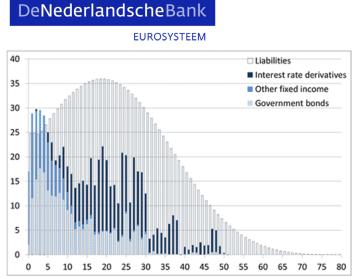
SWEDISH HOUSE

Seminar at Swedish House of Finance 2018-12-06

"Interest Rate Risk in Long-Dated Liabilities"

Peter Schotman

https://www.houseoffinance.se/valuation-hedging-long-dated-liabilities/


Interest Rate Risk in Long-Dated Liabilities

Peter Schotman

Maastricht University

Hedging long-term liabilities

Figure 1 Cash outflows of pension benefits (liabilities) and expected cash inflows (redemptions and coupon payments) of investments in fixed-income securities (interest rate derivatives, sovereign bonds and other fixed-income securities) in EUR billion per year for the next 80 years, year-end 2012. The Figure uses the aggregate of cash inflows and outflows of pension funds.

DNBulletin (Sept 2013)

"At year-end 2012, pension funds had hedged 48% of their interest rate risk.

(...)

a **1%** fall in market interest rates would cause the average funding ratio to decline **7.8%**; without interest rate hedging, the funding ratio would drop **14.9%**."

Background

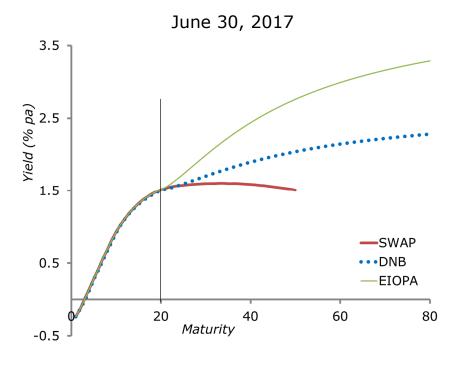
- Discount rate for pension liabilities
 - Are liabilities riskfree?
 - Should the discount rate be market consistent?
 - What if a market rate is not available?
 - Can long-term interest rate risk be hedged?
 - Should it be hedged?
 - Who bears the risk?
 - Does regulation have an impact on market rates?
- Some of these are similar for life insurance liabilities
- Supervision
 - Pensions: central bank (DNB) in Netherlands
 - Insurance industry: Solvency II, EIOPA (European Insurance and Occupational Pensions Authority)

Overview

- Behavior of very long-term interest rates
 - not much evidence beyond 10 year maturity

• Valuation

- discount rates for maturities beyond 20 years
- Hedging
 - liquid short-maturity instruments for long-dated liabilities
 - regulatory and economic hedging
- Bonds in a strategic portfolio
 - covariance with other asset classes
 - optimal interest rate risk exposure


Market segmentation

- Market consistent valuation, but maybe prices at long maturities not reliable (or not available)
 ⇒ regulatory adjustment of discount rates
- Supply effects: maturities of government debt (Greenwood and Vayanos, RFS 2014)
- Demand pressure (Domanski, Shin and Sushko, IMF 2017)
 - Duration gap of insurers and pension funds puts downward pressure on long-term interest rates
- Regulation may affect yield spreads (Greenwood and Vissing-Jorgensen, 2018)
 - Demand from pension and insurance negatively correlated with 30-10 spread

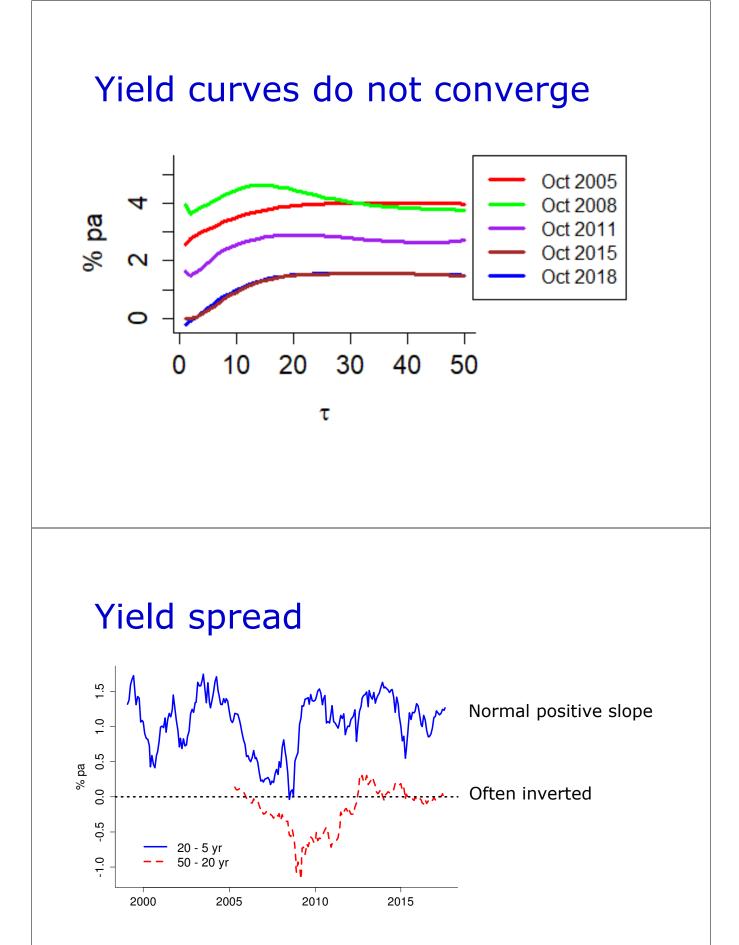
Extrapolation

- Market data for maturities up to Last Liquid Point
 LLP = 20 years for euro curve
- EIOPA:
 - Numerical algorithm to extend to longer maturities
 - Important parameters
 - Ultimate forward rate (**UFR**)
 - Initially constant at 4.2% (but going down from 2018 onwards: 4.05, 3.90, ...)
 - Speed of convergence towards UFR: 40 years
- DNB for Dutch pensions funds:
 - Slower convergence
 - UFR as average 20-year forward from last 10 years

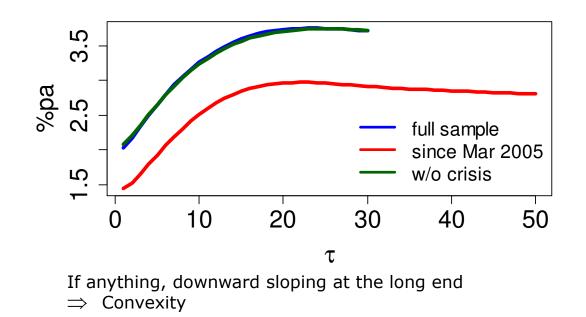
Impact of UFR on yield curve

What about using a formal term structure model?

Technical Specifications part II on the Long-Term Guarantee Assessment

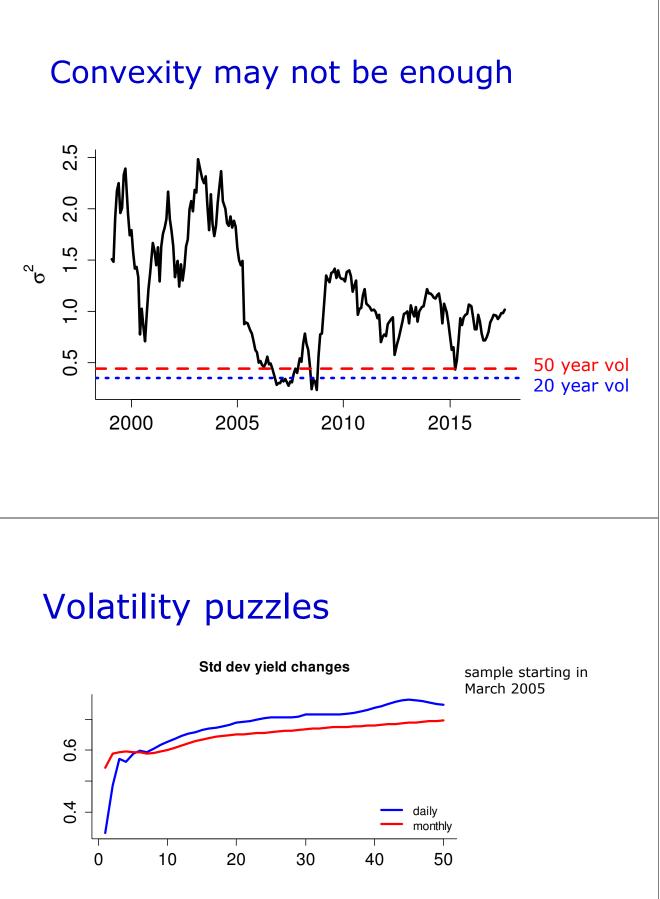

The most important economic factors explaining long term forward rates are long-term expected inflation and expected real interest rates. From a theoretical point of view it can be argued that there are at least two more components: the expected long-term nominal term premium and the long-term nominal convexity effect.

The long end of the yield curve

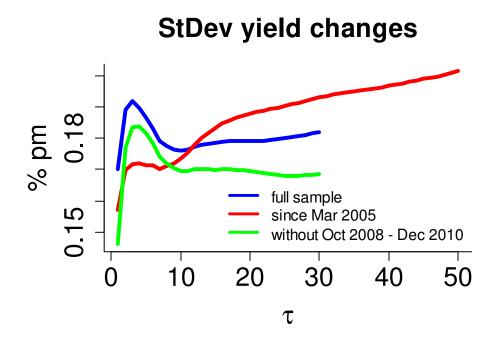

- Empirical study
 - data on euro swap rates 1999 2017
 - maturities 1-10, 12, 15, 20, 25, 30, 40, 50 years
 - longest maturities (40, 50 years) avaliable since 2005

Hypotheses

- 1. Yield curves show mean reversion towards a common infinite horizon rate (UFR)
 - *alternative*: mean reversion too low to be meaningful
- The average level of ultra long rates is consistent with predictions from an arbitrage-free term structure model
 alternative: observed rates rates are lower
- 3. The volatility of ultra long rates is as predicted by term structure models commonly used for liquid maturities
 - *alternative*: excess volatility
- 4. Factor models for liquid maturities lead to an effective hedge for long-term interest rate risk
 - *alternative*: very long end disconnected from liquid maturities

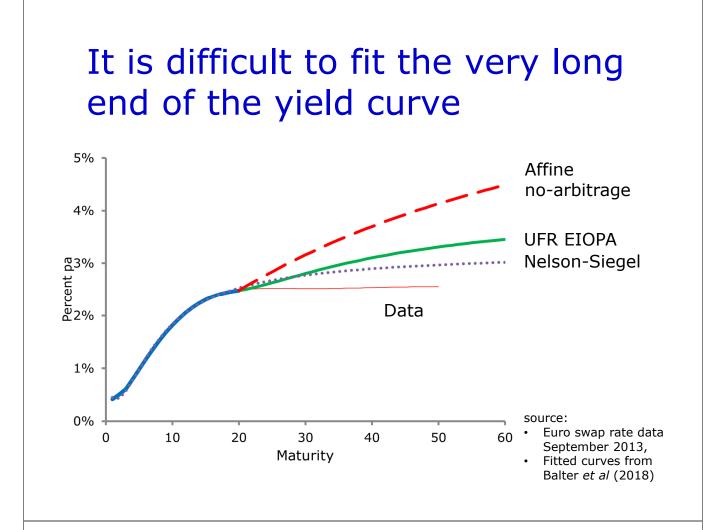

Average yield curve

Convexity

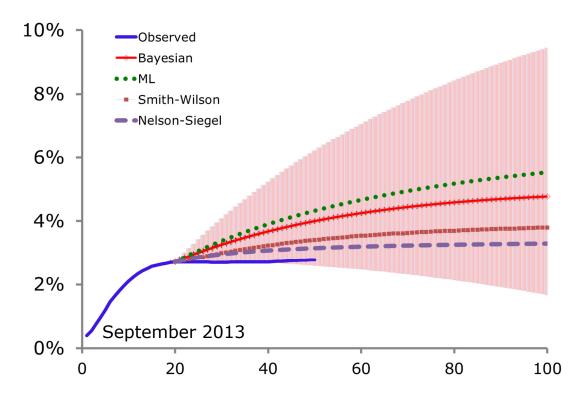

- If level factor is Gaussian random walk, then long end of the yield curve is quadratic in maturity (Merton, MS 1973)
 - negative quadratic term $-\frac{1}{6}\sigma^2\tau^2$
- Run cross-sectional regressions of
 - long-maturity spread, $y_t(\tau) y_t(\tau^*)$, with 20-years rate
 - on maturity (τ) and maturity² to estimate σ^2
- Implied volatility much larger than time series volatility

$$\sigma^2 = 1.16$$

(0.27)


- How to explain upward volatility slope?
- Much transitory noise at very long end
- Persistent changes at short end

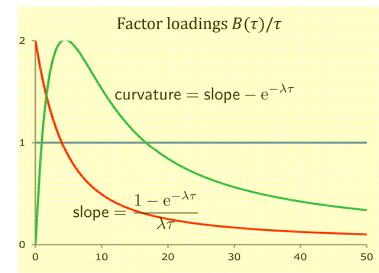
... with different samples



Term structure models

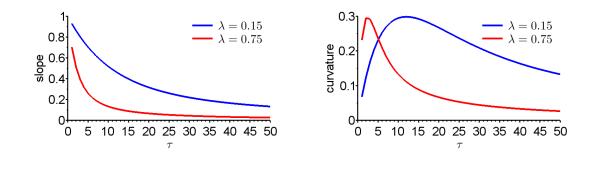
- Gaussian essentially affine
 - implies constant UFR
 - explicitly accounts for term premium and convexity
- Nelson-Siegel
 - fit entire term structure using 3 time-varying factors: level, slope, curvature
 - \Rightarrow yield curve converges to time-varying level factor
 - (can be adapted to belong to Gaussian affine)

Extrapolated curves with a credibility interval

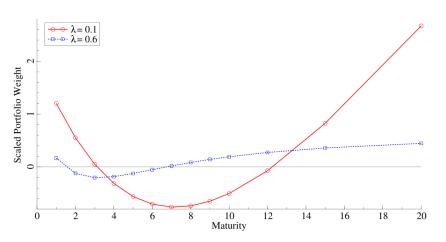


Hedging interest rate risk

- Nelson-Siegel
 - parsimonious 3-factor term structure model
 - level, slope and curvature factors
 - also holds for bond excess returns
- Hedging:
 - invest in factor mimicking portfolios
 - with weights equal to factor exposure of the liability
- Liabilities are longer than liquid instruments
 - \Rightarrow leveraged position in longest liquid bonds


Duration plus ...

- 1st factor in Nelson-Siegel is a parallel shift in the yield curve
 - level factor \rightarrow corresponds to duration hedging
 - bond prices move proportional to duration $\boldsymbol{\tau}$
- Other two factors are slope and curvature, both governed by a single parameter λ
- How stable are factor loadings?
 – after 2008?


Econometrics

- Time-varying factor loadings
 - reflect time-varying volatility and covariances,
 - before, during and after financial crisis
- In recent data slope and curvature factors become more important at long end
 - decrease in λ from 0.75 to 0.15 (and lower)
 - need more than one factor at very long end

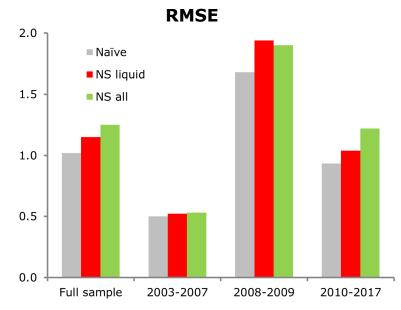
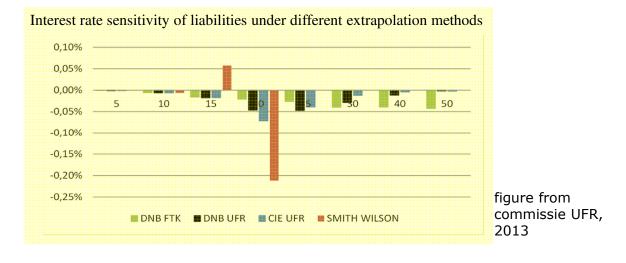

Hedge portfolio: 50-year liability

Figure 1: Factor-Mimicking hedge portfolio composition

Factor hedge: mimicking factors from NS model *Naïve hedge*: 250% in 20Y bond, financed by short position in riskfree rate

Out-of-sample hedging results

50 years liability Daily rebalancing

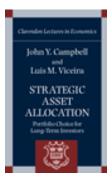

Naïve = leveraged position in 20 yr rate

NS LIQ = Optimal hedge with NS model estimated on liquid maturities

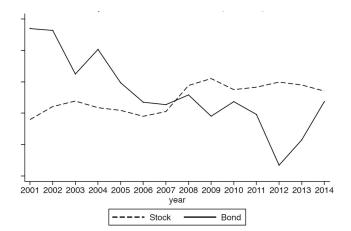
NS ALL = Optimal hedge with NS model estimated on liquid maturities

Regulatory hedging

- With an artificial curve with UFR the 50 year rate becomes a function of shorter maturities
- Subject to discrete changes in methodology
- In some cases strong dependence on 20-year rate


Strategic portfolio choice

- Interest rates are correlated with expected and unexpected returns of other asset classes
- Not always optimal to hedge all interest rate risk
 - ambition, hard guarantees
 - nominal versus real
 - buffers, funding ratio
- Optimal portfolio choice for long-term investors
 textbook treatment: Campbell and Viceira (2002)
 - extensions to pension setting with liabilities
- Optimal portfolio weights change in response to changes in **investment opportunities**


Changing investment opportunities

- **Investment asset menu**: equity, long-term nominal bonds, short-term bonds, (alternatives)
- State variables predict changes in expected returns
- Expected adjustments from optimal strategic portfolios

	EQUITY		BONDS	
	Asset only	Asset- Liability	Asset only	Asset- Liability
Interest rate	-	-	+	+
Yield spread	-	-	+	+
Dividend yield	+	+	-	-
Credit spread	+	?	-	?

Optimized portfolio

Campbell, Chan, Viceira (JFE 2003) VAR parameters Risk aversion γ =5, discount factor δ =0.92, intertemporal elasticity ψ =1

Actual allocation decisions

	$A_{i,j,t} =$	$\sum_{\ell=1}^{N} \beta_{\ell,j^2}$	$\Delta Y_{\ell,t-1}$	$+ \epsilon_{i,j,t}$
ata		Equity	Bonds	Alternatives
ngs	Nominal yield	-1.59 -2.84)	1.50 (3.40)	0.13 (1.16)
et	log D-P ratio	11.72 (3.87)	-10.44 (-3.88)	-1.68 (-2.03)
ar t	Credit spread	-1.16 (-1.46)	1.55 (2.13)	-0.27 (-1.38)
es 1	Yield spread	-1.63 -2.81)	1.38 (2.88)	0.26 (2.05)
ties	R^2	0.25	0.22	0.07

K

- CEM Benchmarking data (Toronto)
 - Pension fund holdings
 - annual 1990-2011
- Active allocations asset class j by fund i in year t
- Explain using variables that signal changes in investment opportunities

Summary

- Puzzling interest rate behavior at very long end of yield curve
 - hard to fit with conventional models
 - discrepancy with regulatory adjustment and extensions of yield curve
 - high volatility at very long end
- Hedging gains
 - beyond duration
 - time-varying factor loadings: more importance of level and curvature factor in recent period implies more emphasis on longer maturities
- In strategic asset allocation models persistent low interest rates imply more equity and fewer long-term nominal bonds

References

Balter, Anne, Antoon Pelsser and Peter Schotman (2018) <u>What does a</u> term structure model imply about very long-term discount rates?

Quaedvlieg, Rogier, and Peter Schotman (2018) <u>Score-Driven Nelson-Siegel: Hedging Long-Term Liabilities</u>, working paper

Broeders, Dirk, Frank de Jong and Peter Schotman (2017) <u>Interest</u> <u>rate models for pension and insurance regulation</u>, Het Verzekerings-Archief 2017-1, 15-25 (also as *Netspar Design Paper* 56)

Osterrieder, Daniela, and Peter Schotman (2017) <u>The volatility of long-</u> <u>term bond returns: Persistent interest shocks and time-varying risk</u> <u>premiums</u>, *Review of Economics and Statistics* 99, 884-895

Bams, Dennis, Peter Schotman and Mukul Tyagi (2016) <u>Pension fund</u> <u>asset allocation in a low interest rate environment</u>, chapter 4 of M. Tyagi, *Risk in Pension Plans*, PhD thesis, Maastricht University