# **Visual Analytics in Marketing Research**

Shunyuan Zhang



Copyright © President & Fellows of Harvard College

European Quant Marketing Workshop April 2023

# Agenda

## **Visual Data Analytics**

- o Why does visual data matter?
- How can visual data be useful?

## Image Analytics: Frameworks and Examples

- $\circ~$  To extract IV: Airbnb images, facial images, and ads. images etc.
- $\circ~$  To construct DV or key metrics
- $\circ~$  To develop a prediction model

## Video Analytics: Working with Multi-modal Visual Data

- o Steps & tools
- Two applications: YouTube influencers & in-store shopping video

# Why visual data?

- Visual data is ubiquitous
  - Visual data make up more than 90% of all consumer internet traffic (Cisco)
  - 86% of businesses use video as a marketing tool (Wyzowl 2020)
- Owning customer (behavior) through mining visual data
  - As of 2022, an average person is predicted to spend 100 minutes per day watching online videos (Zenith Media)

# What can visual data do for us?

- Use visual data to construct IV that will be later used in your econometrics model
  - visual data for feature extraction
- Use visual data to **extract DV** that offers managerial implications
  - visual data to measure and/or to manipulate key metrics
- Use visual data to build a prediction model
  - visual data as additional (key) source of data

# Image Analytics: extracting IV

- An econometrics model: *y*~*f*(*X*)
  - $\circ \quad X=\{X_1,X_2,\ldots,X_k,X_{visual}\}$
- Extracting  $X_{visual}$  from the visual data then 'plug it in' X
- Estimating the model *y* as you would normally do
- The key is the step of feature extraction: *X<sub>visual</sub>*

## General steps of extracting features

Is an off-the-shelf package (with good prediction accuracy) available?



# Example (1): image quality of Airbnb properties





**Research question**: what's the impact of high-quality images on the demand of Airbnb property?

## Econometrics model: y~f(X)

- y: Airbnb property demand
- { $X_1, X_2, \dots, X_k$ , }: price, review, location, ....
- *X<sub>visual</sub>*: image quality

## Steps:

- 1. Measuring image quality of property images
- 2. Estimating a DiD model: exploiting within-variation via properties that have *changed* images
- $\rightarrow$  estimated coefficient of  $X_{visual}$

# Example (1): image quality of Airbnb properties

## Creating a dataset to train an image quality classifier:

- Randomly selected 3,000 Airbnb property images and used Amazon Mechanical Turk to tag each image based on its quality → training set
- Build an image quality classifier using the training set (labeled images)
  - We applied VGG-16, a convolutional neural network that provided the state-of-the-art performance in image classification (Simonyan and Zisserman 2015)

Zhang et al. (2021) "What Makes a Good Image? Airbnb Demand Analytics Leveraging Interpretable Image Features." *Management Science* 

## Example of the AMT Aesthetic Quality Assessment Task



## Example (1): image quality of Airbnb properties



# Image quality prediction examples (1)

## Low quality



## High quality



# Image quality prediction examples (2)

## Low quality



## High quality



# Finally... incorporating predicted $X_{visual}$ into your econometrics model

### Treatment Group

• Properties with images amateur → professional



Control Group

 Properties with images stayed amateur



### **Empirical Analysis**

 Propensity Score Weighting + Difference-in-Difference

Economic impact of high-quality images
o increase demand by 14%

Zhang et al. (2021) "What Makes a Good Image? Airbnb Demand Analytics Leveraging Interpretable Image Features." *Management Science* 

# General steps of extracting features

Is an off-the-shelf package (with good prediction performance) available?



# Example (2): Ethnicity of Airbnb Hosts



Zhang et al. (2021) "Can an Al Algorithm Mitigate Racial Economic Inequality? An Analysis in the Context of Airbnb." *Marketing Science* 

**Research question**: What are the effects of using Smart Pricing algorithm on the revenue, for Airbnb hosts across different ethnic groups?

## Econometrics model: y~f(X)

- y: Airbnb property's monthly revenue
- { $X_1, X_2, ..., X_k$ , }: review, location, ....
- Key variable: ethnicity of an Airbnb host
  - How to obtain such info? Extracting from the Airbnb host profile picture

# Example (2): Ethnicity of Airbnb Hosts

**Creating a dataset to train an ethnicity classifier:** 

- Combine multiple public face databases with *ethnicity label*:
  - The color Facial Recognition Technology (FERET) Database collected by the National Institute of Standards and Technology (NIST),
  - Chicago Face Database (CFD) collected by the University of Chicago,
  - Face Place database collected by Brown University,
  - the IMDB-WIKI image database created by the Computer Vision Lab
- We then employ the ResNet-50 framework (Cao et al. 2018) to train an ethnicity (+ age) classifier on the consolidated training data.



### **ResNet-50: Architecture, Layer Operations, and Training Framework**



Hey, I'm Hilary! New York, New York, United States · Joined in January 2018

I am from Texas but a true New Yorker at heart. Love this city but travel a lot for work and am happy to make my studio apartment available for those who wish to find a cute place in a highly accessible neighborhood.

7 Reviews

### Detect & Extract Face

#### Feature Extraction & Demographic Prediction Architecture

L



# Agenda

## **Visual Data Analytics**

- o Why does visual data matter?
- How can visual data be useful?

## Image Analytics: Frameworks and Examples

- $\circ~$  To extract IV: Airbnb images, facial images, and ads. images etc.
- $\circ~$  To construct DV or key metrics
- $\circ$  To develop a prediction model

## Video Analytics: Working with Multi-modal Visual Data

- Steps & tools
- Two applications: YouTube influencers & in-store shopping video

# Image Analytics: extracting DV

If you are interested in measuring a key metrics that offers important managerial implications:

- Constructing  $y_{visual}$  from visual data
  - A 'follow-up' econometrics analysis is optional
- The key is to make sure that:
  - $y_{visual}$  is indeed interesting and important
  - Constructing  $y_{visual}$  from visual data is effective (why is visual data useful?)
  - The extracted  $y_{visual}$  is aligned with human's perception/judgement of y (i.e., external validity, which applies to a broader setting)



FACE

**Research objective**: building a scalable model that extracts facial attributes from a person's face photo and scores the person on *Celebrity Visual Potential* (CVP).

### Steps:

- 1. Defining CVP what is CVP and why is it important
- 2. Constructing a training data that allows us to predict CVP
- 3. (optional) Exploring how CVP varies with one's face attribute
- 4. Verifying external validity
- 5. Application: how can one use extracted CVP?

Feng et al. (2022) "Beyond a Pretty Face: An Al Method to Score Celebrity Visual Potential," *Working paper* 

Celebrity Visual Potential is a Broad Concept

What is CVP and Why CVP?



Why visual data (why face)?

Celebrity Visual Potential is a Broad Concept



# Example (3): celebrity visual potential Data Construction

#### **Celebrity Facial Images**

CelebFaces Attributes Dataset (CelebA) (Liu et al., 2015)
The IMDB-WIKI Dataset (IMDB-WIKI) (Rothe, Timofte, and Gool, 2015)
Labeled Faces in the Wild (LFW) (Huang et al., 2007)



#### **Non-Celebrity Facial Images**

- Google Facial Expression Comparison (FEC) (Vemulapalli and Agarwala, 2019)
- Chicago Face Database (CFD)
- (Ma, Correl, and Wittenbrink, 2015)
- MPLab GENKI Database (GENKI-4K)
- (Whitehill et al., 2009)
- Multitask Facial Landmark Dataset (MTFL)
- (Zhang et al., 2014)
- Selfie Dataset (Selfie)
- (Kalayeh et al., 2015)
- Flickr-Faces-HQ Dataset (FFHQ) (Karras, Samuli, Aila, 2019)



Data preprocessing & Training model



Data preprocessing & Training model



# How good is the model prediction?

## Fine Tuning and Model Selection

#### Selection criterion:

Accuracy of classification

Stability of optimization curve

| Model | Backbone     | Preprocess | Optimizer | Stability | Accuracy |
|-------|--------------|------------|-----------|-----------|----------|
| 1     | SE-ResNet-50 | None       | SGD       | Low       | 0.9475   |
| 2     | SE-ResNet-50 | None       | AdaDelta  | High      | 0.8708   |
| 3     | SE-ResNet-50 | 1+2+3      | AdaGrad   | High      | 0.9217   |
| 4     | SE-ResNet-50 | 1+2+3      | RMSprop   | Low       | 0.9192   |
| 5     | SE-ResNet-50 | 1+2+3      | AdaDelta  | High      | 0.8567   |
| 6     | ResNet-50    | 1+2+3      | SGD       | Low       | 0.9458   |
| 7     | ResNet-50    | 1+2+3      | AdaDelta  | High      | 0.9300   |
| 8     | ResNet-50    | 1+2+3+4    | AdaGrad   | Low       | 0.9350   |
| 9     | ResNet-50    | 1+2+3      | AdaGrad   | High      | 0.9546   |

## (optional) Interpretation: what does the model tell us?

Interpretation of model prediction





large eyes

small eyes



*babyface* 

non-babyface





high cheek

low cheek

|                           | (Theory motivated)<br>Facial Features | Direction | t-stat |
|---------------------------|---------------------------------------|-----------|--------|
|                           | Facial width-to-height ratio          | Negative  | 2.56   |
|                           | High cheekbones                       | Positive  | 63.04  |
| Two groups of facial      | (Dark) Color                          | Positive  | 36.80  |
| diverging feature and all | Thin jaw                              | Negative  | 1.54   |
| other features controlled | Mouth-nose distance                   | Negative  | 0.24   |
| to a certain level        | Large eyes                            | Positive  | 2.39   |
|                           | Sex dimorphism                        | Positive  | 19.19  |
|                           | Mouth–chin distance                   | Positive  | 1.58   |
|                           | Babyfaceness                          | Negative  | 1.79   |
|                           | Symmetry                              | Positive  | 14.57  |
|                           | Averageness                           | Negative  | 0.96   |



External validity: real-world evidence

Validating CVP: LinkedIn Dataset

Randomly selected employees of the Fortune 500 on LinkedIn

- Profile images of 5 C-suite executives
- Profile images of 5 average employees

### Calculated the average CVP for

- 150 C-suite executives
- 150 average employees

Mean score for c-suite executives: 0.845 vs. average employees: 0.197

# External validity: real-world evidence

Validating CVP: Instagram Dataset

#### Data:

2,105 Instagram selfie posts 500 influencers 2016 ~ 2020

### DV: Popularity of a post

Contextual variables:

- Influencer: gender, beauty
- Popularity: likes & comments
- Image aesthetics
- Text length, readability etc.
- Textual sentiment





### Finding:

The effect of CVP score is significant even if control for the contextual variables and attractiveness.

## How might predicted y be useful?

Managerial implications of CVP



Advertising star selection Persuading investors

Celebrity Visual Potential Scored Facial Features



Star style design



Influencer marketing Virtual influencer design



Leader selection Election result prediction HARVARD | BUSINESS | SCHOOL

# Agenda

## **Visual Data Analytics**

- o Why does visual data matter?
- How can visual data be useful?

## Image Analytics: Frameworks and Examples

- $\circ~$  To extract IV: Airbnb images, facial images, and ads. images etc.
- $\circ~$  To construct DV or key metrics
- To develop a prediction model

## Video Analytics: Working with Multi-modal Visual Data

- Steps & tools
- Two applications: YouTube influencers & in-store shopping video

# Image Analytics: prediction model

- A prediction model: **y~f(X)** 
  - $\circ \quad \mathsf{X=}\{X_1, X_2, \dots, X_k, \frac{X_{visual}}{N}\}$
- Extracting  $X_{visual}$  from visual data then 'plug in' the prediction model
  - $X_{visual}$  can be the *image*, if we are less interested in interpretability but more so in boosting the prediction accuracy
- The key is to ensure that including visual information helps predict *y* 
  - Ideally, please try to rationalize why does  $X_{visual}$  strengthen prediction power? What does it capture beyond what's captured by  $X_1, X_2, ..., X_k$ ?
  - Is including *X<sub>visual</sub>* economically significant?





**Research objective**: building a model that uses product images and traditional measures available prelaunch to predict individual item return rates.

Steps:

- 1. Obtaining a dataset that includes return, product image, and other measures
- 2. Extracting visual info. from product images
- 3. Comparing prediction models and show that a model that uses product image *outperforms* the other models
- 4. Validation: what's the economic **significance by using images**?

Dzyabura et al. (2022) "Leveraging the Power of Images in Managing Product Return Rates." *Working paper* 

- 1. Motivating the problem: is product return prediction (i.e., *y*) a big deal?
- 2. (Hopefully) yes  $\rightarrow$  why should product image be included?
  - What information from product images should be included?
- 3. Train and compare various prediction models.
- 4. Circle back to question 1 and 2: role of product images.
  - The economic significance of including product images in the prediction model.

- 1. Motivate the problem: is product return prediction a big deal?
- 2. (Hopefully) yes: why should product image be included?

"...we observe that **return rates** for fashion items bought online range from 13% to 96%, with **an average of 53%** – many items are not profitable."



Dzyabura et al. (2022) "Leveraging the Power of Images in Managing Product Return Rates." *Working paper* 

## 3. What information from product images should be included?





Dzyabura et al. (2022) "Leveraging the Power of Images in Managing Product Return Rates." *Working paper* 



4. Train and compare various prediction models, i.e., model performance5. Is including product images economically significant?

| Model                 | Features                                       | Percent Items not<br>Launched | Profit Improvement vs.<br>Launch All Items |  |
|-----------------------|------------------------------------------------|-------------------------------|--------------------------------------------|--|
| Non-image baseline    | Category, seasonality,                         | 5.98%                         | 6.81%                                      |  |
|                       | and price                                      | (0.11)                        | (0.18)                                     |  |
| Color labels added to | Category, seasonality, price, and color labels | 6.26%                         | 7.16%                                      |  |
| baseline              |                                                | (0.13)                        | (0.19)                                     |  |
| CNN Features          | Category, seasonality, price, CNN from image   | 7.13%<br>(0.12)               | 8.29%<br>(0.23)                            |  |

Table 4. Expected Profit Improvement Using Different Predictive Models

Dzyabura et al. (2022) "Leveraging the Power of Images in Managing Product Return Rates." *Working paper* 

# Agenda

## **Visual Data Analytics**

- o Why does visual data matter?
- How can visual data be useful?

## Image Analytics: Frameworks and Examples

- $\circ~$  To extract IV: Airbnb images, facial images, and ads. images etc.
- $\circ~$  To construct DV or key metrics
- $\circ$  To develop a prediction model

## Video Analytics: Working with Multi-modal Visual Data

- Steps & tools
- Two applications: YouTube influencers & in-store shopping video



Video Marketing Statistics in 2022 (summary of source: https://invideo.io/blog/video-marketing-statistics) **HARVARD BUSINESS SCHOOL** 

# Video Data

## Example: YouTube Video

> A social influencer promoting cosmetics products in a video sponsored by Lancôme.

How would you incorporate this video into your model (analysis)?



**UPDATED EVERYDAY MAKEUP & SIGNATURE NUDE & BROWN** LIP LOOKS FOR FALL/AUTUMN



Patricia Bright Ø 2.87M subscribers

19K 57 Dislike ↔ Share =+ Save

449,084 views • Aug 15, 2019

Hey guys so It's about time I did an update makeup routine, sharing my favourite every day makeup and nude lip looks I do regularly!

# How To Analyze A Video?

- A video is a sequence of three modalities of data
  - Image (frame)
  - Audio (voice)
  - $\circ$  Text (speech)

## • Approach one: decomposing a video by data modality

- Then, analyze each modality to extract image/audio/text features
- Video is treated as a portfolio of (static) attributes



# How To Analyze A Video?

## • A video is a sequence of three modalities of data

- Images (frame)
- Audio (voice)
- Text (speech)

1 A A

## Approach one: decomposing a video by data modality

- $_{\circ}~$  Then, analyze each modality as if you were performing:
  - image analysis
  - audio analysis
  - text analysis
- Video is treated as a portfolio of (static) attributes
- Approach two: incorporating time-dependence
  - Dynamics in the video features
  - E.g., key variables are time-related
- Approach three: crosslinking the multi-modal data
  - E.g., coherence/complement/substitution among one's verbal and non-verbal cues



Example: Videos posted by Social Influencers



Example: In-store shopping videos



# YouTube Videos by Influencers (Example 1)



UPDATED EVERYDAY MAKEUP & SIGNATURE NUDE & BROWN LIP LOOKS FOR FALL/AUTUMN



449,084 views • Aug 15, 2019

Hey guys so It's about time I did an update makeup routine, sharing my favourite every day makeup and nude lip looks I do regularly!

\* Video is sponsored by Lancome\*

1,105 Comments

Cheng and Zhang (2022) Reputation Burning: Analyzing the Impact of Brand Sponsorship on Social Influencers. *Working paper* 

Question: How does a brand-sponsored video affect the influencer's reputation?

Key: need to extract a set of video features that might affect how one is perceived.

## Example 1: What Might Matter in The YouTube Context?



UPDATED EVERYDAY MAKEUP & SIGNATURE NUDE & BROWN LIP LOOKS FOR FALL/AUTUMN rfs 19K 57 Dislike & Share Ξ+ Save ...



449,084 views • Aug 15, 2019

Hey guys so It's about time I did an update makeup routine, sharing my favourite every day makeup and nude lip looks I do regularly!

\* Video is sponsored by Lancome\*

1.105 Comments





Im



### "Face"

Kraut and Johnston (1985)

### "Voice"

Hwang et al. (2021)

### "Presentation"

Zhang et al. (2021)

BOSINESS SCHOOL R



## Example 1: Extracting A List of Theory-Driven Features

Five basic video properties that were found to affect the viewer's attention and engagement (Zhou et al. 2021).

| Basic Video Properties |  |  |  |
|------------------------|--|--|--|
| Video Length           |  |  |  |
| Speaking Rate          |  |  |  |
| Scene Count            |  |  |  |
| Average Scene Length   |  |  |  |
| Sentiment              |  |  |  |

### Visual Aesthetics Motion Warm Hue Saturation Brightness & Contrast Clarity

 Aesthetic appeal of a video can affect viewers' preferences and satisfaction (Moorthy et al. 2010; Zhou 2021).

#### **Summary: Extracted Video Features**

- Same person's voice may change across videos (Hwang et al., 2021).
- Vocal features affect perceived personal traits (e.g., attractiveness, dominance, capability) (Peterson et al. 1995).

The Influencers' Voice<br/>FeatureLoudnessLoudness VariationPitchTalking Duration

The Influencers' Face & Demographics Emotion (facial

Attractiveness Face Count

- Face as a primary channel for the nonverbal communication (Ekman and Oster 1979).
- Appearance features impact perceived interpersonal relationship (Zhang et al. 2020).

Zhou, Mi, et al. "EXPRESS: Consumer Behavior in the Online Classroom: Using Video Analytics and Machine Learning to Understand the Consumption of Video Courseware." *JMR* Moorthy, A. K., Obrador, P., & Oliver, N. (2010, September). Towards computational models of the visual aesthetic appeal of consumer videos. *ECCV* Hwang, Serim and Liu, Xiao and Srinivasan, Kannan, Voice Analytics of Online Influencers—Soft Selling in Branded Videos (January 26, 2021). Peterson, Robert A., Michael P. Cannito, and Steven P. Brown (1995), "An exploratory investigation of voice characteristics and selling effectiveness," *JPSP* 

# Example 1: Exploring Videos—Underlying Behavior?

Compared to the organic videos, the influencers in sponsored videos:

• Speak faster, less loud, less verbose, lower pitch

|     | Scripted Speaking?                        | More nervous?                            | More authority?  |
|-----|-------------------------------------------|------------------------------------------|------------------|
| • , | Are more vibrant (in                      | olve more/stronger motio                 | ons), smile less |
|     | Using more gestures to<br>'make a point'? | Focusing on grabbing viewer's attention? |                  |

• Look more (facial) attractive

Applying make-up?

# Example 1: YouTube Influencers



A Matched Sample: constructing <u>similar influencer-</u> video pairs

- Treated unit: influencer 1 sponsored video 1
- Control unit: influencer 2 organic video 2
  - The influencers are "matched" on influencer characteristics
  - $\circ~$  Videos are "matched" on video characteristics

Next, apply your econometrics method...





A Video Frame of Customers Lining Up to Check Out **Question:** 

How does consumers' compliance of mask recommendation (and the motivation) affect their shopping behavior during the pandemic?

- **Key**: need to construct
  - 1) a customer's compliance behavior
  - 2) a customer's shopping trajectory and decision

<u>Comparing</u>: before vs during the pandemic periods.

Zhang et al. (2022) "Unmasking Social Compliance Behavior During the Pandemic," *Marketing Science* 

Crosslinking Multiple Videos (Face Matching)



Store Entry





Store Exit (checkout)



Shopping Trajectory (entry-shopping-exit)

## • 1) Construct the shopping trajectory for a customer

- Step 1: identify human face from all video frames (images)
- $\circ$  Step 2: find matched faces  $\rightarrow$  same customer appearing at different areas in the store
- Step 3: incorporate time-dependence  $\rightarrow$  a sequence of behavior

### • Step 4: extract video features of interest

- Counting shoppers in videos  $\rightarrow$  (dynamic) store crowdedness
- Distances between shoppers (and the cashier)
- How long did a shopper shop around?
- What did the shopper buy?
- ..

## 2) Construct the compliance behavior of a customer

- o Wearing a mask? What kind of mask?
- Face coverage?
- Social distancing?
- $\circ$  Avoiding crowded areas?



HARVA

Extracting compliance variables



Social Distancing





Mask-wearing (Surgical vs N-95)





Mask coverage (full coverage vs nose uncovered) HARVARD BUSINESS SCHOOL

## Measuring Mask Fit



Inferring Motives From Videos

- Connecting shopper's compliance level to the *changes in the shopping behavior* before vs during the pandemic
  - Shopping duration; store visit frequency
  - Quantity and price of purchased items
  - Diversity in shopping (purchasing multiple categories/shelves, or restricted to only one category?)

## Exploratory Analyses on Mask-wearing Motives

|           | Fully-compliant                                                        |            | Partially-compliant                                                  |          | Unmasked                                          |
|-----------|------------------------------------------------------------------------|------------|----------------------------------------------------------------------|----------|---------------------------------------------------|
| We<br>(se | ear a mask to <b>protect self</b><br>nsitive to their own health risk) | We<br>to ؛ | ear a mask primarily to com<br>social responsibility                 | iply [   | o not wear a mask at all                          |
| S<br>P    | hopped more quickly than<br>re-pandemic<br>racticed social-distancing  | •          | Shopped slowly<br>Did not avoid crowded are<br>More diverse shopping | •<br>eas | Shop speed stayed<br>unchanged during<br>pandemic |
| B<br>d    | ought products with deeper iscounts, high volume sales                 |            | н                                                                    | ARVARD   | BUSINESSSCHOOL                                    |

# Thank you!

# APPENDIX: A Few Technical Notes & Toolkits

## Basic Video Properties:

- Video scene detection: PySceneDetect (<u>https://pyscenedetect.readthedocs.io/en/latest/</u>)
- Speech to subtitle: AutoSub (https://github.com/agermanidis/autosub)
- Subtitle sentiment analysis: TextBlob (https://github.com/sloria/TextBlob)

## The Influencers' Voice Feature: OpenSmile (https://audeering.github.io/opensmile/get-started.html#default-feature-sets)

## The Influencers' Face & Demographics: Face++ (SFace: An Efficient Network for Face Detection in Large Scale Variations)

## Visual Aesthetics

- Dense Optical Flow in OpenCV (https://docs.opencv.org/master/d4/dee/tutorial\_optical\_flow.html)
- Background Substraction in OpenCV (https://docs.opencv.org/3.4/d1/dc5/tutorial\_background\_subtraction.html

# **Processing Video Data: Steps and Tools**

## • STEP 1: Extract data modality

- *PySceneDetect*: present the video as a sequence of **images** (scenes)
- *VideoClip*: extract the **audio** file as .wav files
- Autosub: obtain the speech (text) content of each video (or Speechto-Text by Google)
- STEP 2: Processing each modality
  - E.g., facial expression, brand logos, voice loudness & pitch, use of language
- STEP 3: Aggregate the videolevel measures
- STEP 4: Subsequent analyses

https://github.com/Breakthrough/PySceneDetect https://zulko.github.io/moviepy/ref/VideoClip/VideoClip.html#videoclip https://github.com/agermanidis/autosub

