Carbon Taxation, Firm Performance, and Labor Demand

Jimmy Karlsson

Research Institute of Industrial Economics (IFN)

28 November 2025

Introduction

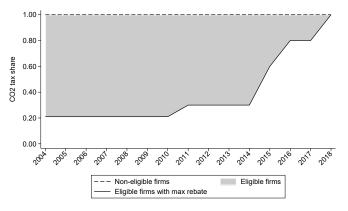
- Carbon pricing is a central climate policy instrument to reduce emissions.
- Many countries have introduced carbon taxes, often with exemptions for industry.
- Motivation: protect firms' competitiveness and employment in exposed sectors.
- However, there is limited empirical evidence on the actual impacts on firms and workers.

Research Questions

- I study a reform of the Swedish carbon tax in 2011–2018 in manufacturing.
- Q1: What is the effect of higher carbon taxation on firms' emissions and economic performance?
- Q2: What are the (heterogeneous) effects on labour demand?
- How are effects distributed across workers by education, age and gender?
- Results inform both the effectiveness of the carbon tax and its distributional impacts in the labour market.

Related Literature

- Carbon pricing and emissions: Andersson (2019); Brännlund et al. (2014); Colmer et al. (2024); Dechezleprêtre et al. (2023); Jaraite and Di Maria (2016); Leroutier (2022); Marin et al. (2018); Martin et al. (2014); Martinsson et al. (2024).
- → Semi-elasticity for carbon taxation (% / \in) for non-ETS sample.


Related Literature

- Carbon pricing and employment (firm-level): Colmer et al. (2024); Dechezleprêtre et al. (2023); Marin et al. (2018); Martin et al. (2014).
- Carbon pricing and employment (individual-level): Yamazaki (2017, 2019); Yip (2018).
- ightarrow The first paper to study **heterogeneous effects of carbon pricing** on labor demand using firm- *and* worker-lever data.

Policy Background

- Sweden introduced a carbon tax in 1991.
- ullet The tax is levied on fuel suppliers o higher fossil fuel prices for users.
- Before 2011, eligible manufacturing firms effectively paid about 21% of the general carbon tax rate.
- A main **rebate scheme** was phased out in 2011–2018 (announced in 2009).
- From 2018, most manufacturing firms outside the EU ETS pay the full carbon tax rate.

Policy Background: Tax Rates Over Time

Potential CO₂ tax shares (SEK/ton) for eligible and non-eligible firms.

Tax Rebate Eligibility and Treatment

- Only firms fulfilling certain criteria could apply for carbon tax rebates.
- Some fuel uses were not eligible for rebates:
 - Fuel used in mobile engines (cars, trucks, etc.).
 - Fuel used outside the main manufacturing process.
 - Lack of information or administrative capacity.
- Manufacturing firms without rebates on fossil fuel use were not directly affected when rebates were phased out.
- \rightarrow **Treatment:** $D_j = 1$ for firms receiving carbon tax rebates before reform announcement (2008).

Data Overview

- Fuel data from Energy Use in Manufacturing (ISEN), 2004–2018.
- Compulsory for manufacturing firms with more than 9 employees.
- Register of excise duty refunds (carbon and energy taxes on fuels), 2008–2018.
- Linked to firms' accounts and individual registers (LISA).
- Exclude firms covered by the EU ETS and firms with zero emissions in 2004–2008.
- \rightarrow Balanced panel of 1,078 manufacturing firms, 2004–2018.

Pre-reform Characteristics

	Pre-refor		
	Treated (1)	Control (2)	Difference (1) - (2)
#Firms	849	615	
Revenue (mSEK)	329.25	185.12	144.13***
CO ₂ emissions (ton)	642.03	133.48	508.54***
CO_2 intensity (ton/mSEK)	29.13	4.33	24.80 ^{**}
Employment	130.09	87.78	42.31***
Share no high school	0.25	0.22	0.03***

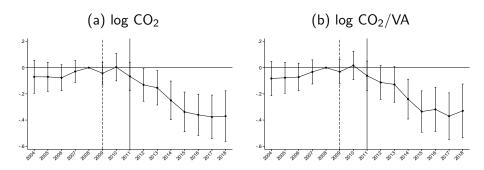
Empirical Strategy: Event Study

Event-study model with binary treatment:

$$\log Y_{jt} = \sum_{k=2004, k \neq 2008}^{2018} \beta^k \times \mathbf{1}(t=k) \times D_j + \eta_j + \alpha_{It} + \epsilon_{jt}$$

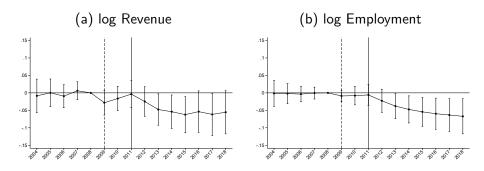
- Firm j, year t.
- Outcomes Y_{jt} : CO₂, revenue, employment, etc.
- D_i : indicator for receiving a rebate in 2008.
- Firm fixed effects η_i , industry-year fixed effects α_{lt} .

Empirical Strategy: Long Difference-in-Differences

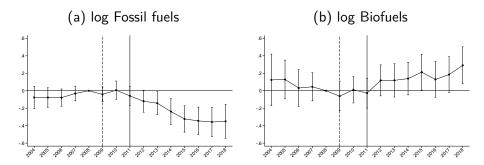

Long-difference DiD model with binary treatment:

$$\log Y_{jt} = \eta_j + \Gamma_I \times Post_t + \beta D_j \times Post_t + \epsilon_{jt}$$

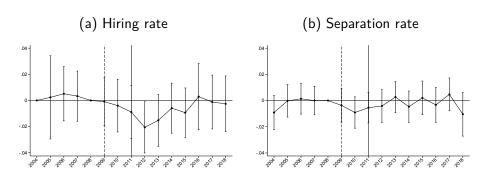
- $t \in \{2008, 2018\}$, with $Post_t = \mathbf{1}(t = 2018)$.
- Y_{it} : CO₂, revenue, employment, etc.
- D_j : treatment indicator (rebate in 2008).
- Firm fixed effects η_j , industry-specific trends $\Gamma_I \times Post_t$.
- ullet eta captures long-run average treatment effects of the tax increase.


4□ > 4□ > 4 = > 4 = > = 90

Results: Emissions and Emission Intensity


 $\approx 30\%$ reduction in emissions and emission intensity among treated firms.

Results: Revenue and Employment


 \approx 6–7% reduction in revenue and employment in treated firms.

Mechanism: Fuel Switching

A substantial part of the emission reduction is driven by **substitution from fossil fuels to biofuels**.

Mechanism: Employment Adjustments

Negative employment effect driven by lower hiring.

			log(Employment)			
	$log(CO_2)$	log(Revenue)	All	No high school	High school	Above high school
	(1)	(2)	(3)	(4)	(5)	(6)
			Pa	anel A: All firms		
$D \times Post$	-0.361*** (0.100)	-0.059* (0.032)	-0.070*** (0.026)	-0.137*** (0.042)	-0.037 (0.028)	-0.047 (0.041)
Observations	1,840	2,148	2,154	2,070	2,154	1,972

			log(Employment)				
	$log(CO_2)$	log(Revenue)	All	No high school	High school	Above high school	
	(1)	(2)	(3)	(4)	(5)	(6)	
			Pa	nel A: Alla firms			
$D \times Post$	-0.361*** (0.100)	-0.059* (0.032)	-0.070*** (0.026)	-0.137*** (0.042)	-0.037 (0.028)	-0.047 (0.041)	
Observations	1,840	2,148	2,154	2,070	2,154	1,972	
			Panel B: I	Emission-intensive	firms		
$D \times Post$	-0.421*** (0.133)	-0.107** (0.048)	-0.133*** (0.043)				
Observations	932	1,054	1,060				

			log(Employment)				
	$log(CO_2)$	log(Revenue)	All	No high school	High school	Above high school	
	(1)	(2)	(3)	(4)	(5)	(6)	
			Pa	nel A: All firms			
$D \times Post$	-0.361*** (0.100)	-0.059* (0.032)	-0.070*** (0.026)	-0.137*** (0.042)	-0.037 (0.028)	-0.047 (0.041)	
Observations	1,840	2,148	2,154	2,070	2,154	1,972	
			Panel B: E	Emission-intensive	firms		
$D \times Post$	-0.421*** (0.133)	-0.107** (0.048)	-0.133*** (0.043)	-0.224*** (0.076)	-0.073 (0.050)	-0.171** (0.080)	
Observations	932	1,054	1,060	1,018	1,060	952	

	log Employment						
						Age	
	All (1)	Men (2)	Women (3)	16–29 (4)	30–39 (5)	40–49 (6)	50–64 (7)
	Panel A: No high school						
$D \times Post$	-0.137*** (0.042)	-0.134*** (0.043)	-0.122** (0.061)	-0.051 (0.084)	0.057 (0.080)	-0.141** (0.071)	-0.146*** (0.048)
Observations	2,070	2,018	1,180	984	1,024	1,240	1,866

Additional Results and Robustness

- No detectable effect on individual wages.
- No strong evidence of increased firm exit.
- Results robust to:
 - controlling for differential trends in exporter status, workforce size and capital,
 - using balanced vs. unbalanced panels,
 - · region-year FE.
- Effects correspond to semi-elasticities of $-0.58\%/ \in$ (emissions) and $-0.20\%/ \in$ (low-educated labor).

Thanks!

Appendix: Constructing Effective Carbon Tax Rates

- I observe the amount of refunded carbon and energy taxes.
- I compute firm-year specific effective carbon tax rates in SEK/ton using:
 - i) fuel consumption by fuel type,
 - ii) fuel-specific statutory (pre-rebate) tax rates,
 - iii) carbon tax refunds (implying net tax paid),
 - iv) fuel-specific emission factors (implying CO₂ emissions).

Appendix: Semi-elasticities

- ΔCO_2TAX_j : Change in firm js tax rate 2008-2018
- Γ_I: Industry FE

$$\Delta \mathsf{CO}_2 \mathsf{TAX}_j = \mathsf{\Gamma}_I + \gamma D_j + \Delta v_j$$

$$\Delta \log Y_j = \Gamma_I + \phi \Delta \widehat{\text{CO}_2 \text{TAX}}_j + \Delta \varepsilon_j$$

- $\hat{\gamma}$: Conditional average increase in treated firms' carbon tax rates
- $\widehat{\phi}$: Relative effect on Y in terms of \in /ton CO_2 increase

Appendix: Semi-elasticities

		$\Delta \log {\sf Employment}$					
	$\Delta \log CO_2$ (1)	AII (2)	No high school (3)	High school (4)	Above high schoo (5)		
$\widehat{\Delta CO_2TAX}$	- 0.0058 *** (0.0016)	- 0.0010 *** (0.0004)	- 0.0020 *** (0.0006)	-0.0005 (0.0004)	-0.0008 (0.0006)		
$\widehat{\gamma}$	64.89	66.07	66.73	66.07	65.26		
F-stat	766.80	1,080.79	1,045.16	1,080.79	948.33		
Observations	920.00	1,077.00	1,035.00	1,077.00	986.00		

- Emissions fall by **0,58%** per €/ton CO₂.
- ullet Employment for workers without a high school degree falls by 0.20%.