model, the number of factors is further shrunk to three: 12-month

momentum, return on equity, and revenue surprise. However, the model’s R2 drops from

62.4% to 20.0% and allowing more factors only further decreases the number. In contrast,

the optimal equity-based SDF with beta-neutral factors retains 99 factors, explaining

39.5% of the variation, similar to the 36.9% before orthogonalization. These findings

suggest the market plays a more critical role in the unlevered space, as removing it

significantly reduces the model’s pricing power. Many factors are relevant only because

of their market components. These results point to a more parsimonious CAPM-like

model in the asset return space.

I find the asset-based model price equity returns better than equity-based model.

In the out-of-sample, I regress each of the 100 equity-based factors on the following

three benchmarks: equity market portfolio, equity-based MVE portfolio, and asset-based

MVE portfolio. The numbers of statistically significant alphas are 69, 23, 15 respectively.

The asset-based model, despite having only 5 characteristics-managed factors, performs

slightly better than the equity-based 88-factor model.

Overall, asset-based factor models provide sparser and closer representations of the

marginal rate of substitution than the traditional equity-based models. Equities can be

viewed as call options on the firm’s underlying assets, with the face value of its debts

as the strike price. Its expected return is non-linearly magnified by debt. Ignoring this

transformation risks exposing characteristics-managed factors to unintended systematic

risks and introducing redundant factors.
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Literature Review

Doshi et al. (2019) attribute certain stock pricing anomalies to the non-linear transfor-

mation of asset returns. However, their strategies of portfolio sortings and Fama and

MacBeth (1973) (hereafter “FMB”) regressions limit the joint test of a wide collection

of factors due to overfitting, and therefore are silent on the number of priced risks in

the SDF. In contrast, the technique I adopt from KNS allows me to jointly test 100

factors and compare the performance of asset-based SDF against equity-based SDF in

the out-of-sample. I show that the leverage effect contributes to dozens of factors in the

factor zoo.

Recent literature also starts to implicitly address the leverage effect by acknowledging

that securities representing claims on the same underlying assets of firms should be priced

under the same framework. Bali, Beckmeyer, and Goyal (2023) and Chen et al. (2024)

reveal pervasive common risk factor structures that jointly explain the risk-return tradeoff

across stocks, bonds, and options. However, the techniques employed in their papers,

Instrumented-PCA (Kelly, Pruitt, and Su, 2019) and Regressed-PCA (Chen, Roussanov,

and Wang, 2023), embody the opposite treatment of signals compared to unlevering.

These noval PCA methods do not aim to preserve observable characteristics. Instead,

they aggregate risk proxies from more cross-security information. Higher-ordered PCs are

by construction better than characteristics-based factors in summarizing variations and

these papers essentially expand the ingredients from which PCs are sourced to proxy firm-

level risks. In contrast, my paper explains the cross section with fewer characteristics,

not more.

This paper also revisits the stream of literature on the factor zoo of stock pricing. For

example, Feng, Giglio, and Xiu (2020) account for model selection mistakes due to omitted

variables and raise the bar to evaluate marginal contribution of new factors. Kozak, Nagel,
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and Santosh (2020) obtain a sparse SDF by aggregating information of 49 predictors

into a small number of PCs. In contrast, this paper makes an economically motivated

attempt to reduce the dimensionality by targeting the non-linearity introduced by the

option-theoretic feature of equity.

This paper also contributes to the expanding body of literature within machine learn-

ing applications to empirical asset pricing. Many techniques requires as many signals as

possible and achieve great success in predicting returns (Gu, Kelly, and Xiu, 2020; Bali

et al., 2023; Bianchi, Büchner, and Tamoni, 2021). My paper aims to explain rather than

predict returns. Specifically, I retain characteristics-managed factors before my estima-

tion and distinguish risk prices (systematic risks) and risk quantities (leverage-induced

amplification) with machine learning techniques. I shrink the cross section to a small

number of interpretable factors.

Last but not least, this paper connects to the theoretical literature that rationalize a

small number of factors to sufficiently describe the SDF (Lin and Zhang, 2013; Carlson,

Fisher, and Giammarino, 2004; Zhang, 2005). These papers speculate what are the

fundamental sources of risks and are predominantly silent on capital structure, suggesting

that empirical tests should be conducted at the firm level using asset returns rather than

equity returns (Hou, Xue, and Zhang, 2015). I propose a sparse asset-based SDF with 5

characteristics-managed factors, rather than latent ones. This facilitates clearer economic

interpretation of the surviving factors and offers empirical evidence to future theoretical

models.

The remainder of the paper is structured as follows: Section I discusses why con-

structing characteristics-managed factors using equity returns is problematic. Section II

introduces the Bayesian approach for factor selection and SDF estimation. Section III

describes the data and the unlevering process. Section IV reports and compares the opti-

mal models for equity- and asset-based SDFs, as well as the out-of-sample performance of
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their implied MVE portfolios. Section V shows the robustness test with two alternative

unlevering methods. Section VI concludes.

I. Factor-Mimicking Portfolios in Two Return Spaces

I start by outlining the basic framework for characteristics-based asset pricing. Next, I

explain the leverage-induced non-linear transformation of equity returns and analytically

prove that in an equity-based single factor model is not sufficient to explain an asset-based

single factor economy. Finally in the section, I conduct a simulation in an one-factor

economy and reveal a non-existent anomaly (alpha) that an equity-based SDF fails to

explain.

A. Characteristics-Managed Portfolios as Factors

Let rt denote the stack of N excess returns. The conditional pricing equation is:

0 = Et−1 [Mt · rt] . (1)

Along the lines of Hansen and Jagannathan (1991), one can find an SDF in the linear

span of excess returns as1

Mt = 1 − a′
t−1 (rt − Et−1[rt]) (2)

by solving the N × 1 vector at−1 that satisfies Equation (1). To obtain models with em-

pirical content, characteristics-based asset pricing models parametrize the SDF loadings

as

at−1 = Zt−1b (3)
1Appendix D details the derivation.
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where Zt−1 is a N × H matrix that collects measureable characteristics such as size,

book-to-market ratio, profitability, etc. The idea is to reduce the SDF’s dimensionality

from N to H, which is the number of characteristics that predict cross-sectional returns.

This leads to an unconditional pricing equation

Mt = 1 − b′(Ft − Et−1[Ft]) , (4)

where

Ft = Z ′
t−1rt . (5)

Each entry in the H × 1 factor matrix Ft is a linear combination of excess returns

weighted by one characteristic, forming a characteristic-managed portfolio. In empirical

tests, each factor is built as a zero-investment long-short portfolio, such as SMB and

HML, whose composition changes every period in response to the characteristic. It aims

to capture risks beyond the systematic risks explained by other factors. While researchers

have focused extensively on which characteristics to include in Zt−1, the equally important

decision of which rt to use when constructing the SDF is often overlooked.

Consider building an equity-based factor. Debt amplifies the quantity of risks borne

by firms. If the characteristic correlates with leverage, firms in one leg of the factor on

average are exposed to higher systematic risks that are already priced by other factors.

This creates a mismatch between the long and short legs, exposing the factor to systematic

risks unrelated to the corresponding characteristic.

B. Leverage Effect on Returns and Equity-Based Factors

This subsection decomposes equity returns into asset returns and the leverage effects and

shows that if the economy is priced by a single characteristic-managed factor built from

asset returns, it cannot be priced by the its equity counterpart.
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To simplify the analysis of leverage effect, I assume the risk-free rate in the economy

is 0 and consider the classic model from Black and Scholes (1973) and Merton (1974)

(hereafter BSM). The distribution of firm assets value at the end of any finite time

interval is log normal. The variance of the rate of return on the firm’s assets is constant.

A firm’s equity can be viewed as a call option on the firm’s underlying assets, with the

face value of its debts as the strike price. The relationships between the risk premia of

these securities are highly non-linear. It is easier to see the decomposition of the expected

excess return in continuous time:2:

E [r̃e] = E [r̃a] +
[
N (d1)

V

E
− 1

]
E [r̃a] , (6)

where E is the market value of equity, V is the market value of the firm, r̃a is the

instantaneous excess return of asset, r̃e is the instantaneous excess return of equity, and

N (d1) is the probability of default (delta). The first term on the right-hand side of

Equation (6) compensates for firm-level risks, and the second term compensates for the

leverage risk borne by shareholders, which is an amplification of firm-level risks. The

effect is non-linear in the debt.

Figure 2 Panel (a) illustrates the relationship between expected asset, equity, and

debt returns at debt maturity. Similar figure is presented in textbooks such as Berk and

DeMarzo (2007) on capital structure.
2Appendix A provides detailed derivation.
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Figure 2: Leverage and Cost of Capital

Panel (a) of this figure illustrates the relationships between leverage and cost of asset, equity, and debt
as a firm levers up. Leverage is defined as the the ratio of face value of debt (B) over the market value of
firm. The excess asset return of the example firm is assumed to have a mean of 6%, a volatility of 10%,
and follows normal distribution. Panel (b) of this figure illustrates the probability density function for
equity returns for two identical firms except for their leverage. Suppose the economy has only two firms,
one with 0% and the other with 50% leverage, an asset-based factor w1r1,a − w2r2,a has no exposure to
the systematic risk while an equity-based factor w1r1,a − w2r2,e has unintended exposure when factors
are zero-investment portfolios w1 = w2.
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Figure 2 Panel (b) reports the distribution of equity returns under two different finan-

cial policies. Their difference already provides an intuition why the choice of return space

has non-trivial impact on the characteristic-managed portfolios in Equation (5). When a

characteristic is correlated to the leverage, the leverage effect is stronger for firms in one

leg of the portfolio. As a result, firm weights are determined not just by the characteristic

but also by leverage, effectively overweighting risks borne by higher-levered firms.

Officially, consider a single factor economy with N firms. The factor is F = w′ra

where w is the N × 1 weight vector and ra is the N × 1 asset return vector. The beta
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representation of Equation (4) is 3

r̄a = Σw

w′Σw
w′r̄a , (7)

where r̄a and Σ are mean and covariance matrix of ra.

Denote equity returns as re, and re = Dra where D is a diagonal matrix. Each element

in D refers to the leverage-induced return transformation for the corresponding firm in

ra. The covariance matrix of re is DΣD. If the equity-based single factor SDF that is

managed by the same characteristic (same weights w) is also feasible, then the following

equation must hold:

Dr̄a = DΣDw

w′DΣDw
w′Dr̄a . (8)

However, the only solution to Equation (8) is when D scales the r̄a and Σ propor-

tionally. D is a scalar multiple of the identity matrix I:

D = cI . (9)

From Equation (6), we know that D does not satisfy the condition unless there is no

cross-sectional variation in leverage and volatility. In other words, we cannot use the

same characteristic-managed portfolio, but built with equity returns, to recover the SDF.

Note that since my paper focuses only on characteristics-managed factors that are inter-

pretable, I do not rescale w, which would lead to a latent factor.

I conduct a Monte-Carlo simulation to show the consequence of building an equity-

based factor in an asset-based single factor economy. The first and second moments of

the simulated factor are 10% and 20%. The moments of leverage matches its empirical
3j-th row of r̄a is: E[ra,j ] = Cov[F,ra,j ]

Var[F ] E[F ] = βj,F E[F ].
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moments in the data4.

Specifically, I first backout the first and second moments of asset returns for 100

firms such an single factor prices the cross section. Next, I impose leverage structure

on these firms. Then, I simulate the asset returns for the cross section for 1000 periods

(ra,t), and calculate the equity returns (re,t), asset-based factor return (Fa,t = w′ra,t), and

equity-based factor return (Fe,t = w′re,t). Finally, I run FMB regressions in the asset

and equity space respectively. In the first step, time-series regressions are performed

to estimate factor loadings (betas) for each asset. In the second step, cross-sectional

regressions use these estimated betas to estimate the risk premia (factor prices) across

different time periods, averaging the results to obtain standard errors. Figure 3 reports

the second stage for the FMB methods. The slope is the estimated price of the risk and

the intercept is the alpha. Panel (a) indicates that the asset-based factor correctly prices

the economy with statistically insignificant alpha. On the other hand, Panel (b) suggests

an annualized alpha of 2.8%, which actually reflects the non-linear leverage effect.
4Appendix B details the setup.
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Figure 3: A Non-Existent Anomaly

This figure shows the FMB second stage regression results in an asset-based single factor Monte-Carlo
simulated economy. Panel (a) reports the cross-sectional regression result of r̄a,i = αa +λaβ̂a,i where β̂a,i

is the coefficient estimate for the time series regression ra,i,t = ηa,t + βa,iFa,t. Subscripts a, i, t represent
asset returns, firm identifier (N = 100), and time (T = 1000) respectively. Fa = w1ra,1 + · · · + wN ra,N

is the asset-based factor. Panel (b) reports the same result but for equity returns and equity-based
factor. The relations between re,i and ra,i are derived under Black-Schole-Merton model. While Panel
(a) recovers the true SDF, Panel (b) generates an non-existent anomaly that captures the leverage effect.

−0.05

0.00

0.05

0.10

−0.5 0.0 0.5

β̂

M
ea

n 
E

xc
es

s 
R

et
ur

ns

(a) Asset-Based Factor

−0.1

0.0

0.1

0.2

−0.4 0.0 0.4

β̂

M
ea

n 
E

xc
es

s 
R

et
ur

ns

(b) Equity-Based Factor

II. A Bayesian Approach for Factor Discipline

If the leverage effect discussed in Section I contributes to the factor zoo, the SDF in the

asset return space should be more characteristics-sparse than in the equity space. This

requires a regularization technique that can handle the joint evaluation of many factors

in a high-dimensional setting, with built-in filters to allow sparsity. Traditional portforlio

sortings or FMB regressions struggle to accomplish these tasks. Therefore, I employ the

economically motivated Bayesian approach by KNS to regularize the fitting procedure.

This section outlines the approach.

Inserting the unconditional pricing equation (Equation (4)) into E[MtFt] = 0 solves
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the coefficient b of the factor model:

b = Σ−1E [Ft] = (ΣΣ)−1 ΣE [Ft] (10)

where Σ ≡ E
[
(Ft − E [Ft]) (Ft − E [Ft])′

]
. b is the coefficients in a cross-sectional re-

gression of the factors’ population mean on its variance-covariance matrix. Empirically,

regressions of the sample equivalents5 are used to estimate the coefficients

b̂ = Σ̄−1µ̄ =
(
Σ̄Σ̄

)−1
Σ̄µ̄ . (11)

A. Economically Motivated Bayesian Model by KNS

The risk of overfitting becomes substantial when a large number of candidate factors are

considered. With the expansion of a factor model comes a higher propensity of picking up

noises and performing poorly in the out-of-sample. Regularziation methods are needed

for model selection and mitigation of overfit. KNS argue that the main source of overfit

comes from the sample mean estimator µ̂, not from covariance. I proceed under the

assumption that Σ̄ = Σ and tackle with the imprecision of µ̄ by introducing a prior6:

µ ∼ N
(

0,
κ2

τ
Σ2
)

(12)

where τ = tr [Σ] is the trace of the variance-covariance matrix and κ governs the strength

of the prior. This prior implies an economically plausible notion that there exists a

connection between the first and second moments of factor returns. Specifically, Sharpe

ratios of factors associated with high-eigenvalue PCs should be higher than those associ-
5µ̄ = 1

T

∑T
t=1 Ft, and Σ̄ = 1

T

∑T
t=1 (Ft − µ̄) (Ft − µ̄)′.

6This family of priors is widely used in earlier literature. See Pástor (2000), Pástor and Stam-
baugh (2000), and Liechty, Harvey, and Liechty (2008).
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ated with low-eigenvalue PCs7. It is statistically in line with many asset classes including

stock returns that a few high-eigenvalue PCs account for most return variance while the

contribution of the rest is neglegible.

With normal prior and likelihood, the Bayesian posterior mean and variance of b with

a sample size of T are8:

b̂ = (Σ + γI)−1 µ̄ (13)

Var(b) = 1
T

(Σ + γI)−1 (14)

where γ = τ
κ2T

. Compared with b̂ in Equation (11), Equation (13) shrinks cofficients

toward 0, similar to ridge regressions (Hastie et al., 2009). The effect is disproportion-

ately stronger for factors associated with low-eigenvalue PCs. In simpler words, the KNS

estimators are more intolerant toward coefficients of factors that contribute less to the

cross-sectional variations. κ (or equivalently, γ) regularizes the fitting process in an eco-

nomically plausible way. In fact, Equation (13) is the closed form solution to minimizing

the HJ-distance (Hansen and Jagannathan, 1991) with L2 penalty:

b̂ = argmin
b

(µ̂ − Σb)′ Σ−1 (µ̂ − Σb) + γb′b . (15)

To implement the estimation, the value of κ is needed. Parameters like κ are called

hyperparameters in machine learning language. They control the behavior of a fitting

process and are not learned from data directly. Instead, they are tuned between sessions

for better OOS performance.

I adopt a standard K-fold cross-validation (CV) method for hyperparameter tuning.
7To see this, think of factors as orthogonized PCs and Σ−1/2µ ∼ N

[
0, (κ2/τ)Σ

]
.

8Inserting the Bayesian posteror µ̂ ∼ N
[
(γI + Σ)−1

µ̄, 1
T

(
Σ−1 + γΣ−2)−1

]
into Equaition (11).
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(1) First, I divide the historical data into training and testing period, and further con-

tiguously divide training data into K equal subsamples; (2) Then, for each possible κ, I

compute b̂ applying Equation (13) for K − 1 of these subsamples and evaludate the OOS

performance on the single withheld subsample via R2
oos = 1 − [µ̄o − Σ̄ob̂][µ̄o − Σ̄ob̂]′/[µ̄′

oµ̄o]

where subscript o indicates sample moments from the withheld subsample; (3) Next, I

repeating this procedure K times, each time treating a different subsample as the OOS

data. I average the R2
oos across these K estimates; and (4) Finally, I choose the opti-

mal hyperparameter κ that generates the highest average of R2
oos and evaluate the model

performance on the testing period.

Throughout the CV process, I chose K = 3 following KNS as a compromise between

the estimation error in b̂ and Σ̄o. Based on the prior (Equation (12)), κ has a natural

economic interpretation. It is the square root of the expected maximum squared Sharpe

ratio:

κ =
(
E
[
µΣ−1µ

]) 1
2 . (16)

Optimal κ’s will be generated during the estimations of asset- and equity-based factors.

A higher optimal κ not only suggests a better-behaved data as there is less necessity for

regularization (lower λ), but also signals a closer proximity to the efficient frontier.

So far, the Bayesian approach shrinks coefficients to almost but not exact zero, keeping

all factors in the model. To reinforce my hypothesis that redundant factors might arise

from constructing SDF with equity-based returns, another penalty to filter out certain

factors is desirable. I follow KNS and add an additional L1 penalty on top of L2:

b̂ = argmin
b

(µ̂ − Σb)′ Σ−1 (µ̂ − Σb) + γ2b
′b + γ1

H∑
i=1

|bi| . (17)

Due to the geometry of L1 norm, Equation (17) accomplishes automatic factor selection

without imposing that the SDF is necessarily sparse. In other words, the number of
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factors with non-zero coefficients is another hyperparameter that is optimized through

the CV process and serves as an indicator of the comparison between asset- and equity-

based SDFs. I solve the optimization problem in Equation (17) using LARS-EN algorithm

(Zou and Hastie, 2005).

III. Data and Asset Returns

I obtain daily stock returns from CRSP for all firms listed in the NYSE, AMEX, and

NASDAQ. I supplement the data with the three-month Treasury-bill rate from FRED as

proxy for risk-free rate from which I calculate individual excess returns.

While there are at least hundreds of stock-level predictive signals in published re-

search9, I build upon the list of Green, Hand, and Zhang (2017) after weighing feasibility

and quality. I construct a large set of 100 firm-level characteristics based on the cross-

section of stock returns literature10. Appendix E lists the source to these characteristics.

Data on firm equities, financial statements, and macroeconomic variables is retrieved

from CRSP, Compustat, and Amit Goyal11 to build the characteristics. To obtain pre-

dictor matrix on a daily frequency, I forward fill quarterly or annual accounting-based

characteristics.

I exclude in the data financial firms with SIC code between 6000 and 6999 and small-

firms whose market caps are below 0.01% of the aggregate market12. My sample begins

in January 1951 and ends in December 2022 (71 years) and includes 7422 firms that on

average account for 74.4% of the total market value.
9Harvey, Liu, and Zhu (2016) studied 316 firm characteristics and common factors.

10The Machine Learning Toolbox by Adrien d’Avernas, Martin Waibel, and Chunjie Wang.
11Amit Goyal’s website.
12The illiquidity from small stocks might contaminate the analyses. Financial firms that can sustain

very high leverage might also drive the results. I include financial firms in robustness tests, in which the
sample expands to 8004 unique stocks and accounts for 90.3% of the total market value on average. The
results persist.
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Now that I have obtained equity returns and firm-level characteristics, I apply the Mer-

ton (1974) model to unlever the returns. This model is the simplest baseline to account

for the leverage effect. If this straightforward approach already produces a sparser SDF,

it would support my argument that the factor zoo is partly driven by the non-linearity of

return transformation. In Section V, I use two additional methods as robustness checks:

first, by assuming corporate debts are risk-free, and second, by reconstructing asset re-

turns using corporate bond data. Both yield results consistent with the Merton case.

Asset returns are the changes in market value of firms. Under the assumption that

the total value of a firm follows GBM, the Merton model argues that the equity of the

firm is a call option on the underlying value of the firm with a strike price equal to the

face value of the firm’s debt that can be priced by

E = V N (d1) − e−rf T BN (d2) (18)

d1 = ln(V/B) + (rf + 0.5σ2
v)T

σv

√
T

(19)

d2 = d1 − σv

√
T (20)

where E is the market value of equity, V is the market value of the firm, σv and σe are

the volatilities of the assets and equities, B is the face value of debt, T is debt’s time-to-

maturity, and rf is the instantaneous risk-free rate. The model also implies that σe and

σv are related by13:

σe =
(

V

E

)
N (d1)σv . (21)

The Merton model translates the volatility and market value of equity into those of firm’s

asset with Equation (18) and (21). All variables except σv and V are either known or can
13Under the GBM assumption, the equity value satisfies the time-series process: dV = µvV dt+σvV dz

where dz is a standard Wiener process. It follows from Ito’s Lemma and Equation (18) that σe =(
V
E

)
∂E
∂V σv. In the BSM model, ∂E

∂V = N (d1).
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be estimated: (i) E is the product of the firm’s shares outstanding and its current stock

price; (ii) σe is measured by the annualized realized volatility of daily stock returns in

each month; (iii) B is the sum of the firm’s current liabilities and one half of its long-term

liabilities; (iv) rf is measured by the annualized return on three-month Treasury-bill rate;

and (v) T = 1.14

Instead of solving this two-equation system directly, I implement the iterative proce-

dure in Vassalou and Xing (2004) and Crosbie and Bohn (2003)15 to avoid a statistical

challenge posed by acute movements of market leverage: (1) I guess an initial value of

σ̃v = σe[E/(E + B)] and insert it into Equation (18) to infer the market value of each

firm Ṽ every day for the previous month; (2) I calculate the implied log return on assets

each day and and use the returns series to generate new estimates σ̃v; and (3) Iterate the

steps until σ̃v converges so the absolute difference in adjacent σ̃v’s is less than 10−3.

Now that I obtain a panel of asset returns (ra,t) from converged Ṽ , the last step before

implementing the estimation from Equation (17) is to build factors. I rank-normalize the

predictor matrix Zt−1 such that each factor is a zero-investment long-short portfolio.

For each predictor at each time, I obtain the rank-transformed value as the ratio of a

firm’s rank in the predictor over the number of firms. Next, I normalize the value by first

demeaning the rank-transformed predictor cross-sectionally then dividing the value by the

sum of absolute deviations from the mean of all firms. Along with the characteristics-

based factors, an additional market factor is added to capture the level of risk premia. I
14The estimations of T and B are also adopted by Chang, d’Avernas, and Eisfeldt (2021) and Gilchrist

and Zakraǰsek (2012). As a robustness check, I also apply another set of estimations following Bharath
and Shumway (2008) in which B is the total liabilities and σe is measured by annualized realized volatility
of daily stock returns in each year. The results remain consistent.

15Bharath and Shumway (2008); Gilchrist and Zakraǰsek (2012); Chang, d’Avernas, and Eisfeldt (2021)
also adopt this procedure.
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can then construct asset-based factors Fa,t following

Fa,t = Z ′
t−1 · ra,t . (22)

Testing Fa,t under the Bayesian approach discussed in Section II allows me to compare

the number of factors in the optimized model and its out-of-sample performance with its

equity counterpart

Fe,t = Z ′
t−1 · re,t . (23)

The Merton model entails the assumption of full market integration. Stock holders have

complete access to the debt market of firms and there exist SDFs that price stock, bond,

and loan market simultaneously. In reality, however, loan lenders are almost exclusively

banks and the majority of corporate bonds are held by institutions such as insurance com-

panies and pension funds. Debt markets are also much more geographically segmented

compared to the stock market. Even though households have access to the debt market

through bond ETFs and certain mutual funds, they usually trade a portfolio of diversified

bonds that do not allow flexible weight adjustments to reconstruct asset returns for spe-

cific firms. Consequently, Fa,t is not directly tradable as it is theoretical. Despite these

concerns, This method provides a solid benchmark and computational convenience. It

does not require debt data, which tends to be incomprehensive and sometimes erroneous.

It provides asset returns for almost all public firms on a daily basis from decades before

the advent of a remotely reliable corporate bonds dataset. Therefore, I use Merton model

as the baseline.
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IV. Empirical Results

A. Model Selections

Figure 4 presents the OOS R2 from the CV process for equity-based factors under both

L2-only and L1-L2 specifications with a range of hyperparameters.

When all factors are considered, the data calls for a sizable L2-shrinkage to explain

36.8% of the OOS variation (Panel (a)). The in-sample (IS) R2 decreases as I address

the concerns of overfitting by imposing higher strength of the penalty in the Bayesian

approach (higher λ and lower κ). As κ approaches 0, I use little IS information during

coefficients estimation thereby IS R2 converges to 0. On the contrary, relying too much

(large κ) or too little (small κ) IS data leads bad OOS explanation. The model is

optimized when κ is set around 0.69.

Similar OOS R2 is only possible with the inclusion of most factors after allowing for

sparsity (Panel (b)). The optimal number of factors is 88, indicating little redundancy

across factors. A small subset of these portfolios cannot span the SDF regardless of κ.

Forcing a sparse model would risk losing pricing information, shown as the significant

drop in OOS R2 moving down the plot. Despite my longer sample and wider collection of

anomalies, the result is consistent with KNS that showed all 49 factors they built survived

the shrinkage.
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Figure 4: Equity-Based Factors Fe: R2 under Singular- and Dual-Penalty

This figure presents the R2 that explain the cross-sectional variation of 100 equity-based daily factors from
1951 to 2022. The OOS R2 is derived from a 3-fold cross validation process under different combinations
hyperparameters. Panel (a) only employs L2 penalty of which the strength is measured by prior root
expected SR2 (κ). Panel (b) also employs L1 penalty of which the strength is measured by the number
of factors. Hyperparameters corresponding to highest OOS R2 are marked in the figure. Axes of
hyperparameters are ploted on logarithmic scale.
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Figure 5 presents the OOS R2 under the same specifications and hyperparameters for

asset-based factors. The situation is quite different: OOS R2 is overall higher, indicating

that asset-based factors in general carry more pricing information. While the optimal κ

under singular penalty is comparable to its equity-based counterparty (0.77 versus 0.69),

it is much higher under dual-penalty (3.16 versus 0.75), indicating that less supervision

from L2 penalty is needed when training Fa: the concern of overfitting is milder and there

is less noise in this return space. Most importantly, It only requires 5 factors to peak

the OOS R2 at 62.4%: market, 12-month momentum, return on equity, asset growth,

and revenue surprise. Compared with the optimized 88-factor equity-based SDF with

36.9% OOS R2, asset-based factors call for a much sparser SDF and explains a much

24



higher proportion of OOS variations. High R2 in the contour plot covers a much wider

area compared to Figure 4, implying some robustness in the vinicity around the optimal

specification: it is inconsequential whether to include or exclude a few anomalies, or

whether to have a slightly different root expected SR2. In other words, additional factors

provide little marginal benefit. They might introduce unnecessary noises and overfit the

IS data, thus requiring higher level of regularization evidenced by the growing optimal

L2 penalty as more factors are included (the yellow strip runs from the southeast to

the northwest in Figure 5 Panel (b)). Summing up, asset-based factors explain higher

percentage of the cross-sectional variation with fewer factors, suggesting some anomalies

in the literature are due to the omission of non-linear transformation of returns.

Figure 5: Asset-Based Factors Fa: R2 under Singular- and Dual-Penalty

This figure presents the R2 that explain the cross-sectional variation of 100 asset-based daily factors from
1951 to 2022. The OOS R2 is derived from a 3-fold cross validation process under different combinations
hyperparameters. Panel (a) only employs L2 penalty of which the strength is measured by prior root
expected SR2 (κ). Panel (b) also employs L1 penalty of which the strength is measured by the number
of factors. Hyperparameters corresponding to highest OOS R2 are marked in the figure. Axes of
hyperparameters are ploted on logarithmic scale.
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I then compare the asset- and equity-based factors in the optimized models. Equa-

tion (14) gives a closed form solution to the posterior standard error for the coefficient

estimates under the singular penalty of κ. I report top 10 most significant factors in

Table I for both sets of factors. Market and momentums are priced high in both return

spaces. The t-statistics are low for most factors, but what is important is the joint sig-

nificance of these factors and the explanatory power of the SDF constructed from them.

Table I: Coefficient Estimates under L2 Penalty

Under a singular regularization of root expected SR2 (κ), this table lists top 10 of 100 coefficient estimates
and t-statistics corresponding to the CV-implied optimal prior, sorted by the absolute values of the t-
statistics.

equity-based factors (Fe) asset-based factors (Fa)
factors b t-stat factors b t-stat
market 4.181 4.458 12-month momentum 4.737 2.696
12-month momentum 3.551 2.654 revenue surprise 4.283 2.260
1-month momentum -3.211 -2.451 return on equity 3.408 1.797
change in 6-month momentum -2.915 -2.129 market 2.013 1.774
change in shares outstanding -2.254 -1.521 6-month momentum 2.499 1.416
earnings to price 1.907 1.319 size (industry-adjusted) -2.395 -1.260
R&D to sales 1.646 1.190 change in employees (industry-adjusted) 2.209 1.156
return on equity 1.626 1.142 volatility of liquidity (share turnover) 2.193 1.151
maximum daily return -1.643 -1.123 change in 6-month momentum -1.978 -1.107
number of earnings increase 1.594 1.065 number of earnings increase 2.088 1.082

A rank of factor importance when allowing for sparsity is more informative. Without

a closed-form solution to the standard error of estimates under dual-penalty similar to

Equation (14), I rank the factor importance by their earliest entry into the the SDF when

allowing higher dimensions (moving from bottom to top in the contour plots in Figure 4

and 5). Comparing components in levered and unlevered sparse SDFs of the same length,

factors only appearing in the equity-based SDF are either capturing economically-founded

risks that are specific to the stock market, or the non-linear return transformation from
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the leverage. I rank each characteristic by its first entry into the SDF when relaxing the

number of admitted factors, setting κ corresponding to the number at optimum. Table II

demonstrates top 10 factors for each return spaces. For instance, most momentum-based

factors appear in a sparse stock pricing model but all are trivial after unlevering except

12-month momentum. On the other hand, there is evidence that labor, investment, and

profitability measures are of much higher ranks among asset-based factors.

Table II: Factor Importance Ranked under Dual Penalty

This table reports top 10 factors ranked by the their earliest entry into the SDF when allowing for higher
number of factors under dual-penalty. Factors are selected to generate highest OOS R2 from 3-fold cross
validation process with 100 candidate factors. The other hyperparameter root expected SR2 (κ) is set
at respective optimum.

ranking equity-based factors (Fe) asset-based factors, Merton (Fa)
1 market market
2 12-month momentum 12-month momentum
3 1-month momentum revenue surprise
4 6-month momentum return on equity
5 change in shares outstanding asset growth
6 sales to price employee growth rate
7 industry momentum change in employees (industry-adjusted)
8 change in 6-month momentum earnings volatility
9 earnings to price maximum daily return
10 maximum daily return size (industry-adjusted)

Even though it is out of the scope of this paper to inspect the economic interpretation

behind how specific factors might have unintendedly capture the leverage effect, rather,

I aim to measure the joint severity of the issue, this exercise still sheds a light on what

anomalies need further investigation on why they diverge in their ranks in asset versus

stock pricing.

To facilitate the comparison between factor sets, Figure 6 extracts a slice from the

contour plots from Panel (b) of Figure 4 and 5 along the optimal κ for a given number

of factors. As the figure shows, OOS R2 only starts rising substantially for equity-
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based factors toward the right of the plot when more than 4 factors are admitted. This

is consistent with KNS that showed it is never too much to add an additional factor

proposed from the literature into the equity-based SDF. There is little redundancy in

the return space. In constrast, a 5-factor model accounts for most variation in the asset

return space and very sparse models perform remarkably well. The marginal effect of

adding an additional factor into the SDF is trivial after the 5-factor model and its OOS

R2 is much higher than that of the equity-based SDF. An optimized asset-based 5-factor

SDF explains more variation than an equity-based 88-factor SDF optimized under the

same approach.

28



Figure 6: OOS R2 to Explain 100 Managed Portfolios

This figure compares asset-based and equity-based SDFs by their cross-validated R2 to explain the 100
characteristics-managed factors when the number of factors increases. L2 penalty level κ is optimized for
respective number of factors. Factor selection and coefficient estimation follows the LARS-EN algorithm.
The red texts indicate when corresponding factors first enter the asset-based SDF.
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Asset growth measures investment while revenue surprise and return on equity mea-

sures profitability. Therefore, the 5-factor asset-based model that consists of 12-month

momentum, return on equity, asset growth, and revenue surprise also provides some ev-

idence on production-based theories such as Hou, Xue, and Zhang (2015) and Lin and

Zhang (2013) that argue high investment relative to low expected profitability must im-

ply low costs of capital, and low investment relative to high expected profitability must

imply high costs of capital.

Market captures the level of equity or asset risk-premia. To focus on understanding
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the factors that help explain cross-sectional anomalies, I orthogonize every characteristics-

based factors with respect to the market factor to examine the incremental power of other

factors16. I denote these beta-neutral factors as F̃e,t and F̃a,t and employ the exact same

Bayesian methods.

Figure 7 presents the OOS R2 from the CV process for equity- and asset-based beta-

neutral factors under L1-L2 specifications with a range of hyperparameters. Similar as

before, the data still calls for the inclusion of most equity-based factors, the optimal

specification in the asset-based SDF further reduces the dimensionality to three: 12-

month momentum, return on equity, and revenue surprise. There are two important

differences from Fa. First, the OOS R2 of F̂a nose dives across all specifications of

hyperparameters after orthogonizing against market. This sharp drop is not observed in

the asset-based models. In other words, including market in the factor model significantly

enhances the OOS performance in the asset return space, highlighting its contribution to

explain the cross-sectional variation. Second, Panel (b) suggests that high OOS R2 area

clusters in the low dimension. In contrast, high OOS R2 area covers both low and high

dimensions when market is included: even though additional factors from Fa add little

incremental benefit on top of the optimized 5-factor model, adding more factors does not

impede the OOS prediction as long as a higher level of L2 is imposed. On the contrary,

additional factors from Fă on top of the optimized 3-factor model negative impact in

OOS prediction in the beta-neutral case. The two differences are not observed in the

equity return space after orthogonizing against the market. These results suggest that

there is much less left to explain on top of the market in the asset return space, and

many factors are mostly composed of noises after removing the market element from the
16For each characteristics-based factor, I run a time-series regression on the market: Ft ∼ βMKTt +α;

then I calculate the corresponding beta-neutral factor as the remainder: F̃t = Ft − β̂MKTt. For equity-
based factor set Fe, the market refers to the value-weighted stock market returns; for asset-based sets,
it refers to the value-weighted asset returns.
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factors because including them exacerbates the over-fitting problem.

Figure 7: OOS R2 under Dual-Penalty for Beta-Neutral Factors

This figure reports the OOS R2 under different hyperparameters from 3-fold cross validation process
using 100 factors. Panel (a) depicts the result for beta-neutral equity-based factors (F̃e,t) and Panel
(b) for beta-neutral asset-based factors (F̃a,t). Hyperparameters corresponding to highest OOS R2 are
marked in the figure. Axes are ploted on logarithmic scale.
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Similar to Figure 6, Figure 8 takes a cut in the contour plots of Figure 7 along the ridge

of maximal OOS R2 from bottom to top where we optimize L2 shrinkage (κ) for each level

of sparsity. While the trend remains similar for the rest compared to pre-orthogonizing

cases, asset-based factors displays an apparent decline. OOS R2 keeps rising toward

the right of the plot by including more equity-based factors. Beta-neutral asset-based

factors have lower explanatory power for cross-sectional variations not only compared

to beta-neutral levered factors, but also to pre-orthogonizing asset-based factors. These

results point to a CAPM-like parsimonious factor model in the asset return space whilst

equity-based factor models leave many anomalies unanswered.
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Figure 8: OOS R2 to Explain 100 Managed Portfolios (Beta-Neutral)

This figure compares asset-based and equity-based SDFs by their cross-validated R2 to explain the
100 characteristics-managed factors orthogonized against the market factor when the number of factors
increases. L2 penalty level κ is optimized for respective number of factors. Factor selection and coefficient
estimation follows the LARS-EN algorithm. The red texts indicate when corresponding factors first enter
the asset-based SDF.
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B. OOS Performance of SDF-implied MVE Portfolios

The discussion so far is restricted to hyperparameter tuning. Once κ and number of

factors are set to the optimums, I can proceed to build MVE portfolios and compare

their OOS performance. I re-estimate b̂ under the optimal hyperparameter excluding a

time window as testing period. Following KNS, I set the testing period for daily factors
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from January 2005 to December 202217. The OOS MVE portfolo for each factor set is

given by:

MV Et = b̂′ · Ft . (24)

Table III and Figure 9 report the cumulative log returns and the Sharpe ratios for markets

and SDF-implied MVE portfolios for factors.

Figure 9: Cumulative Return of Markets and SDFs-implied MVE portfolios

This figure demonstrates the OOS cumulative logarithmic returns of Market (Panel (a)) and SDF-implied
MVE (Panel (b)) portfolios from 2005 to 2022. Model hyperparameters (κ and number of factors) are
optimized using data from 1951 to 2004.
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17In robustness tests, I also set different start dates for the testing period: January 2000 and January
2010. The results persist.
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Table III: Cumulative Returns and Sharpe Ratios of MVEs and MKTs in Testing Periods

This table reports the cumulative logarithmic returns and Sharpe ratios of 4 portfolios: market portfolios
and implied MVE portfolios in both asset and equity return spaces. MVE portfolios are optimized with
sample from February 1951 to December 2004. Empirical standard errors are derived from bootstrapping
with 1000 resamples and reported in the parentheses.

market portfolios implied MVE portfolios
equity asset equity asset

log cumulative return 1.31 1.10 3.30 6.60
Sharpe ratio 0.46 0.98 0.75 1.20
bootstrap s.e. (0.24) (0.24) (0.23) (0.25)

Between the market returns, stock market has the highest mean and volatility. This is

no surprise because market portfolios long riskier securities and short safer ones. Equities

as call options to firms assets, are exposed to higher systematic risks. Under classic

asset pricing theory, MVE frontier is an equivalent representation of the SDF thereby

carrying the highest Sharpe ratio, thus I focus on comparing the Sharpe ratio between

portfolios. In an bootstrapping exercise, I randomly resample returns of the same length

with replacement from all spaces and calculate their respective Sharpe ratio. Repeating

the step for 1000 times yields empirical standard errors, which I report in the parentheses

in Table III. Equity market is less efficient than asset markets, with lower Sharpe ratio.

On the other hand, after we consider efficient factor-mimicking portfolios, the cumulative

returns all drastically increase. On average equity-based SDF consisting of 88 factors

still underperforms compared to 5 asset-based factors that were optimized under the

same Bayesian methods (0.75 versus 1.20).

Now I formally inspect alphas for various combinations of testing assets and bench-

marks. For each individual equity-based factor, I first regress its excess return on the

equity-based implied MVE portfolio using OOS data and collect the resulting alpha.

Next, I perform a similar regression of the same excess return but on the asset-based im-
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plied MVE portfolio to obtain its alpha. Finally, I compare these alphas. If the number

of statistical significant alphas is smaller when tested against one benchmark, it implies

that this benchmark serves better as the MVE portfolio. Figure 10 reports the result.

Only 15 anomalies are not resolved when tested against asset-based MVE portfolio that

is managed by only 5 characteristics, compared to 23 anomalies when tested against

equity-based MVE portfolio that is managed by 88 characteristics. There are 6 alphas

subsumed by neither benchmarks. They are corporate investment, price delay, earnings

growth rate, tax income to book income, financial performance score, and growth in com-

mon shareholder equity. Overall, the asset-based MVE implied portfolio not only prices

asset returns, it also serves a better benchmark and resolve many anomalies when tested

against a wide collection of equity portfolios.
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Figure 10: Alphas of 100 Equity Portfolios against Asset- and Equity-Based SDFs

This figure reports the absolute value of annualized alphas in percentage of 100 equity-based charac-
teristics-managed portfolios, tested against the equity-based MVE portfolio (x-axis) and against the
asset-based MVE portfolio (y-axis). When the benchmark is asset portfolio, there are only 15 alphas
still statistically significant, with an average of 0.74%; when the benchmark is equity portfolio, there are
23 alphas statistically significant, with an average of 0.94%.
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In the previous subsection, I briefly touched upon how unlevering equity returns might

bring us closer to CAPM. Therefore, I test MVE protfolios against various markets: the

stock market return, Fama-French 4 factors returns, and asset market returns. If my

hypotheses are correct that many anomalies arise because they are not tested against the

correct market, then assets’ α’s should drop in both economic scale and statistcal signifi-

cance along these benchmarkes that employ progressively better measures of the market.

I choose the MVE portfolios as testing assets to further investigate their performance.
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The results are indeed consistent with my story.

Table IV reports the annualized abnormal returns α’s (in %) from time-series regres-

sions of MVE portfolios on benchmark portfolios. Overall, the market portfolios vary

from least to most plausible (from top to bottom), as suggested by the drop of mag-

nitude and significance of α for all testing assets; In addition, the testing assets enjoy

gradually higher abnormal returns (from left to right), as suggested by the increase of

magnitude and significance of α for all benchmark portfolios. To be more specific, I

unsurprisingly uncover the anomalies studied extensively in stock pricing literature by

regressing a 88-factor model on market (1st row, 1st column), comparable to the result

in KNS. However, once you correctly construct a new market return in the asset return

space, the anomaly vanishes (3rd row, 1st column), thereby CAPM explains away many

anomalies proposed in the literature. There still exists unexplained returns: after all, this

improved market return cannot explain all the variations of the asset-based SDF implied

MVE portfolios (Panel (a): last row, last column). The good news is, I shrink the 87

cross-sectional anomalies into 4; the bad news is: the alpha is material. Nevertheless, we

are much closer to a parsimonious CAPM specification after unlevering.
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Table IV: Annualized α of MVE Portfolios against Various Benchmarks

This table measures the distance to CAPM by checking the annualized α (in %) from regressing SDF-
implied MVE portfolios on various market portfolios and Fama-French 4 factors (market, size, value,
and profitability). The SDFs are optimized on dual-penalty. MVE portfolio and benchmark returns are
normalized to have the same standard deviation as the aggregate stock market for better comparison.
Standard errors are reported in parentheses.

benchmarks \test assets equity-based MVE asset-based MVE

equity market 5.50∗ 12.76∗∗∗

(3.03) (3.95)

Fama-French 4 Factors 3.53∗ 9.65∗∗∗

(2.03) (2.70)

asset market −1.92 7.88∗∗∗

(3.20) (4.10)
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

V. Robustness

As robustness tests, I use two alternative methods to unlever equity returns. To further

assess the effectiveness of the dimensionality reduction from the unlevering process, I

also perform a principal component rotation on equity-based factors, which is designed

to produce a more sparse SDF. The PCs of these equity-based factors serve as my third

set of factors. In this section, I introduce the introduce the construction of the three sets

of factors and then evaluate them under the same Bayesian approach. The results are

qualitative the same as the Merton method: fewer asset-based factors are able to better

explain the cross section.
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A. Unlever with risk-free

This unlevering method omits default risks. This measurement of asset-based factors is

computed by

Fă,t = Z ′
t−1 · [1N − Lt−1]′ · re,t (25)

where Lt is an N × 1 book leverage matrix defined as the ratio of book liabilities to the

sum of book liabilities and market caps. This näıve approach assumes rd,t = 0N at all

times. Due to the cross-sectional heterogeneity of leverage, the difference between the

coefficient estimates of Fă,t and Fe,t is nontrivial. The risk-free investments in the long

leg differ from short leg thereby altering the positions for stocks in the cross section: they

are not proportional to Zt−1 anymore. Doshi et al. (2019) adopted the method in their

primary analyses and found it sufficient to subsume value and volatility premium.

Fă,t stands for the opposite end of market segmentation compared to Fa,t. Fă,t assumes

equity holders have no access to debt markets at all. They can, however, adjust the

weights of stocks in their portfolios to roughly approximate asset returns. Unlike Fa,t,

Fă,t is directly tradable in the stock market.

B. Unlever with corporate bonds

In practice, investors especially institutional ones can build unlevered portfolios to cer-

tain extent by participating in multiple markets. With bond transactions data from

FINRA’s TRACE and bond issue and issuer characteristics from Mergent FISD, I can

build monthly corporate bond returns and reconstruct empirical asset returns as a mix-

ture of stocks and bonds returns after merging with CRSP.

Unlike equity research that shares a common clean dataset, building empirical corpo-

rate bond returns involves numerous active judgements that make the cleaning procedure

complex. Transactions in TRACE are self-reported by bond dealers and various types of
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errors are common. I delete transactions marked as errors using standard filters following

the guideline of the WRDS Bond Database (2017). Their procedures are discussed in de-

tail in Dick-Nielsen (2009), Dick-Nielsen (2014), and Asquith et al. (2013). Specifically,

after the initial filtering, I merge TRACE by CUSIP with Mergent FISD that contains

information on bond issues and calculate the return for bond k in month t as month-

over-month percentage price change plus the accrued coupon interest between coupon

payment dates:

rk,t = Prk,t + AIk,t + Ck,t

Prk,t−1 + AIk,t−1
− 1 (26)

where Prk,t is the volume-weighted average price on the last day at which the bond

was traded in month t, AIk,t is the accrued interest, and Ck,t is the coupon payment,

if applicable. The literature treats differently remaining potential errors, especially the

outliers. Dick-Nielsen et al. (2023) point out that the treatment of extreme returns are

crucial in the pricing power of bond factors. They manually check 5000 largest returns in

absolute value and identify 292 errors. Mistakenly deleting or winsorizing the remaining

4708 large returns is likely one of the reasons why pricing powers of most factors fail to

replicate. On the other hand, the average (median) absolute returns of the 292 errors

is 32000390% (56%) and thus keeping all the outliers is also likely to have a substantial

impact on any analysis using the TRACE dataset. WRDS winsorizes returns at 1%

level to reduce the impact of extreme numbers while I skip the step. Instead, I identify

and delete the 292 erroneous bond-month observations by Dick-Nielsen et al. (2023)18

and restrict the bond sample by the following criteria: (1) float-rate bonds; (2) not

under Rule 144a; and (3) Bond Type is equal to US Corporate Convertible (CCOV),

US Corporate Debentures (CDEB), US Corporate Medium Term Note (CMTN), US

Corporate Medium Term Note Zero (CMTZ), or US Corporate Paper (CP). I aggregate
18In practice, I mark the bond-month observations that would be winsorized in the WRDS bond return

database. I remove any marked returns that do not exist in the dataset of Dick-Nielsen et al. (2023).
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the firm-level of corporate bond return as

rbi,t
=

∑
k∈Ri,t

wk,t−1rk,t (27)

where Ri,t is the set of firm i’s bonds with non-missing returns during the month t, and

wk,t−1 = mvk,t−1/
∑

j∈Ri,t−1 mvj,t−1 is the fraction of the market value of bond k among

all bonds of firm i in the previous month t − 1. Next, I can calculate the empirical

asset returns on the firm-level as the value-weighted average of stock and bond returns,

assuming that the bond returns are representative of the entire debts of the firm. I denote

the asset returns as rä,t. Corresponding factors is given by

Fä,t = Z ′
t−1 · rä,t . (28)

My treatment of bond returns differs from Dick-Nielsen et al. (2023). They only include

bonds that are traded within the last five trading days per month. If a firm has a bond

that is not traded within the window, they impute this missing return from the observed

average bond return using a duration adjustment. In constrast, my dataset has neither

the window restriction or imputation. As the corporate bond market does not display

high-level of trading activity, I intend to keep as many true transactions as possible so that

the corresponding factors serve as a tradable robustness check for the Merton-unlevered

factor. This different treatment also introduces a slight gap during the data filtering.

There might be outliers in my dataset that have not been manually inspected if they are

traded before the window. Nevertheless, I deem tradability the priority for the exercise

and this approach represents the most suited option available for this paper.

Fä,t is not only tradable as a mixture of bonds and stocks, but also properly accounts

for the default risks. Despite me keeping more observations, the dataset is notably limited
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in both cross section and time series. It begins in July 2002 and is only monthly. Daily

frequency would further decimate the average number of observations in the sample per

period from an already small 663. This limitation directly shakens the estimation of

the covatiance matrix of factors Σä, whose stability is one of the central pillars of the

Bayesian approach. The unlevering approach also relies heavily on the bold assumption

that returns backed out from TRACE reasonably represent the compensation for the

credit risk when loans are likely to have different superiority than bonds and are often

convenant attached. Nevertheless, Fä,t accommoadates realistic heterogeneity in how the

same characteristics instrument the sensitivity of different securities. In this case, markets

are partially segmented.

C. PCs of levered factors

KNS find that applying a PC rotation on equity-based factors results in a sparser SDF

under the Bayesian approach. While PCs by construction reduce the dimensionality of

the cross section, the transformations also diminishes the interpretability of economically

motivated factors and does not explain why certain predictors have powers whilst others

do not. I facilitate the comparision by considering PCs of Fe,t as another set of factors:

Pe,t = Q′
eFe,t (29)

where Qe is the matrix of eigenvectors of Σe.

Summing up, my robustness test includes one sets of daily characteristics-based factors

(Fă,t), one set of monthly characteristics-based factor (Fä,t), and one set of daily PC (Pe,t

), built from the same set of 100 predictors. Table V compare them against Fa,t and Fe,t

used in previous sections.
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Table V: Comparison of Asset- and Equity-Based Factors

This table compares the advantages and drawbacks of five sets of factors used in Bayesian approach
discussed in Section II.

Fe Fa Fă Fä Pe

return types equity asset (Merton) asset (risk-free) asset (bonds) PCs of equity
sample period 1951-2022 1970-2022 1970-2022 2002-2022 1951-2022
frequency daily daily daily monthly daily
average firms per period 930 917 921 663 -
default risks - ✓ ✗ ✓ -
tradability ✓ ✗ ✓ ✓ ✓

economic intepretation ✓ ✓ ✓ ✓ ✗

market segmentation - fully integrated fully segmented partially segmented -

D. Model Selections

The optimal SDF implied by the other two sets of asset-based factors (Fă, Fä) and the

PCs of equity-based factors (Pe) are sparser than Fe but less so than Fa. The figures

depicting their OOS R2 against different hyperparameters can be found in Appendix F

and key hyperparameters are collected in Panel (a) of Table VI. Even though model

improvement can be achieved through optimizing Z (e.g. principal component or partial

least squares), there seems to be higher marginal gain by simply unlevering the return,

even just under the assumption that all debts are risk-free, or reconstructing the empirical

asset returns with limited access to the corporate bond returns.
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Table VI: Optimal Hyperparameters under Singular- and Dual-Penalty

This table collects CV-implied optimal hyperparameters for 10 sets of factors built from the same 100
characteristics. They are one equity-based factor (Fe), three asset-based factors (Merton: Fa, stock plus
risk-free rate: Fă, and stock plus bond: Fä), one PCs of equity-based factor (Pe), and their respective
beta-neutral factors after orthogonizing against the market. For L2-only regularization, the hyperpa-
rameter is the root expected SR2 (κ); For L1-L2 regularization, the hyperparameters include κ and the
number of factors.

Panel (a): factors including market
Fe Fa Fă Fä Pe

L2 Penalty κ 0.69 0.77 0.45 1.84 0.69

L1-L2 Penalty κ 0.75 3.16 0.64 3.88 0.75
number of factors 88 5 42 21 27

Panel (b): beta-neutral factors
F̃e F̃a F̃ă F̃ä P̃e

L2 Penalty κ 0.46 0.36 0.33 0.01 0.46

L1-L2 Penalty κ 0.46 1.84 1.44 32.00 0.46
numebr of factors 99 3 15 1 59

Building upon Figure 6, Figure 11 reports the OOS R2 of alternative sets of factors

to explain the cross section by allowing for more factors estimated from Equation 17.

Both alternative asset-based factors and PCs of equity-based factors are in between eq-

uity-based factors and Merton-unlevered asset-based factors in terms of sparsity: fewer

factors are sufficient to capture the cross-sectional variation but the ceiling of OOS R2

is similar to the levered space. This result is striking: it provides evidence that even if

the stock market and the debt market are entirely segmented and equity holders have

zero access to the bond market, they can still benefit from reweighting the economi-

cally-motivated portfolios with a leverage matrix. Correctly accounting for firm-level,

instead of stock-level risks, allows a small number of factor-mimicking portfolios that can

compete against complicated synthetic portfolios built from conventional dimension re-
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duction techniques. In reality, debt and stock markets are neither entirely segmented nor

integrated. Investors have limited access to the bond and loan market. Reconstructing

firm assets from a mixture of corporate bonds and stocks allows investors to halve the

number of characteristics-managed portfolios. This is evidenced by the training result of

bond-unlevered factors. it drastically reduces the required number from 88 to 21. Note

that the OOS R2 of bond-unlevered asset-based factors is not directly comparable to

the rest sets of results due to their frequency discrepancy. Nevertheless, it sends out the

message that investors can construct an efficient portfolio from a mix of bonds and stocks

managed by a fewer economically founded predictors.
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Figure 11: OOS R2 to Explain 100 Managed Portfolios

This figure compares asset-based and equity-based SDFs by their cross-validated R2 to explain the 100
characteristics-managed factors when the number of factors increases. L2 penalty level κ is optimized for
respective number of factors. Factor selection and coefficient estimation follows the LARS-EN algorithm.
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For the alternative asset-based factors, I also report the results after orthogonizing

every characteristics-based factors with respect to the market factors in Panel (b) of Ta-

ble VI and Figure 12. I denote these beta-neutral factors as F̃ă,t, F̃ä,t, and P̃e,t. For F̃ă

and P̃e, OOS R2 already peak when fewer than a dozen factors are considered. Interest-

ingly, red (Merton-unlevered asset-based factors) and green (bond-unlevered asset-based

factors) almost move in the opposite directions to the blue line (equity-based factors): as
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one keeps learning from more equity-based factors in the data, more asset-based data only

adds noises to the training. Notably, the OOS R2 of F̃ä dropping below 0 (a reminder

that it is not directly comparable to the rest due to the frequency discrepancy) likely

arises from the interplay of several causes. Unlevering indeed helps shrink the cross-sec-

tion, and that the data contains the most noise due to the sample limitation. Figure F.4

in Appendix F reports the OOS R2 of the beta-neutral contour map. The results are

qualitatively the same compared to the Merton-unlevered asset-based factors.
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Figure 12: OOS R2 to Explain 100 Managed Portfolios (Beta-Neutral)

This figure compares asset-based and equity-based SDFs by their cross-validated R2 to explain the
100 characteristics-managed factors orthogonized against the market factor when the number of factors
increases. L2 penalty level κ is optimized for respective number of factors. Factor selection and coefficient
estimation follows the LARS-EN algorithm. The red texts indicate when corresponding factors first enter
the asset-based SDF.
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E. OOS Performance of SDF-implied MVE Portfolios

I test the implied-MVE portfolios for the alternative sets of asset-based factors. The

testing period is daily from January 2005 to December 2022, except for bond-unlevered

asset-based factors, which is monthly from Jan 2015 to December 2022. Table VII reports

the Sharpe ratios for alternative asset-based market and implied MVE portfolios.
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Compared to the main exercise, these two alternative asset-based factors are directly

tradable. Reconstructed market assets are more efficient than either bonds or stocks.

With 21 factors, investors are able to increase their Sharpe ratio (0.75 versus 1.28) com-

pared to investing in 88 stock-only factors: investing in firm assets managed by two

dozons of firm-level characteristics are significantly more efficient than either bonds or

stocks managed by a zoo of factors. Unlike Merton-unlevered factors, my building of

bond-unlevered factors prioritizes tradability, as discussed in Section III. Therefore, these

results provide strong evidence that asset pricing outperforms stock pricing.

Table VII: Sharpe Ratios of MVEs and MKTs in Testing Periods

This table reports Sharpe ratios of market portfolios and implied MVE portfolios in alternative asset
return spaces. MVE portfolios are optimized with sample from Feb 1951 to December 2004 for daily
risk-free-unlevered asset-based factors and from Feb 2002 to December 2014 for monthly bond-unlevered
asset-based factors. Empirical standard errors are derived from bootstrapping with 1000 resamples and
reported in the parentheses.

Panel (a): 2015 - 2022, daily
market portfolios implied MVE portfolios

equity asset (stock + risk-free) equity asset (stock + risk-free)
Sharpe ratio 0.46 0.68 0.75 0.75
bootstrap s.e. (0.24) (0.24) (0.23) (0.24)

Panel (b): 2015 - 2022, monthly
market portfolios implied MVE portfolios

equity asset (stock + bond) equity asset (stock + bond)
Sharpe ratio 0.55 0.82 0.75 1.28
bootstrap s.e. (0.37) (0.38) (0.39) (0.44)

I also test alternative asset-based MVE protfolios against various markets in the OOS

data. The result is reported in Table VIII. The pattern from my main analysis persists:
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the alphas decrease from top to bottom and increase from left to right. They suggest a

more efficient market factor in the asset space.

Table VIII: Annualized α of MVE Portfolios against Various Benchmarks

This table measures the distance to CAPM by checking the annualized α (in %) from regressing SDF-
implied MVE portfolios on various market portfolios and Fama-French 4 factors (market, size, value,
and profitability). The SDFs are optimized on dual-penalty. MVE portfolio and benchmark returns are
normalized to have the same standard deviation as the aggregate stock market for better comparison.
Standard errors are reported in parentheses.

Panel (a): 2005 - 2022, daily

benchmarks \test assets equity-based MVE asset-based MVE asset-based MVE
(stock + risk-free) (Merton)

equity market 5.50∗ 6.43∗∗ 12.76∗∗∗

(3.03) (2.53) (3.95)

Fama-French 4 Factors 3.53∗ 4.99∗∗ 9.65∗∗∗

(2.03) (2.04) (2.70)

asset (stock + risk-free) market 2.31 3.11 11.16∗∗∗

(3.13) (2.76) (4.14)

asset (Merton) market −1.92 −1.48 7.88∗∗∗

(3.20) (2.86) (4.10)

Panel (b): 2015 - 2022, monthly

benchmarks \test assets equity-based MVE asset-based MVE
(stock + bond)

equity market 7.20∗ 12.71∗∗∗

(3.69) (3.84)

Fama-French 4 Factors 5.14∗ 10.74∗∗∗

(2.55) (3.65)

asset (stock + bond) market −1.86 9.71∗∗∗

(2.07) (3.32)
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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VI. Conclusion

Most economically founded stock pricing factors reveal risk profile on a firm level. Build-

ing factor-mimicking portfolios in the equity return space does not reflect the fundamental

macroeconomic risks that are proxies for the utility growth. Equities are call options to

the firms’ assets. I analytically show that the non-linear return structures can distort the

risk exposure of characteristics-managed portfolios and gives rise to redundant factors.

In this paper, I shrink the cross-sectional variations of equity returns and various asset

returns with the same set of 100 firm return characteristics proposed by the literature. I

employ an economically-motivated Bayesian prior to regularize the high dimensions and

compare the optimal models across return spaces. Cross validated 5-factorasset-based

SDF outperforms its 88-factor equity counterpart in sparsity, R2, OOS Sharpe ratio, as

well as market alphas. A mixture of bonds and stocks managed by 21 characteristics

allows investors to drastically increase the highest Sharpe ratio managed by a zoo of

factors should they only consider stocks in their portfolio. A CAPM-like parsimonious

factor model exists in the asset return space, evidenced by a much lower explanatory

power of asset-based factors after orthogonizing against the market, and a drastic decrease

in the number of significant alphas.

These results attribute a substantial number of stock pricing anomalies to the leverage

effect. It is much more economically coherent to price with asset-based factors.
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Appendix A. Equity Returns and Asset Returns

Parts of the analysis in this section is based on Black and Scholes (1973) and Galai and

Masulis (1976).

From stochastic calculus the dollar return on an option, and thus the dollar return on

the equity can be described as

dE = ∂E

∂V
dV + 1

2
∂2E

∂V 2 σ2
vV 2dt + ∂E

∂t
dt , (A.1)

where E is the market value of equity, V is the market value of the firm, σv is the volatility

asset return volatility. Dividing dE by E and substituting for instantaneous returns r̃e,

we obtain from Equation (A.1)

r̃e = ∂E

∂D

V

E
r̃a . (A.2)

BSM assumes the distribution of firm assets value at the end of any finite time interval

is log normal and that the variance of the rate of return on the firm’s assets is constant.

The value for equity is

E = V N (d1) − e−rf T BN (d2) (A.3)

d1 = ln(V/B) + (rf + 0.5σ2
v)T

σv

√
T

(A.4)

d2 = d1 − σv

√
T . (A.5)

where B is the face value of debt, T is debt’s time-to-maturity, and rf is the instantaneous

risk-free rate.

Under BSM, delta equals N (d1):

∂E

∂D
= N (d1) . (A.6)

I



Thus, we obtain

r̃e = N (d1)
V

E
r̃a . (A.7)
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Appendix B. A Non-Existent Anomaly in the Equity Space

This appendix demonstrate through a Monte-Carlo simulation that an alpha arises when

one test an equity-based factor in FMB regressions while the true economy is priced by

an asset-based single factor.

A. Generate moments for a single factor economy

I begin by setting the mean and volatility of the asset-based factor F = w′ra to 10% and

20% respectively. For N = 100 firms, I generate a firm characteristic that is independently

and identically distributed (i.i.d.). This characteristic is then demeaned to form the

weight vector w. I generate leverage with a mean of 30% and standard deviation of 15%

following a truncated normal distribution. The leverage and w has a correlation of 0.2.

Next, I generate a random symmetric positive semi-definite matrix, normalized to serve

as the correlation matrix for the asset returns. Using this correlation matrix and the

weight vector w, I derive the covariance matrix Σ for the asset returns, ensuring that

the variance of F is 20%. Finally, I compute the mean returns for the firms r̄a using

Equation (7).

B. Monte-Carlo simulation

With r̄a and Σ, I simulate asset returns for 10000 periods following multi-variate normal

distribution in a Monte-Carlo simulation. For each observation, I calculate equity returns

following BSM. Lastly, I obtain w-weighted asset and equity portfolio returns.

C. FMB and alphas
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Appendix C. Expected Equity Returns and Debts

This appendix details the derivation of the relation between expected excess stock return

and the face value of debt of a firm following Coval and Shumway (2001).

Assuming the existence of an SDF that prices all assets with:

1 = E [M · R] (C.1)

where R is the gross return of any asset, and M is the strictly positive SDF. Denote the

firm’s face value of debt as B and firm’s market value of assets on maturity date as v

that is a random varible followsing probability density distribution f(v). The expected

excess equity return is

E[re(B)] = E[max(v − B, 0)]
E[M · max(v − B, 0)] − 1 (C.2)

=

∫
v=B

(v − B)f(v)∂v∫
m=0

∫
v=B

m(v − B)f(v, m)∂v∂m
− 1 (C.3)

=

∫
v=B

(v − B) [1 − E[M |v]] f(v)∂v∫
v=B

(v − B)E[M |v]f(v)∂v
(C.4)

where f(v, m) is the joint distribution of the asset value and the SDF. Applying Leib-

niz inegral rule, the derivative of expected net returns with respect to the debt can be
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expressed as

∂E[re(B)]
∂B

=

∫
v=B

(v − B)f(v)∂v ·
∫

v=B
E[M |v]f(v)∂v −

∫
v=B

(v − B)E[M |v]f(v)∂v ·
∫

v=B
f(v)∂v∫

v=B
(v − B)E[M |v]f(v)∂(s)

(C.5)

=

∫
v=B

v − B

1 − F (B)f(v)∂v ·
∫

v=B

E[M |v]
1 − F (B)f(v)∂v −

∫
v=B

(v − B)E[M |v]
1 − F (B) f(v)∂v[∫

v=B
(v − B) E [M |v] f(v)

1 − F (B)∂v

]2

(C.6)

where F (v) is the corresponding cumulative density for f(v). The numerator and de-

nominator of Equation (C.6) are composed of several conditional expectations that can

be rewritten as

E[M |v > B] · E[v − B|v > B] − E[E(M |v)(v − B)|v > B]
(E[E(M |v)(v − B)|v > B])2 (C.7)

that can be further simplified as

−Cov [E (M |v) , v − B|v > B]
(E[E(M |v)(v − B)|v > B])2 . (C.8)

When the SDF moves against the underlying firm’s market value of assets conditional on

the firm being solvent, the derivative is positive.
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Appendix D. Characteristics-Based Factor Model

I postulate a stochastic discount factor (SDF) that is projected to the payoff space X to

be a linear function of the shocks to the payoffs (Hansen and Jagannathan, 1991):

x∗ = E[x∗] + (x − E[x])′a . (D.1)

For any arbitrary asset whose payoff is x, its price p satisfies

p = E[xx∗] (D.2)

= E[x∗]E[x] + E[x(x − E[x]]′)a (D.3)

= E[x∗]E[x] + E [(x − E[x])(x − E[x])′] a (D.4)

= E[x∗]E[x] + Ωa . (D.5)

We can solve for a and insert it back to Equation (D.1):

a = Ω−1 (p − E[x∗]E[x]) (D.6)

x∗ = E[x∗] + (p − E[x∗]E[x])′ Ω−1 (x − E[x]) . (D.7)

Considering excess returns in the payoff space and pick a random zero-beta rate Rf = 1

gives

p = 0 (D.8)

x = r (D.9)

E(x∗) = 1
Rf

= 1 . (D.10)
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Denote the SDF as M , then Equation (D.7) becomes

M = 1 − E[r]Ω−1 (r − E[r]) . (D.11)

In a multiperiod world

Mt = 1 − a′
t−1 (rt − Et−1[rt]) (D.12)

where at−1 is the product of two expectations(Et−1[r] and E−1
t−1 [(r − E[r])(r − E[r])′]),

known at t − 1 before rt are realized at t. Characteristics-based asset pricing models

assume the loadings on the return shocks are linear combinations of return predictors

(e.g. firm characteristics and macroeconomic variables) and parametrize at−1 as

at−1 = Zt−1b (D.13)

where Z is a N × H predictors matrix. N is the number of assets in the economy and H

is the number of predictors. To clarify the decomposition, I assume only two predictors

in,t and jn,t in the economy where the subscripts represent the cross section and time

series respectively:

at−1 =



bii1,t−1 + bjj1,t−1

bii2,t−1 + bjj2,t−1

. . .

biiN,t−1 + bjjN,t−1


=



i1,t−1 j1,t−1

i2,t−1 j2,t−1

. . .

iN,t−1 jN,t−1


·

bi

bj

 = Zt−1b . (D.14)
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Inserting Equation (D.13) back to Equation (D.12), gives

Mt = 1 − b′Z ′
t−1 (rt − Et−1[rt]) (D.15)

= 1 −
[
bi bj

]
·

i1,t−1 i2,t−1 · · · iN,t−1

j1,t−1 j2,t−1 · · · jN,t−1




r1,t − Et−1[r1,t]

r2,t − Et−1[r2,t]

. . .

rN,t − Et−1[rN,t]


(D.16)

= 1 − b′

i1,t−1(r1,t − Et−1[r1,t]) + · · · + iN,t−1(rN,t − Et−1[rN,t])

j1,t−1(r1,t − Et−1[r1,t]) + · · · + jN,t−1(rN,t − Et−1[rN,t])

 (D.17)

= 1 − b′


i1,t−1r1,t + · · · + iN,t−1rN,t

j1,t−1r1,t + · · · + jN,t−1rN,t

−

i1,t−1Et−1[r1,t] + · · · + iN,t−1Et−1[rN,t]

j1,t−1Et−1[r1,t] + · · · + jN,t−1Et−1[rN,t]




(D.18)

= 1 − b′(Ft − Et−1[Ft]) . (D.19)

Each element in Ft is a linear combination of excess returns weighted by one predictor,

thus also tradable such that

E[Mt · Ft] = 0 . (D.20)

Solving the system of Equation (D.19) and (D.20) results in the coefficient b of the factor

model:

b = Σ−1E [Ft] = (ΣΣ)−1 ΣE [Ft] (D.21)

where Σ ≡ E
[
(Ft − E [Ft]) (Ft − E [Ft])′

]
. Empirically, b is the coefficients in a cross-

sectional regression of the factors’ population mean on its variance-covariance matrix.

In a special case, demeaning Zt−1 cross-sectionally converts factors Ft into zero-in-

vestment long-short portfolios since i1,t−1 + i2,t−1 + · · · + iN,t−1 = 0.
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Appendix F. Figures

Figure F.1: Riskless-Unlevered Factors Fă: R2 under Singular- and Dual-Penalty

This figure presents the R2 that explain the cross-sectional variation of 100 asset-based daily factors from
1970 to 2022. The OOS R2 is derived from a 3-fold cross validation process under different combinations
hyperparameters. Panel (a) only employs L2 penalty of which the strength is measured by prior root
expected SR2 (κ). Panel (b) also employs L1 penalty of which the strength is measured by the number
of factors. Hyperparameters corresponding to highest OOS R2 are marked in the figure. Axes of
hyperparameters are ploted on logarithmic scale.
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Figure F.2: Bond-Unlevered Factors Fä: R2 under Singular- and Dual-Penalty

This figure presents the R2 that explain the cross-sectional variation of 100 asset-based monthly factors
from 2002 to 2022. The OOS R2 is derived from a 3-fold cross validation process under different combi-
nations hyperparameters. Panel (a) only employs L2 penalty of which the strength is measured by prior
root expected SR2 (κ). Panel (b) also employs L1 penalty of which the strength is measured by the
number of factors. Hyperparameters corresponding to highest OOS R2 are marked in the figure. Axes
of hyperparameters are ploted on logarithmic scale.
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Figure F.3: Principal Components Pe: R2 under Singular- and Dual-Penalty

This figure presents the R2 that explain the cross-sectional variation of 100 PCs of equity-based daily
factors from 1951 to 2022. The OOS R2 is derived from a 3-fold cross validation process under different
combinations hyperparameters. Panel (a) only employs L2 penalty of which the strength is measured
by prior root expected SR2 (κ). Panel (b) also employs L1 penalty of which the strength is measured
by the number of factors. Hyperparameters corresponding to highest OOS R2 are marked in the figure.
Axes of hyperparameters are ploted on logarithmic scale.
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Figure F.4: OOS R2 under Singular- and Dual-Penalty for Beta-Neutral Factors

This figure reports the OOS R2 under different hyperparameters from 3-fold cross validation process
using 100 factors. Panel (a) depicts the result for beta-neutral riskless-unlevered asset-based factors
(F̃ă), Panel (b) for beta-neutral bond-unlevered asset-based factors (F̃ä), and Panel (c) for PCs of beta-
neutral equity-based factors (P̃e). Hyperparameters corresponding to highest OOS R2 are marked in the
figure. Axes are ploted on logarithmic scale.
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Appendix G. Coefficients Estimates and Factor Importance

This section reports coefficients estimates and factor importance for robustness sets of

factors.

Market and momentums are robust regardless of return spaces, and so is ROE for

bond-unlevered asset-based factors. Bond-unlevered asset-based factors have much higher

point estimates of coefficients, partly due to the poorly estimated covariance matrix Σ̃

with coarser data over a much shorter sample period. Given the discussion in Section V,

these numbers are at best a supplement to the daily factors in Panel (a) and (b).
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Table G.1: Coefficient Estimates under L2 Penalty

Under a singular regularization of root expected SR2 (κ), this table lists top 10 of 100 coefficient estimates
and t-statistics corresponding to the CV-implied optimal prior, sorted by the absolute values of the t-
statistics. Panel (a) reports equity-based and Merton-unlevered asset-based factors. Panel (b) reports
riskless-unlevered asset-based and PCs of equity-based factors. Panel (c) reports bond-unlevered asset-
based factors.

Panel (a)
equity-based factors (Fe) asset-based factors, Merton (Fa)

factors b t-stat factors b t-stat
market 4.181 4.458 12-month momentum 4.737 2.696
12-month momentum 3.551 2.654 revenue surprise 4.283 2.260
1-month momentum -3.211 -2.451 return on equity 3.408 1.797
change in 6-month momentum -2.915 -2.129 market 2.013 1.774
change in shares outstanding -2.254 -1.521 6-month momentum 2.499 1.416
earnings to price 1.907 1.319 size (industry-adjusted) -2.395 -1.260
R&D to sales 1.646 1.190 change in employees (industry-adjusted) 2.209 1.156
return on equity 1.626 1.142 volatility of liquidity (share turnover) 2.193 1.151
maximum daily return -1.643 -1.123 change in 6-month momentum -1.978 -1.107
number of earnings increase 1.594 1.065 number of earnings increase 2.088 1.082

Panel (b)
asset-based factors, stock + risk-free (Fă) PCs of equity-based factors (Pe)

factors b t-stat PCs b t-stat
market 1.871 2.321 PC3 4.973 5.213
12-month momentum 1.498 1.388 PC10 5.710 4.537
1-month momentum -1.091 -1.004 PC2 -1.530 -2.121
R&D to market capitalization 1.025 0.920 PC5 -2.224 -2.080
change in 6-month momentum -0.969 -0.882 PC12 2.361 1.814
return on assets 0.929 0.829 PC6 -1.740 -1.551
return on equity 0.886 0.787 PC25 1.963 1.374
change in shares outstanding -0.866 -0.766 PC28 -1.829 -1.271
return on invested capital 0.767 0.682 PC9 -1.550 -1.242
financial statement score 0.767 0.681 PC14 -1.618 -1.224

Panel (c)
asset-based factors, stock + bond (Fä)

factors b t-stat
market 18.499 3.834
1-month momentum 10.128 1.838
change in employees (industry-adjusted) 5.901 1.004
6-month momentum 5.321 0.974
skewness 5.591 0.950
change in 6-month momentum 5.292 0.947
sin stocks 4.402 0.827
dollar trading volume -4.668 -0.803
volatility of liquidity (dollar trading volume) 4.678 0.801
12-month momentum 4.135 0.762
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Table G.2: Factor Importance Ranked under Dual Penalty

This table reports top 10 factors ranked by the their earliest entry into the SDF when allowing for higher
number of factors under dual-penalty. Factors are selected to generate highest OOS R2 from 3-fold cross
validation process with 100 candidate factors. The other hyperparameter root expected SR2 (κ) is set
at respective optimum.

equity-based factors (Fe) asset-based factors, Merton (Fa)
1 market market
2 12-month momentum 12-month momentum
3 1-month momentum revenue surprise
4 6-month momentum return on equity
5 change in shares outstanding asset growth
6 sales to price employee growth rate
7 industry momentum change in employees (industry-adjusted)
8 change in 6-month momentum earnings volatility
9 earnings to price maximum daily return
10 maximum daily return size (industry-adjusted)

asset-based factors, stock + risk-free (Fă) asset-based factors, stock + bond (Fä)
1 market market
2 12-month momentum 1-month momentum
3 change in shares outstanding dollar trading volume
4 1-month momentum volatility of liquidity (dollar trading volume)
5 maximum daily return skewness
6 earnings to price change in 6-month momentum
7 asset growth 6-month momentum
8 return volatility illiquidity
9 change in 6-month momentum change in employees (industry-adjusted)
10 industry momentum cash flow to debt
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