Wired For Change? Clean Technology Adoption and Labor Market Transitions

Guillaume Wald CERNA, Mines Paris – PSL

The Economics of inequality and the environment Stockholm School of Economics

28 November 2025

Green technology adoption & the labor market

- Opposition to environmental regulations and carbon taxes is often driven by the fear of massive job destruction
- Green investment programs supporting clean energy technology adoption stand out as an important exception, potentially generating positive employment effects for manual workers.

The Guardian view on a carbon-free economy: no just transition in sight - yet Editorial

Factory closures highlight the turbulent shift to a green economy, exposing political challenges and the urgent need for a equitable move to net zero

"The only remaining blast furnace at Port Talbot was shut down, as part of a restructuring that will cost 2.800 employees their jobs." Photograph: Toby Melville/Reuters

Reuters

US clean energy jobs growth rate double that of overall jobs, report says

Solar installers from Baker Electric place solar panels on the roof of a residential home in Scripps Ranch, San Diego, Callfornia, U.S. October 14, 2016. Picture taken October 14, 2016. REUTERS/Mike Blake/File Photo Purchase Licensing, Rights ©

Green skills gap challenges the just transition

- The energy transition creates a major skills gap for workers
 - Over 25% of jobs significantly impacted by the net-zero transition
 - Mostly skill upgrades within existing occupation (ILO 2019)
- Strong policy commitment to green workforce training
 - EU European Social Fund (2021-2027) targets retraining of 5 million people in green skills
 - G7 Green Jobs Initiative committed to increase development assistance for green skills (ILO 2023)
- Yet worker transition costs remain poorly understood
- ⇒ We lack systematic evidence on how workers adjust when their employers adopt clean technologies—a crucial insight to ensure a just transition.

Research Question: How do workers adjust when firms adopt clean energy technologies?

In a nutshell

- First ex-post estimates of worker transition costs, using decarbonization of French HVAC installers as a case study
- Adoption yields major within-firm labor reallocation
- Stayers adjust through expanded hours, movers experience only short-run transition costs
- Workers with smaller skill gaps secure wage gains, yet only if they change employers

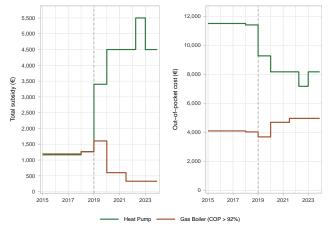
Technology adoption & environmental regulations

- Environmental regulations
 - imply major welfare losses for workers in polluting sectors endowed with occupation-specific skills (Walker 2013, Marin et al. 2021, Rud et al. 2024)
 - o rarely move workers from pollution-intensive to greener jobs (Bluedorn et al. 2023, Curtis et al. 2024, Garnache et al. 2025)
- → Little is known on worker adjustment costs when firms adopt clean energy technology (rarely observed).

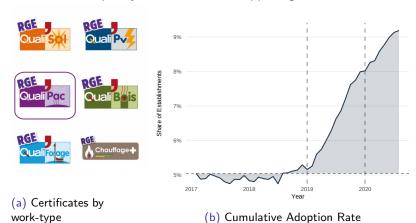
Technology adoption & environmental regulations

- Environmental regulations
 - imply major welfare losses for workers in polluting sectors endowed with occupation-specific skills (Walker 2013, Marin et al. 2021, Rud et al. 2024)
 - rarely move workers from pollution-intensive to greener jobs (Bluedorn et al. 2023, Curtis et al. 2024, Garnache et al. 2025)
- → Little is known on worker adjustment costs when firms adopt clean energy technology (rarely observed).
 - Technical change is skilled-biased
 - general purpose technologies: automation (Autor et al. 2003, Acemoglu & Autor 2011, Acemoglu & Restrepo 2022)
 - o green technologies (Marin et al. 2018, Saussay et al. 2022)
- → Technology adoption may have positive & negative outcomes for workers with different skill endowments

My case study: Decarbonization of French HVAC installation


- Buildings account for 25% of GHG emission and 40% of energy consumption, mostly through heating
- 60K+ heating service SMEs and 375K+ employees (2019)
- From fossil boilers to heat pump installation: an emblematic SME-level clean technology adoption

Massive incentive shift favors heat pump installation


- Mix of public subsidies (€3B/y) and energy obligations (€6B/y)
- Jan. 2019 reform: +€2,500 granted for heat pump installation

- (a) Financial support
- (b) Out-of-pocket cost

Installers shift from fossil boilers to heat pump

- Energy efficiency investments are credence goods
- Only works performed by "Recognized Environmental Guarantor" certified firms qualify for subsidies & supplier grants.

Data sources

- Residential heating services industry
 - "Recognized Environmental Guarantor" certificates (ADEME) for each month over 2017-2023
 - National comprehensive directory for the identification of French companies and their establishments (SIRENE from INSEE)

Data sources

- Residential heating services industry
 - "Recognized Environmental Guarantor" certificates (ADEME) for each month over 2017-2023
 - National comprehensive directory for the identification of French companies and their establishments (SIRENE from INSEE)
- Establishment & matched employer-employee over 2017-2023
 - Daily entries & exits from any position in each business (Mouvement de Main d'Œuvre, 2017-2021)
 - Yearly hours worked and labor earnings for each wage earner, derived from employer tax declarations (Base Tous Salariés, 2015-2023)

Data sources

- Residential heating services industry
 - "Recognized Environmental Guarantor" certificates (ADEME) for each month over 2017-2023
 - National comprehensive directory for the identification of French companies and their establishments (SIRENE from INSEE)
- Establishment & matched employer-employee over 2017-2023
 - Daily entries & exits from any position in each business (Mouvement de Main d'Œuvre, 2017-2021)
 - Yearly hours worked and labor earnings for each wage earner, derived from employer tax declarations (Base Tous Salariés, 2015-2023)
- $\Rightarrow \approx 100$ K heating service businesses & 800K workers.

▶ Sample selection

Estimation strategy: Industry-specific dynamics vs. spillovers

• Treated: Get heat pump certification in 2019

Control: Never certified through 2023

• Excluded: Late adopters triggered by spillover effects (SUTVA).

Estimation strategy: Industry-specific dynamics vs. spillovers

• Treated: Get heat pump certification in 2019

• Control: Never certified through 2023

• Excluded: Late adopters triggered by spillover effects (SUTVA).

Table: Pre-Treatment Balance (2017–2018)

	Tre	Treated		ntrol	Difference
	Mean	(SD)	Mean	(SD)	
N Establishments	2,859		92,559		
Headcount (avg)	6.07	(12.05)	5.80	(19.37)	0.27
Age (years)	6.71	(9.81)	6.92	(9.27)	-0.22
Population (CZ)	20,518	(48,050)	33,911	(60,698)	-13,393
% Fuel Oil (CZ)	11.6	(8.4)	8.9	(7.4)	2.6

→ Same size/age; Treated more rural—Control more urban.

Employment dynamics at the establishment-level

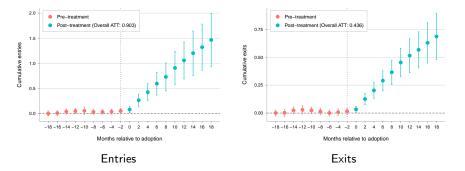
Technology adoption

Identifying variation: Heat pump certification for establishment i in month m.

Empirical Challenges:

- Staggered adoption for 2,859/95,418 establishments
- Local labor markets affect employment dynamics

Callaway & Sant'Anna (2021):


- Group-time specific effects:
 ATT(g, t)
- Inverse probability weighting on local heating sector headcount and establishment age.

Staggered Difference in Difference

For each cohort g (treatment timing) and period t:

$$ATT(g, t) = \mathbb{E}[Y_{it}(g) - Y_{it}(\infty) \mid G_i = g]$$

Job creation and destruction

- Within-firm labor reallocation:
 +1.5 jobs created and +0.75 jobs destroyed within 18 months
- ⇒ Winners and losers of clean technology adoption?

Notes: Event-study estimates using Callaway & Sant'Anna (2021).

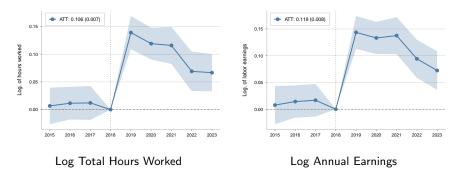
Sample: 95,418 establishments across 42 odd-months.

Labor market outcomes for incumbent workers

Worker exposure to technology adoption

Sample: All workers present at same establishments in both 2018 & 2019 **Identifying variation**: Employed in establishment adopting heat pump in 2019.

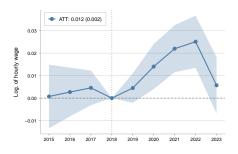
Workers may differ systematically across treated vs. control establishments


- 1:20 nearest-neighbor matching on workers age
- · Exact matching on: main activity code, occupation code, gender

Event Study design

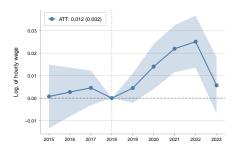
$$\log(y_{ist}) = \sum_{k \neq -1} \beta_k \cdot \mathbb{1}\{t = k\} \cdot \mathsf{Treat}_{st} + \alpha_i + \gamma_s + \delta_t + \varepsilon_{ist}$$

where y_{ist} is hours/earnings/wages for worker i in establishment s in year t; k measures years relative to 2019. Standard errors clustered at establishment level.


Incumbents Workers: Hours and Earnings

- Substantial increase in 2019, moderate over time
- → Labor supply is the primary adjustment margin, consistent with on-the-job reskilling.

Sample: 11,229 treated workers, 117,748 matched controls (2015-2023)

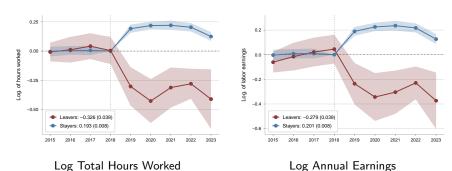

Incumbent Workers: Hourly Wages

Log Hourly Wage

- No wage effect in 2019 despite large rise in hours
- → Retraining costs passed-through wages
- Only modest wage gains emerge (+2% average ATT)
- → **Monopsony power** of employers.

Incumbent Workers: Hourly Wages

Log Hourly Wage


- No wage effect in 2019 despite large rise in hours
- → Retraining costs passed-through wages
- Only modest wage gains emerge (+2% average ATT)
- → Monopsony power of employers.

Key question:

Who drives the average effect? Workers who stay vs. those who leave?

Stayers vs Leavers in Calendar time

- Stayers drive overall results with +20% in hours and earnings, immediate and persistent
- \rightarrow Leavers collectively worse-off, yet cohort specific estimates aggregated in calendar mask individual dynamics.

Stayers: 7,395 treated, 100,890 controls — Leavers: 2,523 treated, 36,576 controls

Labor market effects for movers

Worker exposure to separation/entry post-adoption

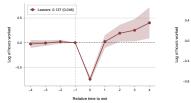
Leavers: Present in 2018-19, exit 2020-23 **Newcomers:** Absent in 2019, enter 2020-23

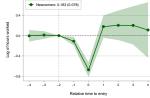
Empirical Challenges:

- Mobility timing varies across workers
- Need to control for place-time specific trends

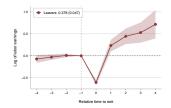
Solution:

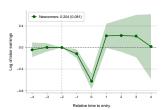
- Event time relative to mobility
- Include CZ \times year FE


Event study design in relative time

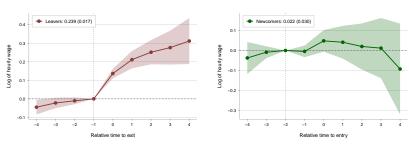

$$\log(y_{ist}) = \sum_{k \neq k_0} \beta_k \times \mathbb{1}\{t = T_i + k\} \times \mathsf{Mover}_i + \alpha_i + \gamma_s + \delta_{z \times t} + \varepsilon_{ist}$$

where T_i = mobility year (separation/entry), k = years relative to mobility, $k_0 = -1$ for leavers, $k_0 = -2$ for newcomers. Standard errors clustered at establishment level.




Newcomers

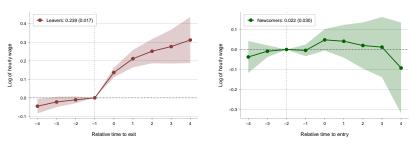
Log Total Hours Worked



Log Annual Earnings

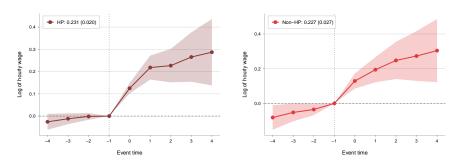
- Only temporary costs at t = 0 for movers, full recovery by t = 1.
- Leavers work +15% and earn +35%.

Leavers: 2,523 treated, 36,576 controls — Newcomers: 1,529 treated, 27,131 controls



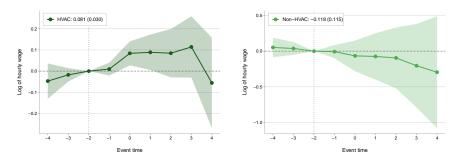
Log Hourly Wage

- **Leavers**: +20% wage premium post-separation
 - Hired for their newly acquired skills
 - → Escape monopsony power of previous employer
- Newcomers: Flat wages
 - Hired for general labor
 - → Require on-the-job reskilling.



Log Hourly Wage

- **Leavers**: +20% wage premium post-separation
 - Hired for their newly acquired skills
 - → Escape monopsony power of previous employer
- Newcomers: Flat wages
 - Hired for general labor
 - → Require on-the-job reskilling.
- ⇒ Do effects vary by mover's destination/origin?


Leavers: Wage Effect by Destination

- Similar +20% wage premium regardless of destination type
- → Workers exposed to technology adoption get portable skills that are not firm-specific.

Sample: HP destination N=13,425 — Non-HP destination N=3,538 (treated leavers only)

Newcomers: Wage Effects by Industry Origin

- **HVAC origin:** +8.1% wage premium (significant)
- \rightarrow Smaller skills gap lowers adjustment costs & allows wage gains.

Sample: HVAC origin N = 19,494 — Non-HVAC origin N = 2,912 (treated newcomers only)

Implications for the design of a just transition

- 1. Support within-firm adoption through market incentives
 - o On-the-job training minimizes disruption vs. creative destruction
 - Limited skill distance mitigates adjustment cost
- 2. Set minimum quality standards & provide training
 - o Build training capabilities in advance to avoid bottlenecks
 - Regulate monopsony power to ensure reward on skills updating and further reduce transition costs
- 3. Set incentives on both demand AND supply sides

Implications for the design of a just transition

1. Support within-firm adoption through market incentives

- o On-the-job training minimizes disruption vs. creative destruction
- Limited skill distance mitigates adjustment cost

2. Set minimum quality standards & provide training

- o Build training capabilities in advance to avoid bottlenecks
- Regulate monopsony power to ensure reward on skills updating and further reduce transition costs
- 3. Set incentives on both demand AND supply sides
- ⇒ The energy transition needs not create mass displacement when the right market incentives are set and retraining cost is minimized.

Future research

- Separate voluntary quits from involuntary layoffs
- → Potential long-run losses if forced displacement
 - Skill transferability across different technology contexts
- → Detailed origin-destination matrices

Thank you!

guillaume.wald@minesparis.psl.eu

■ I am on the 2025-26 Academic Job Market!

Appendix

From certification to technology adoption

- Certification is tied to a training covering 3 dimensions
 - Technical competencies: thermodynamic principles, sizing calculations, COP optimization
 - Regulatory knowledge: subsidy eligibility, environmental regulations, product durability standards
 - Customer communication: explaining technology choices and long-term maintenance requirements to clients.

Timeline

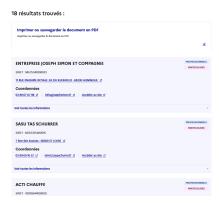
- Contractors get listing on public registers promoted by governmental agencies, helping new entrants building credibility

 Listing
- Virtually no heat pump installation by non-certified installers in the pre-reform period: certification marks the start of a competency-building process.

Coverage

Back to adoption

Certification timeline

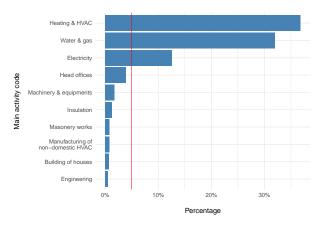

- 2011: Creation of the RGE certification to ensures minimum quality level for subsidized works
- 2015: RGE certification becomes mandatory to access both public & private subsidies
- \circ 2020: Covid-19 accelerates e-learning solutions \rightarrow reduced costs

Certified contractors get public listing on government registers

Search engine at faire.gouv.fr (2018)

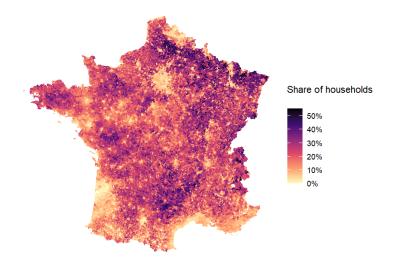
List of contractors in a 20km radius, ranked by Euclidian distance with municipality centroid

Certification Coverage of Heat Pump Renovation Market


Year	CITE (installations)	CEE (installations)	Renovation (installations)	CITE + CEE coverage (%)
2016	23,600	4,750	35,003	67—81
2017	28,800	5,528	43,301	66—79
2018	38,100	9,245	69,225	55—68

- Both tax credits (CITE) and EEO grants required RGE-certified contractors
- Coverage of 55–81% demonstrates substantial subsidy penetration and near-universal use of certified installers in renovation market

Sources: CITE from DGFIP (2023); CEE from CASD; Market data from Observ'ER (2020)

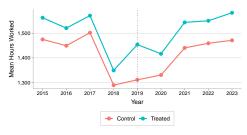

Sample Construction

Top 10 main activity codes across heat pump certified establishments

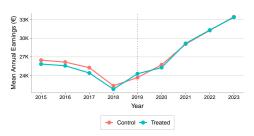
Note: Retained sectors (5%+ threshold): heating/HVAC (43.22B), water/gas (43.22A), electrical installation (43.21A)

Fuel Oil Use in 2017

Reliance on a Fuel Oil as Main Heating Source by Municipality, 2017


Worker-Level Balance: Full Sample

	Treated		Control		Difference
	Mean (1)	SD (2)	Mean (3)	SD (4)	(T-C) (5)
Panel A: Full Sample (2018) N Workers	19,921		479	479,762	
Age (years)	36.59	(12.63)	37.30	(12.31)	-0.71
Female (%)	15.69	(36.37)	13.33	(33.99)	2.36
Blue collar (%)	64.44	(47.87)	53.68	(49.86)	10.76
Managers (%)	20.10	(40.07)	32.84	(46.96)	-12.74
Hours worked	1,216.19	(670.40)	1,161.97	(687.28)	54.22
Annual earnings (€)	20,117.23	(16,786.53)	21,407.63	(19,241.84)	-1,290.40
Hourly wage (€)	15.79	(8.85)	17.32	(11.06)	-1.53


Worker-Level Balance: Matched Sample

	Treated		Control		Difference
	Mean (1)	SD (2)	Mean (3)	SD (4)	(T-C) (5)
Panel B: Matched Sample (2018) N Workers	13	3,499	12:	1,681	
Age (years)	36.71	(12.42)	36.84	(12.09)	-0.13
Female (%)	14.97	(35.68)	13.28	(33.94)	1.69
Blue collar (%)	66.97	(47.03)	62.02	(48.53)	4.95
Managers (%)	17.78	(38.24)	23.39	(42.33)	-5.61
Hours worked	1,348.99	(627.43)	1,289.09	(649.36)	59.90
Annual earnings (€)	21,800.65	(15,509.55)	22,347.42	(17,613.84)	-546.77
Hourly wage (€)	15.45	(8.01)	16.46	(8.83)	-1.01

Parallel Trends in the Matched Sample

(a) Hours worked

(b) Annual earnings

Stayers vs Leavers Analysis

Sample decomposition

Stayers: Present at same establishment in 2018-19 & 2023

Leavers: Present at same establishment in 2018-19, separated by 2023

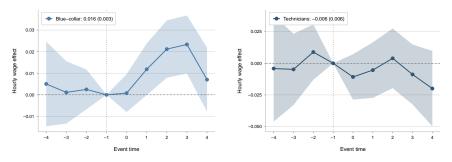
Empirical Challenges:

- Separating on post-treatment outcomes is endogenous
- Leavers exit in different years

Solution:

- Restrict to workers with 3+ years tenure
 & match stayers and leavers separately
- Cohort-specific estimation for leavers

Event study designs


Stayers: Standard event study

Leavers: Cohort-specific aggregated to calendar time (Schmieder et al. 2023)

$$\log(y_{itc}) = \sum_{k \neq -1} \beta_k^c \times \mathbb{1}\{t = c_i + k\} \times \mathsf{Leaver}_i + \alpha_i + \delta_t + \varepsilon_{itc}$$

where $c_i=$ separation year. Calendar effects: $\gamma_t=rac{1}{N_t}\sum_{c,k:c+k=t}eta_k^c$

Stayers: Wage Effect by Occupation

- Blue-collar: +1.6% hourly wage gain (significant)
- **Technicians:** -0.6% hourly wage (non-significant)
- ightarrow Modest aggregate effect (+1%) driven entirely by blue-collar workers

Interpretation: Heat pump adoption rewards lower-skilled workers acquiring new competencies, improving their bargaining power within-firm

Sample: Blue-collar N = 33,238 — Technicians/Cadres N = 9,404 (treated stayers only)

Summary of Key Mechanisms

Why do we observe rapid adjustment with minimal costs?

- Within-firm reskilling: Stayers & newcomers work longer hours without immediate wage gains
 - On-the-job training for workers without prior heat pump experience
 - o HVAC-origin workers face lower adjustment costs (smaller skill gap)
- Portable skills: Heat pump competencies (electrical systems, refrigerants, diagnostics) are not firm-specific
 - Leavers wage premium reflects market value of acquired skills, allowing to escape employers monopsony power
 - Skills are portable across the entire HVAC sector