Abstract

We document for the US and Continental Europe that home–production time remained essentially flat during the last 50 years while changes in market time and leisure offset each other. We then focus on the US and France during 1970–2005 which are on the opposite sides of the spectrum: while US market time did not change much, French market time decreased most strongly. We document for the US and France that capital in home production and imputed labor productivities of home production have risen. We build a version of the growth model with capital in market and home production to account for the time allocation in both countries. We find that the interaction between taxes, home capital, and home–labor–augmenting technical change is crucial.

Keywords: time allocation; home production; leisure; taxes.

JEL classification: B1; J4.
1 Introduction

How do people allocate their time? The seminal contribution of Prescott (2004) put this classic question in economics into the focus of research in quantitative macroeconomics. Prescott showed that taxes account for the different trends of hours worked in the market in the US and Europe where hours refer to hours per working–age population. In this paper we shed new light on the question how people in different countries have allocated their time during the last forty or so years. We focus on the broad categories market work, home work, and leisure and start by documenting new facts about these broad categories from Multinational Time Use Surveys (MTUS henceforth) from the US and the large Continental European countries. While the facts about the time allocation in the US were documented by Ramey and Francis (2009) and Aguiar and Hurst (2007), there is little comparable work about the time allocation outside of the US, in particular about how Europeans split their non–market time between home production and leisure. We fill this gap in the literature for the period 1970–2005. The key stylized fact that emerges from our analysis is that in both the US and Continental Europe hours devoted to home production stayed roughly constant while changes in market hours and leisure roughly offset each other.

We then narrow our focus on the two countries that are at the opposite ends of the spectrum, that is, the US and France. Whereas in the US the allocation between market time and leisure did not change much, France experienced the largest decrease in market hours and consequently the largest increase in leisure. The goal of this paper is understand why in both countries the margin of adjustment was between market hours and leisure while home hours remained flat. To this end, we build a version of the growth model with the following key features: consumption is produced both in the market and at home whereas investment is produced only in the market; capital and labor are used in both market production and home production. To discipline the model, we require that it be consistent with the observed labor productivities of market work and home work and with the observed relative prices of market and home investment. Except for

1Becker (1965) started the modern literature on time allocation. Other contributions to the recent literature include and Greenwood et al. (2005), Ngai and Pissarides (2008), Rogerson (2008), Olovsson (2009), Rendall (2010), McDaniel (2011), Guner et al (2012a,b), Ngai and Petrongolo (2013), and Bick and Fuchs-Schuendelen (2014).

2We stop in 2005 before the Great Recession, which we view as a special event to be studied separately.
the labor productivity of home production, we can use off–the–shelf values for these statistics. To calculate the labor productivity of home production, we impute the value added produced at home following the income approach outlined for the US by Bridgman (2013) and divide the imputed value added by hours worked from time use surveys. To the best of our knowledge, we are the first to provide numbers for labor productivity of home production in France. In a companion paper, Bridgman et al. (2014), we extend this analysis and calculate the labor productivity of home production for a set of OECD countries.

We calibrate our model to match the allocation of time in the US in 1970 and 2005 as well as the paths of the labor productivities in the market and at home and the relative prices of market and home investments. We then feed into our model the actual French data series for taxes, labor productivities, and the relative prices of investments. We find that the otherwise unchanged model accounts well for the time allocation in France. In particular it replicates that the time allocated to homework remained roughly constant, that the time allocated to market work decreased by roughly the same number of hours as the time allocated to leisure increased, and that the changes along this margin were large in France and small in the US.

Our findings are closely related to the observation of Freeman and Schettkat (2005) that while the US experienced a “marketization of services” during which people substituted market–produced consumption for home–produced consumption, this did not happen in France. One interpretation of this is that American people replaced hours worked at home by hours worked in the market, but French people didn’t because of high French taxes [Rogerson (2008)]. The data do not support this interpretation, as hours worked at home stayed essentially unchanged and at similar levels in both the US and in France. One might therefore be tempted to conclude that the marketization of services is a myth. The new evidence on value added produced at home that we provide does not support this conclusion. Instead, it shows that while Americans reduced the share of home–produced consumption in total consumption, the French didn’t. In other words, there was a marketization of services only in the US. The new evidence on labor productivity at home that we provide also shows that the French experienced a much stronger increase in the labor productivity of home production than the Americans. This allowed the French to keep the share of home consumption in total consumption unchanged without in-
creasing the share of home hours in total hours. We emphasize that our model is consistent with these facts: it generates a marketization of services in terms of value added but not in terms of hours worked, and this happen only in the US.

The work of Greenwood et al. (2005) and of McDaniel (2011) is also related to what we do here. Greenwood et al. focused on the long–run trend of increasing female labor supply. They argued that a crucial factor behind this trend is the increase in labor–saving household capital that happened after the decline in their relative price. We find that while labor–saving capital used in home production is key for understanding the allocation of non–market time in the US during the last forty or so years, labor–augmenting technical change in home production is more important in France. McDaniel introduced capital into the model of Rogerson (2008), but she restricted its use to market production. We find that modeling capital in home production is critical to match the allocation of time between home production and leisure.

The rest of the paper is organized as follows. In the next section, we carefully document the facts about the European time allocation. In the subsequent section, we lay out our environment and characterize the equilibrium. Section 4 explains how we connect our model with the US data. Section 5 contains the results for France. Section 6 concludes. An appendix contains some technical details.

2 Facts

In this section, we document basic facts about time allocation and home production. While the facts for the US are well known, the facts about France are not.

2.1 Facts about the Allocation of Time

Our data sources for the facts about time allocation are time use surveys that were standardized by the Multinational Time Use Study. We use standard definitions of market work, home work and leisure. Table 7 in Appendix B.1 summarizes these definitions. We start by reporting the facts about the time allocation in the US and the three large Continental European countries France, Germany, and Italy. All numbers are in percent of the total available time of an average
person. So, for example, the numbers for hours of market work are obtained as the total hours of market work in the economy divided by the total available hours. An issue arise because outside of the US time use surveys are not conducted as regularly as in the US. We deal with that issue by interpolating and extrapolation the data points we have. Appendix B.2 explains the details.

Figures 1 show the results. The dots in the figure indicate the years in which time use surveys were conducted. We can see that hours worked at home behaved similarly in all countries: they declined somewhat and then converged to similar levels towards the end of the sample. In contrast, market hours decline in all three European countries but stayed roughly flat in the US.
Hours allocated to leisure showed the opposite trends than market hours. While the US facts are well known from the work of Ramey and Francis (2009) and Aguiar and Hurst (2007), the facts for the other countries are much less appreciated in the literature. In independent work, Gimenez-Nadal and Sevilla-Sanz (2012) and Fang and McDaniel (2012) also documented facts about the allocation of time outside of the US. In contrast to us, neither of these paper asked which model may account for them.

In what follows, we will narrow our focus on the US and France. The reason for leaving out Italy is that a number of key variables which we require later in our quantitative analysis are not available. The reason for leaving out Germany is that the unification introduced serious data issues at the beginning of the 1990s. We plant to return to analyzing Germany in future work. Table 1 reports the allocation of time in the US and France. All numbers listed in the table are expressed as hours per week of an average working–age person divided by the total hours available per week after sleep and personal care. For example, 0.326 in the table means that in 1970 a working–age American spent on average 32.6 percent of his time working in the market. The table implies the following key facts about the allocation time among market work, home work, and leisure: hours devoted to home production stayed roughly constant; changes in market hours and leisure roughly offset each other; in 1970, people in the US and France devoted more hours to work (at home and in the market) than to leisure; in 2005, people in the US devoted more hours to work while people in France devoted more hours to leisure.

Table 1: Hours per working–age population (fraction of total available time)

<table>
<thead>
<tr>
<th></th>
<th>US</th>
<th>France</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market production</td>
<td>0.326 0.302</td>
<td>0.335 0.227</td>
</tr>
<tr>
<td>Home production</td>
<td>0.199 0.204</td>
<td>0.237 0.228</td>
</tr>
<tr>
<td>Leisure</td>
<td>0.475 0.494</td>
<td>0.428 0.545</td>
</tr>
</tbody>
</table>

Sources: MTUS
2.2 Facts about Home Production

The goal of this subsection is to calculate the labor productivity of home production, that is, the value added produced at home divided by the hours worked at home. In the previous subsection, we calculated hours worked at home. This leaves the task of calculating value added produced at home, which is challenging because value added produced at home is mostly not traded in the market. We impute value added produced at home following the approach that underlies the BEA’s Satellite Account for Household Production.\(^3\) The BEA’s approach combines the production factors used in home production with appropriate factor prices. As production factor, we use consumer durables and hours worked at home from MTUS. As factor prices, we use the ten–year rates of return on government bonds and the hourly compensation of private household workers. In particular, to calculate home capital, we obtain investment as the sum of the final expenditure on consumer durables in constant prices from the OECD. We then use the perpetual inventory method to construct stocks of capital used in home production. We convert capital in constant prices into capital in current prices by using the price index of investment in the current period. Appendix B.3 contains more details. To calculate labor productivity of home production, we translate nominal value added into constant–price, constant–PPP value added by using the OECD price indexes for expenditure on close market substitutes to household consumption.\(^4\)

Table 2 implies the following stylized facts about home production. Labor productivity of home production grew both in the US and in France, and the growth was much stronger in France. The capital–output ratio of home production in 1970 was larger in the US than in France. The capital–output ratio of home production grew in the US whereas it fell somewhat in France. The fact that the labor productivity growth of home production is much higher in France than in the US suggests that it is potentially important to take these differences into account when in what follows we try to understand the reasons for the differences in the time allocations of the two countries. We emphasize that existing studies like Rogerson (2008) don’t

\(^3\)Landefeld et al. (2009) and Bridgman (2013) offer detailed descriptions of this approach and Schreyer and Diewert (2014) provide a simple model that justifies its assumptions.

\(^4\)The available price indexes refer to final expenditure whereas our imputed home production is value added. Using price indexes for final expenditure for value added categories works better the smaller the share of intermediate inputs in final expenditure are. In the next iteration of the paper, we will allocate more attention to this.
Table 2: Labor Productivity and Capital in Home Production

<table>
<thead>
<tr>
<th></th>
<th>US</th>
<th>France</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1970</td>
<td>2005</td>
</tr>
<tr>
<td>Labor productivity, level</td>
<td>12.3</td>
<td>12.6</td>
</tr>
<tr>
<td>Labor productivity, annual growth rate</td>
<td>0.001</td>
<td>0.028</td>
</tr>
<tr>
<td>Capital–output ratio</td>
<td>1.04</td>
<td>1.55</td>
</tr>
<tr>
<td></td>
<td>0.67</td>
<td>0.53</td>
</tr>
</tbody>
</table>

Sources: MTUS, OECD

take these differences into account but assume instead that relative to market productivity, home productivity developed in the same way in the US and France. We will return to the importance of this assumption later in the paper when we ask counterfactual questions.

3 Model

3.1 Environment

There is a measure one of identical households. Each household is endowed with one unit of time and positive amounts of the initial capital stocks for market and home production, $K_m(0)$ and $K_h(0)$. Households derive utility from market– and home–produced consumption, C_m and C_h, and leisure, L. Preferences are represented by the following utility function:

$$U(C, L) = \alpha_u \log(C - \bar{C}) + (1 - \alpha_u) \log(L)$$

$$C = [\alpha_c C_m^{\sigma_c} + (1 - \alpha_c)C_h^{\sigma_c}]^{\frac{1}{\sigma_c}}$$

where $\alpha_u, \alpha_c \in (0, 1)$ are relative weights, C is a composite consumption good, \bar{C} is a non–homotheticity term, L is leisure, and $\sigma_c \in (-\infty, 1)$ determines the elasticity of substitution between market–produced and home–produced consumption (with $\sigma_c = 0$ being the Cobb–Douglas case).

The technology for producing market output Y_m is represented by a Cobb–Douglas produc-
The production function:

\[Y_m = (K_m)^{\alpha_m}(A_m H_m)^{1-\alpha_m} \]

\(K_m \) and \(H_m \) are capital and hours worked in the market, \(A_m \) is labor–augmenting technical progress, and \(\alpha_m \) is the capital–share parameter. The technology for producing home output \(Y_h \) is represented by a CES production function:

\[Y_h = \left[\alpha_h(K_h)^{\sigma_h} + (1 - \alpha_h)(A_h H_h)^{\sigma_h} \right]^{\frac{1}{\sigma_h}} \]

\(K_h \) and \(H_h \) denote capital and hours allocated to home production, \(A_h \) is labor–augmenting technological progress, \(\alpha_h \) is the capital–share parameter, and \(\sigma_h \) determines the elasticity of substitution between home capital and home hours. We do not a priori restrict that elasticity but calibrate it so as to match key features of home production.

Turning now to the feasibility constraints, we assume that market output may be used for market consumption, \(C_m \), and for investment into market and home capital, \(X_m \) and \(X_h \), and that the marginal rates of transformation are governed by the positive parameters \(B_m \) and \(B_h \) as follows:

\[C_m(t) + \frac{X_m(t)}{B_m(t)} + \frac{X_h(t)}{B_h(t)} = Y_m(t) \]

A larger value of \(B \) implies that less consumption has to be given up for obtaining one unit of \(X \). Below we calibrate the \(B \)’s so as to match the relative prices of investment in market and home capital to market consumption.

The household faces the following additional feasibility constraints:

\[1 = H_m(t) + H_h(t) + L(t) \]

\[C_h(t) = Y_h(t) \]

\[K_m(t+1) = (1 - \delta_m)K_m(t) + X_m(t) \]

\[K_h(t+1) = (1 - \delta_h)K_h(t) + X_h(t) \]
The first constraint specifies that the amounts of time allocated to market production, home production, and leisure must add up to the total time endowment of one. The second constraint specifies that home–produced consumption equals home–produced output. The last two constraints describe the accumulation of capital where $\delta_m, \delta_h \in (0, 1)$ denote the depreciation rates on market and home capital.

3.2 Equilibrium

Choosing market consumption as the numeraire, the household’s budget constraint is given as:

$$(1 + \tau_{cm})(C_m + p_hX_h) + (1 + \tau_{xm})p_mX_m = (1 - \tau_{hm})wH_m + (1 - \tau_{km})rK_m + T$$

where p_h and p_m are the relative prices of investment for home and market capital, w and r denote the wage and interest rate in terms of market consumption, τ_{cm}, τ_{xm}, τ_{hm}, and τ_{km} denote the tax rates on consumption, investment for market production, labor income, and capital income and T is a lump–sum rebate of the resulting tax revenues. Investment in home capital is taxed at the same tax rate as market consumption because it is composed of durable consumption goods and consumption taxes do not distinguish between durable and non–durable consumption goods.\(^5\) Dividing the budget constraint by consumption taxes gives:

$$C_m + p_hX_h + (1 + \tau_x)p_mX_m = (1 - \tau_w)wH_m + (1 - \tau_r)rK_m + T$$

where the effective tax rates are given as:

\[
\begin{align*}
\tau_x & \equiv \frac{\tau_{xm} - \tau_{cm}}{1 + \tau_{cm}} \\
\tau_w & \equiv \frac{\tau_{hm} + \tau_{cm}}{1 + \tau_{cm}} \\
\tau_r & \equiv \frac{\tau_{km} + \tau_{cm}}{1 + \tau_{cm}}
\end{align*}
\]

\(^5\)A broader definition of home capital would include residential housing. We do not use that broader definition here because we think that the key margin of substitution between home capital and labor refers to consumer durables (e.g., washing machines) versus labor. See Greenwood and Hercowitz (1991) for a different treatment that includes residential housing in home capital.
Putting the different ingredients together, the household’s problem becomes:

\[
L = \sum_{t=0}^{\infty} \beta^t \left\{ \alpha_u \log(C(t) - \bar{C}) + (1 - \alpha_u) \log(L(t)) \\
+ \eta_c(t) \left[\alpha_c C_m(t)^{\sigma_c} + (1 - \alpha_c) C_h(t)^{\sigma_c} \right]^{\frac{\sigma_c}{\sigma}} - C(t) \\
+ \eta_h(t) \left[\alpha_h K_h(t)^{\sigma_h} + (1 - \alpha_h)(A_h(t) H_h(t))^{\sigma_h} \right]^{\frac{\sigma_h}{\sigma}} - C_h(t) \\
+ \lambda(t) \left[(1 - \tau_w(t)) w(t) H_m(t) + [1 - \tau_r(t)] r(t) K_m(t) + T(t) \\
- C_m(t) - p_h(t) X_h(t) - [1 + \tau_x(t)] p_m(t) X_m(t) \right] \\
+ \phi_m(t) \left[(1 - \delta_m) K_m(t) + X_m(t) - K_m(t+1) \right] \\
+ \phi_h(t) \left[(1 - \delta_h) K_h(t) + X_h(t) - K_h(t+1) \right] \\
+ \mu(t) \left[1 - L(t) - H_m(t) - H_h(t) \right] \right\}
\]

Appendix A lists the first–order conditions to the household problem.

Definition. A competitive equilibrium are sequences of effective tax rates \(\{\tau_s(t), \tau_w(t), \tau_r(t)\}\), prices \(\{p_h(t), p_m(t), w(t), r(t)\}\), allocations \(\{H_m(t), H_h(t), L(t)\}\), \(\{K_m(t+1), K_h(t+1)\}\), \(\{X_m(t), X_h(t)\}\), \(C_m(t), C_h(t)\) such that

- taking prices, wages, interest rates, effective tax rates and the initial capital stocks as given, \(\{H_m(t), H_h(t), L(t), K_m(t+1), K_h(t+1), X_m(t), X_h(t), C_m(t), C_h(t)\}\) solve the problem of the household

- taking prices and wages as given, \(H_m(t), K_m(t)\) maximize profits

- markets clear.

Eliminating the multipliers, the first–order conditions to the household problem imply 4 consolidated conditions that have obvious interpretations. First, the optimal allocation of time between leisure and market work equalizes the marginal utilities of leisure and market work:

\[
\frac{1 - \alpha_u}{L(t)} = \frac{\alpha_u}{C(t) - \bar{C}} \frac{C(t)}{C_m(t)} \left[1 - \tau_w(t) \right] w(t)
\]

The marginal utility of market work is distorted by the income tax \(\tau_w(t)\). Second, the optimal
allocation of time between home work and market work equalizes the marginal utilities of homework and market work:

\[
(1 - \alpha_c)C_h(t)^{\sigma_c} - \sigma_h (1 - \alpha_h)A_h(t)^{\sigma_h} \frac{1}{H_h(t)^{1 - \sigma_h}} = \alpha_c \frac{1}{C_m(t)^{1 - \sigma_c}} [1 - \tau_w(t)] w(t)
\] (2)

Again, the marginal utility of market work is distorted by the income tax \(\tau_w(t)\). Third, the optimal allocation of market capital satisfies the following Euler equation:

\[
[1 + \tau_x(t)] p_m(t) \frac{C(t)^{1 - \sigma_c}}{C(t) - C} C_m(t)^{\sigma_c - 1} = \\
\beta \frac{C(t+1)^{1 - \sigma_c}}{C(t+1) - C} C_m(t+1)^{\sigma_c - 1} \left\{ [1 - \tau_x(t+1)] r(t+1) + [1 + \tau_x(t+1)] p_m(t+1) (1 - \delta_m) \right\}
\] (3)

This Euler equation is distorted by the investment taxes today and tomorrow and the capital–income tax tomorrow. Fourth, the optimal allocation of home capital satisfies the following Euler equation:

\[
p_h(t) \frac{C(t)^{1 - \sigma_c}}{C(t) - C} \alpha_c C_m(t)^{\sigma_c - 1} = \\
\beta \frac{C(t+1)^{1 - \sigma_c}}{C(t+1) - C} \left\{ (1 - \alpha_c) C_h(t+1)^{\sigma_c} - \sigma_h \alpha_h K_h(t+1)^{\sigma_h - 1} + p_h(t+1) \alpha_c C_m(t+1)^{\sigma_c - 1} (1 - \delta_h) \right\}
\] (4)

This Euler equation is not distorted by taxes because the tax on investment in household capital cancels with the tax on market consumption.

In each period, we have 14 endogenous variables: \(p_h(t), p_m(t), w(t), r(t), H_m(t), H_h(t), L(t), K_m(t+1), K_h(t+1), X_m(t), X_h(t), C(t), C_m(t), C_h(t)\). To determine these, we have the four conditions (1)–(4) from above. In addition, the feasibility constraints and the first–order conditions to the
firm’s problem imply another 10 conditions:

\[
\begin{align*}
p_m(t) &= \frac{1}{B_m(t)} \\
p_h(t) &= \frac{1}{B_h(t)} \\
r(t) &= \alpha_m Y_m(t) K_m(t)^{-1} \\
w(t) &= (1 - \alpha_m) Y_m(t) H_m(t)^{-1} \\
K_m(t+1) &= (1 - \delta_m) K_m(t) + X_m(t) \\
K_h(t+1) &= (1 - \delta_h) K_h(t) + X_h(t) \\
1 &= H_m(t) + H_h(t) + L(t) \\
C(t) &= [\alpha_c C_m(t)^{\sigma_c} + (1 - \alpha_c) C_h(t)^{\sigma_c}]^{1/\sigma_c} \\
C_m(t) + \frac{X_m(t)}{B_m(t)} + \frac{X_h(t)}{B_h(t)} &= K_m(t)^{\alpha_m}[A_m(t) H_m(t)]^{1-\alpha_m} \\
C_h(t) &= [\alpha_h K_h(t)^{\sigma_h} + (1 - \alpha_h) [A_h(t) H_h(t)]^{\sigma_h}]^{1/\sigma_h}
\end{align*}
\]

4 Connecting the Model with the U.S. Data

We start by calibrating the model to the US economy during 1970–2005. We normalize

\[A_m(1970) = B_m(1970) = B_h(1970) = 1\]

We use the information provided on McDaniel’s webpage to calculate effective tax rates:6

- \(\tau_w(t), \tau_r(t), \tau_s(t)\) for \(t \in \{1970, ..., 2005\}\)

We calculate the following parameters directly from the data:

- \(\beta = 0.96\): standard value
- \(\delta_m\) and \(\delta_h\): depreciation rates of market capital and consumer durables in NIPA
- \(\alpha_m = 0.37\): match factor income shares from the BEA.

• $B_m(t)$ for $t \in \{1970, \ldots, 2005\}$: match US relative prices of capital formation from OECD

• $B_h(t)$ for $t \in \{1970, \ldots, 2005\}$: match US relative prices of consumer durables from OECD

This leaves six parameters and the series for technological change, which we cannot calibrate individually: the three relative weights $\alpha_u, \alpha_c, \alpha_h$, the two elasticity parameters σ_c, σ_h, the subsistence term \bar{C}, and $A_m(t), A_h(t)$. We calibrate them jointly to hit six data targets and the annual time series for market and home labor productivity:

• US hours worked in the market: $H_m(t)$ for $t \in \{1970, 2005\}$ (from MTUS)

• US hours worked at home: $H_h(t)$ for $t \in \{1970, 2005\}$ (from MTUS)

• US share of home capital investment in market output: $p_h(t)X_h(t)/Y_m(t)$ for $t \in \{1970, 2005\}$ (from the OECD)

• Annual US labor productivities of market production: $Y_m(t)/H_m(t)$ for $t \in \{1970, \ldots, 2005\}$ (from the OECD)

• Annual US labor productivity of home production: $Y_h(t)/H_h(t)$ for $t \in \{1970, \ldots, 2005\}$ (from own calculations)

Since we have a non–homotheticity term in the utility function, we cannot impose balanced growth on our equilibrium path. We therefore add the initial and final capital–output ratios in market and home production as targets to pin down the initial and final capital stocks:

• $p_m(t)K_m(t)/Y_m(t)$ for $t \in \{1970, 2005\}$ (from the BEA)

• $p_h(t)K_h(t)/Y_h(t)$ for $t \in \{1970, 2005\}$ (from BEA and own calculations)

Table 3 shows that we hit the targets for labor productivity exactly. Interestingly, we end up with negative labor–augmenting technical change at home although labor productivity at home

7 There are different concept of what constitutes capital used in home production. The broadest concept includes residential housing. The narrowest concept includes only household appliances. Consumer durables is between these two concepts. We use it here because comparable data are available from NIPA for both the US and France.

8 Given that we don’t model intermediate inputs, output equals value added.
Table 3: Average Annual Growth Rates

<table>
<thead>
<tr>
<th>Data Model</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor Productivity of Market Production $\Delta Y_m/H_m$</td>
<td>1.74</td>
<td>1.74</td>
</tr>
<tr>
<td>Labor Productivity of Home Production $\Delta Y_h/H_h$</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>Technical Change in Market Production ΔA_m</td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>Technical Change in Home Production ΔA_h</td>
<td>-0.26</td>
<td></td>
</tr>
<tr>
<td>Technical Change in Market Investment ΔB_m</td>
<td>1.04</td>
<td></td>
</tr>
<tr>
<td>Technical Change in Home Investment ΔB_h</td>
<td>3.07</td>
<td></td>
</tr>
</tbody>
</table>

grew. The reason why both of these statements can be true in our model is because of massive investments in consumer durables, which were spurred by the large fall in the relative price of home capital that our model maps into large technical progress of 3.07% per year. There are two interpretations for negative labor-augmenting technical change: Americans forgot how to do basic chores at home; women with the high human capital left the home (selection).

The model has no trouble hitting the six joint targets either. As can be seen in Tables 4, we hit all targets exactly.

Table 4: Targets of the Joint Calibration

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours worked in the market H_m</td>
<td>32.6</td>
<td>30.2</td>
<td>32.6</td>
<td>30.2</td>
</tr>
<tr>
<td>Hours worked at home H_h</td>
<td>19.9</td>
<td>20.4</td>
<td>19.9</td>
<td>20.4</td>
</tr>
<tr>
<td>Share of consumer durables in GDP p_hX_h/Y_m</td>
<td>0.11</td>
<td>0.10</td>
<td>0.11</td>
<td>0.10</td>
</tr>
<tr>
<td>Capital–output ratio in the market p_mK_m/Y_m</td>
<td>2.99</td>
<td>3.14</td>
<td>2.99</td>
<td>3.14</td>
</tr>
<tr>
<td>Capital–output ratio at home p_hK_h/Y_h</td>
<td>1.04</td>
<td>1.55</td>
<td>1.04</td>
<td>1.55</td>
</tr>
</tbody>
</table>

The calibrated parameter values are in Table 5. We emphasize the following features: market-produced and home-produced consumption come out as complements; home capital and home labor come out as complements also; there is a positive subsistence level of consump-
tion. Several remarks are in order to put the calibrated parameter values into perspective. First, the value 0.08 for the relative weight on home capital is fairly low. This is likely to be due to the fact that we have defined home capital as consumer durables, which is fairly narrow. 7, for example, also includes part of infrastructure and residential housing. Second, the calibrated value of 0.76 for the elasticity substitution between home consumption and market services is lower than what is typically used. Rogerson (2008), for example, chose a value of 1.82 which is more than twice as large as our value. It is important to realize that these elasticities are not immediately comparable. Whereas our elasticity governs the substitutability between home–produced consumption and total market–produced consumption, his elasticity governs the substitutability between home–produced consumption and market–produced services, which on average are more substitutable with home–produced consumption than are market–produced goods. Third, to get a sense of the importance of the subsistence term, Table 6 expresses it as a share of total consumption, showing that it is between 10 and 30 percent of total consumption.

<table>
<thead>
<tr>
<th>Table 5: Calibrated Parameter Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative weight on consumption (\alpha_u)</td>
</tr>
<tr>
<td>Relative weight on market–produced consumption (\alpha_c)</td>
</tr>
<tr>
<td>Relative weight on home capital (\alpha_h)</td>
</tr>
<tr>
<td>Elasticity between market– and home–produced consumption (1/(1 - \sigma_c))</td>
</tr>
<tr>
<td>Elasticity between home capital and home labor (1/(1 - \sigma_h))</td>
</tr>
<tr>
<td>Non–homotheticity term (\bar{C})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 6: (\bar{C}/C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
</tr>
<tr>
<td>1970</td>
</tr>
<tr>
<td>2005</td>
</tr>
</tbody>
</table>
5 France

5.1 Feeding into the model French productivities and taxes

We leave the calibrated deep parameters unchanged and ask how well our model accounts for the allocation of time in France if we feed in the French initial and terminal capital stocks, French labor productivity in market and in home production, and French taxes. In particular, as for the US, we target the initial and final capital–output ratios in market and home production:

- \(p_m(t)K_m(t)^F / K_m(t)^F \) for \(t = 70 \) and \(05 \) from the OECD
- \(p_h(t)K_h(t)^F / Y_h(t)^F \) for \(t = 70 \) and \(05 \) from own calculations

To obtain the sequences for technical change, we target:

- \(A_m(t)^F \) for \(t = 70, \ldots, 05 \): match French labor productivities of market production from OECD
- \(A_h(t)^F \) for \(t = 70, \ldots, 05 \): match French labor productivity of home production calculated ourselves

Moreover, we feed into the model:

- \(B_m(t)^F \) for \(t = 70, \ldots, 05 \) to match French relative prices of capital formation from OECD
- \(B_h(t)^F \) for \(t = 70, \ldots, 05 \) to match French relative prices of consumer durables from OECD

We also feed into the model the French effective taxes from McDaniel’s webpage:

- \(\tau_s(t)^F, \tau_w(t)^F, \tau_r(t)^F \) for \(t = 70, \ldots, 05 \)

Figures 2a–2c depict the series for labor productivity and effective taxes in both countries. Regarding labor productivity, we can see that in 1970 there were gaps between the US and France both in the market and at home. Moreover, in the market France closed much of this gap and at home France actually overtook the US. Regarding taxes, the figures show the well known fact that the main difference between the tax systems of the two countries is that the effective income taxes in France are much larger than in the US and increased considerably.
Figure 2: US versus French Productivities and Taxes
whereas in the US effective income taxes remained constant on average. Another noteworthy fact is that effective capital taxes in the US were initially larger than in France but came down considerably and are now similar in both countries.

![Figure 3: Time Allocation Predicted by the Model](image)

The results of feeding in French taxes and productivities can be found in Figures 3 and 4. We find that our model matches the time allocations very well indeed. In particular, it does an excellent job at capturing that the level of home hours does not change much while the decrease in market hours and the increase in home hours offset each other. Also the model matches very well the level and the evolution of the capital–output ratios in both countries.

Freeman and Schettkat (2005) and Rogerson (2008) observed that a large part of the increased US hours worked in the market occurred in market services. They argued that the reason for this is that as the economy develops, many services move out of the home into the
market. Freeman and Schettkat called this “marketization of services” in the US. Rogerson formalized this idea in a model that combines the substitution of market– for home–produced services and the structural transformation between market goods and market services. He found that his model accounts well for the allocation of time between market and non–market activities in the US and Continental Europe. Our new evidence suggests that his model does not account well for the allocation of non–market time between home–production time and leisure, as it has the counterfactual prediction that French home hours should have increased which they didn’t. This raises the question whether our results speak against the hypothesis that there was marketization of services in the US but not in France. It turns that the answer to this question is negative.

To see that also in our model the US experienced marketization of services whereas France did not, it is instructive to shift the focus from the allocation of time to the composition of consumption. Figure 5 depicts the the ratio of home consumption over market consumption predicted by our model. We can see that while that ratio remained roughly constant in France, it declined strongly in the US. This implies that home–produced consumption became relatively less important in the US compared to market–produced consumption, which is consistent with a marketization of services. In our model, this behavior of consumption, however, does not translate into a similar behavior of hour worked in the market and at home. The reason is that changes in capital and labor–augmenting technical progress at home allow the consumption
composition to change in the US although home hours remained roughly flat.

Figure 5: Consumption Composition implied by the Model

To build intuition for why our model is successful at replicating the main trends of time allocation in France, we now report additional facts from two counterfactual exercises: (i) eliminate capital from home production; (ii) feed only French taxes into the calibrated US economy.

5.2 Model without home capital

One way to gauge how important the role of home capital is in our model is recalibrate a version of the model that does not have home capital but has labor as the only input into home production:

\[Y_h = A_h H_h \]

This is what McDaniel (2011) and Rogerson (2008) assumed. Figures 6 show the results. We can see that this model version does have two counterfactual implications: French home hours decline; French leisure is initially much lower than in the data and subsequently increases much more than in the data.
Figure 6: Time Allocation predicted by the Model without Home Capital
5.3 US with French taxes only

Figure 7 reports what happens in our model when we only feed in the French taxes but leave the US capital stocks and labor productivities in place. We can see that the French taxes cause most of the changes in the time allocation.\footnote{If we decompose the total effect of taxes further into the effects of the three effective taxes, we obtain the usual result that almost all the action comes from effective labor income taxes. This is not surprising because effective labor income taxes show the biggest differences between the US and France. The detailed results are available upon request.} We can also see that particularly at the beginning of the sample, taxes alone do not account fully for the behavior of hours worked at home and leisure. This implies that it is crucial for our results that in addition to processes for French taxes we feed in the processes for French labor productivities and we impose the initial and terminal French capital stocks in the market and at home.

Figure 7: Time Allocation Predicted when the U.S. has French Taxes
6 Conclusion

We have documented new facts about the time allocations in the US and France since 1970. Both in the US and France during the last forty years, market hours per working–age population decreased and leisure increased while hours devoted to home production did not change much. We have asked what accounts for the time allocations in the US and France. To answer this question, we have build a version of the growth model with market production, and home production and with capital in the production of home and market output. We have found that differences in income taxes and labor productivities are the key forces behind the differences in the time allocations in the US and France. Our next step is to extend the analysis to other countries, with Germany being on top of our list.

References

Appendix A: First–order Conditions of the Household Problem

The first–order conditions to household’s problem stated in the body of the paper are given by:

\[
\begin{align*}
\frac{\partial L}{\partial C(t)} : 0 &= \alpha_u \frac{C(t)}{C(t) - \bar{C}} - \eta_c(t) \\
\frac{\partial L}{\partial L(t)} : 0 &= 1 - \alpha_u \frac{L(t)}{L(t)} - \mu(t) \\
\frac{\partial L}{\partial C_m(t)} : 0 &= \eta_c(t)C(t)^{1-\sigma_c} \alpha_c C_m(t)^{\sigma_c-1} - \lambda(t) \\
\frac{\partial L}{\partial C_h(t)} : 0 &= \eta_c(t)C(t)^{1-\sigma_c} (1 - \alpha_c) C_h(t)^{\sigma_c-1} - \eta_h(t) \\
\frac{\partial L}{\partial H_m(t)} : 0 &= \lambda(t)[1 - \tau_w(t)] w(t) - \mu(t) \\
\frac{\partial L}{\partial H_h(t)} : 0 &= \eta_h(t)C_h(t)^{1-\sigma_h} (1 - \alpha_h) A_h(t)^{\sigma_h} H_h(t)^{\sigma_h-1} - \mu(t) \\
\frac{\partial L}{\partial X_m(t)} : 0 &= -\lambda(t)[1 + \tau_x(t)] p_m(t) + \phi_m(t) \\
\frac{\partial L}{\partial X_h(t)} : 0 &= -\lambda(t)p_h(t) + \phi_h(t) \\
\frac{\partial L}{\partial K_m(t+1)} : 0 &= -\phi_m(t) + \beta \left[\lambda(t+1)[1 - \tau_r(t+1)] r(t+1) + \phi_m(t+1)(1 - \delta_m) \right] \\
\frac{\partial L}{\partial K_h(t+1)} : 0 &= -\phi_h(t) + \beta \left(\eta_h(t+1)C_h(t+1)^{1-\sigma_h} \alpha_h K_h(t+1)^{\sigma_h-1} + \phi_h(t+1)(1 - \delta_h) \right)
\end{align*}
\]

The modified household problem with a linear technology for home production, \(C_h = A_h H_h \),
is given by:

\[
L = \sum_{t=0}^{\infty} \beta^t \left\{ a_u \log(C(t) - \bar{C}) + (1 - a_u) \log(L(t)) + \eta_c(t) \left[\alpha_c C_m(t)^{\sigma_c} + (1 - \alpha_c) C_h(t)^{\sigma_c} \right]^{\frac{\sigma_c}{\sigma_c - 1}} - C(t) \right\}
\]

The first–order conditions to the modified household problem are:

\[
\frac{\partial L}{\partial C(t)} : 0 = \frac{\alpha_u}{C(t) - \bar{C}} - \eta_c(t)
\]

\[
\frac{\partial L}{\partial L(t)} : 0 = \frac{1 - \alpha_u}{L(t)} - \mu(t)
\]

\[
\frac{\partial L}{\partial C_m(t)} : 0 = \eta_c(t) C(t)^{1-\sigma_c} \alpha_c C_m(t)^{\sigma_c-1} - \lambda(t)
\]

\[
\frac{\partial L}{\partial C_h(t)} : 0 = \eta_c(t) C(t)^{1-\sigma_c} (1 - \alpha_c) C_h(t)^{\sigma_c-1} - \eta_h(t)
\]

\[
\frac{\partial L}{\partial H_m(t)} : 0 = \lambda(t)[1 - \tau_w(t)] w(t) - \mu(t)
\]

\[
\frac{\partial L}{\partial H_h(t)} : 0 = \eta_h(t) A_h(t) - \mu(t)
\]

\[
\frac{\partial L}{\partial K_m(t+1)} : 0 = -\phi_m(t) + \beta \left(\lambda(t+1)[1 - \tau_s(t+1)] r(t+1) + \phi_m(t+1)(1 - \delta_m) \right)
\]

\[
\frac{\partial L}{\partial X_m(t)} : 0 = -\lambda(t)[1 + \tau_s(t)] p_m(t) + \phi_m(t)
\]
Appendix B: Data Work

Appendix B.1: Definition of Time Use

Appendix B.2: Interpolation and Extrapolation of Hours

Interpolation of hours

- Suppose we have time use data for 1965 and 1975 (as in the case of the U.S., for instance).

- **Market hours.** The average weekly time spent on market work (for individuals between 15 and 64 years) in 1965 and 1975 are equal to $H_m(65)=34.9$ hours and $H_m(75)=30.6$ hours respectively. We want to obtain a smooth interpolation which is based on the actual evolution of hours of work. To this end, we look at the evolution of average annual
market hours per working age person between these two points in time. The data for market hours per working age person are taken from the GGDC database.

- Step 1: Annual hours of market work per working age person are in row (1) of the table below.

- Step 2: Compute the “forward” change in hours for each year with respect to the start year 1965. That is: \(H(65)/H(65) \), \(H_{66}/H(65) \), \(H_{67}/H(65) \), ..., \(H(75)/H(65) \). See row (2).

- Step 3: Compute the “backward” change in hours for each year with respect to the final year 1975. That is: \(H(75)/H(75) \), \(H(74)/H(75) \), \(H(73)/H(75) \), ..., \(H(65)/H(75) \). See row (3).

- Step 4: Compute the implied weekly, “forward” hours for each year as: \(H_{m}(66)^f = H_m(65) \times H_{66}/H(65) \), \(H_{m}(67)^f = H_m(65) \times H_{67}/H(65) \), ..., \(H_{m}(75)^f = H_m(65) \times H(75)/H(65) \). See row (4).

- Step 5: Compute the implied weekly, “backward” hours for each year as: \(H_{m}(74)^b = H_m(75) \times H(74)/H(75) \), \(H_{m,73}^b = H_m(75) \times H(73)/H(75) \), ..., \(H_{m}(65)^b = H_m(75) \times H(65)/H(75) \). See row (5).

- Step 6: Interpolation. Taking the simple average of these two series is not an option because the resulting series would not go through the actual period-start and -end points. Instead, we do a weighted interpolation: \(H_m(66) = (9 \times H_m(66)^f + 1 \times H_m(66)^b)/10 \), \(H_m(67) = (8 \times H_m(67)^f + 2 \times H_m(67)^b)/10 \), ..., \(H_m(74) = (1 \times H_m(74)^f + 9 \times H_m(74)^b)/10 \). See row (6), which is our final series for hours of market work.

There are two different ways of computing home hours (and leisure). Let’s start with Approach (i)

- **Total hours - Approach (i).** To be able to compute leisure and home hours, we, first, need a series for total disposable time. From the time use we have the total weekly disposable time in 1965 and 1975: \(H(65) + L(65) = 100.9 \) hours and \(H(75) + L(75) = 102.4 \) hours.
Table 8: Interpolation of market hours

- Step 1: Compute the percentage of market hours in total hours in 1965 and 1975. See rows (1) [total weekly time in hours], (2) [weekly market hours], (3) share of weekly market hours in total time.

- Step 2: Linearly interpolate between the start- and the end-percentage. See row (4).

- Step 3: Recover the total time for each year by dividing the market hours by the share of market hours. See row (5).

- **Home hours - Approach (i)**. The time use data gives us two observations for home hours: $H_{h,65} = 20.6$ and $H_{h,75} = 20.0$.

 - Step 1: Compute the share of weekly home hours in total weekly hours for 1965 and 1975. See rows (6) [total weekly time in hours], (7) [weekly home hours], (8) share of weekly home hours in total time.

 - Step 2: Linearly interpolate between the start- and the end-percentage. See row (9).

 - Step 3: Compute weekly home hours by multiplying the total weekly time by the share of home hours. See row (10).

- **Leisure - Approach (i)**. The series for leisure is obtained by subtracting market hours and home hours from the total weekly time. See row (11).

We now turn to Approach (ii).
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>100.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>102.4</td>
</tr>
<tr>
<td>(2)</td>
<td>34.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30.6</td>
</tr>
<tr>
<td>(3)</td>
<td>34.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29.9</td>
</tr>
<tr>
<td>(4)</td>
<td>34.6</td>
<td>34.1</td>
<td>33.7</td>
<td>33.2</td>
<td>32.7</td>
<td>32.3</td>
<td>31.8</td>
<td>31.3</td>
<td>30.8</td>
<td>30.4</td>
<td>29.9</td>
</tr>
<tr>
<td>(5)</td>
<td>100.9</td>
<td>102.7</td>
<td>102.9</td>
<td>103.5</td>
<td>104.7</td>
<td>102.6</td>
<td>101.4</td>
<td>103.7</td>
<td>105.7</td>
<td>105.6</td>
<td>102.4</td>
</tr>
<tr>
<td>(6)</td>
<td>100.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>102.4</td>
</tr>
<tr>
<td>(7)</td>
<td>20.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.0</td>
</tr>
<tr>
<td>(8)</td>
<td>20.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19.5</td>
</tr>
<tr>
<td>(9)</td>
<td>20.4</td>
<td>20.3</td>
<td>20.2</td>
<td>20.2</td>
<td>20.1</td>
<td>20.0</td>
<td>19.9</td>
<td>19.8</td>
<td>19.7</td>
<td>19.6</td>
<td>19.5</td>
</tr>
<tr>
<td>(10)</td>
<td>20.6</td>
<td>20.9</td>
<td>20.8</td>
<td>20.9</td>
<td>21.0</td>
<td>20.5</td>
<td>20.2</td>
<td>20.5</td>
<td>20.8</td>
<td>20.7</td>
<td>20.0</td>
</tr>
<tr>
<td>(11)</td>
<td>45.4</td>
<td>46.8</td>
<td>47.4</td>
<td>48.3</td>
<td>49.5</td>
<td>49.0</td>
<td>49.0</td>
<td>50.7</td>
<td>52.3</td>
<td>52.9</td>
<td>51.8</td>
</tr>
</tbody>
</table>

Table 9: Interpolation of total time, home hours and leisure, Approach (i)

- **Total hours - Approach (ii).** From the time use we have the total time in 1965 and 1975: \(H(65) + L(65) = 100.9 \) and \(H(75) + L(75) = 102.4 \).
 - Step 1: Linearly interpolate between the start and the end values of total time. See row (1).
 - Step 2: Compute the share of home hours in non-market time for 1965 and 1975 and linearly interpolate between the start and the end points. See row (2).

- **Home hours - Approach (ii):** Compute home hours for each year by multiplying the non-market time with the share of home hours in non-market time. Row (3).

- **Leisure - Approach (ii).** The series for leisure is obtained by subtracting market hours and home hours from the total weekly time. See row (4).

- **Résumé:** We favor Approach (ii) for the following reason: Approach (i) implies a strong co-movement between market hours and total time. For instance, between 1974 and 1975, we see a decline in market hours from 32.1 to 30.6 weekly hours. At the same time, total hours drop from 105.6 to 102.4. Moreover, the series for total time is very volatile (because it’s directly linked to market hours which fluctuate a lot). This is somewhat counterfactual - at least for the U.S. In the late 2000s, we have annual time use...
observations and we see that individuals change their total weekly time \((H_m + H_h + L)\) typically by less than an hour from one year to the next. Approach (ii) is consistent with this observation because it linearly interpolates the total time and does not link it to market hours.

Extrapolation of hours

For some countries we need to extrapolate the hours series. For instance, the last time use observation for France is for 1998 but we want to know what the hours are in 2005. There are three different ways to do the extrapolation. All three approaches use the same way to compute market hours. So let’s first look at how market hours are computed.

- Suppose we are looking at France, we have time use data for 1998, and we want to extrapolate the series until 2005.

- **Market hours.** The weekly market hours in 1998 are equal to \(H_m(98)=24.5\). As above, we make use of the data on the evolution of actual hours of work per working age person.

 - Step 1: Market hours per working age person are in row (1) of the table below.

 - Step 2: Compute the change in hours for each year with respect to the start year 1998. That is: \(H(98)/H(98), H(99)/H(98), H(00)/H(98), ..., H(05)/H(98)\). See row (2).

 - Step 3: Compute the implied weekly hours for each year as: \(H_m(99)^f = Hm(98) * H(99)/H(098), H_m(00)^f = Hm(98) * H(00)/H(098), ..., H_m(05)^f = Hm(98) * H(05)/H(098)\). See row (3)
Now let’s look at the three approaches to compute home hours and leisure in greater detail.

- **Total hours - Approach (1).** We, first, need a series for total disposable time. From the time use we have the total time in 1998 which is: \(H(098) + L(098) = 106.0 \).

 - Step 1: Compute the share of market hours in total hours in 1998. See rows (1) [total weekly time in hours], (2) [weekly market hours], (3) share of weekly market hours in total time.

 - Step 2: Assume that this share remains constant during the period from 1998 to 2005. See row (4).

 - Step 3: Recover the total time for each year by dividing the market hours by the share of market hours. See row (5).

- **Home hours - Approach (1).** The time use data gives us an observations for home hours in 1998: \(H_{h,98} = 24.1 \).

 - Step 1: Compute the share of weekly home hours in total weekly hours for 1998. See rows (6) [total weekly time in hours], (7) [weekly home hours], (8) share of weekly home hours in total time.

 - Step 2: Assume that this share is constant during the period from 1998 to 2005. See row (9).

 - Step 3: Compute weekly home hours by multiplying the total weekly time by the share of home hours. See row (10).
- Step 4: The series for leisure is obtained by subtracting market hours and home hours from the total weekly time. See row (11).

<table>
<thead>
<tr>
<th>year</th>
<th>1998</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>106.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>24.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>23.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>23.1</td>
<td>23.1</td>
<td>23.1</td>
<td>23.1</td>
<td>23.1</td>
<td>23.1</td>
<td>23.1</td>
<td>23.1</td>
</tr>
<tr>
<td>(5)</td>
<td>106.0</td>
<td>107.4</td>
<td>107.0</td>
<td>107.2</td>
<td>104.3</td>
<td>103.5</td>
<td>104.8</td>
<td>104.3</td>
</tr>
<tr>
<td>(6)</td>
<td>106.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7)</td>
<td>24.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(8)</td>
<td>22.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(9)</td>
<td>22.7</td>
<td>22.7</td>
<td>22.7</td>
<td>22.7</td>
<td>22.7</td>
<td>22.7</td>
<td>22.7</td>
<td>22.7</td>
</tr>
<tr>
<td>(10)</td>
<td>24.1</td>
<td>24.4</td>
<td>24.3</td>
<td>24.3</td>
<td>23.7</td>
<td>23.5</td>
<td>23.8</td>
<td>23.7</td>
</tr>
<tr>
<td>(11)</td>
<td>57.5</td>
<td>58.2</td>
<td>57.9</td>
<td>58.1</td>
<td>56.6</td>
<td>56.1</td>
<td>56.8</td>
<td>56.6</td>
</tr>
</tbody>
</table>

Table 12: Extrapolation of total time, home hours and leisure, Approach 1

- **Total hours, home hours and leisure - Approach (2).** We, first, need a series for total disposable time. From the time use we have the total time in 1998 which is: \(H(098) + L(098) = 106.0 \).

 - Step 1: Assume that the total weekly time remains constant during the period from 1998 until 2005. See row (1):

 - Step 2: Compute the share of weekly home hours in total weekly hours for 1998. See rows (2) [total weekly time in hours], (3) [weekly home hours], (4) share of weekly home hours in total time.

 - Step 3: Assume that this share is constant during the period from 1998 to 2005. See row (5).

 - Step 4: Compute weekly home hours by multiplying the total weekly time by the share of home hours. See row (6).

 - Step 5: Compute leisure by subtracting market hours and home hours from the total weekly time. See row (7).
<table>
<thead>
<tr>
<th>year</th>
<th>1998</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>106.0</td>
<td>106.0</td>
<td>106.0</td>
<td>106.0</td>
<td>106.0</td>
<td>106.0</td>
<td>106.0</td>
<td>106.0</td>
</tr>
<tr>
<td>(2)</td>
<td>106.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>24.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>22.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td>22.7</td>
<td>22.7</td>
<td>22.7</td>
<td>22.7</td>
<td>22.7</td>
<td>22.7</td>
<td>22.7</td>
<td>22.7</td>
</tr>
<tr>
<td>(6)</td>
<td>24.1</td>
<td>24.1</td>
<td>24.1</td>
<td>24.1</td>
<td>24.1</td>
<td>24.1</td>
<td>24.1</td>
<td>24.1</td>
</tr>
<tr>
<td>(7)</td>
<td>57.5</td>
<td>57.2</td>
<td>57.3</td>
<td>57.2</td>
<td>57.9</td>
<td>58.1</td>
<td>57.8</td>
<td>57.9</td>
</tr>
</tbody>
</table>

Table 13: Extrapolation of total time, home hours and leisure, Approach 2

- **Total hours, home hours and leisure - Approach (3).** We first need a series for total disposable time. From the time use we have the total time in 1998 which is: $H(098) + L(098) = 106.0$.

 - Step 1: Assume that the total weekly time remains constant during the period from 1998 until 2005. See row (1).

 - Step 2: Compute the share of weekly home hours in weekly non-market hours for 1998. See rows (2) [weekly non-market time in hours], (3) [weekly home hours], (4) share of weekly home hours in non-market time.

 - Step 3: Assume that this share is constant during the period from 1998 to 2005. See row (5).

 - Step 4: Compute weekly home hours by multiplying the weekly non-market time by the share of home hours in non-market time. See row (6).

 - Step 5: Compute leisure by subtracting market hours and home hours from the total weekly time. See row (7).

- **Résumé:** The differences between the three approaches are fairly small.
Appendix B.3: Calculation of home labor productivity and home capital: France

Home capital, Version 1

Step 1: Take the data from the OECD on final consumption expenditures (in national currency and current prices) on the following goods categories\(^\text{10}\): P31CP051: Furniture and furnishings, carpets and other floor coverings, P31CP052: Household textiles, P31CP053: Household appliances, P31CP054: Glassware, tableware and household utensils, P31CP055: Tools and equipment for house and garden, P31CP061: Medical products, appliances and equipment, P31CP071: Purchase of vehicles, P31CP082: Telephone and telefax equipment, P31CP091: Audio-visual, photographic and information processing equipment, P31CP092: Other major durables for recreation and culture, P31CP093: Other recreational items and equipment, gardens and pets, P31CP095: Newspapers, books and stationery.

There is an (almost) one-to-one mapping between these categories and those that the BEA includes in its variable Consumer Durable Goods. The availability of the OECD expenditures data differs across countries. For instance, for France, the data are available from 1959 onwards, whereas the series for Spain starts only in 2000. In our baseline scenario, we do not include housing into our measure of the capital stock. Only a certain fraction of the housing stock is used for household production (e.g. the kitchen), whereas the rest is used for different purposes.

\(^{10}\)The label of the dataset is Dataset: 5. Final consumption expenditure of households.
It is hard to quantify this fraction which is why we disregarded it at this point. We will consider alternative definitions of household capital in the future. Most likely, we will consider a broad and a narrow definition in addition to the baseline scenario. The broad definition includes consumer durables (as in the baseline) and housing whereas the narrow definition includes assets whose use is unambiguously linked to household production (such as household appliances).

Step 2: Use the perpetual investment method (PIM) to compute the stock for each asset category. Start by setting the initial stock of category i, $K(59)^i$ equal to initial investment $I(59)^i$. Then, use the standard formula to compute the series for $K(t=60)^i$ in a recursive manner:

$$K(t)^i = (1 - \delta^i)K(t-1)^i + I(t)^i.$$

The depreciation rate is asset-specific and constant over time. The value of δ^i is taken from the BEA and corresponds to the 1925–2012 average depreciation rate for each of the asset categories (computed as $\text{Depreciation}(t)^i / \text{Stock}(t)^i$). Taking the 1960–2010 average or the 1970–2005 average instead of the 1925–2012 average makes only a very small difference. The depreciation rates for the different asset classes range from 14% to 31%. The high values of δ^i guarantee that the capital stock computed via the PIM converges to the “true” stock relatively quickly. We compute the current-cost capital stock. This requires to, first, transform past investments into current-price investment. That is, to compute period–t capital, we express the investment of periods $t-1$, $t-2$, ... in prices of period t and, then, apply the PIM.

Step 3: Compute the total capital stock for each period by aggregating up the individual stocks: $K(t)^{CD} = \sum_i K(t)^i$.

Home capital, Version 2

Step 1: Take the data from the OECD on final consumption expenditures (in national currency and current prices) on $P311B$: Durable goods. The OECD categorizes consumer expenditures into four different classes: Durable goods, Semi-Durable goods, Non-Durable goods, Services. It is not visible for an OECD-outsider how this categorization is done, i.e. which expenditure categories are included in each of these four groups. However, it is certain that Durable goods is a subset of what has been considered as Durable Goods in the Version 1 above (because the
sum of expenditures is larger than the reported expenditures on *Durable goods*).

Step 2: Use the PIM to compute the stock. The depreciation rate is taken from the BEA and it is equal to the 1925-2012 average depreciation rate for Consumer Durable Goods.

The difference between the Version 1 total stock and the Version 2 stock is sizable (and equal to around 35%) but very stable over time. To illustrate: the stock increases between 1980 to 2010 by a factor 4.9 for Version 1 and by a factor of 4.8 for Version 2 (over the period 1990 to 2010 the numbers are 1.88 and 1.81).

Labor Productivity in Home Production

Step 1: Compute current-price value added. Value added is the sum of two components and computed as follows:

\[VA = (r + \delta) \times \text{capital input} + w \times \text{labor input} \]

Now, let’s talk about the computation of the individual components.

1. **Capital input** ... is equal to the nominal stock of consumer durables and it is computed as described above. In the baseline scenario, we use the procedure labelled as Version 1.
 Data source: see above.

2. \(\delta \) is the depreciation rate. We do not use some aggregate depreciation rate and multiply it with the aggregate home capital stock. To be more accurate, we compute instead the aggregate home capital depreciation by using the capital stocks for each asset category (as described above) together with the asset-specific depreciation rates. I.e. \(\delta \times K(t) = \sum_i \delta^i K(t)^i \). *Data source:* see above.

3. \(r \) is the gross return on consumer durables. Ideally we would like to have information on the rate of return of individual financial asset holdings. If we had this return, we could invoke an arbitrage argument and apply the same rate of return for household capital (that is: when the agent has two investment opportunities - household capital and financial assets - then the rate of return has to be equalized in equilibrium). We do not have this
information for most OECD countries, so we use the nominal yield on the respective country’s 10-year government bonds as a proxy. One way to improve this approximation would go as follows: we have the data on the rate of return on financial assets for a short period of time (2000-2010). For this period, we can compute the spread between this return and government 10-year bond returns. Then, we make the assumption that this spread is constant over time and add it to the observed government bond return to get the return on financial assets. **NOTE:** this modification will affect - if anything - only the level of home value added but not the change over time because of the constant spread.

Data source: FRED, Saint Louis Fed

4. **Labor input** ... is the annual aggregate amount of time (measured in hours) spent on household work by individuals aged between 15-64 years. This variable is computed as the product of the annual individual hours of household work and the total population aged between 15 and 64 years. We do not capture the household work done by individuals younger than 15 and older than 64 years (also not for the U.S.). There is limited or no time use data for these age groups and that is why we do not consider them.

The annual individual hours of household work are computed as the weekly individual hours of household work times 52. The weekly individual hours of household work are computed from the Multinational Time Use Study (MTUS).

Data sources: MTUS (individual time use data), OECD (population aged 15-64 years).

5. **w** is the return on the labor input. To compute w, we use data on the hourly compensation of private household workers, i.e. people who are directly employed by households to do household work. The main assumption is that the marginal product of these household workers is the same as the marginal product of a non-household worker who is doing household work. We use data from the EU-KLEMS on (i) total annual hours worked by private HH workers and (ii) the total labor compensation of private HH workers. We divide the latter by the former to obtain the hourly compensation which is our measure of w.
Step 2: Compute constant-price home value added. The central question here is, which price index to use to convert current-price into constant-price value added. We explore two different approaches: (a) the price index of value added of the household sector, (b) the price index of private consumption expenditures on goods and services which have a home-produced substitute. The key disadvantage of the first approach is that the main component of household sector value added is housing services (rents and owner-occupied housing), hence the price index would give us the price of housing which is somewhat unrelated to what we are trying to capture by household production (also, we do not consider housing capital as input in household production. Approach (b) is not ideal either because it a final expenditure price and not a value added price. The idea behind (b) is as follows: all home-produced goods and services have a market-produced substitute. That is, all home production could be outsourced to the market. Hence, when we look at the market price of goods and services which could be produced by the household, then we have an approximation of the price of the household’s actual output. This consideration abstracts from issues regarding the composition of household output. That is, it assumes that the output bundle of the home sector is comparable to the composition of home-substitutes produced in the market.

In the baseline case, we chose (b) and compute the price index as follows. We take the data provided by the OECD on final consumption expenditures of households on Food and non-alcoholic beverages, Clothing, Maintenance and repair of the dwelling, Goods and services for routine household maintenance, Out-patient services, Hospital services, Operation of personal transport equipment, Transport services, Restaurants and hotels, Personal care. This is our list of market-produced goods and services which have a home-produced substitute. To compute a single price index, we divide the sum of current price expenditures by the sum of constant price expenditures (the constant-price series in NOT chained - hence we can do the summation). The base year of this index is 2005.

Finally, we divide the value of nominal value added by the price index to obtain the constant price value added.

Step 3: PPP-adjustment. To make the series comparable across countries, we do a PPP-

\footnote{The dataset is called Dataset: 5. Final consumption expenditure of households.}
adjustment of the constant price series. Again, the question is, what PPP factor to use? Ob-
viously, there is no data on PPP for home value added, so we have to come up with a proxy. The OECD provides data on PPPs for a large class of final expenditure categories for the year 2005. We proceed as in Step 2 above and construct a composite PPP using the PPPs for those expenditure categories which have a home produced substitute. In particular, we compute the aggregate PPP factor as the expenditure-weighted average of the PPPs of the following categories: Food and non-alcoholic beverages, Clothing and footwear, Housing, water, electricity, gas and other fuels, Household furnishings, equipment and maintenance, Health, Transport, Restaurants and hotels.

Finally, we divide the constant price series of home value added by the PPP factor to obtain the adjusted series

Step 4: Labor productivity. In the last step, we divide the constant price, constant PPP series of home value added by the annual aggregate hours of household work (mentioned above in Step 1) to obtain labor productivity.

Appendix B.4: Calculation of home labor productivity and home capital: U.S.

Step 1: Compute current-price value added. This is done in the same way as above. I.e. value added is the sum of two components and computed as follows:

\[VA = (r + \delta) \times \text{capital input} + w \times \text{labor input} \]

1. The **capital input** is equal to the nominal stock of consumer durables. There’s no need to do the PIM because the BEA provides data for the nominal stock of consumer durables (BEA Table 8.1)

2. The depreciation is taken from the BEA Table 1.3.

3. The gross return on consumer durables \(r \) is set equal to the return on financial assets. This
return is computed as the *Personal income receipts on assets* (BEA Table 2.1) divided by total *financial assets* (Flow of Funds) net of *equity in noncorporate business* (Flow of funds).

4. As above, the **labor input** is the annual aggregate amount of time (measured in hours) spent on household work by individuals aged between 15-64 years. This variable is computed in the same way as above.

5. The return on the labor input \(w \) is computed as above as the *Compensation of private HH workers* (BEA 6.2) divided by the *FTE private HH workers thousands* (BEA 6.5).

Step 2: Compute constant-price home value added. We use the same price index as above and it is computed using the following final expenditure categories: *Food and nonalcoholic beverages purchased for off-premises consumption, Food produced and consumed on farms, Garments, Household supplies, Outpatient services, Hospital and nursing home services, Motor vehicle services, Ground transportation, Purchased meals and beverages, Nursery, elementary, and secondary schools, Personal care and clothing services, Social services and religious activities, Household maintenance.* The data is taken from BEA tables 2.4.3 and 2.4.5.