The Fiscal Theory of the Price Level

John H. Cochrane

October 25, 2021

Copyright © John H. Cochrane
Contents

Preface iii

0.1 This book xi

I The Fiscal Theory 1

1 A two-period model 5
 1.1 The last day 5
 1.2 Intuition of the one-period model 6
 1.3 A two-period model and present value 9
 1.4 Monetary policy, fiscal policy, and inflation 10
 1.5 Fiscal policy debt sales 13
 1.6 Debt reactions and a price-level target 15
 1.7 Fiscal policy changes monetary policy 17
 1.8 Budget constraints and active versus passive policies 18
 1.9 Active vs. passive with a debt rule 21

2 An intertemporal model 25
 2.1 The intertemporal model 26
 2.2 Dynamic intuition 29
 2.3 Equilibrium formation 33
 2.4 Fiscal and monetary policy 36
 2.4.1 Fiscal policy and unexpected inflation 37
 2.4.2 Monetary policy and expected inflation 38
 2.4.3 Interest rate targets 39
 2.4.4 Fiscal theory with an interest rate target 41
 2.5 The fiscal theory of monetary policy 42
 2.5.1 Monetary-fiscal interactions 46
CONTENTS

2.6 Interest rate rules ... 48
2.7 Fiscal policy and debt 51
2.8 The central bank and the treasury 54
2.9 The flat supply curve 58
2.10 Fiscal stimulus ... 61

3 A bit of generality ... 63
3.1 Long-term debt .. 64
3.2 Ratios to GDP and a focus on inflation 65
3.3 Risk and discounting 66
3.4 Money ... 69
 3.4.1 The zero bound ... 72
 3.4.2 Money, seigniorage, and fiscal theory 73
3.5 Linearizations .. 75
 3.5.1 Responses to fiscal and monetary shocks 80
3.6 Continuous time ... 87
 3.6.1 Short-term debt ... 89
 3.6.2 Long-term debt .. 91
 3.6.3 Linearized identities 92
 3.6.4 Money in continuous time 96

4 Debt, deficits, discount rates and inflation 99
4.1 U.S. surpluses and debt 99
4.2 The surplus process – stylized facts 106
 4.2.1 Inflation volatility and correlation with deficits .. 108
 4.2.2 Surpluses and debt 109
 4.2.3 Financing deficits - revenue or inflation? 110
 4.2.4 The mean and risk of government bond returns 112
 4.2.5 Stylized fact summary 115
 4.2.6 An s-shaped surplus process is reasonable 116
 4.2.7 A generalization .. 119
4.3 Surplus process estimates 121
4.4 The roots of inflation 126
 4.4.1 Aggregate demand shocks 133
 4.4.2 Surplus and discount-rate shocks 137
 4.4.3 Results vary with shock definitions 142

5 FITPL in sticky-price models 143
5.1 The simple new Keynesian model 144
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.1</td>
<td>An analytical solution</td>
<td>146</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Responses to monetary and fiscal shocks</td>
<td>148</td>
</tr>
<tr>
<td>5.1.3</td>
<td>A comment on responses to expected movements</td>
<td>154</td>
</tr>
<tr>
<td>5.2</td>
<td>Long-term debt</td>
<td>156</td>
</tr>
<tr>
<td>5.3</td>
<td>Higher or lower inflation?</td>
<td>159</td>
</tr>
<tr>
<td>5.4</td>
<td>A surplus process</td>
<td>164</td>
</tr>
<tr>
<td>5.4.1</td>
<td>A debt target, and active vs. passive fiscal policy</td>
<td>168</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Active and passive policy in a nonlinear model</td>
<td>171</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Is it reasonable?</td>
<td>175</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Thinking about the parameters</td>
<td>178</td>
</tr>
<tr>
<td>5.5</td>
<td>Responses and rules</td>
<td>180</td>
</tr>
<tr>
<td>5.5.1</td>
<td>The unexpected inflation parameters</td>
<td>183</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Deficit shocks without policy rules</td>
<td>184</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Deficit shocks with policy rules</td>
<td>188</td>
</tr>
<tr>
<td>5.5.4</td>
<td>Monetary policy shocks without policy rules</td>
<td>190</td>
</tr>
<tr>
<td>5.5.5</td>
<td>Monetary policy shocks with policy rules</td>
<td>194</td>
</tr>
<tr>
<td>5.5.6</td>
<td>Shock definition</td>
<td>195</td>
</tr>
<tr>
<td>5.6</td>
<td>Alternative surplus processes</td>
<td>196</td>
</tr>
<tr>
<td>5.7</td>
<td>Continuous time</td>
<td>199</td>
</tr>
<tr>
<td>5.7.1</td>
<td>An analytic solution</td>
<td>201</td>
</tr>
<tr>
<td>5.7.2</td>
<td>S-shaped surpluses</td>
<td>205</td>
</tr>
<tr>
<td>5.7.3</td>
<td>Long-term debt and policy rules</td>
<td>207</td>
</tr>
<tr>
<td>5.7.4</td>
<td>Response functions and price-level jumps</td>
<td>211</td>
</tr>
<tr>
<td>5.7.5</td>
<td>Monetary-fiscal coordination</td>
<td>214</td>
</tr>
<tr>
<td>5.7.6</td>
<td>Sims' model</td>
<td>219</td>
</tr>
<tr>
<td>5.8</td>
<td>Review and preview</td>
<td>222</td>
</tr>
<tr>
<td>6</td>
<td>Fiscal constraints</td>
<td>229</td>
</tr>
<tr>
<td>6.1</td>
<td>The present value Laffer curve</td>
<td>230</td>
</tr>
<tr>
<td>6.2</td>
<td>Discount rates</td>
<td>234</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Sources of low interest rates, and their durability</td>
<td>235</td>
</tr>
<tr>
<td>6.3</td>
<td>Crashes and breakouts</td>
<td>237</td>
</tr>
<tr>
<td>6.4</td>
<td>What if (r < g)?</td>
<td>239</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Sustainability and fiscal theory in risk-free analysis</td>
<td>240</td>
</tr>
<tr>
<td>6.4.2</td>
<td>The empirical relevance of (r < g)</td>
<td>243</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Flows and the (r = g) discontinuity</td>
<td>244</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Average vs. variation</td>
<td>245</td>
</tr>
<tr>
<td>6.4.5</td>
<td>Population, demographics, and dynamic efficiency</td>
<td>245</td>
</tr>
</tbody>
</table>
CONTENTS

6.4.6 Liquidity ... 246
6.4.7 Discount rates vs. rates of return 250
6.4.8 Aggregate uncertainty ... 251
6.4.9 Summary .. 254
6.5 Assets and liabilities .. 256

7 Long-term debt dynamics ... 259
7.1 Forward guidance and bond-price targets 260
7.2 Bond quantities ... 263
7.2.1 Maturing debt and a buffer 264
7.2.2 Intertemporal linkages, runs and defaults 266
7.2.3 Bond sales and interest rates 269
7.2.4 Future bond sales .. 274
7.2.5 A general formula ... 275
7.3 Constraints on policy .. 276
7.4 Quantitative easing and friends 280
7.4.1 QE with a separate Treasury and Fed 280
7.4.2 Quantitative easing and maturity structure 284
7.4.3 Summary .. 286
7.5 A look at the maturity structure 286

II Assets and rules ... 291

8 Assets and choices .. 295
8.1 Indexed debt, foreign debt .. 296
8.2 Debt and equity .. 298
8.3 Currency pegs and gold standard 299
8.4 Central bank independence .. 306
8.5 The corporate finance of government debt 306
8.6 Long vs. short debt, promises and runs 311
8.7 Default ... 317

9 Better rules .. 321
9.1 Inflation targets .. 322
9.1.1 A simple model of an inflation target 325
9.2 Fiscal rules ... 327
9.2.1 Indexed debt in a one-period model 328
9.2.2 A dynamic fiscal rule with indexed debt 330
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.2</td>
<td>Financial innovation</td>
</tr>
<tr>
<td>13.3</td>
<td>Interest-paying money and the Friedman rule</td>
</tr>
<tr>
<td>13.4</td>
<td>The separation of debt from money</td>
</tr>
<tr>
<td>13.5</td>
<td>A frictionless benchmark</td>
</tr>
<tr>
<td>14</td>
<td>Stories and histories</td>
</tr>
<tr>
<td>14.1</td>
<td>Helicopters</td>
</tr>
<tr>
<td>14.2</td>
<td>Hyperinflations and currency crashes</td>
</tr>
<tr>
<td>14.3</td>
<td>Ends of inflations</td>
</tr>
<tr>
<td>14.4</td>
<td>Episodes of war and parity</td>
</tr>
<tr>
<td>15</td>
<td>Esthetics, philosophy and frictions</td>
</tr>
<tr>
<td>IV</td>
<td>Money, interest rates, and regimes</td>
</tr>
<tr>
<td>16</td>
<td>The new-Keynesian model</td>
</tr>
<tr>
<td>16.1</td>
<td>The simplest model</td>
</tr>
<tr>
<td>16.2</td>
<td>Problems - an overview</td>
</tr>
<tr>
<td>16.2.1</td>
<td>What’s wrong with hyperinflations?</td>
</tr>
<tr>
<td>16.2.2</td>
<td>Equilibrium selection</td>
</tr>
<tr>
<td>16.2.3</td>
<td>Incredible off-equilibrium threats</td>
</tr>
<tr>
<td>16.2.4</td>
<td>Observational equivalence</td>
</tr>
<tr>
<td>16.2.5</td>
<td>Identification</td>
</tr>
<tr>
<td>16.3</td>
<td>Inflation targets and equilibrium selection</td>
</tr>
<tr>
<td>16.4</td>
<td>Identification and observational equivalence</td>
</tr>
<tr>
<td>16.5</td>
<td>Responses</td>
</tr>
<tr>
<td>16.6</td>
<td>Observational equivalence preview</td>
</tr>
<tr>
<td>16.7</td>
<td>Central bank destabilization?</td>
</tr>
<tr>
<td>16.8</td>
<td>A full model and the lower bound</td>
</tr>
<tr>
<td>16.9</td>
<td>Identification patches</td>
</tr>
<tr>
<td>16.10</td>
<td>Equilibrium-selection patches</td>
</tr>
<tr>
<td>16.10.1</td>
<td>Reasonable expectations and minimum state variables</td>
</tr>
<tr>
<td>16.10.2</td>
<td>Stabilizations and threats</td>
</tr>
<tr>
<td>16.10.3</td>
<td>Fiscal equilibrium trimming</td>
</tr>
<tr>
<td>16.10.4</td>
<td>Threaten negative nominal rates</td>
</tr>
<tr>
<td>16.10.5</td>
<td>Weird Taylor rules</td>
</tr>
<tr>
<td>16.10.6</td>
<td>Residual money demand</td>
</tr>
<tr>
<td>16.10.7</td>
<td>Learning and other selection devices</td>
</tr>
</tbody>
</table>
16.10.8 A tiny bit of fiscal theory 494

17 Keynesian models with sticky prices 497

17.1 New vs. old Keynesian models 497

17.2 Responses to interest rate changes 499

17.3 Responses with policy rules 502

17.3.1 New-Keynesian responses with sticky prices and policy rules 505

17.3.2 Adaptive expectations responses with sticky prices and policy rules 509

17.4 Full model responses 510

17.4.1 Interest rates and inflation 511

17.4.2 The fiscal underpinnings of new-Keynesian models 515

17.4.3 Responses to AR(1) monetary policy disturbances 520

17.5 Optimal policy, determinacy and selection 523

17.5.1 Optimal policy 523

17.5.2 Determinacy 527

17.5.3 Interpreting policy, and fiscal reconciliation 528

18 Summary and implications 531

18.1 New and old-Keynesian confusion 531

18.2 Adaptive expectations? 539

18.3 Interest rate targets: A summary 541

19 Monetarism 543

19.1 Equilibria and regimes 545

19.2 Interest-elastic money demand and multiple equilibria 547

19.3 Money in utility 551

19.3.1 First-order conditions and money demand 552

19.3.2 Equilibrium and multiple equilibrium 554

19.4 Pruning equilibria 559

19.5 Cash-in-advance model 561

19.5.1 Setup 562

19.5.2 Monetary model 564

19.5.3 Monetary-fiscal coordination 566

19.5.4 Frictionless model 567

19.5.5 Multiple equilibria re-emerge 569

19.5.6 FTPL vs. unpleasant arithmetic 572

19.5.7 Seigniorage and hyperinflation 573

19.6 Monetary history 575
CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>19.7 Money summary</td>
</tr>
<tr>
<td>1</td>
<td>20 The zero bound</td>
</tr>
<tr>
<td>2</td>
<td>20.1 The experiment</td>
</tr>
<tr>
<td>3</td>
<td>20.1.1 Occam</td>
</tr>
<tr>
<td>4</td>
<td>20.2 Zero-bound puzzles</td>
</tr>
<tr>
<td>5</td>
<td>20.2.1 Removing sunspots?</td>
</tr>
<tr>
<td>6</td>
<td>20.2.2 Deflation jump</td>
</tr>
<tr>
<td>7</td>
<td>20.2.3 The puzzling frictionless limit</td>
</tr>
<tr>
<td>8</td>
<td>20.2.4 Forward guidance</td>
</tr>
<tr>
<td>9</td>
<td>20.2.5 Magical multipliers and Bastiat banished</td>
</tr>
<tr>
<td>10</td>
<td>20.2.6 Literature and patches</td>
</tr>
<tr>
<td>11</td>
<td>20.3 Zero bound summary and implications</td>
</tr>
<tr>
<td>12</td>
<td>21 Observational equivalence and regimes</td>
</tr>
<tr>
<td>13</td>
<td>21.1 Equivalence and regimes</td>
</tr>
<tr>
<td>14</td>
<td>21.2 Testing for regimes</td>
</tr>
<tr>
<td>15</td>
<td>21.3 Laugh tests</td>
</tr>
<tr>
<td>16</td>
<td>21.4 Chicken and regimes</td>
</tr>
<tr>
<td>17</td>
<td>21.5 Inconsistent or undetermined regimes</td>
</tr>
<tr>
<td>18</td>
<td>21.6 Plausibility and other evidence</td>
</tr>
<tr>
<td>19</td>
<td>21.7 Regimes and practice</td>
</tr>
<tr>
<td>20</td>
<td>V Past, Present, and Future</td>
</tr>
<tr>
<td>21</td>
<td>22 Past and present</td>
</tr>
<tr>
<td>22</td>
<td>22.1 The beginning of a distinct FTPL</td>
</tr>
<tr>
<td>23</td>
<td>22.2 Precursors</td>
</tr>
<tr>
<td>24</td>
<td>22.3 Disputes</td>
</tr>
<tr>
<td>25</td>
<td>22.4 Tests</td>
</tr>
<tr>
<td>26</td>
<td>22.5 Fiscal theory models</td>
</tr>
<tr>
<td>27</td>
<td>22.6 Exchange rates</td>
</tr>
<tr>
<td>28</td>
<td>22.6.1 Applications</td>
</tr>
<tr>
<td>29</td>
<td>23 The future</td>
</tr>
<tr>
<td>30</td>
<td>23.1 Episodes</td>
</tr>
<tr>
<td>31</td>
<td>23.2 Theory and models</td>
</tr>
</tbody>
</table>
CONTENTS

VI Appendix

24 Notation

VII Bibliography

VIII Online Appendix to The Fiscal Theory of the Price Level

25 Algebra and extensions

25.1 The transversality condition
25.2 Derivation of the linearized identities
 25.2.1 Nonlinear geometric maturity formulas
25.3 Geometric maturity structure linearizations
25.4 Continuous time with short-term debt
25.5 Continuous time with long-term debt
25.6 Money in continuous time
25.7 Sticky-price model analytical solution
25.8 Three-equation model solution
25.9 Matrix and state variable solution methods
 25.9.1 State variables
25.10 New-Keynesian model with long-term debt
25.11 Sticky-price FTMP model
25.12 Algebra of the continuous-time sticky-price analytical solution
25.13 Continuous-time model solutions
 25.13.1 Calculating responses of the standard new-Keynesian model
25.14 Future sales
 25.14.1 No outstanding long-term debt
 25.14.2 Outstanding long-term debt

26 How not to test fiscal theory

26.1 Time-series lessons
 26.1.1 Beware the ARMA(1,1)
 26.1.2 Include slow-moving stationary variables.
 26.1.3 Point nulls are pointless.
 26.1.4 Beware the non-invertible representation
 26.1.5 People have more information than we do

VI Appendix

24 Notation

VII Bibliography

VIII Online Appendix to The Fiscal Theory of the Price Level

25 Algebra and extensions

25.1 The transversality condition
25.2 Derivation of the linearized identities
 25.2.1 Nonlinear geometric maturity formulas
25.3 Geometric maturity structure linearizations
25.4 Continuous time with short-term debt
25.5 Continuous time with long-term debt
25.6 Money in continuous time
25.7 Sticky-price model analytical solution
25.8 Three-equation model solution
25.9 Matrix and state variable solution methods
 25.9.1 State variables
25.10 New-Keynesian model with long-term debt
25.11 Sticky-price FTMP model
25.12 Algebra of the continuous-time sticky-price analytical solution
25.13 Continuous-time model solutions
 25.13.1 Calculating responses of the standard new-Keynesian model
25.14 Future sales
 25.14.1 No outstanding long-term debt
 25.14.2 Outstanding long-term debt

26 How not to test fiscal theory

26.1 Time-series lessons
 26.1.1 Beware the ARMA(1,1)
 26.1.2 Include slow-moving stationary variables.
 26.1.3 Point nulls are pointless.
 26.1.4 Beware the non-invertible representation
 26.1.5 People have more information than we do

VI Appendix

24 Notation

VII Bibliography

VIII Online Appendix to The Fiscal Theory of the Price Level

25 Algebra and extensions

25.1 The transversality condition
25.2 Derivation of the linearized identities
 25.2.1 Nonlinear geometric maturity formulas
25.3 Geometric maturity structure linearizations
25.4 Continuous time with short-term debt
25.5 Continuous time with long-term debt
25.6 Money in continuous time
25.7 Sticky-price model analytical solution
25.8 Three-equation model solution
25.9 Matrix and state variable solution methods
 25.9.1 State variables
25.10 New-Keynesian model with long-term debt
25.11 Sticky-price FTMP model
25.12 Algebra of the continuous-time sticky-price analytical solution
25.13 Continuous-time model solutions
 25.13.1 Calculating responses of the standard new-Keynesian model
25.14 Future sales
 25.14.1 No outstanding long-term debt
 25.14.2 Outstanding long-term debt

26 How not to test fiscal theory

26.1 Time-series lessons
 26.1.1 Beware the ARMA(1,1)
 26.1.2 Include slow-moving stationary variables.
 26.1.3 Point nulls are pointless.
 26.1.4 Beware the non-invertible representation
 26.1.5 People have more information than we do
26.2 So how do we test present value relations? ... 761
26.3 Summary: What can and cannot be tested ... 763
26.4 An alternative surplus process .. 765

27 Pruning multiple monetary equilibria .. 771
 27.1 Pruning deflationary equilibria .. 771
 27.1.1 This is fiscal theory ... 773
 27.1.2 No violation with open market operations ... 775
 27.1.3 Optimality with valued money .. 776
 27.1.4 Deflationary equilibria literature ... 777
 27.2 Pruning inflationary equilibria ... 779
 27.2.1 Timing conventions in the inflationary equilibria 779
 27.2.2 The Obstfeld-Rogoff fix for inflationary equilibria 783
 27.2.3 Interpreting Obstfeld and Rogoff .. 791
 27.2.4 Nonseparable utility and more indeterminacy 793
 27.3 Uniqueness in cash in advance models .. 797

28 Money in continuous time .. 799
 28.1 CES functional form .. 800
 28.1.1 Money demand .. 802
 28.1.2 Intertemporal Substitution ... 803
 28.1.3 A Hamiltonian Approach .. 805
“A prince, who should enact that a certain proportion of his taxes be paid in a paper money of a certain kind, might thereby give a certain value to this paper money.”

This book is a midpoint, I hope, of a long intellectual journey. It started in the fall of 1980, drinking a beer and eating nachos on a sunlit afternoon in Berkeley, with my good friends and graduate school study group partners, Jim Stock, Eric Fisher, Deborah Haas-Wilson, and Steve Jones. We had been studying monetary economics, and thinking about what happens as electronic transactions reduce the demand for money. When money demand and money supply converge on fast-moving electronic claims to a single dollar bill, framed at the Federal Reserve, will supply and demand for that last dollar really determine the price level? If the Fed puts another dollar bill up on the wall, does the price level double? Jim and I, fallen physicists, joked about a relativistic limit. Signals are limited by the speed of light, so maybe that puts a floor money demand.

The conversation was playful. Clearly, long before the economy is down to the last dollar bill, each of us holding it for a microsecond, at a nanodollar interest cost, the price level becomes unhinged from money supply. Such a “cashless limit” is a good example of a mathematical result in economics that one should not take seriously. But is there a theory of the price level that continues to work as we move to electronic transactions and a money-less economy, or equivalently as money pays interest? Why is inflation apparently so stable as our economy moves in that direction? Or must economic and financial progress be hobbled to maintain money demand and thereby control inflation? Having no ready answers, the conversation moved on, but the seed was planted.

Berkeley was, it turns out, a great place to be asking such questions. Our teachers, and especially George Akerlof, Roger Craine, and Jim Pierce, mounted a sustained and detailed critique of monetarism. They had their own purposes. George was, I think, anti-monetarist for traditional Keynesian reasons, favoring fiscal stimulus. Roger had, I think, come to see its limits as he grappled with the rational expectations revolution that had recently upended big models.
But the critique stuck, and my search continued for an alternative theory of the
price level. Berkeley also gave us an excellent grounding in microeconomics and
general equilibrium, for which I thank in particular Rich Gilbert, Steve Goldman,
and Gerard Debreu, together with unmatched training in empirical economics and
econometrics, for which I thank especially Tom Rothemberg.

I was then supremely lucky to land a job at the University of Chicago. Chicago
was a natural fit for my intellectual inclinations. I like the way standard economics
works. You start with supply, demand, and frictionless markets. You add frictions
and complications carefully, as needed. It also often turns out that if you work a
little harder, a simple supply and demand story explains many puzzles, and you
don’t need the frictions and complications. For my tastes, too many economists too
quickly give a clever name to a puzzle, proclaim that no standard economic model
can explain it, and try to start the next revolution, invent a new theory, find a new
friction. Ninety-nine revolutions are announced for each one that succeeds.

This statement may sound contradictory. The point of this book is that the fiscal
theory is a genuinely new theory that unseats its predecessors at the foundation of
monetary economics. But fiscal theory is, at least as I present it, much in the Chicago
tradition. It allows a less-is-more approach, in which with a little bit of hard work
supply and demand takes you much further than you might have thought.

These were, in hindsight, glorious years for macroeconomics at Chicago. The Modigliani-
Miller theorem, efficient markets, Ricardian equivalence and rational expectations
were just in the past. Dynamic programming and time-series tools were cutting
through long-standing technical limitations. Kydland and Prescott (1982) had just
started real business cycle theory, showing that you can make remarkable progress
understanding business cycles in a frictionless supply and demand framework, if you
just try hard enough, model dynamics explicitly, and don’t proclaim it all impossible
before you start. For me, it was a time of great intellectual growth, learning in-
tertemporal macroeconomics and asset pricing, privileged to hang out with the likes
of Lars Hansen, Gene Fama, Bob Lucas, and many others, and to try out my ideas
with a few generations of amazing students.

But monetarism still hung thick in the air at Chicago, and monetary doubts nagged
me. I wrote some papers in monetary economics, skeptical of the standard stories
and the VAR literature that dominated empirical work. But I didn’t find an answer
to the big price-level question.

A watershed moment came late in my time at the Chicago economics department. I
frequently mentioned my skepticism of standard monetary stories, and my interest
in frictionless models. The conversations usually didn’t get far. But one day Mike
Woodford responded that I really should read his papers on fiscal foundations of
monetary regimes, that became Woodford (1995), Woodford (2001a). I did. There
it was at last: a model able to determine the price level in a completely cashless
economy. I knew in that instant this was going to be a central idea that I would
work on for the foreseeable future. I was vaguely aware of Eric Leeper’s original
paper, Leeper (1991), but I didn’t understand it or appreciate it until I went back to
it much later. Papers are hard to read, and I was not well-read in the new-Keynesian
tradition to which Leeper rightly addressed his paper. Social networks are important
to point us in the right direction.

It is taking a lot longer than I thought it would! I signed up to write a Macroeconomics
Annual paper (Cochrane (1998a)), confident that I could churn out the fiscal theory
analogue of the Friedman and Schwartz (1963) Monetary History in a few months.
Few forecasts have been more wrong. That paper solved a few puzzles, and paved
the way for many more, but I’m still at the larger question more than two decades
later.

I thought then, and still do, that the success of fiscal theory will depend on its
ability to organize history, explain events, and to coherently analyze policy; on its
usefulness; not by theoretical disputation or formal time-series tests, just as Fried-
man’s monetarism and Keynes’ Keynesianism had done. But my first years with
the fiscal theory were nonetheless dragged into theoretical controversies. One has
to get a theory out of the woods where people think it’s logically wrong or easily
dismissed by armchair observations before one can get to the business of matching
experience.

“Money as Stock” (Cochrane (2005b)) addressed many controversies. (I wrote it in
the same year as “Stocks as Money,” Cochrane (2003), an attempt at CV humor
as well as to point towards a common theory that integrates fundamental value
with value deriving from transactions frictions.) I owe a debt of gratitude to critics
who wrote scathing attacks on the fiscal theory, for otherwise I would not have
had a chance to rebut the similar but more polite dismissals that came up at every
seminar.

I then spent quite some time understanding and then documenting the troubles of
the currently reigning new-Keynesian paradigm, including “Determinacy and Iden-
tification with Taylor Rules” (Cochrane (2011a)), “The New-Keynesian Liquidity
Trap” (Cochrane (2017c)), and “Michelson-Morley, Occam and Fisher” (Cochrane
(2018)). The first paper emphasized flaws in the theory, while the second two pointed
to its failures to confront the long zero-interest rate episode. To change paradigms, people need the carrot of a new theory that plausibly accounts for the data, but also a stick, to see the flaws of the existing paradigm and how the new theory mends those flaws.

Matching the fiscal theory with experience turns out to be much more subtle than noticing correlations between money and nominal income, i.e. trying to establish similar correlations between government debt and the present value of surpluses. The present value of surpluses is hard to measure independently. In the wake of the decades-long discussion following Friedman and Schwartz (1963), we approach causality and equilibrium-formation discussions in a sophisticated way. Easy predictions based on natural simplifying assumptions quickly go the wrong way in the data. For example, deficits in recessions correlate with less, not more inflation. I spent a lot of time working through these puzzles. The “frictionless view” Cochrane (1998a) already suggests that a surplus process with an s-shaped moving average representation and discount rate variation in the present value formula are crucial to understanding that pattern. “Long Term Debt” (Cochrane (2001)) took on the surplus process more formally, but with a cumbersome argument using spectral densities. Only in “Fiscal Roots” (Cochrane (2021a)) did I really express how discount rate variation rather than expected surplus variation drives inflation in postwar U.S. recessions. Only while dealing with some contemporary “puzzles” have I realized just how bad a mistake it is to write a positively autocorrelated process for government surpluses. Though the first paper pronounced observational equivalence, only now have I come to my current understanding of its implications, that it is a feature not a bug.

It turned out to be useful that I spent most of my other research time on asset pricing. Indeed, I sometimes refer to fiscal theory as “asset pricing imperialism.” I recognized the central equation of the fiscal theory as a valuation equation, like price = present value of dividends, not an “intertemporal budget constraint,” a point which forms the central insight of “Money as Stock” (Cochrane (2005b)) and surmounts a first round of objections to fiscal theory. Intellectual arbitrage is a classic source of progress in economic research. I also learned in finance that asset price-dividend ratios move largely on discount rate news rather than expected cashflow news (see “Discount Rates” Cochrane (2011c) for a review). More generally, all the natural “tests of the fiscal theory” you might want to try have counterparts in the long difficult history of “tests of the present value relation” in asset pricing. Dividend forecasts, discounted at a constant rate, look nothing like stock prices. So don’t expect surplus forecasts, discounted at a constant rate, to look like the value of debt, and their differences
to quickly match inflation. The resolution in both cases is that discount rates vary.
This analogy let me cut through a lot of knots and avoid repeating two decades of
false starts. But again, it took me an embarrassingly long time to recognize such
simple analogies sitting right in front of me. I wrote about time-varying discount
rates in asset prices in [Cochrane (1991b)] and [Cochrane (1992)]. I was working on
volatility tests in 1984. Why did it take nearly 30 years to apply the same lesson to
the government debt valuation equation?

“Interest on reserves” [Cochrane (2014b)] was another important stepping stone. The
Fed had just started trying to run monetary policy with abundant reserves, and
controlling market interest rates by changing the interest rate the Fed pays on re-
serves. But the Fed also controls the size of reserves, at an immense level. Can
the Fed control the interest rate on reserves, and simultaneously the quantity? Will
doing so transmit to other interest rates? It took some puzzling, but in a fiscal
theory framework, I came to an affirmative conclusion. This paper introduced the
expected-unexpected inflation framework, and much of the merging of fiscal theory
with new-Keynesian models that occupy the first part of this book. It only happened
as John Taylor and Mike Bordo invited me to present a paper at a Hoover conference
to mark the 100th birthday of the Federal Reserve. The opportunity, and obligation,
to write a paper that connects with practical policy considerations, and to present
it to such a high-powered group of economists and Fed officials, brought me back to
thinking in terms of interest rate targets. I should have been doing so all along –
Eric Leeper’s papers have for decades – but such is life.

Another little interaction that led to a major step for me occurred at the Becker-
Friedman Institute conference on fiscal theory in 2016. I had spent most of a year
struggling to produce any simple sensible economic model in which higher interest
rates lower inflation, without success. Presenting this work at a previous conference,
Chris Sims mentioned that I really ought to read a paper of his, “Stepping on a
rake,” [Sims (2011)] that, he said, had the result I was looking for. Again, I was
aware of Chris’s paper, but had found it hard. After Chris nagged me about it a
second time, I sat down to work through the paper. It took me six full weeks to read
and understand Chris’ paper – to the point that I wrote down how to solve Chris’s
model, in what became [Cochrane (2017c)]. But he did have the result, and it became
important to the unified picture of monetary policy I present here. Interestingly,
Chris’s result is a natural consequence of the analysis in my own “Long Term Debt”
paper, [Cochrane (2001)]. We really can miss things that are right in front of our own
noises. If you compare the simple exposition of the result in this book with Sims’
paper, and with my follow-up, you can see a nice case of how economic ideas get
Marty Eichenbaum and Jonathan Parker then kindly agreed to my proposal for a *Macroeconomics Annual* essay, “Michelson Morley, Fisher and Occam” (Cochrane [2018]), putting together these thoughts along with an overview of how the zero bound era provides a decisive test of theories. The result is rather sprawling, but the chance to put it together and to get the incisive feedback of the top economists at that event was important to producing the (I hope) cleaner vision you see here.

These events allowed me to complete a view that has only firmed up in my mind in the last year or so, which I call the “Fiscal Theory of Monetary Policy” expressed most recently in [Cochrane (2021b)] and in this book. Monetary policy implemented by interest rate targets remains crucially important. The fiscal theory neatly solves the determinacy and equilibrium selection problems of standard new-Keynesian models. You can approach the data armed with interest rate rules and familiar models. You really only change a few lines of computer code. But the results may change a lot however, especially by bringing the fiscal implications of standard models to the foreground and emphasizing fiscal-monetary interactions. Without the conferences, and Chris’s and others’ sharp insights, none of it would not have happened.

My fiscal theory odyssey has also included essays, papers, talks, opeds and blog posts trying to understand experience and policy with the fiscal theory, and much back and forth with colleagues. This story-telling is an important prelude to formal work, and helps to focus and distill formal work. Friedman and Schwartz likely started with “I bet the Fed let the money supply collapse in the Great Depression.” Story-telling is hard too. Is there at least a possible, and then a plausible story to interpret events via the fiscal theory, on which we can build formal model descriptions? That’s what “Unpleasant Fiscal Arithmetic” (Cochrane 2011e), “Inflation and Debt,” [Cochrane (2011d)] “Michelson Morley, Fisher and Occam” Cochrane (2018) and “The Fiscal Roots of Inflation” Cochrane (2021a) attempt, building on “Frictionless View” (Cochrane 1998a), among others. This book contains many more stories and speculations about historical episodes, which I hope inspires you to do more serious theoretical and empirical work.

I owe a lot to work as referee and journal editor, especially for the *Journal of Political Economy*. Editing and refereeing forced me to understand many important papers, that I might otherwise have put aside or read superficially in the usual daily crush. Discussing papers at conferences had a similar salutary effect. “Determinacy and identification” is one example that can stand for hundreds. I grasped a central point late one night while working on Benhabib, Schmitt-Grohé, and Uribe (2002). Their
simple elegant paper finally made clear to me that in new-Keynesian models, the central bank deliberately destabilizes an otherwise stable economy. I immediately thought “That’s crazy.” And then, “This is an important paper, the JPE has to publish it.” Several of my own papers were born that moment. Research is all a conversation.

I also owe a deep debt to generations of students. I taught a Ph.D. class in monetary economics for many years. I felt a duty to explain the standard new-Keynesian approach, which otherwise was not widely covered at Chicago after Mike Woodford’s departure. Discussions with really smart students helped me to understand the standard models and key parts of fiscal theory alternative. Working through Mike Woodford’s book (Woodford (2003)), and working through papers such as Werning (2012), to the point of understanding their flaws and answering student questions is hard work, and only the pressure of facing great students forced the effort. There are important externalities between teaching, service, and research.

More recently, running a blog has allowed me to try out ideas and have a discussion with a new electronic community. The Fisherian question – does raising interest rates maybe raise inflation? – developed in that forum.

Over the years, I benefitted from the efforts of many colleagues who took the time to write me comments, discuss my and other papers at conferences, write referee and editor reports, and contribute to seminars and many discussions. Research is a conversation.

I owe debts of gratitude to institutions as well as to people. Without the Berkeley economics department, I would not have become a monetary skeptic, or, probably, an economist at all. Without Chicago’s economics department and Booth school of business, I would not have learned the dynamic general equilibrium tradition in macroeconomics, or asset pricing. Without the Hoover Institution, I would not have finished this project, or connected it to policy.

I am also grateful to many people who have sent comments on this manuscript and the recent work it incorporates, including Jean Barthélémy, Christopher Ball, Marco Bassetto, Tom Coleman, François Gourio, Jon Hartley, Zhengyang Jiang, Greg Kaplan, Bob King, Mariano Kulish, Eduardo Leitner, Fulin Li, Gideon Magnus, Simon Mongey, Jón Steinsson, Harald Uhlig, anonymous reviewers, and the members of Kaplan’s reading group at the University of Chicago, especially Chase Abram, Arishaa Hashemi, Leo Aparisi de Lannoy, Santiago Franco, Zhiyu Fu, Agustín Gutiérrez, Sangmin S. Oh, Aleksei Oskolkov, Josh Morris-Levenson, Hyejin Park, and Marcos Sora. I am especially grateful to Eric Leeper, who capped off decades of correspon-
dence and friendship with extensive comments on this manuscript, some of which
substantially changed my thinking on basic issues.

Why tell you these stories? At least I must express gratitude for those sparks, for
the effort behind them for the institutions that support them. By mentioning a
few, I regret that I will seem ungrateful for hundreds of others. But, in my aca-
demic middle age, I think it’s useful to let younger readers know how one piece of
work came about. Teaching, editorial and referee service, conference attendance and
discussing, seminar participation, working with students, writing reference letters,
reading and commenting on colleague’s papers, all are vital parts of the collective
research enterprise, as is the institutional support that lets all this happen. I hope
to have returned some of these favors in my own correspondence on others’ work. I
hope also to give some comfort to younger scholars who are as frustrated with their
own progress. It does take a long time to figure things out.

My journey includes esthetic considerations as well. I pursued fiscal theory in part
because it’s simple and beautiful, characteristics which I hope to share in this book.
That’s not a scientific argument. Theories should be evaluated on logic and their
ability to match experience, elegance be darned. But it is also true that the most
powerful and successful theories of the past have been simple and elegant. Moreover,
the more elegant and ultimately successful theories have often initially had a harder
time fitting facts. I hope that clarity and beauty attracts you as well and inspires you,
as it does me, to the hard work of seeing how this theory might fit the facts.

I was attracted to monetary economics for many reasons. Monetary economics is
(even) more mysterious at first glance than many other parts of economics, and thus
beautiful in its insights. If a war breaks out in the Middle East, and the price of oil
goes up, the mechanism is no great mystery. Inflation, in which all prices and wages
rise together, is more mysterious. If you ask the grocer why the price of bread is
higher, the grocer will blame the wholesaler. The wholesaler will blame the baker,
who will blame the wheat seller, who will blame the farmer, who will blame the
seed supplier and worker’s demands for higher wages, and the workers will blame
the grocer for the price of food. If the ultimate cause is a government printing up
money to pay its bills, there is really no way to know this fact but to sit down in an
office with statistics, armed with economic theory. Investigative journalism will fail.
The answer is not in people’s minds, but in their collective actions. It is no wonder
that inflation has led to so many witch-hunts for “hoarders,” “speculators,” “greed”
“middlemen,” and other phantasms.

Monetary economics offers a surprisingly high ratio of talk to equations. We fancy
0.1. This book

I am reluctant to write this book, as there is so much to be done. Perhaps I should title it “Fiscal theory of the price level: A beginning.” I think the basic theory is now settled, and theoretical controversies over. We know how to include fiscal theory in standard macroeconomic models including pricing, monetary and financial frictions. But just how to use it most productively, which frictions and specifications to include, and then how to understand episodes, data, institutions, and guide policy, has just started.

First, we have only started to fit the theory to experience. This is as much a job of historical and institutional inquiry and story-telling as it is of model specification, formal estimation, and econometric testing. There isn’t a single formal “test of monetarism” in Friedman and Schwartz. Keynes did not offer an F-test of the General Theory. They were pretty influential, because they were useful at the former tasks.

Our task is likewise to make fiscal theory useful: to really understand its message, to construct plausible stories, then to construct formal models that embody the stories, to quantitatively account for data and episodes, and to analyze policy. This book offers a beginning, and some effort to light the way. It is not a report of a concluded trip.

I argue that an integration of fiscal theory with new-Keynesian / DSGE models and their extensions is a promising path forward. But just how do such merged models work exactly? Which model ingredients will fit the data and best guide policy decisions? How will their operation differ with fiscal foundations? The project is conceptually simple, but the execution has only just begun. The international version, extending the theory to exchange rate determination, has barely begun.
Second, we have only started to apply fiscal theory to think about how monetary institutions could be better constructed. How should the euro be set up? What kinds of policy rules should central banks follow? What kind of fiscal commitments are important for stable inflation? Can we set up a better fiscal and monetary system that produces stable prices and without requiring clairvoyant central bankers to divine the correct interest rate? I offer some ideas, but you can see a long way to go.

You may find this book chatty, speculative and constantly peering forward murkily. Some sections may turn out to be wrong, when we understand it all better. I prefer to read short, clear, definitive books. But this is the fiscal-theory book I know how to write. I hope you will find it at least interesting, and the speculative parts worth your time to work out more thoroughly, if only to disprove them or heavily modify them.

The point of this book is to spur us to use fiscal theory. That goal accounts for its length and its chattiness. That goal, and the writing style, is a conscious attempt at a different kind of economic analysis. There are many articles and books with lots of equations, but readers are left to their own devices how to apply the equations to issues of practice. As a result, many theories have had more limited impact than they should. Many other books and popular articles have lots of beautiful prose, but one is often left wondering just how it all fits together, and whether contrary ideas could be just as persuasive. This book spends hundreds of pages trying to understand deeply very simple models, and to draw their lessons for history and policy. The models are there, with equations. But the models are simplified down to their minimal essence, and my main goal is to understand what they are trying to tell us. I hope that this middle ground is at least rewarding to the reader, and I aspire that it makes the underlying theory more influential.

For years I put off writing this book because I always wanted to finish the next step in the research program first. But life is short, and for each step taken I can see three others that need taking. It’s time to encourage others to take those steps. It is also time to put down here what I understand so far so we can all build on it.

On the other hand, though the path is only half taken, every time I give a fiscal theory talk, we go back to basics, and answer questions from 25 years ago: “Aren’t you assuming the government can threaten to violate its intertemporal budget constraint?” (No.) “Doesn’t Japan violate the fiscal theory?” (No). That’s understandable. The basic ideas are spread out in two decades’ worth of papers, written by more a few dozen authors. Simple ideas are often hidden in the less-than-perfect clarity of first
academic papers on any subject, and in the extensive defenses against criticisms and what-ifs that first papers must include. Responses to such questions are buried in the back ends of papers that by academic convention must focus on their positive contributions. By putting what we know and have digested in one place, in simple frameworks, I hope we can move the conversation to the things we genuinely don’t know, and broaden the conversation beyond the few dozen of us who have worked intensely in this field.

The fiscal theory remains a niche pursuit, an alternative to standard theory. Real progress in any academic field comes when a group of critical mass works on an issue. My whole point in writing this book is to help get that snowball rolling, to the point that fiscal theory becomes the standard way to think about monetary economics. This book is littered with suggestions for papers to write and puzzles to solve, which I hope will offer some of that inspiration.

Where’s the fire? Famous books in economics often emerge from historical upheavals. Keynes wrote the *General Theory* in the great depression. Friedman and Schwartz offered an alternative explanation of that searing episode, and Friedman saw the great inflation in advance. Yet inflation has been remarkably stable in the developed world, at least for the thirty years from 1990 to 2020 when the fiscal theory I describe was developed. (I finish this book in the mid-2021 inflation surge, which may rekindle interest in inflation and its fiscal foundations.) Well, economic theory is not always propelled just by big events.

We, however, are at a less public and well-recognized crisis in monetary economics. Inflation has been too quiet. Other than repeat the incantation that “expectations are anchored,” current economic theory doesn’t understand the quiet. Current theories clearly predict large and volatile inflation or deflation at the zero bound with immense quantitative easing (Chapter 20). Nobody expected that if interest rates hit zero and stayed there for a decade or more, nothing would happen, and central banks would agonize that 1.7% inflation is below a 2% target. Clearly predicting big events that did not happen is just as much a failure as not predicting the inflation that did break out in the 1970s, or its end in the 1980s.

More deeply, it’s increasingly obvious that current theory doesn’t hold together logically, or provide much guidance for how central banks should behave if inflation or deflation do break out. Central bankers rely on late-1970s ISLM intuition, expanded with some talk about expectations as an independent force. They ignore the actual operation of new-Keynesian models that have ruled the academic roost for 30 years. They tell stories of great power that are, to put it politely, far ahead of economists’
models.

If you think critically as you study contemporary monetary economics, you find a trove of economic theories that are broken, failed, are internally inconsistent, or describe economies far removed from ours. Going to the bank once a week to get cash to make transactions? Who does that any more? ISLM-based policy models with “consumption,” “investment” etc. as basic building blocks, not people making consistent, intertemporal, cross-equation, and budget-constrained decisions? The Fed threatening hyperinflation to make people jump to the preferred equilibrium?

So the intellectual fire is there. And, given government finances around the world, the painful lessons of a thousand years of history, and the simple logic of fiscal theory, a real fire may come sooner than is commonly expected.

As it evolved, this book took on a peculiar organization. I write for a reader who does not already know fiscal theory, has only a superficial knowledge of contemporary macroeconomics and monetary theory, in particular new-Keynesian DSGE style modeling, and is not deeply aware of historical developments and controversies. Thus, I develop fiscal theory first, standing on its own. I make some comparisons with monetarist and new-Keynesian thought, but a superficial familiarity should be enough to follow that, or the reader may just ignore that discussion. Only towards the end of the book do I develop the standard new-Keynesian model, monetary models, and theoretical controversies, discussions of active vs. passive policies, on vs. off equilibrium, and so forth. The controversies are really all what-ifs, responses to criticisms, what about other theories, and so on. If the fiscal theory takes off as I hope it will, alternative theories and controversies will fade in the rear-view mirror. The front of the book – what is the fiscal theory, how does it work, how does it explain facts and policy – will take precedence. But if you’re hungry to know just how other theories work, how fiscal theory compares to other theories, or answers to quibbles, just keep going.

I also develop ideas early on using very simple models, and then return to them in more general settings, rather than fully treat an idea in generality before moving on. If on reading you wish a more general treatment of an issue, it’s probably coming in a hundred pages or so. The benefit of this strategy is that you will see hard issues show up first in very simple clear contexts. The cost is a bit of repetition as you see the same idea gain nuance in more and more general contexts.

A note to fellow economists who think rigorously in the general equilibrium tradition: The point of this book is to make fiscal theory accessible, to develop stories and intuition for how it can help us to understand the world. For this reason, I focus
on bits and pieces of fully fleshed out models, only occasionally spelling out the full
details. For example, we spend a lot of time looking at the government debt valuation
equation, real value of government debt equals present value of primary surpluses.
That equation by itself is not a model. It is one equilibrium condition of a model. The
surpluses and discount rate are endogenous variables. Though it is easy to slip into
saying that that changing expected surpluses or discount rates “cause” changes in
inflation, that is sloppy thinking. We are really evaluating equilibrium inflation given
equilibrium surpluses and discount rates. Likewise, price equals expected discounted
dividends does not mean that expected dividends “cause” price changes. That too
is one equilibrium condition of a full model, relating endogenous variables. Yet
looking at this equilibrium condition in isolation has been enormously productive
for asset pricing. Likewise, the equilibrium condition that consumption growth is
proportional to the interest rate can be written that the interest rate is proportional
to consumption growth. Macroeconomists read the condition as a determinant of
consumption growth; finance read it as a determinant of the interest rate. Both
readings are useful, though it is just an equilibrium relation between endogenous
variables.

I write this disclaimer because many economists (including some who generously sent
comments on this book) are so well-trained in general equilibrium, that they find it
hard and frustrating to look at bits and pieces of models that are not fully fleshed
out. Start with preferences, technology, market structure, fundamental shocks, and
write the bloody model already, they advise. Being of the Chicago/Minnesota school
that believes this is the “right” way to do economics, I am sympathetic. But I have
found that full models hide much intuition, and we are still at the intuition phase of
fiscal theory. Moreover, while in this framework one should never think of x causing
y unless x is a truly exogenous structural shock, the actual exogenous structural
shocks to the economy are awfully hard to pin down. So, brace yourself. We will
largely look at a few equilibrium conditions and see how they work and organize the
world. By and large, though, the models in this book are so simple that if you know
enough to ask these questions, you know enough to fill in the details on your own
— time-separable representative agent, constant endowment, complete markets clear,
etc.

A note to general readers: This book has a lot of equations. One really doesn’t need
any more economics than is covered in a good undergraduate economics course to
understand them all. One can get by with a good deal less. You don’t have to actu-
ally do much math at all, or derive any equations. We mostly just stare at equations
and untangle their meaning. But equations and the models they embody are central
to the enterprise. Without the equations, you can’t check that the story is internally consistent. Mathematical models do not prove economics is right, but economic theories that cannot be written in models are almost certainly wrong. Monetary economics is particularly full of beautiful prose that falls apart when looked at analytically. Time and again, in writing this book, I wrote a section of beautiful prose, convinced of one or another effect. I then went back to flesh out some equations, only to discover that most of my beautiful intuition was wrong. The remaining verbal sections may suffer a similar fate. They are written to encourage others to do some of that difficult fleshing out.

So while a reader can understand most of what I have to say simply glossing over the math, the core point of this book is a set of simple models, whose operation is not obvious at a verbal level, but that help us to understand the world, and a lot of words used in making connections to events and the operation of the little models. Economic theory consists of well worked out quantitative parables, and a set of examples in which one applies those parables to illuminate a complex world. This book is spends a bit more time on the latter task than usual. But the underlying quantitative parables are the core of the theory, and without the quantitative that core is empty.
Part I

The Fiscal Theory
What determines the overall level of prices? What causes inflation, deflation, or currency appreciation and devaluation? Why do we work so hard for pieces of paper? A $20 bill costs 10 cents to produce, yet you can trade it for $20 worth of goods or services. And now, $20 is really just a few bits moved in a computer, for which we work just as hard. What determines the value of a dollar? What is a dollar, really?

As one simple story, the fiscal theory of the price level answers: Money is valued because the government accepts money for tax payments. If on April 15, you have to come up with these specific pieces of paper, or these specific bits in a computer, and no others, then you will work hard through the year to get them. You will sell things to others in return for these pieces of paper. If you have more of these pieces of paper than you need, others will give you valuable things in return. Money gains value in exchange because it is valuable on tax day. This idea seems pretty simple and obvious, but as you will see it leads to all sorts of surprising conclusions.

The fiscal theory is additionally interesting by contrast with more common current theories of inflation, and how its simple insight solves the problems of those theories. Briefly, there are three main alternative theories of the price level. First, money may be valued because it is explicitly backed: the government promises 1/32 of an ounce of gold in return for each dollar. This theory no longer applies to our economies. We will also see that it is really an interesting instance of the fiscal theory, as the government must have or obtain gold to back dollars.

Second, intrinsically worthless money may be valued, if people need to hold some money to make transactions, and if the supply of that money is restricted. This is the most classic view of fiat money (“fiat” means money with no intrinsic value, redemption promise, or other backing). But current facts challenge it: Transactions require people and business to hold less and less money. More importantly, our governments and central banks do not control internal or external money supply. Governments allow all sorts of financial and payments innovation, money multipliers do not bind, and central banks follow interest rate targets not money supply targets.

Third, starting in the late 1970s, a novel theory emerged to describe that reality, and in response to the experience of the 1970s and 1980s. In this theory, inflation is controlled when the central bank follows an interest rate target, so long as the target varies more than one-for-one with inflation, following what became known as the Taylor principle. We will analyze the theoretical problems with this view in detail below. Empirically, the fact that inflation has remained stable and quiet even though interest rates did not move in long-lasting zero bound episodes contravenes
The fiscal theory is an alternative to these three great, classic, theories of inflation. The first two do not apply, and the third is falling apart. Other than the fiscal theory, then, I will argue that there is no simple, coherent, economic theory of inflation that is vaguely compatible with current institutions.

Macroeconomic models are built on these basic theories of the price level, plus descriptions of people’s saving, consumption, production, and investment behavior, and potential frictions in product, labor, or financial markets. Such models are easily adapted to the fiscal theory instead of alternative theories of inflation, leaving the rest of the structure intact. Procedurally, changing this one ingredient is easy. But the results of economic models often change a lot if you change just one ingredient.

Let’s jump in to see what the fiscal theory is, how it works, and then compare it to other theories.
Chapter 1

A two-period model

This chapter introduces the fiscal theory, and previews many following issues, with a simple two-period model. The model has perfectly flexible prices, constant interest rates, short-term debt, and no risk premiums. I add these elements later, as they add important realism. But by starting without them we see that they are not necessary in order to determine the price level, nor do they change the basic logic of price level and inflation determination.

1.1 The last day

We look at a simple one-period frictionless fiscal theory of the price level

\[\frac{B_0}{P_1} = s_1. \]

In the morning of day 1, bondholders wake up owning \(B_0 \) one-period zero-coupon government bonds coming due on day 1. Each bond promises to pay $1. The government pays bondholders by printing up new cash. People may use this cash to buy and sell things, but that is not important to the theory.

At the end of the day, the government requires people to pay taxes \(P_1 s_1 \) where \(P_1 \) denotes the price level (dollars needed to buy a basket of goods) and \(s_1 \) denotes real tax payments. For example, the government may levy a proportional tax \(\tau \) on income, in which case \(P_1 s_1 = \tau P_1 y_1 \) where \(y_1 \) is real income and \(P_1 y_1 \) is nominal income. Taxes just soak up money.
CHAPTER 1. A TWO-PERIOD MODEL

The world ends on day 2, so nobody wants to hold cash or bonds after the end of
day 1. In equilibrium, then, cash printed up in the morning must all be soaked up
by taxes at the end of the day,

\[B_0 = P_1 s_1 \]

or

\[\frac{B_0}{P_1} = s_1. \] (1.1)

Debt \(B_0 \) is predetermined. The price level \(P_1 \) adjusts to satisfy (1.1). We just
determined the price level. This is the fiscal theory.

1.2 Intuition of the one-period model

The mechanism for determining the price level can be interpreted as too much money
chasing too few goods, as aggregate demand, or as a wealth effect of government
bonds. The fiscal theory does not feel unusual to people, even economists, who live
in it. The fiscal theory differs on the measure of how much money is too much, and
the source of aggregate demand. Fiscal theory builds on a completely frictionless
foundation.

If the price level \(P_1 \) is too low, more money was printed up in the morning than will
be soaked up by taxes in the evening. People have, on average, more money in their
pockets than they need to pay taxes, so they try to buy goods and services. There
is “too much money chasing too few goods and services.” “Aggregate demand” for
goods and services is greater than “aggregate supply.” Economists trained in either
the Chicago or Cambridge traditions living in this economy would not, superficially,
otice anything unusual.

The difference from the standard (Cambridge) aggregate-demand view lies in the
source and nature of aggregate demand. Here, aggregate demand results directly
and only as the counterpart of the demand for government debt. We can think of
the fiscal theory mechanism as a “wealth effect of government bonds,” again tying the
fiscal theory to classical ideas. Too much government debt, relative to surpluses, acts
like net wealth which induces people to try to spend, raising aggregate demand.

The difference from the standard (Chicago) monetary view lies in just what is money,
what is the source of money demand, and therefore how much money is too much.
Here, inflation results from more money in the economy than is soaked up by net
tax payments, not by more money than needed to mediate transactions or to satisfy
1.2. INTUITION OF THE ONE-PERIOD MODEL

asset, liquidity, precautionary, etc. sources of demand for money. Here, only outside money, government liabilities, drives inflation, along with government bonds that promise such money. If in this economy someone were to set up a bank, issuing notes and making loans, to a monetarist those notes would count as money which causes inflation. They are irrelevant to the price level in the fiscal theory.

We may view the fiscal theory as a backing theory of money. Dollars are valuable because they are backed by the government’s fiscal surpluses. Many financial liabilities are valuable because they are a claim to some assets. Many currencies have been explicitly backed by assets such as gold. Dollars say “This note is legal tender for all debts, public and private,” so you have the right to pay your taxes with dollars. That right constitutes a backing.

Backing means that if people decide they do not want to hold money, the government or a private issuer can soak up money without money losing value. The ability to soak up money by tax payments works the same way and thus constitutes a backing.

My story that money is valued because the government accepts its money in payment of taxes goes back to Adam Smith himself (thanks to Ross Starr for the quote):

“A prince, who should enact that a certain proportion of his taxes be paid in a paper money of a certain kind, might thereby give a certain value to this paper money.” (Wealth of Nations, Vol. I, Book II, Chapter II).

My story about money printed up in the morning and soaked up in the afternoon helps to fix intuition, but it is not essential. People could redeem debt for money 5 minutes before using the money to pay taxes. Or, people could just pay taxes directly with maturing government bonds. “Cash” can be reserves, electronic accounts at the Fed. A “morning” vs. “afternoon” is not a necessary part of the model. It can all happen continuously, or in an instant.

How people make transactions is irrelevant to the price level in this model. People could make transactions with maturing bonds, with foreign currency, or Bitcoin. People could make transactions with debit cards or credit cards linked to bank accounts, netted at the end of the day with no money changing hands, which is roughly how we do things today. People could wire claims to funds that hold government bonds, private bonds, mortgages, or stocks. The dollar can be a pure unit of account, with nobody ever holding actual dollars.

The simple model shows that the fiscal theory can determine the price level in a completely frictionless economy. In this model, money has no extra value from its
use in transactions or other special features. Money does not pay a lower return than other assets, people do not carry around an inventory of money, and the government does not limit the supply of inside liquid assets. This model has perfectly flexible prices, and markets clear instantly. Backing theories naturally continue to determine the price level in a frictionless context: If money is valued because it is a claim to something else that has value in a frictionless model, then money has value absent any transactions, liquidity, pricing, or other frictions.

By contrast, two standard theories of the price level, the monetarist story of money supply and demand, and the Keynesian story of interest rate targets and Phillips curves, require monetary or pricing frictions to determine the price level at all. This is a beautiful aspect of fiscal theory, and makes it an attractive starting point for monetary economics today. Electronic transactions and financial innovation undermine money demand, and the internet might undermine sticky prices and wages. It also means that one can often understand basic mechanisms of more complex models based on fiscal theory with the simple supply and demand logic of this frictionless underpinning.

One can add monetary, financial, and pricing frictions to fiscal theory, and I will do so presently, in order to create a more realistic model. But the fiscal theory allows us to start to analyze the price level with a simple frictionless, flexible-price, backing model, and to add frictions as needed for realism – or not to add them when not needed.

In this simple model all the government does is to charge taxes, requiring that people surrender money or maturing government bonds. The government can use some of that money to make cash transfers, with $P_T s_t$ denoting primary surpluses, the difference between taxes and transfers.

That we pay taxes in dollars is not essential. The government could accept goods or foreign currency for tax payments and then sell those to soak up dollars. What matters to price level determination is that the government uses tax revenues in excess of spending to soak up any excess dollars at the end of the day, and thereby maintain their value. While not necessary, however, offering the right to pay taxes with money, or requiring such payment, is a useful way of communicating and pre-committing to fiscal backing.

Equation (1.1) is one equilibrium condition of a model, not a full model on its own, just as price = present value of dividends is one equilibrium condition of a full model. Both are useful if one remembers that limitation. I return below to describe a complete economic model, though most readers who know enough to ask
1.3. A TWO-PERIOD MODEL AND PRESENT VALUE

The question can fill in the details quickly on their own (representative agent, constant endowment, flexible prices, etc.) The “government” here unites treasury and central bank balance sheets. All debt B is debt in private hands, cancelling out central bank holdings of treasury debt.

1.3 A two-period model and present value

We add an initial period time 0, and bond sales B_0. The price level in each period is determined by

\[
\frac{B_0}{P_1} = s_1
\]

\[
\frac{B_{-1}}{P_0} = s_0 + \beta E_0(s_1).
\]

The price level P_0 adjusts so that real value of nominal debt equals the present value of real primary surpluses. The theory need not predict a strong relation between inflation and contemporaneous debt and deficits. A higher discount rate, lower β, can lead to inflation even with no change in surpluses.

Next, let us add the previous day, time 0. This addition allows us to think about where the debt B_0 came from, and what the effects are of changing this second policy lever.

The time-0 flow equilibrium condition is

\[
B_{-1} = P_0 s_0 + Q_0 B_0. \tag{1.2}
\]

Money printed up in the morning of day 0 to pay maturing nominal bonds B_{-1} is soaked up by surpluses $P_0 s_0$, and now also by nominal bond sales B_0 at the end of time 0, at nominal bond price Q_0. In this flexible-price, constant interest-rate world, that bond price is

\[
Q_0 = \frac{1}{1 + i_0} = \beta E_0 \left(\frac{P_0}{P_1} \right) = \frac{1}{R} E_0 \left(\frac{P_0}{P_1} \right). \tag{1.3}
\]

The first equality defines the notation i_0 for the nominal interest rate. The second and third equalities are the bond pricing equation, with subjective discount factor β or real interest rate R. It is a nonlinear version of the statement that the nominal interest rate equals the real interest rate plus expected inflation.
Substituting (1.3) in (1.2), we have
\[\frac{B_{-1}}{P_0} = s_0 + \beta E_0 \left(\frac{1}{P_1} \right) B_0, \]
and using time 1 equilibrium,
\[\frac{B_0}{P_1} = s_1, \]
we have
\[\frac{B_{-1}}{P_0} = s_0 + \beta E_0 (s_1). \]

- The price level \(P_0 \) adjusts so that real value of nominal debt equals the present value of real primary surpluses.

I refer to (1.5) as the “government debt valuation equation.” It works like stock, in which the stock price adjusts so that the value of a given number of shares equals the present value of dividends.

The present value on the right-hand side of (1.5) has immediate, fortunate and important consequences: The theory does not necessarily predict a strong contemporaneous relationship between inflation, debt, and deficits. Governments can run large deficits \(s_0 < 0 \) or have large debts \(B_{-1} \) with no inflation, if people believe that the governments will pay back new \(B_0 \) and old \(B_{-1} \) debt with subsequent surpluses, \(s_1 \). Conversely, inflation can break out today \((0)\) if people see intractable future fiscal problems \((s_1)\) despite healthy debt and deficits today. Higher discount rates – higher real interest rates, a lower \(\beta \) – can also induce inflation, with no change in surpluses.

1.4 Monetary policy, fiscal policy, and inflation

If the government sells additional debt \(B_0 \) without changing surpluses, it lowers the bond price, raises the nominal interest rate, raises no additional revenue, and raises the expected price level and future inflation. The government may follow a nominal interest rate target, by offering to sell debt \(B_0 \) at a fixed interest rate \(i_0 \), with no change in surpluses. I call these operations “monetary policy.” Monetary policy can set a nominal interest rate target and thereby determine expected inflation. Fiscal policy sets unexpected inflation. An interest rate rise with no change in fiscal policy raises inflation one period later, with no contemporaneous change in inflation in this
1.4. Monetary Policy, Fiscal Policy, and Inflation

model, a natural neutrality benchmark. This combination is the simplest example of what I shall call the “fiscal theory of monetary policy.” Inflation is stable and determinate under an interest target, even an interest rate peg.

The government has two policy levers, debt B_0 and surpluses s_0, s_1. The two-period model lets us think about the effect of selling debt B_0.

The price levels at the two dates are given by

$$\frac{B_0}{P_1} = s_1$$

$$\frac{B_{-1}}{P_0} = s_0 + \beta E_0(s_1).$$

Suppose the government sells more debt B_0 at time 0, without changing surpluses s_0 and s_1. The price level P_0 does not change, and P_1 rises.

To understand the result, write

$$\frac{B_{-1}}{P_0} = s_0 + \frac{B_0}{1+i_0} = s_0 + \beta E_0 \left(\frac{P_0}{P_1} \right) \frac{B_0}{P_0} = s_0 + \beta E_0(s_1).$$

Money printed up to redeem debt B_{-1} is soaked up by surpluses s_0 or by new bond sales B_0. In turn, bond sales B_0 raise real revenue equal to $\beta E_0(s_1)$. With P_0 determined and no change in s_0 or s_1, greater bond sales B_0 just lower the bond price $Q_0 = 1/(1+i_0)$, raise the nominal interest rate, and raise the price level P_1, but generate no extra time-0 revenue.

Selling more debt B_0 without changing surpluses s_1 is like a share split. When a company does a 2-for-1 share split, each owner of one old share receives two new shares. People understand that this change does not imply any change in expected dividends. The price per share drops by half and the total value of the company is unchanged. Here a doubling of B_0 with no change in surpluses halves the bond price $Q_0 = 1/(1+i_0)$. In the morning of time 1, additional bonds B_0 with no more surplus s_1 are like a currency reform. They imply an instant and proportionate change in price level. Doubling debt B_0 doubles the price level P_1.

Rather than auction a fixed quantity of nominal debt B_0, the government can announce an interest rate target i_0, and allow people to buy all the bonds B_0 they want at that price. It can offer a flat supply curve rather than a vertical supply curve of nominal debt. Now the B_0 terms of (1.8) describe the number of bonds that people will choose to buy at the fixed price.
CHAPTER 1. A TWO-PERIOD MODEL

Offering to buy and sell government bonds at a fixed nominal interest rate, without changing fiscal policy, is a reasonable abstraction of a central bank. Thus, I will call this interest rate target “monetary policy.” We learn that a central bank can set the nominal interest rate even in this frictionless and cashless world. The interest rate target sets the expected rate of inflation, by

\[\frac{1}{1 + i_0} = \beta E_0 \left(\frac{P_0}{P_1} \right). \] (1.9)

Thus the central bank can determine *expected* inflation via its interest rate target. The “fiscal” theory of the price level does not mean that central banks are powerless!

An increase in the interest rate target \(i_0 \) has no effect on the price level \(P_0 \) and no effect on contemporaneous inflation \(P_0/P_{-1} \). It raises expected inflation entirely by raising the expected future price level \(P_1 \), (really lowering \(E(1/P_1) \)). This “Fisherian” response contrasts with the usual presumption that raising nominal interest rates lowers inflation, at least for a while. We will study many mechanisms that produce a negative response. However, first recognize how natural a positive response is: This is a frictionless model, with flexible prices and without monetary distortions. Monetary policy ought to be “neutral” in this model. It is. Higher nominal interest rates coincide with higher inflation in the long run of almost all models, once real interest rates settle down, prices adjust, and output returns to normal. With no frictions, this model’s immediate positive reaction of expected inflation to an interest rate rise embodies a natural neutrality proposition.

Monetary policy sets expected inflation, so fiscal policy sets unexpected inflation. We can see this result easily by multiplying (1.6) by \(P_0 \) and taking innovations,

\[\frac{B_0}{P_0} \left(E_1 - E_0 \right) \left(\frac{P_0}{P_1} \right) = \left(E_1 - E_0 \right) (s_1). \] (1.10)

The combination (1.9)-(1.10) completely determines expected and unexpected inflation. It is the simplest example of what I shall call the “fiscal theory of monetary policy.” The government, and its idealized central bank, can follow an interest rate target. The interest rate target determines expected inflation. Fiscal policy determines unexpected inflation. The interest rate target may, but need not vary with inflation. Inflation is stable and determinate even with an interest-rate peg.
1.5 Fiscal policy debt sales

If the government sells more debt B_0 and at the same time promises proportionally greater surpluses s_1, the policy has no effect on the price level P_1, and raises revenue at time 0. That revenue can fund a deficit, less s_0, or lower the price level P_0. A bond sale with more surplus is like an equity issue, not a share split.

A government that runs a deficit, lower s_0, can fund that deficit by such borrowing with greater s_1, leaving constant P_0 and P_1, and raising the real value of debt Q_0B_0/P_0. If the government does not change s_1, then it funds the deficit s_0 by inflating away outstanding debt. If the government lowers s_1 as well as s_0, then it produces a large inflation P_0 and the value of debt declines following the deficit s_0. Since we see larger values of debt following deficits in most time-series data, the former reaction dominates, which requires an “s-shaped” surplus process. Fiscal theory can produce a completely steady price level despite wide variation in deficits and debt.

Now, let us think about debt sales B_0 that are accompanied by changes in surpluses and deficits s_0 and s_1. Suppose that at time 0, the government sells more debt B_0, but this time it promises additional surpluses s_1. Look again at (1.6) and (1.8).

\[
\frac{B_0}{P_1} = s_1
\]

(1.11)

\[
\frac{B_{-1}}{P_0} = s_0 + \frac{1}{1+i_0} \frac{B_0}{P_0} = s_0 + \beta E_0 \left(\frac{P_0}{P_1} \right) \frac{B_0}{P_0} = s_0 + \beta E_0 \left(s_1 \right).
\]

(1.12)

In (1.11), if the government raises B_0 and s_1 proportionally, there is no effect on the price level at time 1 P_1. Looking from right to left in (1.12), this action raises the real value of debt at the end of period 0, and raises the real revenue it obtains by selling that debt. The additional revenue can fund a deficit, a decline in s_0, with no change in P_0 as well as P_1. Or it can be used to lower the price level P_0.

The debt sale B_0 with corresponding rise in surplus s_1 is like an equity issue, in contrast to a share split. In an equity issue, a firm also increases shares outstanding, but it promises to increase future dividends. By doing so, the firm raises revenue and does not change the stock price. The value of the company increases. The revenue can be used to fund investments – a negative s_0 – that generate the larger dividends.

Turning it around, let us think about the government’s options for financing a deficit.
Suppose that the government at day 0 runs a deficit \(s_0 < 0 \), or reduces the surplus \(s_0 \) from what was previously expected. How does the government finance this deficit? Examine three options, also summarized in Table 1.1.

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Time 0 surplus</th>
<th>Time 1 surplus</th>
<th>Value of debt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borrow</td>
<td>lower</td>
<td>rise by (-R\Delta s_0)</td>
<td>rise</td>
</tr>
<tr>
<td>Inflate</td>
<td>lower</td>
<td>no change</td>
<td>no change</td>
</tr>
<tr>
<td>AR(1)</td>
<td>lower</td>
<td>lower</td>
<td>lower</td>
</tr>
</tbody>
</table>

Table 1.1: Strategies for financing a deficit at time 0.

First, as in the last scenario, the government can borrow, and thereby have no effect on the price level \(P_0, P_1 \). In order to raise real revenue from borrowing, the government must promise larger future surpluses to repay additional debt. The government lowers \(s_0 \) by \(\Delta s_0 \) but raises \(s_1 \) by \(R\Delta s_0 \). The price level \(P_0 \) at time 0 does not change, since the present value of surpluses \(s_0 + \beta E_0 s_1 \) does not change. The dollars printed to redeem debt \(B_{-1} \) that are not soaked up by the lower surplus \(s_0 \) are now soaked up by larger real value of bond sales \(Q_0 B_0 / P_0 \), which is also the real value of nominal debt at the end of the period. If the government sells extra nominal debt \(B_0 \), so that \((B_0 + \Delta B_0) / P_1 = s_1 + R\Delta s_0 \), then the price level \(P_1 \) does not change either, as in the previous scenario.

Second, the government can inflate away outstanding debt. If \(s_0 \) declines and there is no change in \(s_1 \), then the price level \(P_0 \) rises. The real value of debt at the end of period 0, \(Q_0 B_0 / P_0 = \beta E_0 (s_1) \), a claim to unchanged surpluses at time 1, does not change. As the price level \(P_0 \) rises, the value of the dollars that redeem bonds \(B_{-1} \) falls by exactly the fall in the surplus \(s_0 \).

Third, suppose the government lowers \(s_1 \) along with the lower \(s_0 \). A typical AR(1) model of serially correlated deficits produces this result. We might imagine that the initial deficit comes with persistent bad fiscal news. Now the present value \(s_0 + \beta E_0 (s_1) \) drops even more than the initial deficit \(s_0 \). The time 0 inflation is even larger, inflating away the larger present value of both deficits \(s_0 \) and \(s_1 \). The deficit in time 0 is accompanied by a decline in the end-of-period value of debt.

In typical advanced countries and episodes, including postwar U.S. time series, larger deficits lead to a rise in the value of debt, not equality and not a decline. Deficits are not strongly correlated with inflation. Inflation shocks are much smaller than deficit shocks. These observations, and especially the first, tell us that fiscal policy
largely consists of borrowing, credibly promising future surpluses to repay debt, and therefore most of the time doing so, not routinely inflating away debt. I call the result an “s-shaped” surplus process: If today’s surplus s_0 declines, the surplus must turn around and rise later on. A government that wants steady inflation, and can do so, will arrange its fiscal affairs in this way. There is some unexpected inflation, but we will have to see its fiscal roots on top of this dominant pattern.

The fiscal theory can describe an economy with widely varying debt and deficits, yet little or no inflation at all. The fiscal theory does not imply that large variation in debt and deficits must result in inflation.

Other countries and time periods are different. On occasion we see deficits associated with inflation. On occasion we see large inflation or currency devaluation associated with deficit shocks that seem too small to provoke them. The persistent deficit model can capture these episodes.

1.6 Debt reactions and a price-level target

I introduce a price-level target P_1^* and a fiscal rule $s_1 = B_0/P_1^*$. This rule produces $P_1 = P_1^*$ in equilibrium. Additional nominal debt sales B_0 now generate surpluses to pay them off at the price level P_1^*. The decision to borrow or inflate away a deficit is implemented by borrowing or not borrowing rather than by changing a promised stream of surpluses.

I introduced these fiscal exercises by thinking about changes in the sequence of surpluses $\{s_0, s_1\}$. But that’s not the way economists or policy people usually think of fiscal affairs. It is more common to think in terms of a surplus or deficit today, s_0, borrowing or inflation today, and to characterize the future by fiscal reactions to outstanding debt, the price level, and other state variables, endogenous variables, or shocks. More generally, macroeconomics and finance are often expressed in terms of state variables and actions that are functions of state variables rather than sequences of actions. This dynamic programming approach is often useful conceptually and not just (very) useful for solving models.

Think then of surplus at time 1 that responds to the quantity of debt B_0, according to a rule

$$s_1 = \frac{B_0}{P_1^*}.$$
I will call the variable P_1^\ast a price-level target. With this rule, equilibrium inflation is given uniquely from $B_0/P_1 = s_1$ by $P_1 = P_1^\ast$. Parameterizing the surplus decision this way, we think of the government as committing to respond to an increase in the quantity of debt B_0 by raising surpluses to repay that debt, rather than think of the larger surplus s_1 with a direct connection to the previous deficit s_0. This fiscal rule does not respond to the future price level itself P_1, or to deviations of that level from the target, $P_1 - P_1^\ast$.

The price-level target may represent an inflation target, a gold-price target, or an exchange-rate target. It may represent less formal rules and traditions, expectations, or it may simply model behavior and therefore expectations of behavior, as the Taylor rule $i_t = \theta_\pi \pi_t$ started as a description of Fed behavior. It can capture the idea that governments often respond to inflation with “austerity” and to deflation with “stimulus.” If inflation breaks out, $P_1 > P_1^\ast$, for example, the government can avoid formal default by running a smaller surplus $s_1 = B_0/P_1$. But the government deliberately runs a larger surplus to fight inflation and bring the price level down to P_1^\ast. If deflation breaks out, $P_1 < P_1^\ast$ this government refuses to raise surpluses to pay an unexpected windfall to bondholders. It runs deliberate “helicopter money” unbacked fiscal stimulus instead. I use a subscript P_1^\ast to allow the price level target to vary over time and according to information or, later, other variables at time 1, perhaps as a transitory deviation from stated long-run price level or inflation targets. Many more interpretations of the price-level target specification follow. For now, let’s just follow (1.13) as a potentially interesting possibility for fiscal policy.

Consider again the government’s options to finance a deficit s_0. We rephrase the previous three options. In addition to (1.13) and consequent $P_1 = P_1^\ast$, we have at time 0,

$$\frac{B_{-1}}{P_0} = s_0 + \beta E_0 s_1 = s_0 + \beta E_0 \frac{B_0}{P_1^\ast}.$$

To finance a deficit s_0 by borrowing, without affecting the price level at either date, the government issues more nominal debt B_0, without changing the price-level target P_1^\ast. The greater borrowing produces larger surpluses s_1. But now rather than try to communicate promises about a specific stream of surpluses, the government communicates a commitment to raising whatever surpluses are needed to repay debt at the price level target P_1^\ast. In an intertemporal model, the government does not need to be specific about just when the surpluses will arrive.

To finance the deficit by inflating away outstanding debt, the government simply does not sell more debt B_0. With lower surpluses s_0, the money printed up to redeem bonds B_{-1} is left outstanding. People try to spend that money, driving up the price
1.7. **FISCAL POLICY CHANGES MONETARY POLICY**

The fiscal policy rule with a price-level target \(s_1 = B_0/P_1^* \) dramatically changes the effects of monetary policy. A rise in debt \(B_0 \), or a rise in nominal interest rate \(i_0 \), with no change in this fiscal policy rule, lowers \(P_0 \) with no effect on \(P_1 \) rather than raise \(P_1 \) with no effect on \(P_0 \). Higher interest rates lower inflation, immediately.

The effects of monetary policy depend crucially on the fiscal policy rule. We will see this lesson repeatedly. The price-level target rule offers a simple and important example.

Suppose that the central bank sells more debt \(B_0 \) without directly changing fiscal policy. Specifying fiscal policy as an unchanged \(s_0 \) and \(s_1 \), this action had no effect on \(P_0 \) and raised \(P_1 \). But suppose fiscal policy is specified by \(s_0 \) and the rule \(s_1 = B_0/P_1^* \), and let us think of “unchanged fiscal policy” as not making changes to this rule. This question gives exactly the opposite result: Larger debt \(B_0 \) has no effect on \(P_1 = P_1^* \), and it lowers the price level \(P_0 \) immediately. The larger debt \(B_0 \) generates more surplus \(s_1 \) generates more revenue from bond sales at time 0, and more revenue soaks up dollars, lowering \(P_0 \).

Fixing surpluses \(\{s_0, s_1\} \), the demand curve for nominal debt was unit-elastic, giving the same total real revenue \(\beta E_0(s_1) \) for any amount of bonds \(B_0 \) that the government sells. Now, the debt demand curve is flat, giving the same real price \(Q_0/P_0 \) for any amount sold \(B_0 \). The more bonds \(B_0 \) sold, then, the more total real revenue such sales produce. If the bonds are sold as “fiscal policy,” to finance a larger deficit \(s_0 \), they allow the government to run such a deficit without inflation. If the bonds are sold as “monetary policy,” with no change in \(s_0 \), and no change in the fiscal rule, bond sales soak up more cash at time 0 and lower the price level \(P_0 \).

Likewise, fixing surpluses \(\{s_0, s_1\} \), a higher interest rate target \(i_0 \) raised expected inflation, via \(1/(1 + i_0) = \beta E_0(P_0/P_1) \), having no effect on the price level \(P_0 \) and raising the expected price level \(P_1 \). Now a higher interest rate still raises expected inflation. But with \(P_1 = P_1^* \) unchanged, the rise in interest rate \(i_0 \) raises expected inflation by lowering the price level \(P_0 \), and thus lowers current inflation \(P_0/P_{-1} \).
We have a model that overturns the Fisherian prediction, a model in which higher interest rates lower inflation!

Monetary policy drives down inflation because of a different fiscal policy rule. Monetary policy does not change the fiscal rule, but monetary policy can change a variable which fiscal policy responds to, and thereby indirectly change fiscal policy. We see a simultaneous fiscal tightening along with the interest rate rise. That fiscal tightening produces the lower time-0 inflation. But it is only an expected future fiscal tightening. We do not see a deficit in the period 0 when the interest rate rises. Looking at data, it could be hard to see what’s going on.

This is an important story, by highlighting the importance of the fiscal policy rule for the effects of monetary policy. It also highlights one of the central mechanisms in many models for producing a negative inflation response to interest rates: that higher interest rates induce a future fiscal contraction.

1.8 Budget constraints and active versus passive policies

I preview two theoretical controversies.

\[\frac{B_0}{P_1} = s_1 \] is an equilibrium condition, not a government budget constraint. The government could leave cash \(M_1 \) outstanding overnight. People who don’t want to hold cash overnight drive the equilibrium condition.

The government may choose to set surpluses \(s_1 \) so that \(\frac{B_0}{P_1} = s_1 \) for any \(P_1 \). In this case the fiscal theory does not determine the price level. This is called a “passive” fiscal policy. Such a policy is a choice, however, not a budget constraint. It is also not a natural outcome of a proportional tax system.

This simple model helps us quickly to preview a few common theoretical concerns.

First, isn’t the fiscal theory equation \(\frac{B_0}{P_1} = s_1 \), and, more generally \(\frac{B_{-1}}{P_0} = s_0 + \beta E_0(s_1) \), the government’s budget constraint? Shouldn’t we solve it for the surplus that the government must raise to pay off its debts, given the price level \(P_1 \)? Economic agents must obey budget constraints, for any price. Budget constraints limit quantities given prices, they don’t determine prices given quantities. You and I can’t fix the real amount we want to repay for a mortgage, and demand that the price level adjust so we can afford a mansion. Are we specifying, weirdly or perhaps
incorrectly, that the government is some special agent that can threaten to violate
its budget constraint at off-equilibrium prices?

No. Equation (1.1),

\[
\frac{B_0}{P_1} = s_1
\]

(1.14)
is not a budget constraint. The condition that holds at any price level is

\[
B_0 = P_1 s_1 + M_1
\]

(1.15)

where \(M_1\) is money left over at the end of the day after paying taxes, plus any of
the debt \(B_0\) that people may have chosen not to redeem. (I assume no default here.
We’ll add that later.) For any given \(B_0\) and \(P_1\), government choices of \(\{s_1, M_1\}\) must
satisfy (1.15). If the government specifies \(s_1\), then \(M_1\) follows from (1.15). No budget
constraint says that the government may not leave money \(M_1\) outstanding at the end
of the day. If people decide to line their caskets with money or un-redeemed debt, if
we add \(u(M_1)\) to the consumer’s utility, no budget constraint forces the government
to soak up that money with taxes.

Consumer demand is why \(M_1 = 0\), and hence why \(B_0 = P_1 s_1\). People don’t want to
hold any money at the end of the day, because they get no utility, purchasing power,
tax-paying ability or pleasure from doing so. Equation (1.14) results from the budget
constraint (1.15) plus that consumer demand. Equation (1.14) is thus an equilibrium
condition, a market-clearing condition, a supply = demand condition, deriving from
consumer optimization together with consumer and government budget constraints.
Equation (1.14) is not a “government budget constraint.”

Budget constraints hold at off-equilibrium prices. Equilibrium conditions need not
hold at off-equilibrium prices. Prices adjust to make equilibrium conditions hold.
There is no reason that equation (1.14) should hold at a non-equilibrium price, any
more than the supply of potatoes should equal their demand at $10 per potato. When
we substitute private-sector demands, optimality conditions, or market-clearing con-
ditions into government budget constraints, on our way to finding an equilibrium, we
must avoid the temptation to continue to refer to the resulting object as a “budget
constraint” for the government.

Why can’t you and I demand that the “price level adjust to make our budget con-
straints hold?” Because we do not issue the currency and nominal debt that define
the price level. You and I are like a government that uses another country’s currency.
We pay debts at the given price level, or we default. Nominal government debt is
like corporate equity, whose price adjusts to make a valuation equation hold. Real or
foreign currency government debt is like personal or corporate debt, which we must repay or default.

Suppose that the government chooses to adjust surpluses s_1 so as to make the equilibrium condition (1.14) $B_0/P_1 = s_1$ hold for any price level P_1. Suppose the government follows a fiscal rule, setting the surplus at time 1 by

$$s_1 = \tau_1 y_1 = \frac{B_0}{P_1},$$ \hspace{1cm} (1.16)

as if it were a budget constraint, lowering the tax rate as the price level rises and raising the tax rate as the price level falls. This is a possible choice. This choice is known as a “passive” fiscal policy. If the government follows such a policy, P_1 cancels from left and right, and (1.14) no longer determines the price level. In essence the government’s supply curve lies directly on top of the private sector’s demand curve. A government that wishes to let the price level be set by other means, such as a foreign exchange peg, a gold standard, a currency board, use of another government’s currency, the equilibrium-selection policies of new-Keynesian models, or $MV = Py$ once we add money demand, follows a passive fiscal policy.

The converse of “passive” is “active.” The fiscal theory requires an “active” fiscal policy. Active fiscal policy does not require that surpluses s_T are fixed or exogenous. The surplus may respond to the price level P_1, $s_1(P_1)$ or to other variables including output and employment. The surplus may respond to the quantity of debt, as in $s_1 = B_0/P_1^*$. We just have to exclude the one-for-one case $s_1 = B_0/P_1$, (or multiple crossings) so that there is only one solution to (1.14), one P_1 such that $B_0/P_1 = s_1(P_1)$.

Standard theories of inflation include the government debt valuation equation (1.14), but they add this passive fiscal policy assumption, so that other forces may determine the price level. Specifying the mechanics of fiscal policy that achieves that passive response is an important and neglected part of such models. “Passive” does not mean easy. Coming up with the surpluses to defend the price level involves painful and distorting taxes, or unpopular limitations on government spending. A lot of papers add a footnote in which they assume the government charges lump-sum taxes to satisfy (1.14), but do not examine or test the resulting fiscal side of their models.

You may now want to follow decades of literature and want to test for active vs. passive policy. But such tests are difficult. Both active and passive fiscal regimes include the valuation equation (1.14) as an equilibrium condition. They differ on the direction of its causality, the mechanism by which it comes to hold, how governments
behave for a price level away from the equilibrium which we observe. When the same
equation holds in two models, arguing about how it comes to hold brings up subtle
identification and observational equivalence issues. We will consider these issues at
some length. The important point for now is that the government does not have to
follow a passive fiscal policy, in the same way that we, and the government, have to
follow budget constraints. An active fiscal policy is a logical and economic possibility,
one that does not violate any of the rules of Walrasian equilibrium.

A passive fiscal policy is not a natural description of tax and spending policies.
With a proportional tax on income, the nominal surplus is \(P_1 s_1 = \tau P_1 y_1 \). The real
surplus \(s_1 = \tau y_1 \) is then independent of the price level, so fiscal policy is active.
Transfer payments and social programs are either explicitly indexed or rise with
market prices, so a primary surplus fixed in real terms \(s_1 = \tau y_1 - g_1 \) is again a natural
specification. To engineer a passive policy, the government must change the tax rate
and real spending in response to the price level, and in the opposite of a natural
direction. To achieve \(s_1 = B_0 / P_1 = \tau y_1 \), passive policy requires \(\tau_1 = B_0 / (P_1 y_1) \).
The government must systematically lower the tax rate, or increase real transfers,
as the price level rises, and raise the tax rate or cut real transfers as the price level
decreases. The tax code if anything generates the opposite sign: Inflation pushes
people to higher tax brackets, inflation generates taxable capital gains, and inflation
devalues depreciation allowances and past nominal losses carried forward. Inflation
reduces the real value of sticky wage payments to government workers, and price-
sticky health care payments. Governments facing inflation typically raise taxes and
cut spending to fight inflation, while governments facing deflation typically lower
taxes and spend more. A passive policy is a deliberate choice, requiring unusual and
deliberate action by fiscal authorities.

1.9 Active vs. passive with a debt rule

The policy rule \(s_1 = B_0 / P_1^* \) clarifies active vs. passive policy. It seems that gov-
ernments which respond to debt by raising surpluses therefore have passive policies.
Active policy allows the government to respond to changes in the value of debt that
come from changes in nominal debt \(B_0 \) or from changes in the price level target \(P_1^* \).
Active policy only requires that governments ignore changes in the value of debt that
come from unexpected, undesired, multiple-equilibrium inflation.

The active vs. passive question is often framed in terms of responses to debt. In-
interpret the passive surplus policy (1.16) \(s_1 = B_0/P_1 \) as a fiscal policy rule, in which governments raise surpluses in response to increases in the value of debt. Stated that way, passive policy sounds reasonable, the sort of thing that responsible governments do. (Or at least that they used to do!) One is tempted to run a regression, say \(s_1 = a + \gamma(B_0/P_1) + u_1 \), and to interpret \(\gamma \) as a test of active vs. passive policy.

The active policy example (1.13) \(s_1 = B_0/P^*_1 \) and equilibrium \(P_1 = P^*_1 \) clarifies how this idea is mistake, and how little is actually required of active fiscal policy. This active-fiscal government responds one-for-one to changes in its nominal debt \(B_0 \). We observe it to respond one-for-one to changes in the equilibrium value of its debt, \(s_1 = B_0/P_1 = B_0/P^*_1 \). The regression would estimate \(\gamma = 1 \).

There are three sources of variation in the real value of debt: nominal debt \(B_0 \) built up from financing previous deficits, unexpected changes in the price-level target \((E_1 - E_0)(1/P^*_1) \), and unexpected inflation different from the target \((E_1 - E_0)(1/P_1 - 1/P^*_1) \). Active fiscal policy only requires that the government respond less than one-for-one to the last component.

It is possible and natural that fiscal policy should respond differently to these three sources of variation in the value of debt. Responding to variation in the nominal value of debt \(B_0 \), accumulated by financing past deficits \(s_0 \), allows the government to borrow in the first place, to meet a deficit \(s_0 \) by borrowing rather than time 0 inflation. Responding to changes in an inflation target allows the government to have some inflation or deflation, for example as state-contingent defaults or stimulus in response to wars, pandemics, crises. Committing not to respond to arbitrary unexpected inflation-induced variation in the value of debt allows the government to produce a stable and determinate price level, avoiding the indeterminacy that (here) would accompany passive policy. And governments do behave this way. They try to pay off debts, conscious of the reputation doing so engenders for future borrowing; they try to coordinate fiscal and monetary policies; yet they respond to undesired inflation with austerity and to undesired deflation with stimulus, not the opposite reactions that passive policy requires.

Thinking in terms of a reaction to debt, we see the identification point even more clearly. In equilibrium, we see \(s_1 = B_0/P^*_1 = B_0/P_1 \). The regression that tests active vs. passive policy is \(s_1 = \alpha(B_0/P^*_1) + \gamma(B_0/P_1 - B_0/P^*_1) + u_1 \). The coefficient \(\gamma = 1 \) indicates passive policy. But we never see \(P_1 \neq P^*_1 \) in equilibrium. This issue has caused a lot of confusion, with surpluses that respond to any movement in the value of debt interpreted as evidence for passive policy of the form (1.16). Testing for active vs. passive regimes will not be as easy as running simple regressions.
Active vs. passive policy may still seem like a big issue worth investigation, worth trying to find identifying assumptions so one can test active vs. passive, worth classifying governments as one or the other regime and perhaps switching back and forth between regimes at different times. As we look deeper, I will argue that it really has been a dead end. It is a historical theoretical controversy that a fiscal theorist must understand, for now, but not a useful concept for additional investigation, useful either to understand data or to analyze policy. In the end, fiscal and monetary policy must be coordinated. The nature of each policy affects the other. But the extreme game-of-chicken view that coordination comes about because one is “active” and the other “passive” is not realistic nor productive.

The “active” and “passive” labels are due to Leeper (1991). The labels are not perfect, as “active” fiscal policy here includes leaving surpluses alone, and “passive” policy means adjusting tax rates and spending according to the price level, which takes a lot of activity. The same possibilities are sometimes called “money-dominant” vs. “fiscal-dominant,” which has a lot of other meanings, and “Non-Ricardian” vs. “Ricardian,” which I find terribly confusing. It is not true that active-fiscal regimes fail to display Ricardian equivalence, or that in them government debt is a free lunch. Recognizing the deficiency of good labels, some authors offer symbols such as “Regime F” and “Regime M,” which I find distasteful. Words are better. For this book, I will use “active” and “passive” as defined here, and elaborated in context later.
Chapter 2

An intertemporal model

This chapter introduces a simple intertemporal model. The basic fiscal theory equa-
tion quickly generalizes to say that the real value of nominal debt equals an infinite
present value of surpluses,
\[
\frac{B_{t-1}}{P_t} = E_t \sum_{j=0}^{\infty} \beta^j s_{t+j}.
\]

I start by developing this model fully, writing out the economic environment. The
ideas sketched in the two-period model of the last chapter gain detail and nuance.
We take an important step towards models useful for empirical application.

I then consider again “monetary policy,” changes in debt \(B_t \) with no change in
surpluses, as opposed to “fiscal policy,” which changes surpluses, in the context of
the intertemporal model. “Monetary” and “fiscal” debt issues are again analogues to
share splits vs. equity offerings. This insight suggests a reason for the institutional
separation between treasury and central bank. We will see that a form of “fiscal
stimulus” can cause inflation.

Monetary policy can target the nominal interest rate. Linearizing, a fiscal theory of
monetary policy emerges that looks much like standard new-Keynesian models, and
resembles current institutions. Therefore the “fiscal” theory of the price level does
not require us to throw out everything we know and our accumulated modeling skills,
to ignore central banks, and to think about inflation in terms of debts and surpluses.
We can approach data and institutions very much as standard monetary modelers
do, specifying interest rate targets, and making minor changes in the ingredients and
solution methods of standard models.
CHAPTER 2. AN INTERTEMPORAL MODEL

Distinguishing FTMP from new-Keynesian and monetarist alternatives introduces deep observational equivalence theorems, elaborated in this intertemporal context. These theorems are useful guideposts for thinking about how to specify models and how to approach data.

This chapter maintains the other simplifications used so far: one-period debt, flexible prices, an endowment economy with a constant real interest rate and no risk premiums. Later chapters add price stickiness, discount rate variation, risk premiums and other realistic complications.

2.1 The intertemporal model

I derive the simplest intertemporal version of the fiscal theory. The government debt valuation equation is

\[
\frac{B_{t-1}}{P_t} = E_t \sum_{j=0}^{\infty} \beta^j s_{t+j}.
\]

The price level adjusts so that the real value of nominal debt equals the present value of future surpluses.

The two-period model is conceptually useful, but we need a model that describes economies over time. It is also useful to fill out economic foundations to see a complete model. This section describes a full, if still simple, intertemporal model.

The economy starts with bonds B_{-1} outstanding. At the end of each time period $t-1$ the government issues nominal one-period debt B_{t-1}. Each nominal bond promises to pay one dollar at time t. At the beginning of period t, the government prints up new money to pay off the maturing debt. At the end of period t, the government collects taxes net of transfers s_t, and sells new debt B_t at a price Q_t. Both actions soak up money.

Following the money, the government budget constraint is

\[
M_{t-1} + B_{t-1} = P_ts_t + M_t + Q_tB_t
\]

(2.1)

where M_{t-1} denotes non-interest paying money held overnight from the evening of $t-1$ to the morning of time t, P_t is the price level, $Q_t = 1/(1+i_t)$ is the one-period nominal bond price and i_t is the nominal interest rate. Interest is paid overnight only, from the end of date t to the beginning of $t+1$, and not during the day.
A representative household maximizes
\[\max E \sum_{t=0}^{\infty} \beta^t u(c_t) \]
in a complete asset market. The household has a constant endowment \(y_t = y \).

The household’s period budget constraint is almost the mirror of (2.1). The household enters the period with money \(M_{t-1} \) and nominal bonds \(B_{t-1} \), receives income \(P_t y \), purchases consumption \(P_t c_t \), pays net taxes net of transfers \(P_t s_t \), buys bonds \(B_t \), and potentially holds money \(M_t \),
\[M_{t-1} + B_{t-1} + P_t y = P_t c_t + P_t s_t + M_t + Q_t B_t. \quad (2.2) \]

Household money and bond holdings must be non-negative, \(B_t \geq 0, M_t \geq 0 \).

The consumer’s first-order conditions and equilibrium \(c_t = y \) then imply that the gross real interest rate is \(R = 1/\beta \), and the nominal interest rate \(i_t \) and bond price \(Q_t \) are
\[Q_t = \frac{1}{1+i_t} = \frac{1}{R} E_t \left(\frac{P_t}{P_{t+1}} \right) = \beta E_t \left(\frac{P_t}{P_{t+1}} \right). \quad (2.3) \]

When \(i_t > 0 \) the household demands no money \(M_t = 0 \). When \(i_t = 0 \) money and bonds are perfect substitutes, so the symbol \(B_t \) can stand for their sum. The interest rate cannot be less than zero in this model. Thus, we can eliminate money from (2.1), leading to the flow equilibrium condition
\[B_{t-1} = P_t s_t + Q_t B_t. \quad (2.4) \]

Substituting the bond price (2.3) into (2.4), dividing by \(P_t \), we have
\[\frac{B_{t-1}}{P_t} = s_t + \beta B_tE_t \left(\frac{1}{P_{t+1}} \right). \quad (2.5) \]

Household maximization, budget constraint, and equilibrium \(c_t = y \) also imply the household transversality condition
\[\lim_{T \to \infty} E_t \left(\beta^T \frac{B_{T-1}}{P_T} \right) = 0. \quad (2.6) \]

If the term on the left is positive, then the consumer can raise consumption at time \(t \), lower this terminal value, and raise utility. Non-negative debt \(B_t \geq 0 \) rules out a
negative value. Online Appendix Section 25.1 covers the transversality condition in more detail.

As a result, we can then iterate (2.5) to

$$\frac{B_{t-1}}{P_t} = E_t \sum_{j=0}^{\infty} \beta^j s_{t+j}. \tag{2.7}$$

The government sets debt and surpluses \(\{B_t\} \) and \(\{s_t\} \). Debt \(B_{t-1} \) is predetermined at time \(t \). The right-hand side of (2.7) does not depend on the price level in this simple model. Therefore, the price level must adjust so that (2.7) holds. The right-hand side of (2.7) is the present value of future primary surpluses. The left hand side is the real value of nominal debt. So, the fiscal theory says that the price level adjusts so that the real value of nominal debt is equal to the present value of primary surpluses.

We have determined the price level, in a completely frictionless intertemporal model.

Another useful approach is to add the transversality condition to the household flow budget constraint (2.2), iterate forward, and express the household present value budget constraint in real terms

$$\frac{B_{t-1}}{P_t} = \sum_{j=0}^{\infty} \beta^j (c_{t+j} - y + s_{t+j}). \tag{2.8}$$

If the value of debt is greater than present value of surpluses, then the household has extra wealth, which they try to spend on consumption greater than endowment.

Some details and clarifications: The surplus concept denoted by \(s_t \) is the real primary surplus in government accounting. The usual deficit or surplus includes interest payments on government debt. The surplus in this simple model includes only cash tax receipts less cash transfers. I do not include government purchases of goods and services (roads, tanks), which subtract from produced output to lower private consumption, and may provide benefits in utility. Thus equilibrium in the goods market is \(c_t = y_t \), not \(y_t = c_t + g_t \), and marginal utility depends on private consumption only. We can easily add those realistic complications.

Rather than a real lump-sum, we can also specify that surpluses are a proportional income (endowment) tax less a lump-sum indexed transfer,

$$P_t s_t = \tau_t (P_t y) - P_t x_t,$$
and that the tax rate τ_t and real transfer payments x_t are independent of the price level. This specification ensures that the price level is absent from the right-hand side of (2.7), and taxes do not distort asset or goods prices.

I do not, here or later in this book, write down an objective for the government. That extension is important, and integrates fiscal theory with dynamic public finance. I certainly do not take the next step after that, and describe government policy as the outcome of a game between players with different objectives. That extension is important too. I shall simply study the mapping between policy levers and outcomes, with a verbal understanding that governments like low inflation and greater output.

2.2 Dynamic intuition

The government debt valuation equation in fiscal theory is an instance of the basic asset pricing valuation equation. Nominal government debt acts as a residual claim to primary surpluses. The price level is like a stock price, and adjusts to bring the real value of nominal debt in line with the present value of primary surpluses, just as the stock price adjusts to bring the value of shares in line with the present value of dividends. The government debt valuation equation (2.7) is an instance of the basic asset pricing equation, price per share $1/P_t$ times number of shares B_{t-1} equals present value of dividends $\{s_{t+j}\}$. We quote the price level as the price of goods in terms of money, not the price of money in terms of goods, so the price level goes in the denominator not the numerator. Primary surpluses are the “dividends” that retire nominal government debt. In an accounting sense, nominal government debt is a residual claim to real primary surpluses.

The fact that the price level can vary means that nominal government debt is an equity-like, floating-value, claim. If the present value of surpluses falls, the price level can rise to bring the real value of debt in line, just as a stock price falls to bring market value of equity in line with the expected present value of dividends. Nominal government debt is “stock in the government.”

Continuing the analogy, suppose that we decided to use Apple stock as numeraire and medium of exchange. When you buy a cup of coffee, Starbucks quotes the price of a venti latte as $1/10$ of an Apple share, and to pay you tap your iPhone which transfers $1/10$ of a Apple share in return for your coffee. If that were the case, and
we were asked to come up with a theory of the price level, our first stop would be
that the value of Apple shares equals the present value of its dividends. Then we
would add liquidity and other effects on top of that basic idea. That is exactly what
we do with the fiscal theory.

This perspective also makes sense of a lot of financial commentary. Exchange rates
go up, and inflation goes down, when an economy does better, when productivity
increases, and when governments get their budgets under control. Well, money is
stock in the government.

Back ing government debt by the present value of surpluses allows for a more stable
price level than the one- or two-period models suggest. In the one-period model
any unexpected variation in surplus s_1 translates immediately to inflation. In the
dynamic model, examine (2.4),

$$B_{t-1} = P_t s_t + Q_t B_t. \tag{2.9}$$

If the government needs to finance a war or to counter a recession or financial crisis,
it will want to run a deficit, a lower or negative s_t. In the dynamic model, the
government can soak up those dollars by debt sales $Q_t B_t$ rather than a current surplus
s_t. For that strategy to work, however, the government must persuade investors that
more debt today will be matched by higher surpluses in the future.

Surpluses are not “exogenous” in the fiscal theory! Surpluses are a choice of the
government, via its tax and spending policies and via the fiscal consequences of all
its policies. Surpluses may react to events, for example becoming greater as tax
revenues rise in a boom. Surpluses may also respond to the price level, by choice or
by non-neutralities in the tax code and expenditure formulas. We only have to rule
out or treat separately the special case of “passive” policy, that the present value of
surpluses reacts exactly one-for-one to changes in the value of nominal debt brought
about by changes in the price level, so that equation (2.7) holds for any price level
P_t. The government debt valuation equation is just an equilibrium condition among
endogenous variables.

It is initially puzzling that this model with one-period debt relates the price level to
an infinite present value of future surpluses. One expects one-period assets to lead
to a one-period present value, and long-term assets to be valued with a long-term
present value. Equation (2.9) tells us why: The government plans to roll over the
debt. Most of the payments to today’s one-period debt-holders B_{t-1}/P_t come from
new debtholders willing to pay $Q_t B_t/P_t$. If the roll-over fails, or if the government
plans to retire debt in one period, we have $B_{t-1}/P_t = s_t$ only as in the one-period model.

As a result, inflation in the fiscal theory with short-term debt has the feel of a run. If we look at the present value equation (2.7), it seems today’s investors dump debt because of bad news about deficits in 30 years. But today’s investors really dump debt because they fear tomorrow’s investors won’t be there to roll over the debt. Directly, consider the flow equation written as

$$\frac{B_{t-1}}{P_t} = s_t + \frac{Q_t B_t}{P_t}.$$

The price level P_t rises because the revenue debt sales $Q_t B_t/P_t$ generate won’t be enough to pay off today’s debt B_{t-1} at the originally-expected price level. Why are people unwilling to buy bonds? Well, they look at the same situation a period ahead, and worry that investors will not buy bonds B_{t+1}, to pay them off in real terms, so on. Yes, the indirect cause of inflation can be a worry about surpluses in the far future. But the direct mechanism is a loss of faith that debt will be rolled over. Short-term debt, constantly rolled over, to be retired slowly by a very long-lasting and illiquid asset stream, is the classic ingredient of a bank run or sovereign debt crisis. The only difference is the fiscal theory government in a roll-over crisis can devalue via inflation rather than default explicitly.

The fact that inflation can break out based on fear of fiscal events in the far future tells you that inflation can break out with little current news, seemingly out of nowhere, or as an unpredictable apparent over-reaction to seemingly small events. This is a helpful analysis because inflation does often break out with little current news, seemingly out of nowhere. Central bank and private inflation forecasts miss almost as much as stock market forecasts miss. Run mechanics increase this rootless sense: I emphasize rational expectations for simplicity, but one can quickly spy multiple equilibrium variants. You may well dump treasury securities just because you expect others to do so next year, and you want to get out before the flood. Section 7.2.2 investigates these run mechanics in more detail, and analyzes how long-term debt offers governments a lot of protection against inflation.

Since the government debt valuation (2.7) looks a lot like stock valuation equation, we might expect inflation to be as variable as stock prices, and real returns on government bonds as risky as stock returns. However, as we saw briefly in Section 1.5, and will see in more detail later, surpluses typically follow a process with an s-shaped moving average. A deficit, negative s_t in the short run, corresponds to surpluses, positive s_t later on, which at least partially repay the debt issued to finance
CHAPTER 2. AN INTERTEMPORAL MODEL

deficits. As a result, large shocks to near-term deficits may have little impact on the present value of surpluses. We may see large deficits and surpluses, with little impact on inflation or the real returns of government bonds. For stocks, we usually think that cashflow shocks are more persistent, and do not substantially reverse. Thus, changes in cashflows have larger effects on prices. Bonds have s-shaped cashflows – borrowing is followed by repayment, all or in part. Bonds and stocks are valued by the present value formula. Bond prices also decline when expected future cashflows decline, due to default fears. But bond prices are much less volatile than stock prices. A similar valuation formula with a different cashflow process produces a different result. Government debt has a bond-like surplus process.

What about the first period? If we start with $B_{-1} = 0$, then the price level P_0 must be determined by other means. To tell a story, perhaps the economy uses gold coins, or foreign currency on the day the government issues nominal bonds. Then, at date 0, the government issues nominal bonds B_0. It could sell these bonds in return for gold coins, to finance a deficit, or in exchange for its outstanding real or foreign currency debt. Then the economy starts in period 1 with maturing government debt B_0, or money printed up to redeem that debt, and a determined price level.

I start here with the simplest possible economic environment, abstracting from monetary frictions, financial frictions, pricing frictions, growth, default, risk and risk aversion, output fluctuations, limited government pre-commitment, distorting taxes, and so forth. We can add all these ingredients and more. But starting the analysis this way emphasizes that no additional complications are necessary to determine the price level.

The fiscal theory does rely on specific institutions. The government in this model has its own currency and issues nominal government debt. We use maturing debt, or the currency it promises, as numeraire and unit of account. This is not a theory of clamshell money, or of Bitcoins. It is a theory adapted to our current institutions: government-provided fiat money, rampant financial innovation, interest rate targets, governments that generally inflate rather than explicitly default.

More generally, our monetary and financial system is built around the consensus that short-term government debt is an abundant safe asset, and thus a natural numeraire. This faith may be a weak point in our institutions going forward. If we experience a serious sovereign debt crisis, not only will the result be inflation, it will be an unraveling of our payments, monetary, and financial institutions. Then, we shall have to write an entirely new book, of monetary arrangements that are insulated from sovereign debt. We shall have to construct a numeraire that is backed by
2.3 Equilibrium formation

What force pushes the price level to its equilibrium value? I tell three stories, corresponding to three consumer optimization conditions. If the price level is too low, money may be left overnight. Consumers try to spend this money, raising aggregate demand. Alternatively, a too-low price level may come because the government soaks up too much money from bond sales. Consumers either consume too little today relative to the future or too little overall, violating intertemporal optimization or the transversality condition. Fixing these, consumers again raise aggregate demand, raising the price level.

Just what force pushes the price level to its equilibrium value?

The basic intuition is “aggregate demand,” just as in the one-period model. If government bonds are worth more than the present value of surpluses, people try to get rid of government bonds. The only way to do so, in the end, is to try to buy more goods and services, thereby bidding up their prices. Aggregate demand is, by budget constraint, always the mirror image of demand for government debt.

People trying to get rid of government bonds might initially try to buy assets. This step would raise the value of assets, and higher asset values induce them to buy more goods and services, the “wealth effect” of consumption.

Technically, if the price level is not at its equilibrium value, the economy is off a supply curve or a demand curve. To tell a story, let us suppose the latter: One of the consumers’ optimality conditions is violated. I’ll suppose the price level is wrong in the first place because money demand (zero), intertemporal optimization, or the transversality condition are violated. We then ask what actions the consumer takes to improve matters, and how that action brings the price level into equilibrium.

One good story is that if the price level is too low, the government will leave more money outstanding at the end of period t than people want to hold, just as in the one-period model. That money chases goods, driving up the price level, and vice
versa. Specifically, the flow budget constraint says that money printed up in the morning to retire debt is soaked up by bond sales or money left outstanding,

\[B_{t-1} = P_t s_t + Q_t B_t + M_t. \] (2.10)

We reasoned from a constant endowment, intertemporal optimization, and the transversality condition, that debt sales generate real revenue equal to the present value of following surpluses, that \(Q_t B_t \) in (2.10) comes from

\[\frac{Q_t B_t}{P_t} = E_t \sum_{j=1}^{\infty} \beta^j s_{t+j}. \] (2.11)

Thus, if the price level \(P_t \) is too low, the current surplus and the revenue from bond sales in (2.10) do not soak up all the money printed to redeem bonds. Money \(M_t \) is left overnight, violating the consumer’s money demand \(M_t = 0 \). As people try to spend the extra money, the price level rises. If you’re bothered by negative money in the opposite direction, add a money demand \(M_t = M_t \), which we do explicitly later, so money is insufficient rather than negative.

Alternatively, the price level may be too low because debt sales are soaking up too much money. Debt sales generate more revenue than the present value of surpluses on the right-hand side of (2.11). Consumers try to buy too many bonds, either violating their intertemporal first-order conditions or their transversality condition.

In the first case, consumers save too much now, to dis-save later. That extra saving drives consumption demand below endowment (goods market supply) now, and higher later. When consumers restore a smooth intertemporal allocation of consumption, they provide aggregate demand, raising the price level today. Such intertemporal optimization is the main source of aggregate demand in standard new-Keynesian models.

In the second case, consumers buy too many bonds and hold them forever, letting bond wealth grow at the rate of interest. In this case, via

\[\frac{B_{t-1}}{P_t} = s_t + \frac{Q_t B_t}{P_t} = s_t + E_t \sum_{j=1}^{\infty} \beta^j s_{t+j} + \lim_{T \to \infty} E_t \beta^T \frac{B_{t+T}}{P_{t+T+1}}, \]

bond soak up too much money because consumers are violating the transversality condition. Debt grows at the real interest rate. People could hold less debt, and increase consumption at all dates. When they do so, this wealth effect, as opposed to the previous intertemporal substitution effect, is the source of aggregate demand,
pushing up the price level. Contrariwise, a too-high price level pushes debt to negative values, which is ruled out by budget constraint.

Much fiscal-theory analysis focuses on the latter possibility. Fiscal price determination is said to rely on a “threat by the government to violate the transversality condition at off-equilibrium prices.” But the transversality condition is only one of three sets of consumer optimization conditions, zero money demand, intertemporal optimization, and transversality condition. And there are lots of additional equilibrium-formation stories that we can tell in which the transversality condition holds. Violation of the transversality condition is an equilibrium-formation story, but not the only, or most interesting one.

Moreover, the government doesn’t do anything. It does not take any action that the word “threat” implies. It simply ignores the bubble in government debt and waits for consumers to come to their senses and drive the price level back up. Likewise, if a bubble appears in share prices, a corporation takes no action, it just waits for the bubble to disappear. We do not critique asset pricing as relying on a threat by firms to violate the transversality condition at off-equilibrium prices. Finally, the transversality condition belongs to consumers anyway, not to government or firms.

An alternative, and better, perspective on these sorts of exercises starts by recognizing that the equilibrium object is not just today’s price level \(P_t \), but the whole sequence of price levels \(\{ P_t \} \). Rather than say consumers are off an optimality condition, we should say that they optimize, but given a sequence of price levels at which markets do not clear. For example, if the price level is too low today, but will rise later, then the bond price \(Q_t = \beta E_t (P_t/P_{t+1}) \) is too low. Consumers correctly optimize, but the resulting consumption demand today is below endowment while demand in the future is above the endowment. Likewise, we generate the transversality condition or wealth effect story with a price level that is too low forever.

I don’t pursue this inquiry too deeply. As in all supply-demand economics, one can tell many stories about out-of-equilibrium behavior. Whether out-of-equilibrium allocations follow a demand curve or a supply curve makes a big difference to the equilibrium formation story. Out of equilibrium, market-clearing conditions do not hold, so don’t expect out-of-equilibrium economies to make much sense. As in classic microeconomics, Walrasian equilibrium describes equilibrium conditions compactly with a simple, though unrealistic, description of off-equilibrium behavior, the Walrasian auctioneer. Walrasian equilibrium does not describe well a dynamic equilibrium-formation process. Game-theoretic treatments of off-equilibrium behavior are more
satisfactory though much more complicated. They are also a bit arbitrary, as many

dynamic games lead to the same equilibrium conditions. Bassetto (2002) and Atke-

son, Chari, and Kehoe (2010) are good examples of game-theoretic foundations in

this sphere.

Still, it is useful to tell at least one or two equilibrium-formation stories behind any

model, as part of ensuring the model makes intuitive sense, and in order to use the

model as a quantitative parable for describing the world. If you can’t tell at least

one plausible equilibrium formation story, you don’t really understand a model, or

the model may be more fragile than you think. Models with multiple equilibria and

equilibrium-selection criteria are vulnerable to this critique.

2.4 Fiscal and monetary policy

I break the basic present value relation into expected and unexpected components,

\[
\frac{B_t}{P_t} \Delta E_{t+1} \left(\frac{P_t}{P_{t+1}} \right) = \Delta E_{t+1} \sum_{j=0}^{\infty} \beta^j s_{t+1+j},
\]

\[
\frac{B_t}{P_t} \frac{1}{1 + i_t} = \frac{B_t}{P_t} \sum_{j=1}^{\infty} \beta^j s_{t+j},
\]

\[
\frac{B_{t-1}}{P_t} = s_t + \frac{B_t}{P_t} \frac{1}{1 + i_t} = E_t \sum_{j=0}^{\infty} \beta^j s_{t+j}.
\]

In this model, unexpected inflation results entirely from innovations to fiscal policy

\(\{s_t\} \). A change in debt \(B_t \) with no change in surpluses \(\{s_t\} \) can determine the nominal

interest rate and expected inflation. The government can also target nominal interest

rates, and thereby expected inflation, by offering to sell any amount of bonds at the

fixed interest rate. I call the latter two operations “monetary policy.”

Government policy is so far described by two settings, nominal debt \(\{B_t\} \) and sur-

pluses \(\{s_t\} \). We will spend some time thinking about their separate effects: What if

the government changes nominal debt without changing surpluses, or vice versa? Al-

most all actual policy actions consist of simultaneous changes of both instruments, so

beware jumping too quickly jumping from these exercises to the analysis of episodes

or policy. But answering these conceptual questions lets us understand the mechanics

of the theory more clearly.
2.4. FISCAL AND MONETARY POLICY

We will learn a lot by breaking the basic government debt valuation equation into expected and unexpected components. It will be clearer to move the time index forward and to start with

\[
\frac{B_t}{P_{t+1}} = E_{t+1} \sum_{j=0}^{\infty} \beta^j s_{t+1+j}.
\] (2.12)

I mostly follow a convention of describing expectations at time \(t\), and news or shocks at time \(t + 1\).

2.4.1 Fiscal policy and unexpected inflation

Multiply and divide (2.12) by \(P_t\), and take innovations

\[
\Delta E_{t+1} \equiv E_{t+1} - E_t
\]
of both sides, giving

\[
\frac{B_t}{P_t} \Delta E_{t+1} \left(\frac{P_t}{P_{t+1}} \right) = \Delta E_{t+1} \sum_{j=0}^{\infty} \beta^j s_{t+1+j}.
\] (2.13)

As of time \(t + 1\), \(B_t\) and \(P_t\) are predetermined. Therefore, in this simple model,

- **Unexpected inflation is determined entirely by changing expectations of the present value of fiscal surpluses.**

If people expect lower future surpluses, the value of the debt must fall. In this model, unexpected inflation is the only way for that to happen.

In this simple model, bad fiscal news affects inflation for one period only, giving a price level jump. Higher expected inflation cannot devalue short-term debt that has not been sold yet, and you can’t expect future unexpected shocks. In reality, we see protracted inflations around fiscal shocks. Long-term debt, varying discount rates and sticky prices will give us a more drawn-out response.
2.4.2 Monetary policy and expected inflation

Next, multiply and divide (2.12) by P_t, and take the expected value E_t of both sides, giving

$$\frac{B_t}{P_t} E_t \left(\frac{P_t}{P_{t+1}} \right) = E_t \sum_{j=0}^{\infty} \beta^j s_{t+1+j}.$$

Multiplying by β, and recognizing the one-period bond price and interest rate in

$$Q_t = \frac{1}{1 + i_t} = \beta E_t \left(\frac{P_t}{P_{t+1}} \right),$$

we can then write

$$\frac{B_t}{P_t} \frac{1}{1 + i_t} = B_t \frac{1}{P_t R} E_t \left(\frac{P_t}{P_{t+1}} \right) = E_t \sum_{j=1}^{\infty} \beta^j s_{t+j}.$$

The first term in (2.15) is the real revenue the government raises from selling bonds at the end of period t. The last term expresses the fact that this revenue equals the present value of surpluses from time $t + 1$ on. The outer terms thus express the idea that the real value of debt equals the present value of surpluses, evaluated at the end of period t. The inner equality tells us about expected inflation, the counterpart of the unexpected-inflation relation (2.13).

Now, examine equation (2.15), and consider what happens if the government sells more debt B_t at the end of period t, without changing surpluses $\{s_{t+j}\}$. The price level P_t is already determined by the version of (2.12) that holds at time t. In particular from (2.13) at time t, bond sales B_t, though they may change unexpectedly at time t, do not change the price level at time t. If surpluses do not change in (2.15), then the bond price, interest rate, and expected future inflation must move one for one with the debt sale B_t.

- The government can control interest rates i_t, bond prices Q_t and expected inflation $E_t(P_t/P_{t+1})$, by changing the amount of debt sold B_t with no change in current or future surpluses.

If the government does not change surpluses as it changes debt sales B_t, then it always raises the same revenue $Q_t B_t/P_t$ by bond sales. Equation (2.15) with unchanged surpluses describes a unit-elastic demand curve for nominal debt: Each 1% rise in quantity gives a 1% decline in bond price, since the real resources that pay off the debt are constant. The analysis is just like that of the two-period model with the
present value of surpluses in place of the time 1 surplus \(s_1 \). Selling bonds without changing surpluses is again like a share split.

This fact explains why only surplus innovations \(\Delta E_{t+1}s_{t+j} \) change unexpected inflation in (2.13), and why changing expectations of future bond sales \(\Delta E_{t+1}B_{t+j}, j \geq 1 \) make no difference at all to either formula. Given the surplus path, selling more bonds, \(\Delta E_{t+1}B_{t+1} \) in particular, raises no additional revenue.

2.4.3 Interest rate targets

Rather than announce an amount of debt \(B_t \) to be sold, the government can also announce the bond price or interest rate \(i_t \) and then offer people all the debt \(B_t \) they want to buy at that price, with no change in surpluses. A horizontal rather than vertical supply curve of debt can intersect the unit-elastic demand for government debt. In that case, equation (2.15) describes how many bonds the government will sell at the fixed price or interest rate.

- The government can target nominal interest rates by offering debt for sale with no change in surpluses.

This is an initially surprising conclusion. You may be used to stories in which targeting the nominal rate requires a money demand curve, and reducing money supply raises the interest rate. That story needs a friction: a demand for money, which pays less than bonds. We have no frictions.

You might have thought that trying to peg the interest rate in a frictionless economy would lead to infinite, zero, negative, otherwise pathological demands; or other problems. Equation (2.15) denies these worries. The debt quantities are not unreasonably large either. If the government raises the interest rate target by one percentage point, it will sell one percent more nominal debt.

Contrary intuition comes from different implicit assumptions. The proposition only states that the government can fix the nominal interest rate. An attempt to fix the real rate in this model would lead to infinite demands.

From (2.14), \(1/(1+i_t) = \beta E_t (P_t/P_{t+1}) \),

- The nominal interest rate target determines expected inflation.

I use the word “monetary policy” to describe setting a nominal interest rate target or changing the quantity of debt without directly changing fiscal policy. Central
banks buy and sell government debt in return for money. Central banks cannot, at
least directly, change fiscal policy. They must always trade one asset for another.
They may not write checks to voters. They may not drop money from helicopters.
Those are fiscal policy. I will spend some time later mapping these ideas to current
institutions.

The definition of “monetary policy” will generalize in other contexts and require some
thought. For example, rather than specify surpluses directly, I will later characterize
fiscal policy by a rule, in which surpluses respond systematically to inflation, output,
debt, interest costs, or other variables. In that context, it can be interesting to define
“monetary policy” as a change in interest rates that does not change the fiscal policy
_rule, though surpluses themselves change as interest rates affect the variables in the
fiscal policy rule. We will also add non-interest-paying money, in which case central
bank actions can directly produce one source of surplus, seigniorage. In the end, no
single clean definition of the fiscal end of monetary policy emerges. The most general
direction is to be aware of monetary-fiscal interactions and to make sure you ask an
interesting question. But it is useful first to explore this very simple conceptual
experiment of interest rate targets with no change in surpluses, and to add various
mechanisms for fiscal-monetary interactions later.

Terminology: “Monetary policy” is a somewhat antiquated term. Central banks
now set interest rate targets directly, by simply offering to borrow (pay interest on
reserves) and lend at specified rates. “Monetary policy” in this model has nothing
to do with the quantity of money, an interest spread for liquid assets, and so forth.
However, I will follow convention and continue to call setting an interest rate target
“monetary policy” with this disclaimer.

An interest rate _peg_ means an interest rate that is constant over time and does not
respond to other variables. A _time-varying peg_ moves the interest rate over time
but does not respond systematically to other endogenous variables like inflation and
unemployment. An interest rate _target_ means that the government sets the nominal
interest rate, but may change that rate over time and also in response to endogenous
variables such as inflation and unemployment, as in a Taylor rule. A “target” can
also mean an aspiration, a goal that a central bank tries to move toward slowly while
controlling another variable. A 2% “inflation target” works this way.

I refer to “the government” uniting treasury and central bank balance sheets, and
treating government decisions as those of a unitary actor. In this model, the separa-
tion between treasury and central bank balance sheets is irrelevant, and will remain
so until we start to think about considerations that revive its relevance.
2.4.4 Fiscal theory with an interest rate target

In sum,

- **Monetary policy can target the nominal interest rate, and determine expected inflation, even in a completely frictionless model. Fiscal policy determines unexpected inflation.**

You might have thought “fiscal theory” would lead us to think about inflation entirely in terms of debt and deficits. We learn that this is not the case. “Monetary policy,” choosing interest rates \{i_t\} without changing fiscal policy, can fully control expected inflation in this simple model. Fiscal policy fills in the gap, determining unexpected inflation and thus fully determining inflation.

It is a classic doctrine that the government cannot peg the nominal interest rate. An attempt to do so leads to inflation that is unstable (Friedman (1968)) or indeterminate (Sargent and Wallace (1975)). The fiscal theory overturns these classic doctrines.

- **Inflation can be stable and determinate under an interest rate target, or even an interest rate peg.**

The classic propositions are not wrong, they just assume passive fiscal policy. Details follow.

In a perfect-foresight version of this economy, monetary policy generates a family of price level paths, while fiscal policy only determines the first “shock,” the time-zero price level given pre-existing debt B_{-1}, thereby choosing which of the many price level paths is unique. With that sort of model in mind, one might complain that we have a theory of the price level, not a theory of inflation; a theory of equilibrium selection, not of inflation dynamics. But in a stochastic economy, there is a new shock every period, so fiscal policy matters continually. Inflation is the change in the price level, so if fiscal concerns determine the price level each period they are a necessary part of a theory of inflation. More deeply, when we add sticky prices in continuous time we will see the price level jump disappear entirely. Fiscal policy chooses one of many inflation paths, each of which starts from the same price level. And “equilibrium selection” is a central part of any theory, indispensable to generate its predictions. If we remove any one of the equilibrium conditions, the others generate multiple equilibria and the removed condition is reduced to “equilibrium selection,” so the disparaging view really does not make sense.

The neat separation that “monetary policy” determines expected inflation and “fiscal
policy” determines unexpected inflation does not generalize directly. Typically, we can read the equilibrium conditions that monetary policy along with the rest of the model generates a family of equilibria and the government debt valuation equation selects among them, choosing the innovation in one combination of state variables. But that combination of state variables may not even include an unexpected change in inflation. In some examples, current inflation does not change at all in response to a fiscal shock, but instead expected future inflation does so.

2.5 The fiscal theory of monetary policy

We linearize the model with an interest rate target, to

\[
i_t = r + E_t \pi_{t+1} \]

\[
\Delta E_{t+1} \pi_{t+1} = -\Delta E_{t+1} \sum_{j=0}^{\infty} \beta^j \tilde{s}_{t+1+j} \equiv -\epsilon \Sigma_{s,t+1}.
\]

This is the simplest example of a fiscal theory of monetary policy. The interest rate target sets expected inflation, and fiscal news sets unexpected inflation.

Figure 2.1 presents the response of this model to an interest rate shock with no fiscal change, and a fiscal shock with no interest rate change. The interest rate shock is Fisherian – inflation rises one period later – as it should be in this completely frictionless model.

By “fiscal theory of monetary policy,” I mean models that incorporate fiscal theory, yet in their other ingredients incorporate standard DSGE (dynamic stochastic general equilibrium) models, including price-stickiness or other non-neutralities of new-Keynesian models that are most commonly used to analyze monetary policy. In particular, a central bank follows an interest rate target, and we want to understand how movements of that interest rate target spread to the larger economy, or offset other shocks to the economy.

You don’t have to apply fiscal theory via a fiscal theory of monetary policy. In later chapters I step away from interest rate targets. We analyze quantitative easing, fiscal stimulus, and money supply rules. But you can apply fiscal theory by making technically small modifications to standard new-Keynesian models based on interest rate targets. And it is interesting to do so. Central banks set interest rates, and
want to know what happens in response to changes in interest rate targets. We have
a lot of investment in new-Keynesian DSGE interest-rate models, and those models
have accomplished a lot. It is useful, in exploring a new idea, initially to preserve as
much of past progress as possible.

I start here with an interest rate target in the very simple model we are studying so
far, with one-period debt and no monetary or pricing frictions. I do so in a conscious
parallel to the similar beautifully clarifying development of new-Keynesian models in
other elements of contemporary models. We obtain more realistic responses.

Here and later, I stay within a textbook new-Keynesian framework, with simple
forward-looking IS and Phillips curves. Like everyone else, I recognize the limi-
tations of those ingredients. But it’s best to modify one ingredient at a time, to
understand the effect of changing fiscal assumptions in well-known standard models
before innovating other ingredients.

The connection to standard models is clearer by linearizing the equations of the last
section, as standard models do. Monetary policy sets an interest rate target i_t, and
expected inflation follows from

$$
\frac{1}{1+i_t} = E_t \left(\frac{1}{R \bar{P}_{t+1}} \right) \left(1 + \frac{P_t}{\bar{P}_{t+1}} \right)
$$

$$
i_t \approx r + E_t \pi_{t+1}.
$$

(2.16)

When we think of variables as deviations from steady state, we drop r. Fiscal policy
determines unexpected inflation via (2.13). Linearizing, denoting the real value of
nominal debt by

$$
V_t \equiv B_t/P_t,
$$

and denoting the surplus scaled by steady-state debt with a tilde,

$$
\tilde{s}_t = s_t/V,
$$

we can write (2.13) at time $t + 1$ as

$$
\Delta E_{t+1} \pi_{t+1} = -\Delta E_{t+1} \sum_{j=0}^{\infty} \beta^j \tilde{s}_{t+1+j} \equiv -\varepsilon_{\Sigma s, t+1}
$$

(2.17)

The final equality of equation (2.17) defines the notation $\varepsilon_{\Sigma s, t+1}$ for the shock to the
present value of surpluses, scaled by the value of debt. I add the Σ to distinguish
this shock from the shock to the period $t+1$ surplus itself, $\varepsilon_{s, t+1} = \Delta E_{t+1}s_{t+1}$.

Debt B_t now follows from the interest rate target and other variables. We can recover the quantity of debt from the expected valuation equation, (2.15),

$$\frac{B_t}{P_t} \frac{1}{1 + i_t} = \frac{B_t}{P_t} \beta E_t \left(\frac{P_t}{P_{t+1}} \right) = E_t \sum_{j=1}^{\infty} \beta^j s_{t+j}. \quad (2.18)$$

It has no further implications for inflation or anything else. I linearize this equation later when we use it. The value of debt will be useful as it directly measures the present value of surpluses. We also typically express models in VAR(1) form, and the value of debt will be an important state variable. Doing so is useful to solve the model numerically. But for solving the model analytically, we can pretend we see the surplus shock $\varepsilon_{\Sigma s, t+1}$ and ignore the value of debt.

The combination (2.16) and (2.17),

$$i_t = E_t \pi_{t+1}$$
$$\Delta E_{t+1} \pi_{t+1} = -\varepsilon_{\Sigma s, t+1}$$

now form the simplest example of a fiscal theory of monetary policy.

Using

$$\pi_{t+1} = E_t \pi_{t+1} + \Delta E_{t+1} \pi_{t+1},$$

then, the full solution of the model – the path of inflation as a function of monetary and fiscal shocks – is

$$\pi_{t+1} = i_t - \varepsilon_{\Sigma s, t+1}. \quad (2.19)$$

Using (2.19), Figure 2.1 plots the response of this model to a permanent interest rate shock at time 1 with no fiscal shock $\varepsilon_{\Sigma s, 1} = 0$, and the response to a fiscal shock $\varepsilon_{\Sigma s, 1} = -1$ at time 1 with no interest rate movement.

In response to the interest rate shock, inflation moves up one period later. The Fisher relation says $i_t = E_t \pi_{t+1}$ and there is no unexpected time-t inflation without a fiscal shock.

The response is the same if the interest rate shock is announced ahead of time, so I don’t draw a second line for that case. If $E_{t-k} i_t$ rises, then $E_{t-k} \pi_{t+1}$ rises. Many models offer different predictions for expected vs. unexpected policy, and in many models announcements of future policy can affect the economy on the date of the announcement. Not in this case. An announcement only affects long-term nominal bond prices. Since so many interest rate changes are announced long ahead
2.5. THE FISCAL THEORY OF MONETARY POLICY

Figure 2.1: Inflation response functions, simple model. Top: Responses to a permanent interest rate shock, with no fiscal response, both expected and unexpected. Bottom: Responses to a fiscal shock, with no interest rate response. The “expected” fiscal shock is announced at time -2. The model solutions are (2.19), $\pi_{t+1} = i_t - \varepsilon_{\Sigma_s,t+1}$.

of time, we really should spend more effort evaluating the response to expected policy changes.

In response to the negative fiscal shock $\varepsilon_{\Sigma_s,1} = -1$ with no change in interest rates, there is a one-time price-level jump, corresponding to a one-period inflation. If the fiscal shock is announced ahead of time, the inflation happens when the shock is announced, not when the fiscal shock actually happens, as plotted.

These are unrealistic responses. They are, on reflection, exactly what one expects of a completely frictionless model. That’s good news. A model with no pricing, monetary or expectational frictions should be neutral. The model shows us that we can rather easily construct a fiscal theory of monetary policy, even in a completely frictionless model. It verifies that in a frictionless model, monetary policy is neutral, and makes specific just what “neutral” means. To get realistic and interesting dynamics, we should expect that we have to add monetary-fiscal interactions, sticky prices, long-term debt, cross-correlated and persistent policy responses, dy-
namic economic mechanisms in preferences, production, and capital accumulation, or other ingredients.

In particular, these graphs give a perfectly “Fisherian” monetary policy response. An interest rate rise leads to higher inflation, one period later. Since in the long run higher nominal interest rates must come with higher inflation, an immediate jump to this long-run equilibrium is again natural behavior of a frictionless, neutral model. We will naturally look for generalizations of the model that can produce an inflation decline from an interest rate rise.

These simple plots are best, then, for showing exactly how a neutral and frictionless fiscal theory of monetary policy model with one-period debt works. It’s not realistic, but it’s possible. It also shows us how simple and transparent the basic theory is, before we add elaborations. Yes, there is something as simple as money demand and supply, epitomized by MV=PY, and flexible prices, on which to build realistic dynamics.

2.5.1 Monetary-fiscal interactions

A fiscal policy rule that sets surpluses to attain a price level target produces a response to monetary policy in which higher interest rates lower inflation.

We can produce an inflation decline even in this frictionless model by combining the interest rate rise with an unexpected fiscal contraction. In that case, the joint monetary-fiscal shock produces one period of lower inflation $\Delta E_{t+1} \pi_{t+1} = -\varepsilon \Sigma_{s,t+1}$. Sticky prices will smear out this negative response. But is such a pairing of monetary and fiscal shocks interesting, or realistic as a description of policy or events? Why might monetary and fiscal shocks come together?

The two-period model of Section 1.3 presents one such specification, which will reappear in several guises. The surplus at time 1 responds to nominal debt at time 0, whether issued by treasury or central bank, via $s_1 = B_0/P_1^*$. The equilibrium price level at time 1 is $P_1 = P_1^*$. We saw that with this fiscal policy specification, a rise in the interest rate target i_0 lowers the price level P_0, leaving P_1 alone, rather than raising P_1 leaving P_0 alone as was the case with a fixed s_1.

The same idea works in our linearized intertemporal model,

$$i_t = E_{t} \pi_{t+1}$$

$$\Delta E_{t+1} \pi_{t+1} = -\varepsilon \Sigma_{s,t+1}.$$
Suppose that the fiscal authority again will raise or lower surpluses as necessary to attain price level targets \(\{p_{t+1}^*, p_{t+2}^*, \ldots\}\). The central bank raises the interest rate \(i_t\) at time \(t\). Then the price level at time \(t\), \(p_t\), must decline so that \(i_t = E_t(p_{t+1}^* - p_t)\). A higher interest rate now immediately lowers inflation. The higher interest rate spurs greater bond sales. To defend the price level targets \(\{p_{t+1}^*, p_{t+2}^*, \ldots\}\), the fiscal authority will be induced to raise future surpluses, producing the fiscal contraction that lowers inflation \(\Delta E_t \pi_t = \Delta E_t p_t - p_{t-1} = -\varepsilon \sum_{s,t}\).

This dynamic extension emphasizes the perpetual need for fiscal-monetary coordination. If the fiscal authority is also committed at date \(t\) to do what it takes to set \(p_t = p_t^*\), then we are at a loggerhead. To describe this regime in a symmetric way for all time periods, we need to specify that fiscal policy allow \(p_t^*\) to declines when monetary policy wishes it to do so, but not otherwise. I take up this fuller description below.

This is not a realistic example, just as fixed surpluses are not realistic. I present it to show how a different fiscal policy rule can result in dramatically different conclusions about the effects of monetary policy, and how fiscal-monetary interactions offer one route to understanding lower inflation with higher interest rates.

Other mechanisms can also provoke a fiscal contraction coincident with a monetary policy shock, without imagining that the central bank directly controls fiscal policy.

Higher interest rates that provoke higher long-term inflation can raise long-term surpluses through a variety of mechanisms, including imperfect indexing, sticky prices and wages for the things government buys, seigniorage revenue, imperfect tax indexation, and fiscal rules or habits by which fiscal authorities fight inflation with austerity. With any of these mechanisms, a higher nominal interest rate can produce a rise in the present value of surpluses, and thus lower inflation immediately.

A correlation between fiscal and monetary shocks may also describe historical episodes. Monetary and fiscal authorities respond to the same underlying shocks, so we see a decline in inflation coincident with an interest rate rise just because of that correlation of actions. Monetary stabilizations frequently involve coincident monetary tightening and fiscal reforms. VARs to measure the effects of monetary policy shocks do not (yet) try to find interest rate shocks uncorrelated with changes to the present value of fiscal surpluses. These thoughts offer a contrary warning that history may include correlated shocks that would not be present should the central bank use that historical evidence and move interest rates without the typical coincident fiscal shock.
The new-Keynesian approach to this simple economic model, as in [Woodford (2003)],
produces a negative inflation response to an interest rate shock by creating a con-
temporaneous fiscal tightening. In that model, the central bank has an “equilibrium-
selection” policy on top of an interest-rate policy. The bank threatens hyperinflation
for any but one value of unexpected inflation, negative in this case. That threat is
demed enough to get the private sector to jump to the bank’s desired value of unex-
pected inflation. Fiscal policy is “passive,” setting $\varepsilon_{\Sigma_{s,t+1}} = -\Delta E_{t+1}\pi_{t+1}$ in response
to whatever inflation happens. This passive fiscal policy together with the private
sector’s jump to the Fed’s desired unexpected inflation produces the necessary coin-
cident fiscal shock. In Section [16.1] I judge this not to be a compelling story, but
you can see it here as a possibility in which a joint monetary-fiscal regime produces
a negative response of inflation to an interest rate shock.

2.6 Interest rate rules

I add a Taylor-type rule

$$i_t = \theta \pi_t + u_t$$

$$u_t = \eta u_{t-1} + \varepsilon_{i,t}$$

to find the equilibrium inflation process

$$\pi_{t+1} = \theta \pi_t + u_t - \varepsilon_{\Sigma_{s,t+1}}.$$

Figure [2.2] plots responses to monetary and fiscal policy shocks in this model. The
persistence of the monetary policy disturbance and the endogenous response of the
interest rate rule introduce interesting dynamics, and show how monetary policy
affect the dynamic response to the fiscal shock.

The standard analysis of monetary policy specifies a Taylor-type interest rate rule
rather than directly specify the equilibrium interest rate process, as I did in the last
section. The model becomes

$$i_t = E_t \pi_{t+1}$$

$$\Delta E_{t+1}\pi_{t+1} = -\varepsilon_{\Sigma_{s,t+1}}$$

$$i_t = \theta \pi_t + u_t$$

$$u_t = \eta u_{t-1} + \varepsilon_{i,t}.$$
The variable \(u_t \) is a serially correlated monetary policy disturbance: If the Fed deviates from a rule this period, it is likely to continue deviating in the future as well. Rules are often written with a lagged interest rate,

\[
i_t = \eta i_{t-1} + \theta \pi_t + \varepsilon_{i,t},
\]

which has much the same effect. The variables are deviations from steady state, or \(r = 0 \) in (2.20).

Terminology: I use the word “disturbance” and \(u_{i,t} \), for deviations from structural equations. Disturbances may be serially correlated or predictable from other variables. I reserve the word “shock” and the letter \(\varepsilon \) for variables that only move unexpectedly, like \(\varepsilon_{i,t+1} \) with \(E_t \varepsilon_{i,t+1} = 0 \). I use “shock” and “structural” somewhat loosely, to refer to forces external to the simplified model at hand. For example, the fiscal policy “shock” \(\varepsilon_{\Sigma,t} \), reflects news about future surpluses, which in turn has truly structural roots in productivity, tax law, politics, and so forth. A full general equilibrium model would reserve the “structural” word for the latter.

Eliminating the interest rate \(i_t \), the equilibria of this model are now inflation paths that satisfy

\[
E_t \pi_{t+1} = \theta \pi_t + u_t \\
\Delta E_{t+1} \pi_{t+1} = -\varepsilon_{\Sigma_{s,t+1}}
\]

and thus

\[
\pi_{t+1} = \theta \pi_t + u_t - \varepsilon_{\Sigma_{s,t+1}}.
\]

The top panel of Figure 2.2 plots the response of inflation and interest rates to a unit monetary policy shock \(\varepsilon_{i,1} \) in this model, and the line labeled \(u_t \) plots the associated monetary policy disturbance in (2.22).

The combination of two AR(1)s – the shock persistence \(\eta \) and the interest rate rule \(\theta \) – generates a pretty hump-shaped inflation response. Inflation still follows the interest rate with a one-period lag, following \(i_t = E_t \pi_{t+1} \), and with no time-1 fiscal shock, \(\pi_1 \) cannot jump either way.

Comparing the top panels of Figure 2.1 and Figure 2.2, you can see the same economic model at work. Since \(i_t = E_t \pi_{t+1} \), if we had fed the equilibrium \(\{i_t\} \) response of Figure 2.2 into the calculation (2.19) behind Figure 2.1 as if that path were an exogenous time-varying peg, we would have obtained the same result as in Figure 2.2.

The monetary policy rule is a mechanism to endogenously produce an interest rate...
CHAPTER 2. AN INTERTEMPORAL MODEL

Figure 2.2: Responses to monetary and fiscal shocks. The top panel graphs the response of inflation π_t and interest rate i_t to a unit monetary policy shock $\varepsilon_{i,1} = 1$. The monetary policy disturbance is u_t. The parameters are $\eta = 0.7$, $\theta = 0.8$. The bottom panel plots the response of inflation and interest rate to a unit fiscal shock $\varepsilon_{\Sigma,1} = -1$.

...
change in expected inflation that depends on monetary policy, via either the interest rate rule $\theta \pi_t$ or a persistent disturbance u_t. Monetary policy could return the price level to its previous value. Monetary policy could turn the event into a one-time price level shock, with no further inflation. Or monetary policy could let the inflation continue for a while, as it does here with $\theta > 0$. When we add long-term debt and sticky prices, these future responses will have additional effects on the instantaneous inflation response $\Delta E_1 \pi_1$. Monetary policy matters a lot in this fiscal model, to the dynamic path of expected inflation after the shock.

These responses are still not realistic. The important lesson here is that we can use fiscal and monetary policy rules that react to endogenous variables, and we can produce impulse response functions including policy rules, just as we do with standard models of interest rate targets.

We also learn that monetary policy rules are an important source of dynamics. Impulse-response functions do not just measure the economy’s response to shocks. Policy rules are particularly useful for defining interesting conceptual experiments: What if there is a fiscal shock, and the Fed responds by raising interest rates in response to any subsequent inflation?

2.7 Fiscal policy and debt

A rise in debt that is accompanied by larger future surpluses raises revenue, that can fund a deficit or lower inflation. Normal fiscal policy consists of deficits, funded by increased debt, that corresponds to higher subsequent surpluses. The value of debt measures how much expected surpluses have risen.

Monetary policy as I have defined it here consists of changing debt B_t, without changing surpluses. Fiscal policy may change debt B_t while also changing surpluses.

To gain a picture of fiscal policy operations in this intertemporal context, write the debt valuation equation (2.15)

$$\frac{B_{t-1}}{P_t} = s_t + \frac{1}{1 + i_t} \frac{B_t}{P_t} = s_t + E_t \sum_{j=1}^{\infty} \beta^j s_{t+j}. \quad (2.26)$$

and take innovations,

$$\frac{B_{t-1}}{P_t} \Delta E_t \left(\frac{P_{t-1}}{P_t} \right) = \Delta E_t \left(s_t + \frac{1}{1 + i_t} \frac{B_t}{P_t} \right) = \Delta E_t \left(s_t + E_t \sum_{j=1}^{\infty} \beta^j s_{t+j} \right). \quad (2.27)$$
CHAPTER 2. AN INTERTEMPORAL MODEL

Suppose that the government raises debt B_t and raises expected subsequent surpluses. The real value of debt $1/(1+i_t)B_t/P_t = E_t \sum_{j=1}^{\infty} \beta^j s_{t+j}$ rises. The bond sale soaks up extra money. This extra money can finance a deficit, a lower s_t, with no unexpected inflation.

As in the two-period model this “fiscal policy” increase in debt B_t with higher expected subsequent surpluses is like an equity issue, as contrasted with the “monetary policy” increase in debt without higher expected surpluses, which acts like a share split. In the intertemporal context, the analogy to stock pricing is clearer, and we see that the corresponding surpluses can be long delayed.

This bond sale can generate a disinflation, $\Delta E_t (P_{t-1}/P_t) > 0$ rather than fund a deficit. This is how inflations are often successfully fought. Getting the fiscal house in order is usually a key to stopping inflation. But it does not matter whether the government produces a current surplus s_t, or even an immediate future surplus s_{t+1}.

What matters is generating a long-lasting credible stream of surpluses $\{s_{t+j}\}$. Doing so often requires an institutional reform; solving the underlying structural problem causing deficits, rather than just acts of today’s politicians. Such a credible fiscal reform can coexist with ongoing or even larger short-term deficits, yet produce a disinflation.

The case that future surpluses just balance the current deficit, so there is no unexpected inflation, $\Delta E_t (P_{t-1}/P_t) = 0$, is particularly important. To generate this case, the change in future surpluses balances the near-term deficits, so there is no innovation to the present value $\Delta E_t \sum_{j=0}^{\infty} \beta^j s_{t+j} = 0$. To generate such a pattern, the surplus process must have an s-shaped moving average, that changes sign.

If we think of responsible governments in “normal times” adapting to fiscal needs without state-contingent devaluations via inflation, and instead maintaining a steady price level, this is “normal” fiscal policy.

* Normal fiscal policy consists of debt sales that finance current deficits. Such sales promise higher future surpluses, and do not change interest rates or the price level.

In our intertemporal context, the higher surpluses may be delayed, and may last decades, rather than showing up immediately in s_1.

Equation (2.27) offers a breakdown of how a deficit $\Delta E_t s_t < 0$ may be financed in this intertemporal context. The government may borrow, promising future surpluses, with no inflation. The government may inflate, with no change in future surpluses, in which case the value of debt does not rise despite the deficit. And if the surplus
2.8. THE CENTRAL BANK AND THE TREASURY

follows an AR(1) \(s_t = \eta s_{t-1} + \varepsilon_{s,t} \) or similar process, in which the deficit is followed by additional deficits, then unexpected inflation is larger than the deficit shock, \(\Delta E_t (P_{t-1}/P_t) = \Delta E_t \sum_{j=0}^{\infty} \beta^j s_{t+j} = 1/(1 - \beta \eta) \varepsilon_{s,t} \). The AR(1) generates a value of debt \(\Delta E_t \sum_{j=1}^{\infty} \beta^j s_{t+j} = \beta \eta/(1 - \beta \eta) \varepsilon_{s,t} \) that goes down when there is a deficit \(\varepsilon_{s,t} < 0 \).

In the postwar data for the U.S. and other advanced countries, the value of debt increases with deficits and falls with surpluses, debt sales raise revenue, and surprise inflation is small relative to surplus and deficit shocks. The borrowing mechanism predominates, and the AR(1) is a particularly bad model.

The second terms of (2.26) and (2.27), \(1/(1 + i_t) B_t/P_t = E_t \sum_{j=1}^{\infty} \beta^j s_{t+j} \) make an important point: The revenue raised from bond sales is a direct measure of how much bond investors believe future surpluses will rise to pay off the debt. Survey expectations, CBO projections, regression forecasts, and economists’ intuitions about future surpluses, including my own, may doubt that surpluses are coming. The investors who are buying bonds have more faith, and measurably believe that each increase in debt corresponds to an increase in eventual surpluses.

The fact that we can observe market expectations of future surpluses by observing changes in the value of debt is often overlooked. In the discussion of fiscal stimulus, one faces the baseline prediction of Ricardian equivalence: when the government runs deficits, people anticipate future taxes to pay back the debt, and so fiscal stimulus has no effect (Barro (1974)). The counter-argument is that people ignore future taxes. The value of debt allows us to measure changes in expectations of future surpluses and resolve this controversy. If a deficit raises the value of debt, then people are expecting higher taxes or lower spending. If the value of debt does not rise, the deficit stimulates – with no price stickiness, here, the deficit results instantly in inflation. In fact, deficits overwhelmingly raise the value of debt, and surpluses lower the value of debt in U.S. time series. Now, the Ricardian case is not completely closed: One could argue that households ignore the surpluses that bond markets foresee. And discount rates may also change, affecting the value of debt. But measurement of the amount by which the value of debt rises as a result of a deficit is a powerful and unexploited tool for addressing the Ricardian debate.
2.8 The central bank and the treasury

The institutional division that the Treasury conducts fiscal policy and the central bank conducts monetary policy works like the institutional division between share splits and secondary offerings. Treasury issues come with promises of subsequent surpluses. Central bank open market operations do not.

To create a fiscal inflation, the Treasury must persuade people that increased debt will not be paid back by higher future surpluses. That has proved difficult to accomplish. It is more difficult still to accomplish while preserving a reputation that allows later borrowing.

The “monetary policy” debt sale and the “fiscal policy” debt sale of the last section look disturbingly similar. The visible government action in each case is identical: the government as a whole sells more debt. One debt sale engenders expectations that future surpluses will not change. That sale changes interest rates and expected inflation, and raises no revenue. The other debt sale engenders expectations that future surpluses will rise to pay off the larger debt. That sale raises revenue with no change in interest rates or prices. How does the government achieve these miracles of expectations management?

Answering this question is important to solidify our understanding of the simple frictionless model as a sensible abstraction of current institutions. It is also stresses the importance of monetary institutions. A government, like any asset issuer, must form people’s expectations about how it will behave in distant, state-contingent, and infrequently or even never-observed circumstances. Monetary and fiscal institutions serve the role of communicating plans, and committing government to those plans.

Stock splits and equity issues also look disturbingly similar. The visible corporate action in each case is identical: More shares are outstanding. A split engenders expectations that overall dividends will not change, so a 2:1 split cuts the stock price per share in half. A share issue engenders expectations that total dividends will rise, so the price per share is unaffected and the company gets new funds for investment. (Yes, a long literature in finance studies small price effects of splits and offerings, as these corporate actions may reveal information about the company. Such wrinkles operate on top of the clear first-order effect.)

Companies achieve this miracle of expectations management by issuing shares in carefully differentiated institutional settings, along with specific announcements, disclosures, and legal environments that commit them to different paths. Companies
do not just increase shares and let investors puzzle out their own expectations.

This parallel helps us to understand the institutional separation between central banks and treasuries. The Treasury conducts “fiscal policy” debt sales. Before the 1940s, many U.S. federal debt issues were passed by Congress for specific and transitory purposes, and backed by specific tax streams (see Hall and Sargent (2018)). That legal structure is an obvious aid to assuring repayment, i.e. to promising higher future surpluses. Many state and municipal bonds continue these practices: they issue bonds to finance a toll bridge, say, and promise that the tolls will repay the bonds. The gold standard also gave a promise to repay rather than inflate. That commitment was not ironclad as governments could and did suspend convertibility or devalue, but it was helpful. U.S. federal debt now has no explicit promises, but the Treasury and Congress have earned a reputation for largely paying back debts incurred by Treasury issues, going back to Alexander Hamilton’s famous assumption of revolutionary war debt, and lasting at least through the surpluses of the late 1990s. Large debts, produced by borrowing, produce political pressure to raise taxes or cut spending to pay off the debts, part of Hamilton’s point, rather than default explicitly or devalue via inflation. The implicit promise to repay debt has not always been ironclad, and one can read it to include escape clauses, state-contingent defaults in certain emergencies. But it has helped.

Hall and Sargent (2014) note a less celebrated fact: Following Hamilton’s plan, the U.S. did not repay colonial currency, which largely inflated away. The experience emphasizes different promises implicit in currency vs. debt, which we may trace to central banks vs. treasurys today. Devaluation of paper currency by inflation did not have the same reputational cost as default on the debt would have had. The U.S. did default on a large part of its revolutionary war debt, via inflation, but still acquired a reputation that allowed it to borrow when it later needed to so so.

The idea that Treasury debt sales raise revenue rather than just raise nominal interest rates and expected inflation is now so ingrained, that the possibility of a share-split-like outcome may seem weird. Outside of a currency reform, who even imagines an increase in Treasury debt that does not raise revenue, and instead just pushes up nominal interest rates? The requirement that the debt sale engender expectations of higher subsequent surpluses is less well recognized, but the outcome requires that expectation (absent concurrent changes in real interest rates). Other governments are not so lucky, have lost investors’ confidence and their reputation for repayment. Their debt issues fail or just push up interest rates. You can only signal so much, and reputations are finite.
“Monetary policy” is conducted by a different institution. Central banks are, to a first approximation, legally forbidden from fiscal policies. They cannot alter tax rates or expenditures directly. At most, central bankers can give speeches advocating fiscal stimulus or fiscal responsibility, though even these are often seen as exceeding their mandates. Though central banks are mandated to control inflation, central banks are legally forbidden from “helicopter drops,” perhaps the most effective means of inflating. Central banks cannot send cash or write checks to people or businesses. They must always buy something in return for issuing cash or reserves, or lend, counting the promise to repay as an asset. Central banks doubly cannot conduct a helicopter vacuuming, confiscating money from people and businesses without issuing a corresponding asset, though that would surely be an effective way to stop inflation! Only the Treasury may write checks to voters or confiscate their money, and for many good political as well as economic reasons. Independence, in a democracy, must come with limited authority. Central banks are limited in the securities they may buy, typically government securities, high-quality fixed income securities, or securities with government guarantees, to avoid central banks holding risk that eventually floats back to the Treasury. Federal Reserve asset purchases and lending in the financial and Covid crises were largely conducted by lending to special purpose vehicles, in which the Treasury took an equity and risk-absorbing share.

The separation between fiscal and monetary policy is not perfect. In the presence of non-interest-paying currency, inflation produces seigniorage revenue, which the central bank remits to the Treasury. We will model this interaction. Liquidity spreads on government debt offer similar opportunities. Some central bank profits from crisis lending likewise flowed to the Treasury, as the losses would have done had asset prices not recovered.

Central bank actions have many indirect fiscal implications, which will be a central modeling concern. Inflation raises surpluses through an imperfectly indexed tax code. Monetary policy affects output and employment, with large budgetary consequences. With sticky prices and short-term debt, interest rate rises also raise the Treasury’s real interest expense. Many central banks are charged to keep government interest expense low, as was the U.S. Fed through WWII and into the 1950s. With debt to GDP ratios now over 100%, interest expense will certainly weigh on the Fed should it need to raise rates in the future. We can and will model many of these indirect fiscal effects.

Still, a central bank open-market operation is a clearly distinct action from a Treasury issue, though in both cases the government as a whole exchanges money (reserves) for government debt. Treasury issues typically fund deficits, raise revenue, and are
therefore expected to be repaid from subsequent surpluses. Open-market operations do not fund deficits or raise revenue. The restriction against central bank fiscal policy is closer to holding than not.

Our legal and institutional structures have many additional provisions against inflationary finance, adding to the separation between Treasury and central banks, and helping to guide expectations. The Treasury cannot sell bonds directly to the Fed. The Fed must buy any Treasury bonds on the open market, ensuring some price transparency and reducing the temptation to inflationary finance. The legal separation and tradition of central bank independence adds precommitments against inflationary finance. These limitations make sense if people regard central bank debt sales as inflationary.

In sum, the separation between Treasury and central bank is useful. One institution sells debt that raises revenue, implicitly promising future surpluses, and does not affect interest rates and inflation. A distinct institution sells debt without raising revenue, without changing expected surpluses, and in order to affect interest rates and inflation. This structure mirrors the different institutional structures for equity offerings vs. share splits. There are of course many additional reasons for the institutional separation of the Treasury and Congress from a central bank, and strong limitations on central bank actions, including a force against loose monetary policy around every election, and a force to limit central banks from subsidizing credit or directing bank credit to businesses or constituencies that central bankers or politicians may favor.

However, these observations should not stop us from institutional innovation. A government under fiscal theory that wishes to stabilize the price level faces a central problem: If we just think of surpluses as an exogenous stochastic process, as we often model corporate dividends, then the price level as present value of those surpluses is likely to be quite volatile, like that of stocks. The government would like to offer some commitments, that the present value of surpluses will not change much, that deficits will be repaid by surpluses rather than cause inflation, and that surpluses will just pay down debt rather than cause deflation. The separation between treasury and central bank helps to make and communicate such a commitment. But the current structure evolved by trial and error, and it certainly was not designed with this understanding in mind.

To stabilize the price level, how can the government minimize variation in the present value of surpluses, and commit to those surpluses? When the government wishes to inflate or to stop deflation, how can it better commit *not* to repay debts? This was
CHAPTER 2. AN INTERTEMPORAL MODEL

a central policy concern in the 2010s, as many people and central bankers wished
for deliberate inflation, or worried about stopping uncontrollable deflation in the
next recession. Our institutional structures evolved to control inflation. They did
not evolve to stop deflation or to create mild inflation. How does the government
commit to just a little bit of default via inflation, 2%, not 4%, without the attempt
snowballing into a large inflation? How does it inflate now, but preserve a reputation
for repaying future borrowing, allowing it to raise revenue by doing so?

Our institutional structures also did not evolve to mitigate a potential sovereign
debt crisis, which large short-maturity debts and unfunded promises leave as an
enduring possibility. The Euro debt crisis is only perhaps the first example of others
to come.

Can we construct something better than implicit, reputation-based Treasury commit-
ments, along with implicit state-contingent defaults, devaluation via inflation? Can
we construct something better than nominal interest rate targets following some-
thing like a Taylor rule? We’ll come back to think about these issues. For now, the
point is merely to make my parable about debts with and without future surplus
expectations come alive.

2.9 The flat supply curve

In our simple model, the government fixes interest rates and offers nominal debt in
a flat supply curve. In reality the Treasury auctions a fixed quantity of debt, which
seems to contradict this assumption. But the Treasury sets the quantity of debt after
seeing the interest rate, raising the quantity of debt if the bond price is lower. The
Treasury and central bank acting together generate a flat supply curve.

The above description of monetary policy, in which a government sets interest rates
by offering any amount of debt B_t at a fixed interest rate i_t, while holding surpluses
constant, seems unrealistic. The U.S. and most other Treasuries auction a fixed
quantity of debt. However, on closer look, the horizontal supply mechanism can be
read as a model of our central banks and Treasuries operating together, taken to the
frictionless limit.

The Fed currently sets the short-term rate by setting the interest rate it pays to
banks on reserves. It also sets the discount rate at which banks may borrow reserves,
and the rates it offers on repo and reverse repo transactions for non-bank financial
institutions. Reserves are just overnight, floating-rate government debt. Central banks allow free conversion of cash to interest-paying reserves. Thus, paying interest on reserves and allowing free conversion to cash really is already a fixed interest rate and a horizontal supply of overnight debt. In reality, people still also hold cash overnight, but that makes little difference to the model, as we will shortly see by adding such cash.

Historically, the Federal Reserve controlled interest rates by open market operations rather than by paying interest on reserves. The Fed rationed non-interest bearing reserves, affecting \(i\) via \(M\) in \(MV(i) = Py\). But the Fed reset the quantity limit daily, forecasting daily demand for reserves that would result in the interest rate hitting the target. So on a daily basis, reserve supply was flat at the interest rate target.

One could stop here, and declare that Treasury auctions involve longer maturity debt which we have not yet included. But there is another answer, which remains valid with longer maturities: If the central bank sets the interest rate, and the Treasury then auctions a fixed quantity of debt, the central bank and Treasury together produce a flat supply curve for that debt.

The central bank sets the interest rate, by setting interest on reserves. The Treasury decides how many bonds \(B_t\) to sell after it observes the interest rate and bond price. Given the bond price \(Q_t\), the flow condition (2.15),

\[
\frac{B_{t-1}}{P_t} = s_t + Q_t \frac{B_t}{P_t},
\]

then describes how much nominal debt \(B_t\) the Treasury must sell to roll over debt and to finance the surplus or deficit \(s_t\). It describes the process that the Treasury accountants go through to figure out how much face value of debt \(B_t\) to auction. If the central bank raises interest rates one percent, the Treasury sees one percent lower bond prices. The Treasury then raises the face value of debt it sells by one percent to obtain the same revenue. In this two-step process, the central bank plus Treasury thus really do sell any quantity of debt at the fixed interest rate, though neither Treasury nor central bank may be aware of that fact.

Treasury auctions do change interest rates by a few basis points, because Treasuries auction longer-term bonds and there are small financial frictions separating reserves from Treasury bonds. But if the resulting bond price is unexpectedly low, and revenue unexpectedly low, the Treasury must still fund the deficit \(s_t\). The Treasury goes back to the market and sells some more debt. In the end only the small spread
between short-term Treasury and bank rates can change as the result of Treasury
auctions, and that spread disappears in our model with no financial frictions.

It is a bit of a puzzle that the central bank can set market interest rates by setting
interest on reserves, while also limiting the supply of reserves. It can. If the central
bank offers more interest on reserves, competitive banks will offer more interest on
deposits to try to attract depositors from each other, and they will require higher
interest rates on loans to try to divert investments to reserves. That they cannot do
so in aggregate does not mean that they do not try individually, so the higher interest
on reserves leaks out to market prices. Banks aren’t that competitive, so in reality
the process may be slow, and offering an unlimited supply curve, open to non-bank
financial institutions, may be more effective. But the theoretical possibility is valid.
Cochrane (2014b) offers a more extended analysis on all of these points.

Just how the central bank sets the short-term interest rate is important, and usually
swept under the rug. The vast majority of papers never mention the question.
Woodford (2003) invokes a cashless limit: The Fed manipulates a vanishingly small
quantity of money, which via $MV(i) = Py$ sets the nominal interest rate. This
proposal undercuts the idea that the interest rate target alone is a full theory of the
price level, though Woodford is not as attracted to that purity as I am here.

The issue was less serious at the time. Woodford wrote before 2008, when the U.S.
Fed began paying interest on reserves. The New York Fed did actually each morning
try to guess the quantity of reserves for that day that would lead to an equilibrium
Federal Funds rate equal to the Fed’s target. Reserves were very small, on the order
of $10 billion. Hamilton (1996) is an excellent description of the procedure and
its flaws.) The financial and banking system did plausibly approximate Woodford’s
cashless limit. However, most other countries had already moved to a corridor sys-
tem, lending freely at the interest rate target plus a small spread, and borrowing
freely at that target minus a small spread. After 2008, the U.S. moved to immense
reserves, in the trillions of dollars, that are only adjusted slowly, and reserves that pay
market interest. So the standard new-Keynesian tradition is missing a story roughly
conformable to current institutions on just how the central bank sets the nominal
interest rate. The analysis of this section might easily fill that hole in new-Keynesian
models, if anybody cares to do so.
2.10 Fiscal stimulus

A deliberate fiscal loosening creates inflation in the fiscal theory. However, to create inflation one must convince people that future surpluses will be lower. Current deficits per se matter little. The U.S. and Japanese fiscal stimulus programs contained if anything the opposite promises, and did not overcome their long traditions of debt repayment.

In the great recession following 2008, many countries turned to fiscal stimulus, in part as a deliberate attempt to create inflation. Japan tried these policies earlier. This simple fiscal theory can offer perspectives on this attempt.

There are two ways to think of fiscal inflation, or “unbacked fiscal expansion,” in our framework. First, equation (2.13),

$$\frac{B_{t-1}}{P_{t-1}} \Delta E_t \left(\frac{P_{t-1}}{P_t} \right) = \Delta E_t \sum_{j=0}^{\infty} \beta^j s_{t+j},$$

describes how looser fiscal policy can create immediate unexpected inflation. Second, we might think of fiscal stimulus as an increase in nominal debt B_t that does not correspond to future surpluses, designed to raise nominal interest rates and, in equilibrium, to raise expected future inflation,

$$\frac{\beta}{P_t} E_t \left(\frac{P_t}{P_{t+1}} \right) = \frac{1}{1 + it} \frac{B_t}{P_t} = E_t \sum_{j=1}^{\infty} \beta^j s_{t+j}.$$

Now, the point of stimulus is to raise output, and to see that we need a model in which inflation does raise output. In the rational expectations models of the 1970s, unexpected inflation and only unexpected inflation could stimulate output. In current sticky-price models, expected inflation can also raise output. A full treatment of stimulus needs us to add such a friction, which I do below. For now let’s just ask how the government might create inflation, either expected or unexpected.

Both equations point to the vital importance of future deficits in creating inflation via fiscal stimulus. Current debt and deficits matched by future surpluses won’t create any inflation.

The massive U.S. fiscal stimulus programs of the 2008 recession and following years, and the longstanding Japanese fiscal stimulus programs that added more than a hundred percent of GDP to its debt, failed at the goal of increasing inflation. This
observation helps to explain why. The U.S. Administration loudly promised debt
reduction to follow once the recession was over, i.e. that the debt would be paid
back. That is what a Treasury does that wants to finance current expenditure without
creating current or expected future inflation. To create inflation, the key is to promise
that future surpluses will *not* follow current debts. Even in a traditional Keynesian
multiplier framework, which is how the U.S. Administration analyzed its stimulus,
one wishes people to ignore future surpluses in order to break Ricardian equivalence,
the proposition that people see future taxes to pay off the debt, and save more to pay
those taxes. Calling attention to the future surpluses is counterproductive. Japan
was similarly criticized for never being clear that it would not repay debt, instead
raising taxes on several occasions to signal the opposite.

The debt issues of fiscal stimulus did not raise interest rates, did raise revenue, and
did raise the total market value of debt. These facts speak directly to investors’
expectations that subsequent surpluses would rise. From the perspective of this
simple model, such conventional fiscal stimulus – borrow money, don’t drive up
interest rates, spend the money – has no effect at all on current, unexpected, or
expected future inflation. It is simply a rearrangement of the path of surpluses, less
now, and more later.

Even if the U.S. Administration had tried to say that the debt would not be paid
back, reputations and institutional constraints on inflationary finance are often hard
to break. Once people are accustomed to the reputation that Treasury issues, used
to finance current deficits, will be paid back in the future by higher surpluses, and
the idea that the central bank is fully in charge of inflation, it is hard to break
that expectation. Institutions, especially regarding debt repayment, long outlast
politicians and their promises. That is the point of institutions.

The expectations involved in a small inflation are harder yet to create. A government
might be able to persuade bondholders that a fiscal collapse is on its way, debt will
not be repaid, and create a hyperinflation. But how do you persuade bondholders
that the government will devalue debt by 5%, and only by 5%? If you can do that,
how do you later convince them that new debts, when the government wishes to raise
revenue, will be repaid? A partial unbacked fiscal expansion is tricky to communicate
on the fly. It needs institutional commitment, not ephemeral promises by the political
leaders of a moment.

Our institutions evolved in response to centuries of experience with the need to fight
inflation, to commit *to* back debt issues with surpluses. Fighting deflation, modifying
those institutions to commit *not* to back some debt issues, is new territory.
Chapter 3

A bit of generality

The theory developed so far is simple, and I hope clear, but it is unrealistic in many ways. By generalizing the environment in natural directions, this chapter brings in many interesting effects that pave the road to a realistic theory. There can be long drawn-out inflation responses to fiscal shock, not just price-level jumps. Inflation may initially decline after an unexpected interest rate increase. A rise in the discount rate can lower the present value of debt and thereby induce inflation.

To see these effects, I add natural generalizations of the fiscal theory valuation formula: I add risk and risk aversion in place of the constant discount rate, I add long-term debt, and I express the model in continuous time. I also express the model in terms of debt-to-GDP and surplus-to-GDP ratios, which is useful for analyzing time-series data. I extend the theory to include non-interest bearing money and seigniorage, vital for many theoretical and empirical questions. I pursue a linearization, parallel to present-value linearizations in asset pricing, which allows us to use VAR tools for empirical analysis and to use linearized solution methods for more complex models, including models with price stickiness.

These are useful formulas for applications, they highlight important and novel mechanisms, and they show that the simplifications of the model so far are in fact just simplifications and not necessary assumptions.
3.1 Long-term debt

With long-term debt, the basic flow and present value relations become

$$B_{t-1}^{(t)} = P_s t + \sum_{j=1}^{\infty} Q_{t}^{(t+j)} \left(B_{t}^{(t+j)} - B_{t-1}^{(t+j)} \right).$$

$$\sum_{j=0}^{\infty} Q_{t}^{(t+j)} B_{t-1}^{(t+j)} P_t = E_t \sum_{j=0}^{\infty} \beta^j s_{t+j}. $$

A fiscal shock may be met by lower bond prices instead of a higher price level, which implies future rather than current inflation. A rise in nominal interest rates with no change in surpluses, which lowers bond prices, can result in a lower price level.

Long-term debt adds much to the fiscal theory. As we move to higher-frequency observations and continuous time, more debt is effectively long-term debt, so its analytics become more important.

Denote by $B_{t-1}^{(t+j)}$ the quantity of nominal zero-coupon bonds, outstanding at the end of period $t - 1$, that come due at time $t + j$. $B_{t-1}^{(t)}$ are the one-period bonds coming due at t that we have studied so far. Denote by $Q_{t}^{(t+j)}$ the price at time t of bonds coming due at time $t + j$. Continuing the constant real interest rate frictionless case with $R = \beta^{-1}$, bond prices are

$$Q_{t}^{(t+j)} = E_t \left(\beta^j \frac{P_t}{P_{t+j}} \right).$$ \hspace{1cm} (3.1)$$

The flow condition now includes sales or repurchases of longer-maturity bonds,

$$B_{t-1}^{(t)} = P_s t + \sum_{j=1}^{\infty} Q_{t}^{(t+j)} \left(B_{t}^{(t+j)} - B_{t-1}^{(t+j)} \right).$$ \hspace{1cm} (3.2)$$

Money created to redeem maturing bonds is soaked up by primary surpluses, or by debt sales, including sales of long term debt, which may be incremental sales.

The present-value condition now reads

$$\sum_{j=0}^{\infty} Q_{t}^{(t+j)} B_{t-1}^{(t+j)} P_t = E_t \sum_{j=0}^{\infty} \beta^j s_{t+j}. $$

$$\sum_{j=0}^{\infty} Q_{t}^{(t+j)} B_{t-1}^{(t+j)} P_t = E_t \sum_{j=0}^{\infty} \beta^j s_{t+j}.$$ \hspace{1cm} (3.3)$$
3.2. RATIOS TO GDP AND A FOCUS ON INFLATION

The real market value of nominal debt equals the present value of real primary surpluses.

We can derive (3.3) from (3.2) by iterating forward and applying the condition that the real value of debt not grow faster than the interest rate, as before. We can derive (3.2) from (3.3) by considering its value at two adjacent dates.

The present value condition (3.3) now allows a fiscal shock to be met by a decline in nominal bond prices $Q^{(t+j)}$ rather than a rise in the price level P_t. However, the bond pricing formula (3.1) tells us that this event means future inflation rather than current inflation. With one-period debt, expected future inflation did nothing in the valuation equation. Now, expected future inflation devalues long-term bonds as they come due. A fiscal shock may be met by such expected future inflation, and thus by a drawn-out inflation. Equation (3.3) essentially marks that future inflation to market via bond prices.

Long-term debt allows an unexpectedly higher interest rate with no change in surpluses to temporarily lower inflation: A shock that persistently raises nominal interest rates lowers bond prices $Q^{(t+j)}$ and thus the numerator on the left-hand side of (3.3). If surpluses do not change, the price level must also fall.

3.2 Ratios to GDP and a focus on inflation

In terms of ratios to GDP, the basic valuation equation reads

$$\frac{B_{t-1}}{P_t y_t} = E_t \sum_{j=0}^{\infty} \beta^j \frac{y_{t+j} s_{t+j}}{y_t y_{t+j}}.$$

We can focus on inflation, rather than the value of all government debt, with

$$\frac{1}{P_t} = E_t \sum_{j=0}^{\infty} \beta^j \frac{s_{t+j}}{B_{t-1}}.$$

or

$$\frac{1}{P_t} = E_t \sum_{j=0}^{\infty} \beta^j \left(\frac{y_{t+j}}{y_t} \right) \left(\frac{s_{t+j}}{y_{t+j}} \right) / \left(\frac{B_{t-1}}{y_t} \right).$$

Debt, spending, and taxes scale with GDP over time and across countries, so ratios to GDP, consumption, or some other common trend are useful ways try to produce
stationary variables for statistical analysis. We can easily express the basic present value and flow equations in terms of ratios to GDP by multiplying and dividing by real GDP y_t. Then we can write the government debt valuation equation to state that the debt-to-GDP ratio is equal to the present value of surplus to GDP ratios, with an adjustment for GDP growth.

$$\frac{B_{t-1}}{P_t y_t} = E_t \sum_{j=0}^{\infty} \beta^j \left(\frac{y_{t+j}}{y_t} \right) \left(\frac{s_{t+j}}{y_{t+j}} \right).$$

More growth means greater surpluses, with surplus-to-GDP ratios.

This expression, like the basic valuation equation, expresses the value of all government debt. In the end, we are really interested in the price level, or the value of a single dollar. We can focus on that issue with

$$\frac{1}{P_t} = E_t \sum_{j=0}^{\infty} \beta^j \frac{s_{t+j}}{B_{t-1}}.$$ \hspace{1cm} (3.4)

Here, the value of a dollar today depends on future surpluses divided by today’s debt. Initially, one expects future surpluses to be divided by future debts. However, in valuing today’s debt, people must expect that any additional unexpected future deficits will be met by additional unexpected surpluses in the further future. There can be no expected shocks to the present value of surpluses. $E_t (E_{t+1} - E_t) \sum_{j=0}^{\infty} \beta^j s_{t+j} = 0$. So, today’s expected surpluses are, on net, only those that pay off today’s debts, though there will be additional future deficits and surpluses.

Merging the two ideas, we can write an equation for the price level that recognizes stationary ratios to GDP as

$$\frac{1}{P_t} = E_t \sum_{j=0}^{\infty} \beta^j \left(\frac{y_{t+j}}{y_t} \right) \left(\frac{s_{t+j}}{y_{t+j}} \right) / \left(\frac{B_{t-1}}{y_t} \right).$$

3.3 Risk and discounting

With a general stochastic discount factor Λ_t, e.g. $\Lambda_t = \beta^t u'(c_t)$, we have

$$\frac{B_{t-1}}{P_t} = E_t \sum_{j=0}^{\infty} \frac{\Lambda_{t+j}}{\Lambda_t} s_{t+j}.$$
3.3. RISK AND DISCOUNTING

We can also discount using the ex-post real return to holding government bonds,

\[
\frac{B_{t-1}}{P_t} = \sum_{j=0}^{\infty} \left(\prod_{k=1}^{j} \frac{1}{R_{t+k}} \right) s_{t+j}
\]

where

\[
R_{t+1} = \frac{1}{Q_t} \frac{P_t}{P_{t+1}} = (1 + i_t) \frac{P_t}{P_{t+1}}
\]
in this case of one-period debt.

To introduce risk, let the endowment \(y_t \) vary, and let

\[
\frac{\Lambda_{t+1}}{\Lambda_t} = \beta u'(c_{t+1}) \frac{u'(c_t)}{u'(c_t)}
\]
denote the stochastic discount factor. Then the bond price is

\[
Q_t = E_t \left(\frac{\Lambda_{t+1} P_t}{\Lambda_t P_{t+1}} \right)
\]

and the flow condition (2.5) becomes

\[
\frac{B_{t-1}}{P_t} = s_t + E_t \left(\frac{\Lambda_{t+1} P_t}{\Lambda_t P_{t+1}} \right) B_t.
\]

Iterating forward, and applying the transversality condition, which now reads

\[
\lim_{T \to \infty} E_t \left(\frac{\Lambda_T B_{T-1}}{\Lambda_t P_T} \right) = 0,
\]

we obtain the standard stochastically-discounted valuation formula:

\[
\frac{B_{t-1}}{P_t} = E_t \sum_{j=0}^{\infty} \frac{\Lambda_{t+j}}{\Lambda_t} s_{t+j}.
\] (3.5)

It is often useful to discount using the ex-post return on government debt, to use a stochastic discount factor \(\frac{\Lambda_{t+1}}{\Lambda_t} = 1/R_{t+1} \). Since \(1 = R_{t+1}^{-1} R_{t+1} = E_t \left(R_{t+1}^{-1} R_{t+1} \right) \), the inverse return is a one-period ex-post and ex-ante discount factor, using any set of probabilities. This fact is useful empirically when one does not wish to specify a model such as a utility function connecting the discount factor to other economic
quantities, but instead one wishes to think about present values in terms of empirical models of expected returns.

To express the fiscal theory with the inverse government bond portfolio return as discount factor, write the one-period flow relation as

\[
\frac{B_{t-1}}{P_t} = s_t + \frac{Q_t B_t}{P_t} = s_t + \frac{Q_t P_{t+1}}{P_t} \frac{B_t}{P_{t+1}}.
\]

now,

\[
R_{t+1} = \frac{1}{Q_t} \frac{P_t}{P_{t+1}} = \frac{1}{1 + i_t} \frac{P_t}{P_{t+1}}
\]

is the ex-post real return on debt. Thus, we can write the flow condition

\[
\frac{B_{t-1}}{P_t} = s_t + \frac{1}{R_{t+1}} \frac{B_t}{P_{t+1}}
\]

and iterate forward,

\[
\frac{B_{t-1}}{P_t} = \sum_{j=0}^{\infty} \left(\prod_{k=1}^{j} \frac{1}{R_{t+k}} \right) s_{t+j} + \lim_{T \to \infty} \left(\prod_{k=1}^{j} \frac{1}{R_{t+k}} \right) \frac{B_{t+T-1}}{P_{t+T}}.
\]

This equation holds ex-post, so it also holds ex-ante. We can take expectations of both sides. If the expected value of the final term goes to zero and the sum converges we then have a convenient present value relation using ex-post returns,

\[
\frac{B_{t-1}}{P_t} = E_t \left(\sum_{j=0}^{\infty} \left(\prod_{k=1}^{j} \frac{1}{R_{t+k}} \right) s_{t+j} \right).
\]

The expectation can refer to any set of probabilities, including sample frequencies. The formula is really just a rearrangement of the definition of return.

That the terms of (3.6) converge is a separate condition. It is possible that the present value is well defined using marginal utility or the discount factor as in (3.5), but the present value and terminal condition using ex-post returns (3.6) explode.

The same principles hold with long-term debt. We just get bigger formulas. We discount using the ex-post return on the entire portfolio of debt,

\[
R_{t+1} = \frac{\sum_{j=0}^{\infty} Q_{t+1}^{(t+1+j)} B_{t+1}^{(t+1+j)} P_{t+1}}{\sum_{j=0}^{\infty} Q_{t}^{(t+1+j)} B_{t}^{(t+1+j)} P_{t+1}}.
\]
This return reflects how the change in bond prices from \(Q_t \) to \(Q_{t+1} \) affects the market value of debt outstanding at the end of time \(t \). Then the flow identity is

\[
\sum_{j=0}^{\infty} \frac{Q_t^{(t+j)} B_{t-1}^{(t+j)}}{P_t} = s_t + \frac{1}{R_{t+1}} \sum_{j=0}^{\infty} \frac{Q_{t+1}^{(t+1+j)} B_t^{(t+1+j)}}{P_{t+1}}. \tag{3.8}
\]

We iterate again to

\[
\sum_{j=0}^{\infty} \frac{Q_t^{(t+j)} B_{t-1}^{(t+j)}}{P_t} = \sum_{j=0}^{\infty} \left(\prod_{k=1}^{j} \frac{1}{R_{t+k}} \right) s_{t+j}
\]

using now the definition (3.7) for the real bond portfolio return \(R_{t+1} \).

3.4 Money

When people hold non-interest-bearing money, the government debt valuation equation generalizes to

\[
\frac{B_{t-1} + M_{t-1}}{P_t} = E_t \sum_{j=0}^{\infty} \beta^j \left(s_{t+j} + \frac{i_{t+j}}{1 + i_{t+j}} \frac{M_{t+j}}{P_{t+j}} \right)
\]

or

\[
\frac{B_{t-1}}{P_t} = E_t \sum_{j=0}^{\infty} \beta^j \left(s_{t+j} + \frac{\Delta M_{t+j}}{P_{t+j}} \right).
\]

These equivalent expressions account for seigniorage revenue in two ways.

At the zero bound, \(i = 0 \) or when money pays full interest \(i = i^m \), money and bonds become perfect substitutes.

Seigniorage is small in most advanced economies. Seigniorage and interest costs invite us to think more seriously about what fiscal reactions occur in response to a monetary policy change.

With money demand, the central bank must passively accommodate the desired split of overall debt \(B + M \) between \(B \) and \(M \). Monetary policy, consisting of the choice of \(B + M \) or interest rate targets, remains and still controls expected inflation.
We can easily add cash or interest rate spreads between government bonds of varying liquidity. We no longer have to do so in order to determine the price level, but we can do so to recognize the presence of such assets and to investigate their impact.

Suppose that people hold cash overnight. The flow equilibrium condition becomes

\[
B_{t-1} + M_{t-1} = P_t s_t + \frac{1}{1 + i_t} B_t + M_t. \tag{3.10}
\]

\(M_t\) stands here for non-interest-bearing government money, i.e. cash and reserves. Only direct government liabilities count in this \(M_t\), not checking accounts or other inside money. \(M_t\) is held overnight from period \(t\) to period \(t + 1\).

I iterate forward in two ways, which give two useful intuitions:

\[
\frac{B_{t-1} + M_{t-1}}{P_t} = E_t \sum_{j=0}^{\infty} \frac{\Lambda_{t+j}}{\Lambda_t} \left(s_{t+j} + \frac{i_{t+j} M_{t+j}}{1 + i_{t+j} P_{t+j}} \right) \tag{3.11}
\]

and

\[
\frac{B_{t-1}}{P_t} = E_t \sum_{j=0}^{\infty} \frac{\Lambda_{t+j}}{\Lambda_t} \left(s_{t+j} + \frac{\Delta M_{t+j}}{P_{t+j}} \right) \tag{3.12}
\]

where \(\Delta M_t \equiv M_t - M_{t-1}\).

To derive (3.11), write the flow equation (3.10) as

\[
\frac{B_{t-1} + M_{t-1}}{P_t} = s_t + \frac{1}{1 + i_t} \frac{B_t + M_t}{P_t} + \frac{i_t}{1 + i_t} \frac{M_t}{P_t}
\]

and iterate. To derive (3.12), write (3.10) as

\[
\frac{B_{t-1}}{P_t} = s_t + E_t \left(\frac{\Lambda_{t+1}}{\Lambda_t} \right) \frac{B_t + M_t}{P_t} + \frac{i_t}{1 + i_t} \frac{M_t}{P_t}
\]

and iterate.

The presence of government-provided money that people are willing to hold without receiving interest introduces seigniorage revenue. In (3.11), we count seigniorage as
an interest saving. Money is a form of government debt that pays a lower interest rate. In (3.12), the government prints money to spend or transfer.

People are willing to hold money, even though bonds give a better rate of return, because money provides liquidity services, a “convenience yield,” an unmeasured dividend.

It is interesting to track the case that money pays interest, potentially lower than that of government bonds. Reserves currently do pay interest, and some kinds of government debt are more liquid, and pay lower interest, than others. When money pays interest \(i^m \), the flow condition becomes

\[
B_{t-1} + M_{t-1} = P_t s_t + \frac{1}{1 + i_t} B_t + \frac{1}{1 + i^m_t} M_t.
\]

Here I quote the interest on money \(M \) on a discount basis, paralleling bonds. It’s more conventional to quote the interest the next day, i.e. to write

\[
B_{t-1}(1 + i_{t-1}) + M_{t-1}(1 + i^m_{t-1}) = P_t s_t + B_t + M_t,
\]

but discount notation is easier for bonds, especially long-term bonds, and keeping the same notation for bonds and money is useful. Proceeding the same way, the present value relation becomes

\[
\frac{B_{t-1} + M_{t-1}}{P_t} = E_t \sum_{j=0}^{\infty} \frac{\Lambda_{t+j}}{\Lambda_t} \left[s_{t+j} + \frac{i_{t+j} - i^m_{t+j}}{(1 + i_{t+j})(1 + i^m_{t+j})} \frac{M_{t+j}}{P_{t+j}} \right]
\]

\((3.13) \)

\(^1 \)The intermediate steps:

\[
\frac{B_{t-1} + M_{t-1}}{P_t} = s_t + \frac{1}{1 + i_t} \frac{(B_t + M_t)}{P_t} + \left(\frac{1}{1 + i^m_t} - \frac{1}{1 + i^m_t} \right) \frac{M_t}{P_t}
\]

\[
\frac{B_{t-1} + M_{t-1}}{P_t} = s_t + E_t \left(\frac{\Lambda_{t+1}}{\Lambda_t} \frac{(B_t + M_t)}{P_{t+1}} \right) + \left(\frac{1}{1 + i^m_t} - \frac{1}{1 + i_t} \right) \frac{M_t}{P_t}.
\]
or
\[
\frac{B_{t-1}}{P_t} = E_t \sum_{j=0}^{\infty} \frac{\Lambda_{t+j}}{\Lambda_t} \left(s_{t+j} + \frac{1}{1+i_{t+j}} \frac{M_{t+j} - M_{t+j-1}}{P_{t+j}} \right).
\]

The formulas are prettier in continuous time, below.

We can discount at the ex-post rate of return. Now that return is distorted by people’s willingness to hold money at a low rate of return,

\[
R_{t+1} = \frac{B_t + M_t}{Q_t B_t + M_t P_t}.
\]

Then,

\[
\frac{B_{t-1} + M_{t-1}}{P_t} = s_t + \frac{Q_t B_t + M_t}{P_t} = s_t + \frac{1}{R_{t+1}} \frac{B_t + M_t}{P_t+1}.
\]

Iterating forward, we obtain the obvious formula, with this rate of return,

\[
\frac{B_{t-1} + M_{t-1}}{P_t} = \sum_{j=0}^{\infty} \left(\prod_{k=1}^{j} \frac{1}{R_{t+k}} \right) s_{t+j}.
\]

3.4.1 The zero bound

If \(Q_t = 1/(1 + i_t) = 1 \), i.e. if the interest rate is zero, then money and bonds are perfect substitutes. Following (3.12), we still have

\[
\frac{B_{t-1} + M_{t-1}}{P_t} = E_t \sum_{j=0}^{\infty} \beta^j s_{t+j}
\]

so the price level is determined at the zero bound. Since the U.S., Europe, and Japan spent so many years at the zero bound with little apparent unhinging of the price level, and since many alternative monetary theories predict instability or indeterminacy at the zero bound, this feature is a little feather in the fiscal cap.

\[2\text{The intermediate steps:}\]

\[
B_{t-1} = P_t s_i + \frac{1}{1+i_t} B_t + \frac{1}{1+i_m} M_t - M_{t-1}.
\]

\[
\frac{B_{t-1}}{P_t} = s_t + E_t \frac{\Lambda_{t+1}}{\Lambda_t} \frac{B_t}{P_{t+1}} + \frac{1}{1+i_m} \frac{M_t - M_{t-1}}{P_t}.
\]
The same result holds when money pays full interest \(i = i^m \). Again money and bonds are perfect substitutes, and fiscal theory nonetheless delivers a determinate price level. The fiscal theory is in fact simplest and most transparent at the zero bound, or with full interest on money.

At the zero bound, or with money that pays the same interest as bonds, the story (Section 2.3) that the government will leave unwanted money outstanding \(M_t > 0 \) if the price level is below equilibrium no longer works. People are indifferent between money and bonds. The mechanism for equilibrium formation then relies only on a restoration of the intertemporal allocation of consumption or its overall level, the wealth effect of government bonds and money together, or other stories.

3.4.2 Money, seigniorage, and fiscal theory

The valuation equations with money, equations (3.11) and (3.12), seem to offer an interesting opportunity for fiscal-monetary interactions. By exchanging bonds for money in open market operations, the central bank affects seigniorage and thereby fiscal surpluses and the price level. Likewise, higher interest rates can provoke seigniorage revenue, which can drive down the price level when the higher interest rates are announced. As always, however, the effect of monetary policy depends on fiscal policy. If the rest of the government spends seigniorage, adjusting surpluses \(s_t \), any seigniorage effect of monetary policy vanishes.

However, for most advanced economies, seigniorage is a small part of government finances so this is not an important channel to analyze. The government-provided non-interest-bearing money stock, primarily physical cash, is typically less than a tenth of the stock of outstanding government debt. Demand for the monetary base declines when the interest rate rises.

For example, in the U.S. in 2019 the currency stock was about $1.5 trillion, federal debt and GDP about $20 trillion, federal spending about $5 trillion and the deficit about $1 trillion. The interest rate was about 2%, so seigniorage revenue counted as interest savings was about $30 billion, or 3% of the deficit, less than 1% of federal spending and 0.15% of GDP. At a constant currency/GDP ratio, even 5% growth of nominal GDP (2% inflation, 3% real) implies 5% growth of the monetary base and thus \(5\% \times 1.5 \text{ trillion} = 75 \text{ billion} \) of free spending. The amount by which these numbers change upon monetary policy actions is an order of magnitude smaller. If the Fed raises interest rates by one percentage point, and ignoring the consequent
Even in times of high inflation in the U.S., direct seigniorage was a small part of the fiscal story. In the early 1980s, currency was only about $100 billion, GDP about $3 trillion, so currency/GDP about 3%. Higher nominal interest rates induced lower real money demand. Even at 10% interest rates, seigniorage was $10 billion or 0.3% of GDP. Currency was growing about 10% per year, giving the same answer. Federal debt was about $1 trillion, 33% of GDP, with deficits bottoming out at $200 billion or 5% of GDP, and roughly 3% of GDP throughout the 1980s. Seigniorage represented less than a tenth of the deficit throughout the great inflation and its aftermath. Whatever caused that inflation, direct monetization of deficits wasn’t it.

Seigniorage does matter for many episodes and other countries, including many wars and currency collapses. Marginal seigniorage may matter even when average seigniorage is small, if a country embarks on a large money-financed spending spree. Most large inflations and hyperinflations result clearly from issuing large amounts of non-interest-bearing money to cover fiscal deficits.

A persistent fiscal deficit may result in devaluation of outstanding nominal debt through inflation. This is the central message of the fiscal theory. But this effect is not seigniorage. It occurs in models with no money at all. Don’t confuse devaluation with seigniorage.

Real interest costs offer a potentially larger fiscal effect of monetary policy. If prices are sticky so that nominal interest rate changes imply real interest rate changes, then raising the interest rate raises the government’s real cost of borrowing. But this mechanism of monetary-fiscal interaction is also distinct from seigniorage, and also exists in an economy without any money.

Suppose there is a money demand function $MV = Py$. If the government or central bank fixes money supply M_t, then money supply = money demand can, potentially, determine the price level. Then fiscal policy must “passively” adjust surpluses to the monetary-determined price level so that the government debt valuation equation holds. (I write “potentially,” because interest elastic demand $V(i)$ or inside moneys muddy that claim, issues I return to in Chapter [19]. We usually write money demand as $M^d_t = L(P_t y_t, i_t)$, but the forms are equivalent, especially if we write explicitly $V(P_t, y_t, i_t)$. I stick with $MV = Py$ for simplicity and as a reminder of the central monetarist idea.)

For now, our job is to generalize fiscal theory, so I assume the opposite: The valuation
equation (3.11) or (3.12) determines the price level. The government must then
“passively” provide the amount of money people demand by $MV = P y$. The central
bank must adjust the composition of government debt, the split of debt $B_t + M_t$ overall
between B_t and M_t. As a higher fiscally-determined price level raises money demand,
the government must provide the demanded money. For example, the central bank
could allow banks to freely exchange interest-paying reserves B_t for cash M_t, which
is precisely what the Fed does.

The decision of the overall level of $B_t + M_t$ with fixed surpluses that I have called
“monetary policy” remains, or an interest rate target that is implemented by a flat
supply curve for debt remains. So, to be clear, we could call the needed policy a
“passive money supply” policy.

With this passive money supply assumption, the presence of non-interest-bearing
cash is a straightforward extension of, and often a minor footnote to, fiscal the-
ory. Cash is just one of many flavors of government debt that bear small interest
rate spreads, including off-the-run and agency securities. These yield differences
are important for precise accounting, and for measurement of the discount rate for
government debt. But those features do not disturb the basic picture of price level
determination.

This question poses a modeling fork in the road. The vast majority of work on
fiscal-monetary interactions, on the function of central banks, on the importance of
their operations and balance sheets, rests fundamentally on the modeling choice that
central banks issue non-interest-bearing currency and hold interest-bearing govern-
ment debt, they control that split directly or via interest rate targets, and that the
seigniorage profits are important to overall government finance. These may be rele-
vant modeling assumption for economic history. But not now. Everything is simpler,
but fundamentally different, if we start the analysis with a central bank that pays
full interest on its money, and an economy in which seigniorage is absent. That’s the
modeling choice I emphasize here, and it is more appropriate to our current monetary
and financial systems. We can add a bit of liquidity spread and seigniorage revenues
on such a view, but its basic propositions are not much altered.

3.5 Linearizations

I develop convenient linearized flow and present value relations,

$$\rho v_{t+1} = v_t + r_{t+1} - \pi_{t+1} - g_{t+1} - \tilde{s}_{t+1}$$

\[v_t = \sum_{j=1}^{\infty} \rho^{j-1} s_{t+j} + \sum_{j=1}^{\infty} \rho^{j-1} g_{t+j} - \sum_{j=1}^{\infty} \rho^{j-1} r_{t+j}. \]

Taking an innovation, we have an unexpected inflation identity,

\[\Delta E_{t+1} \pi_{t+1} - \Delta E_{t+1} r^n_{t+1} = -\sum_{j=0}^{\infty} \rho^j \Delta E_{t+1} \tilde{s}_{t+1+j} \]
\[-\sum_{j=0}^{\infty} \rho^j \Delta E_{t+1} g_{t+1+j} + \sum_{j=1}^{\infty} \rho^j \Delta E_{t+1} r_{t+1+j} \]

Linearizing the maturity structure around a geometric steady state, we can write a linearized identity for the bond return,

\[\Delta E_{t+1} r^n_{t+1} = -\sum_{j=1}^{\infty} \omega^j \Delta E_{t+1} r^n_{t+1+j} = -\sum_{j=1}^{\infty} \omega^j \Delta E_{t+1} (r_{t+1+j} + \pi_{t+1+j}). \]

Using this equation in the unexpected inflation identity, we have

\[\sum_{j=0}^{\infty} \omega^j \Delta E_{t+1} \pi_{t+1+j} = -\sum_{j=0}^{\infty} \rho^j \Delta E_{t+1} \tilde{s}_{t+1+j} - \sum_{j=0}^{\infty} \rho^j \Delta E_{t+1} g_{t+1+j} \]
\[+ \sum_{j=1}^{\infty} (\rho^j - \omega^j) \Delta E_{t+1} r_{t+1+j}. \]

These linearizations allow us to transparently see many interesting effects. A rise in expected return lowers the present value of surpluses and causes inflation. With long-term debt \(\omega > 0 \), a rise in expected future inflation lowers current inflation. By this mechanism, monetary policy can temporarily lower inflation. A fiscal shock may be met by a decline in bond return, which corresponds to a rise in expected future inflation. By this means, monetary policy can smooth forward the inflationary consequences of a fiscal shock, reducing or even eliminating the contemporaneous inflation response.

With time-varying discount rates and long-term debt it is convenient to linearize the flow and valuation equations. The linearizations allow us to apply standard VAR time series techniques. They also let us analyze long-term debt and discount rate variation with a simple apparatus, and easily to understand important mechanisms.
I follow a procedure adapted from the ideas in Campbell and Shiller (1988). I start with a linearized version of the debt-evolution identity, derived from a Taylor expansion of the exact nonlinear version,

\[\rho v_{t+1} = v_t + r_{t+1} - g_{t+1} - \tilde{s}_{t+1}. \]

The log debt-to-GDP ratio at the end of period \(t + 1 \), \(v_{t+1} \), is equal to its value at the end of period \(t \), \(v_t \), increased by the log real return on the portfolio of government bonds, less log GDP growth \(g_{t+1} \), and less the scaled surplus \(\tilde{s}_{t+1} \). The log real return equals the log nominal return less inflation,

\[r_{t+1} \equiv r_{t+1}^n - \pi_{t+1}. \]

The parameter \(\rho \) is a constant of linearization, \(\rho = e^{r-g} \). One can take \(\rho = 1 \), which is simpler, but everyone is so used to \(\rho < 1 \) that it often takes less explaining to leave it in. Deriving (3.17) takes some algebra, in Online Appendix Section 25.2.

The symbol \(\tilde{s}_{t+1} \) here represents the surplus-to-GDP ratio, scaled by the steady-state value of the debt-to-GDP ratio,

\[\tilde{s}_{t+1} = \frac{\rho}{V/(Py)} \frac{s_{t+1}}{y_{t+1}}, \]

where \(V/Py \) is the steady-state debt to GDP ratio, and \(y_t \) denotes GDP or similar divisor. I often refer to \(\tilde{s}_{t+1} \) as simply the “surplus” for brevity.

Iterating (3.17) forward, we have a present value identity,

\[v_t = \sum_{j=1}^{T} \rho^{j-1} \tilde{s}_{t+j} + \sum_{j=1}^{T} \rho^{j-1} g_{t+j} - \sum_{j=1}^{T} \rho^{j-1} r_{t+j} + \rho^T v_{t+T}. \]

Equation (3.18) holds ex-post, so it holds ex-ante. We can take \(E_t \) of both sides. Taking the limit as \(T \to \infty \), and assuming that the sums converge and the limiting term is zero, we have

\[v_t = E_t \sum_{j=1}^{\infty} \rho^{j-1} \tilde{s}_{t+j} + E_t \sum_{j=1}^{\infty} \rho^{j-1} g_{t+j} - E_t \sum_{j=1}^{\infty} \rho^{j-1} r_{t+j}. \]

The log value of debt as a ratio GDP, equals the present value of future surplus-to-GDP ratios, plus GDP growth, discounted at the real return on government debt.
In this equation we see how linearization simplifies analysis. Normally, discount rates multiply surpluses. Linearizing, we add rather than multiply, so we can easily measure and talk about separate surplus and discount rate effects. The approximation leaves out the interaction between surpluses and discount rates.

The use of expected real returns to discount in (3.19) is a useful technique from asset pricing. A discount factor is any random variable Λ_t such that $1 = E_t(\Lambda_{t+1}/\Lambda_t R_{t+1})$, i.e. the price p_t and dividend d_t of a security obey $p_t = E_t[\Lambda_{t+1}/\Lambda_t (d_{t+1} + p_{t+1})]$. Marginal utility of consumption $\Lambda_{t+1} = \beta u'(c_{t+1})/u'(c_t)$ is one particularly important discount factor. But there are many others. In particular, the inverse ex-post real return is also a discount factor, since $1 = E_t(R_{t+1}^{-1} R_{t+1})$. We can usefully say from the identity $p_t = E_t[R_{t+1}^{-1} (d_{t+1} + p_{t+1})]$ that prices are low when expected returns are high. It is useful identity, as we summarize a lot of thought and experience about asset prices in observations about expected returns. That statement leaves aside just why expected returns are high. A complete general equilibrium model needs to add $1 = E_t[\beta u'(c_{t+1})/u'(c_t)R_{t+1}]$ among other ingredients to say why expected returns are high. But, for example, it will be useful to us to see that times of high government debt valuation and low inflation correspond to times of low expected returns, and we can leave for another day the general-equilibrium foundations of those low expected returns. It will be useful to discuss how expected returns respond to a policy intervention, without specifying a particular general-equilibrium foundation for expected returns.

That the terminal condition in (3.19) vanishes, $E_t \rho^T v_{t+T} \to 0$ means that the debt-to-GDP ratio is expected to grow no faster than ρ^{-t}. The assumption or observation that debt/GDP is a stationary process is enough. If we use $\rho = 1$, then $E_t v_{t+T} \to E(v)$, and equation (3.19) continues to hold describing deviations from this mean. One may take these statistical assumptions as justification for using the infinite-horizon formulas without getting too deep into transversality condition theory.

Equation (3.19) is a forward-iterated decomposition of the value of debt, as asset prices are forward-iterated decompositions of asset values. It expresses the value of debt in terms of bondholders’ expectations of future repayment, and the rate of return they will accept given alternatives. It is more common to iterate (3.17) backwards, even if backwards sums do not converge. In doing so, we answer the question, where did today’s debt come from? Did it come from initial debt rolled over, past surpluses and deficits which pay down or increase debt, or changes in the ex-post return of past debt issues, i.e. higher and lower real interest rates and devaluation due to inflation? Hall and Sargent (2011) use an identity much like (3.17) in this way for U.S. data, and Cochrane (2019) contrasts the forward and backward approach. We
iterate forward here because that is the interesting question for us.

Taking time \(t + 1 \) innovations of (3.19) and rearranging, we have an unexpected inflation identity,

\[
\Delta E_{t+1}\pi_{t+1} - \Delta E_{t+1}r^n_{t+1} = -\sum_{j=0}^{\infty} \rho^j \Delta E_{t+1}\tilde{\pi}_{t+1+j} - \sum_{j=0}^{\infty} \rho^j \Delta E_{t+1}\tilde{\pi}_{t+1+j} - \sum_{j=0}^{\infty} \rho^j \Delta E_{t+1}g_{t+1+j} + \sum_{j=1}^{\infty} \rho^j \Delta E_{t+1}r_{t+1+j} \tag{3.20}
\]

A decline in the present value of surpluses, coming either from a decline in surplus-to-GDP ratios, a decline in GDP growth, or a rise in discount rates, must correspond to a lower real value of the debt. This reduction can come about by unexpected inflation which devalues outstanding one-period debt, or by an unexpected decline in nominal long-term bond prices, which gives rise to a negative return \(\Delta E_{t+1}r^n_{t+1} \). Since \(v_t \) is known at time \(t \), it usefully disappears from this innovation accounting.

What determines the long-term bond return \(r^n_{t+1} \), and whether bond prices or inflation soak up a fiscal shock? Linearizing around a geometric maturity structure, in which the face value of maturity \(j \) debt declines at rate \(\omega^j \),

\[
B_i^{(t+j)} = \omega^j B_t,
\]

Online Appendix Section 25.3 develops a second approximate identity,

\[
\Delta E_{t+1}r^n_{t+1} = -\sum_{j=1}^{\infty} \omega^j \Delta E_{t+1}r^n_{t+1+j} = -\sum_{j=1}^{\infty} \omega^j \Delta E_{t+1} \left[r_{t+1+j} + \pi_{t+1+j} \right]. \tag{3.21}
\]

A lower ex-post bond return on the left-hand side mechanically corresponds to higher expected nominal returns, which in turn are composed of real returns and inflation, on the right-hand side.

We can then eliminate the bond return in (3.20)-(3.21) to focus on inflation and fiscal affairs alone,

\[
\sum_{j=0}^{\infty} \omega^j \Delta E_{t+1}\pi_{t+1+j} = -\sum_{j=0}^{\infty} \rho^j \Delta E_{t+1}\tilde{\pi}_{t+1+j} - \sum_{j=0}^{\infty} \rho^j \Delta E_{t+1}g_{t+1+j} + \sum_{j=1}^{\infty} (\rho^j - \omega^j) \Delta E_{t+1}r_{t+1+j}. \tag{3.22}
\]

A sum of current and expected future inflation, weighted by the maturity structure of government debt, responds to the present value of surpluses.
3.5.1 Responses to fiscal and monetary shocks

The linearized identities allow us to see and calculate many fiscal theory effects more transparently than we can do by using the equivalent nonlinear formulas.

Equations (3.20) and (3.22) capture the entire effect of long-term bonds on inflation by the nominal return \(r_{t+1}^n \). With one-period debt \(\omega = 0 \), \(r_{t+1}^n = i_t \) and is known ahead of time. Thus, the possibility that long-term bond prices lower the numerator on the left hand side of the valuation equation is captured in a negative \(r_{t+1}^n \).

The bond return \(r_{t+1}^n \) captures many interesting mechanisms. Money that pays no interest or reduced interest, liquidity premiums or inflation-hedge premiums in government securities, and other interesting questions about returns and discount rates for government debt all are captured by \(r_{t+1}^n \). That doesn’t make these issues easy, if one wishes to model them rather than simply use empirical estimates of the nominal bond return. But it allows an easy way to incorporate many ideas about government bond returns into fiscal theory formulas.

The identities easily connect mechanisms we could see in special cases to more general cases. A constant expected return occurs with \(E_t r_{t+1} = 0 \), \(E_t r_{t+1}^n = E_t \pi_{t+1} \). Conversely, we see the effects of time-varying real rates and time-varying risk premiums by allowing expected real bond returns \(E_t r_{t+1} \) to vary. One-period debt occurs with \(\omega = 0 \). Conversely, we see the effects of long-term debt by raising \(\omega \). For the rest of this section, I simplify by ignoring the growth term, \(g_t = 0 \) as well.

Fiscal shocks

To start on familiar territory, consider constant expected real returns \(E_t r_{t+1} = 0 \) and one-period debt, \(\omega = 0 \). The identities (3.20) and (3.22) reduce to

\[
\Delta E_{t+1} \pi_{t+1} = - \sum_{j=0}^{\infty} \rho^j \Delta E_{t+1} \tilde{s}_{t+1+j}.
\]

A negative shock to the present value of surpluses results in a positive shock to inflation. We saw this result in the nonlinear model, for example, in (2.13), which I write as

\[
\Delta E_{t+1} \left(\frac{P_t}{P_{t+1}} \right) = \Delta E_{t+1} \sum_{j=0}^{\infty} \beta^j s_{t+1+j} / \left(B_t / P_t \right).
\]
Also (3.4) suggested that it is useful to divide the surplus by the value of debt to focus on the price level or inflation.

Recall in the linearization the symbol \tilde{s}_t is scaled by the value of debt, which accounts for the B_t/P_t term here. In our first-order linearization, we look at variation in the surplus divided by the steady state value of debt. Variation in value of debt leads to a nonlinear interaction term. Debt-to-GDP ratios vary a great deal, so such terms are not necessarily small. When debt is 100% of GDP, as in 2021, it takes four times as much actual surplus-to-GDP to produce the same effect as when debt is 25% of GDP, as in 1980. One can ameliorate this issue by linearizing in terms of the surplus to value ratio, as outlined in the Online Appendix. In empirical work, I create the scaled surplus \tilde{s}_t from the linearized identity (3.17). This procedure creates data series that obey the identity, which is useful, and implicitly takes care of the issue by scaling up the surplus when the debt is small and vice versa. One can use a different scaling for calculations that apply to different eras. Use 100% debt to GDP for current calculations, 25% to simulate the 1980s. When possible, of course, use exact nonlinear calculations.

Adding time-varying expected returns on government bonds, we now have

$$\Delta E_{t+1} \pi_{t+1} = -\sum_{j=0}^{\infty} \rho^j \Delta E_{t+1} \tilde{s}_{t+1+j} + \sum_{j=1}^{\infty} \rho^j \Delta E_{t+1} r_{t+1+j}.$$

A shock to the present value of surpluses and hence to inflation can come from the discount rate rather than, or as well as, from surpluses themselves. Suppose the expected or required return rises. At the initial price level, government bonds are worth less. People try to get rid of them, first buying real assets and then buying goods and services. This rise in aggregate demand pushes the price level up. Again, the linearization allows us to see the separate effect cleanly.

Now, add long-term debt $\omega > 0$. Start with constant expected returns. In this case, the inflation identity (3.22) reads

$$\sum_{j=0}^{\infty} \omega^j \Delta E_{t+1} \pi_{t+1+j} = -\sum_{j=0}^{\infty} \rho^j \Delta E_{t+1} \tilde{s}_{t+1+j}. \quad (3.23)$$

An unexpected rise in expected future inflation $\Delta E_{t+1} \pi_{t+1+j}$ can now help to soak up a fiscal shock, not just current $\Delta E_{t+1} \pi_{t+1}$ inflation. If there is future inflation, then long-term bonds are paid back in less valuable dollars when they come due.
This result offers a major change in our view of fiscal shocks. With short-term
debt, $\omega = 0$, fiscal shocks give rise to one period of inflation, a one-time price-level
jump, that devalues maturing bonds. There may be continued inflation – we may see
$\Delta E_{t+1}\pi_{t+j}$ following such a shock – but that is entirely incidental and does nothing
to absorb the fiscal shock. With flexible prices, short-term bondholders can escape
expected future inflation by demanding higher nominal interest rates. But holders of
long-term bonds, outstanding on the day of the shock, cannot escape the devaluation
of their holdings that comes from future inflation.

Future inflation is less effective than current inflation at absorbing a fiscal shock,
since $\omega < 1$. A shock to expected future inflation can only devalue debt that is
already outstanding today. However, if a fiscal shock is met by a long drawn-out
inflation, $\Delta E_{t+1}\pi_{t+1+j}$ that lasts for many j, the size of each period’s inflation can be
much smaller than a one-period price-level jump, even though the cumulative price
level rise is larger. For example, with $\omega = 0.7$, a permanent 1% rise in inflation soaks
up the same surplus as a $1/(1 - 0.7) = 3.3\%$ price-level jump. In many models,
a drawn-out small inflation is less economically disruptive than a one-period price-
level jump. It is even possible that the fiscal shock comes with no contemporaneous
inflation at all, $\Delta E_{t+1}\pi_{t+1} = 0$, and inflation rises slowly over time in response to
the fiscal shock.

Which is it? The central bank controls the path of expected inflation, through the
interest rate target. If the central bank raises interest rates in response to a fiscal
shock, raising expected inflation, then there will be a long period of small inflation.
If the central bank leaves interest rates alone, then we get a one-period price-level
jump. By raising interest rates sufficiently, the central bank can cancel completely
the immediate inflationary impact of the fiscal shock, though by allowing a slow
larger inflation to appear later. By contrast, with one-period debt $\omega = 0$, though
the central bank can still raise interest rates and produce a long inflation, this action
has no effect on the size of initial inflation $\Delta E_{t+1}\pi_{t+1}$. Thus with long-term debt the
central bank controls the timing of fiscal inflation, with (3.23) as a sort of budget
constraint for inflation at different dates.

This simple model offers an important change in perspective, and greater realism.
We do not see sudden price-level jumps in the U.S. economy. We see drawn-out
inflation accompanying fiscal problems, for example in the 1970s. A common view
is that the fiscal theory is unrealistic, as it only predicts one-time price-level jumps.
That prediction is a feature of simplified models with short-term debt, or ignoring
monetary policy, i.e. the choice of $\{B_t\}$ or $\{i_t\}$, not of the fiscal theory per se.
All of these possibilities require outstanding long-term debt here. The longer the maturity structure, the greater \(\omega \), the greater the government’s ability to meet a fiscal shock by a period of small drawn-out inflation rather than a price-level jump. Long-term debt is a valuable buffer for government finance, in this and other respects.

In this context of constant expected returns and no growth, the inflation identity with bond return (3.20) simplifies to

\[
\Delta E_{t+1} \pi_{t+1} - \Delta E_{t+1} r_{t+1}^n = - \sum_{j=0}^{\infty} \rho^j \Delta E_{t+1} \tilde{s}_{t+1+j}. \tag{3.24}
\]

and the bond return identity (3.21) simplifies to

\[
\Delta E_{t+1} r_{t+1}^n = - \sum_{j=1}^{\infty} \omega^j \Delta E_{t+1} \pi_{t+1+j}. \tag{3.25}
\]

If the government (central bank) chooses a drawn-out inflation response to a fiscal shock, that action lowers bond prices, and thus produces a negative ex-post return \(\Delta E_{t+1} r_{t+1}^n \) in (3.25) and (3.24). In the nonlinear version,

\[
\sum_{j=1}^{\infty} B_{t-1} Q^{(t+j)} = E_t \sum_{j=0}^{\infty} \beta^j \tilde{s}_{t+j}, \tag{3.26}
\]

we saw that a decline in long-term bond prices \(Q^{(t+j)} \) in the numerator could bring the valuation equation into balance following a fiscal shock. The \(r_{t+1}^n \) terms capture this mechanism.

Our present-value equations such as (3.26) use mark-to-market accounting, as the left-hand side is the market value of debt. In essence, the \(\Delta E_{t+1} r_{t+1}^n \) term of (3.24) marks to market the expected future inflation \(\sum_{j=1}^{\infty} \omega^j \Delta E_{t+1} \pi_{t+1+j} \) (note \(j = 1 \) here) of the \(\omega \)-weighted inflation identity (3.23). I find it more insightful to use the version (3.23) that substitutes out the bond return \(r_{t+1}^n \) and looks directly at the path of inflation. However, thinking of long term bonds as absorbing fiscal pressure by being devalued when they come due, or thinking in mark-to-market terms by lower prices on the date of the shock, are two sides of the same coin.

Monetary policy and a negative response of inflation to interest rates

In Section 2.5 I considered a fiscal theory of monetary policy, using flexible prices and a constant real interest rate, \(i_t = E_t \pi_{t+1} \), together with what we recognize now
as the unexpected inflation identities with a constant discount rate and one-period debt,
\[
\Delta E_{t+1} \pi_{t+1} = - \sum_{j=0}^{\infty} \rho^j \Delta E_{t+1} \tilde{s}_{t+1+j}. \tag{3.27}
\]

I defined “monetary policy” as a rise in the interest rate with no change in surpluses. This investigation left us with a “Fisherian” response to monetary policy, as captured by Figure 2.1. A higher interest rate provokes higher inflation, after a one-period lag. I promised that long-term debt offered one way to overcome this prediction. The linearized identities show that possibility quickly. With long-term debt, we have \(\omega \)-weighted future inflation terms on the left hand side of (3.27), i.e. (3.23). A monetary policy change, as we have defined it so far, then specializes (3.23) to
\[
\sum_{j=0}^{\infty} \omega^j \Delta E_{t+1} \pi_{t+1+j} = - \sum_{j=0}^{\infty} \rho^j \Delta E_{t+1} \tilde{s}_{t+1+j} = 0 \tag{3.28}
\]
which we can solve for
\[
\Delta E_{t+1} \pi_{t+1} = - \sum_{j=1}^{\infty} \omega^j \Delta E_{t+1} \pi_{t+1+j}.
\]

Note the minus sign and that the index starts at \(j = 1 \). Now, if the central bank raises interest rates unexpectedly and persistently, it raises expected future inflation on the right-hand side. This change lowers current inflation on the left-hand side. With long-term debt, an unexpected persistent rise in interest rates lowers today’s inflation, even though we still have completely flexible prices, and with no concurrent change to fiscal policy.

The mechanism continues to feel like aggregate demand. When the nominal interest rate rises persistently, bond prices fall. But surpluses have not changed. The value of government debt to investors is greater than its real market value. People try to buy more government debt, and thus fewer goods and services.

In this analysis, the expected path of interest rates matters more than the immediate rate in determining a deflationary force. A credible, persistent interest rate rise – more terms \(\Delta E_{t+1} \pi_{t+1+j} \) – that lowers long-term bond prices a lot has a stronger disinflationary effect than a tentative or transitory rate rise that induces smaller changes to long-term bond prices. The deflationary effect is larger if there is more long-term debt outstanding, if \(\omega \) is larger. This state-dependence of the deflationary effect of monetary policy is a potentially testable implication. In this simple
model the deflationary force is measured by the decline in bond prices. That prediction is muddied up by expected return variation, but also is potentially useful for measurement.

Standard new-Keynesian models produce the opposite result, larger inflation declines for transitory than for persistent interest rate movements. And the mechanism for an inflation decline here is entirely different from those in new-Keynesian, old-Keynesian, or monetarist models of interest-rate policy.

Figure 3.1 plots an example.

Figure 3.1: Response to an interest rate shock with long-term debt.

I use $\omega = 0.8$, which roughly approximates the U.S. maturity structure. I suppose that interest rates rise unexpectedly and permanently at time 1. I plot the path of the log price level rather than the inflation rate for clarity. Expected inflation π_2, π_3, etc. rise by 1%. The price level rises 1% per year. But the price level first declines, by $\pi_1 = -\omega/(1 - \omega)$ times 1%.

The dashed line marked “short debt or expected” in Figure 3.1 plots inflation in the $\omega = 0$ case of only one-period debt. In this case, inflation also starts one period after
the interest rate rise, but with no downward jump, as in Figure 2.1.

The disinflation only happens if the interest rate rise is *unexpected*. If the interest rate rise is completely expected, it is already priced into long-term bonds. The long-term bond case follows exactly the same path as the short-term bond case. An announcement of a future interest rate rise has a small disinflationary effect today, but no effect when interest rates actually rise.

This is a second important question one should ask models of monetary policy experiments: do *expected* interest rate rises affect inflation in the same way as *unexpected* interest-rate rises do? The answer here is no.

Equation (3.5.1) opens quite a door for monetary policy. Monetary policy can now shift inflation over time as it pleases, including the present moment, with the maturity structure of outstanding debt giving a sort of budget constraint to its possibilities.

Time-varying expected returns

With time-varying expected returns, interesting additional dynamics emerge. With sticky prices, a higher nominal interest rate can raise the real interest rate and discount rate. This is an inflationary force in equations (3.20) and (3.22), which offsets the direct initial deflationary force. Thus, stickier prices *lower* the disinflationary impact of an interest rate rise. This is a good case to remind yourself that though we may produce traditional results, the mechanism is utterly different.

The difference in discount rate terms in (3.20) and (3.22), weighted by \(\rho^j\) vs. weighted by \(\rho^j - \omega^j\), is minor in practice. The U.S. and most other countries maintain a relatively short maturity structure, \(\omega \approx 0.8\) or less. With \(\rho \approx 0.99\) or even \(\rho = 1\), the difference between \(\rho^j\) and \((\rho^j - \omega^j)\) only affects the first few terms, usually with little consequence.

The presence of \((\rho^j - \omega^j)\) in (3.22) points to an interesting possibility however. If governments dramatically lengthened the maturity structure of their debt, adopting perpetuities or near-perpetuities with \(\rho = \omega\), then discount rate terms would drop from long-run unexpected inflation in (3.22). Roughly speaking, a government that finances itself with perpetuities is insulated from interest rate risk in how it repays outstanding government debt. This outcome might well be a desirable feature.
3.6 Continuous time

Continuous-time formulas are straightforward and often prettier analogues to the discrete time versions. With a stochastic discount factor Λ_t, the present value formulas are, with short term debt

$$V_t = \frac{B_t}{P_t} = E_t \int_{\tau=t}^{\infty} \frac{\Lambda_\tau}{\Lambda_t} s_\tau d\tau;$$

with long-term debt

$$V_t = \frac{\int_{j=0}^{\infty} Q_t^{(t+j)} B_t^{(t+j)} dj}{P_t} = E_t \int_{\tau=t}^{\infty} \frac{\Lambda_\tau}{\Lambda_t} s_\tau d\tau;$$

with money, either

$$\frac{M_t + B_t}{P_t} = E_t \int_{\tau=t}^{\infty} \frac{\Lambda_\tau}{\Lambda_t} \left[s_\tau + (i_t - i^m_t) \frac{M_\tau}{P_\tau} \right] d\tau;$$

or, in the case $i^m_t = 0$,

$$\frac{B_t}{P_t} = E_t \int_{\tau=t}^{\infty} \frac{\Lambda_\tau}{\Lambda_t} \left(s_\tau d\tau + \frac{dM_\tau}{P_\tau} \right).$$

Special cases include risk-neutral valuation at the interest rate

$$\frac{\Lambda_\tau}{\Lambda_t} = e^{-\int_{j=t}^{\tau} r_j dj},$$

at a constant real interest rate

$$\frac{\Lambda_\tau}{\Lambda_t} = e^{-r(\tau-t)},$$

or with ex-post real returns on government debt,

$$\frac{\Lambda_\tau}{\Lambda_t} = \frac{W_t}{W_\tau},$$

where W_t is the cumulative real return on the value-weighted portfolio of government debt. In the latter case, present value formulas also hold ex-post. We can also discount using the cumulative return on government debt including money,

$$\frac{B_t + M_t}{P_t} = \int_{\tau=t}^{\infty} \frac{W_t^m}{W_\tau^m} s_\tau d\tau.$$
CHAPTER 3. A BIT OF GENERALITY

1 The flow conditions express the idea that money printed up to redeem debt must be soaked up by surpluses or by new debt sales. For one-period debt,

\[\frac{B_t}{P_t} i_t dt = s_t dt + \frac{dB_t}{P_t}; \]

2 for long-term debt

\[\frac{B_t(t)}{P_t} dt = s_t dt + \int_{j=0}^{\infty} Q_t^{(t+j)} dB_t^{(t+j)} dj; \]

3 and with money,

\[\frac{B_t}{P_t} i_t dt + \frac{M_t}{P_t} i_m dt = s_t dt + \frac{dB_t}{P_t} + \frac{dM_t}{P_t}. \]

4 The linearized flow and present value identities are

\[dv_t = -s_t dt + dR_t^n - (r + \pi_t) dt + rv_t dt \]

5 \[v_t = \frac{V_t}{V} = \int_{\tau=0}^{\infty} e^{-r\tau} s_{t+\tau} d\tau - \int_{\tau=0}^{\infty} e^{-r\tau} (dR_{t+\tau} - rd\tau) \]

6 with

\[dR_t = dR_t^n - \pi_t dt. \]

7 Taking innovations, we have the unexpected inflation identity,

8 \[\Delta_t dR_t^n = \int_{\tau=0}^{\infty} e^{-r\tau} \Delta_t s_{t+\tau} d\tau - \int_{\tau=0}^{\infty} e^{-r\tau} \Delta_t dR_{t+\tau}. \]

9 The linearized bond return identity with a geometric maturity structure is

10 \[\Delta_t dR_t^n = -\int_{\tau=0}^{\infty} e^{-(r+\omega)\tau} \Delta_t dR_{t+\tau} = -\int_{\tau=0}^{\infty} e^{-(r+\omega)\tau} (\Delta_t dR_{t+\tau} + \Delta_t \pi_{t+\tau} d\tau). \]

11 Equating the latter two, we have the weighted inflation identity,

12 \[\int_{\tau=0}^{\infty} e^{-(r+\omega)\tau} \Delta_t \pi_{t+\tau} d\tau = -\int_{\tau=0}^{\infty} e^{-r\tau} \Delta_t s_{t+\tau} d\tau + \int_{\tau=0}^{\infty} \left(e^{-r\tau} - e^{-(r+\omega)\tau} \right) \Delta_t dR_{t+\tau}. \]

13 Continuous-time formulas are prettier, but they take care to set up correctly. Continuous-time formulas avoid many of the timing conventions that are a distraction to discrete-time formulations. They also force one to think through which variables are differentiable, and which may jump discontinuously or move with a diffusion component.
I use discrete time in this book largely to keep the derivations transparent, but it is really more elegant and simple to use continuous-time formulas once the logic is clear. The bottom lines are transparent analogues of the discrete time formulas. Continuous time will shift our focus away from instantaneous inflation to drawn out periods of inflation. Cochrane (2015a) offers an accessible short summary of the continuous-time mathematics I use here.

3.6.1 Short-term debt

In continuous time, it is easier to think of instantaneous debt as a floating-rate perpetuity than as an infinitesimal-maturity discount bond. The quantity is B_t, the price is $Q_t = 1$ always, and it pays a flow of interest $i_t dt$. Let $s_t dt$ denote the flow of primary surpluses. The symbol d represents the forward-differential operator, loosely the limit as $\Delta \to 0$ of $dP_t = P_{t+\Delta} - P_t$. In general, continuous-time ideas are expressed more rigorously in integral rather than differential form.

The nominal flow condition is

$$B_t i_t dt = P_t s_t dt + dB_t \tag{3.29}$$

and in real terms,

$$\frac{B_t}{P_t} i_t dt = s_t dt + \frac{dB_t}{P_t}.$$

Interest on the debt must be financed by surpluses or by selling more debt. Since the first two quantities sport dt terms, debt B_t is also differentiable, with neither jump nor diffusion components. For now, the price level may have jumps or diffusions. However, we will soon write sticky-price models that rule out price-level jumps, even in their flexible-price limit, which is a useful case to keep in mind.

It’s useful to describe the evolution of the real value of government debt

$$d \left(\frac{B_t}{P_t} \right) = \frac{dB_t}{P_t} + B_t d \left(\frac{1}{P_t} \right) = \frac{B_t}{P_t} i_t dt - s_t dt + B_t d \left(\frac{1}{P_t} \right) = \left(\frac{B_t}{P_t} \right) dR_t - s_t dt$$

or

$$dV_t = V_t dR_t - s_t dt \tag{3.30}$$

where

$$dR_t \equiv i_t dt + \frac{d(1/P_t)}{1/P_t}.$$
is the real ex-post return on government debt, and
\[V_t \equiv B_t / P_t \]
is the real market value of debt. Equation (3.30) states that the real value of debt grows at the ex-post real return, less primary surpluses.

Let \(\Lambda_t \) denote a generic continuous-time discount factor, e.g.
\[\Lambda_t = e^{-\delta t} u'(c_t). \]
The valuation equation with this discount factor and short-term debt is
\[\frac{B_t}{P_t} = E_t \int_{\tau=t}^{\infty} \frac{\Lambda_{\tau}}{\Lambda_t} s_{\tau} d\tau. \] (3.31)
The distinction between \(t - 1 \) and \(t \) vanishes. Instead, you have to remember that \(B_t \) is predetermined at time \(t \), meaning it cannot have a diffusion or jump. A diffusion or jump on the right-hand side, which is how we model uncertainty, shows up in a diffusion or jump in the price level.

The risk-neutral case and constant real interest rate case specialize quickly to
\[\frac{\Lambda_{\tau}}{\Lambda_t} = e^{-\int_{t}^{\tau} r_j d\tau}; \quad \frac{B_t}{P_t} = E_t \int_{\tau=t}^{\infty} e^{-\int_{t}^{\tau} r_j d\tau} s_{\tau} d\tau. \]
We can also discount at the ex-post real return on nominal government debt, yielding
\[\frac{B_t}{P_t} = \int_{\tau=t}^{\infty} \frac{W_{\tau}}{W_t} s_{\tau} d\tau \] (3.32)
where \(W_t \) is the ex-post real cumulative return from investment in nominal government debt. It satisfies
\[\frac{dW_t}{W_t} = dR_t = i_t dt + \frac{d(1/P_t)}{1/P_t}. \] (3.33)
Integrating, we can define the cumulative return explicitly as
\[\frac{W_t}{W_0} = e^{\int_{t=0}^{t} i_t d\tau} \frac{P_0}{P_t} \]
As in discrete time, equation (3.32) holds ex-post, and therefore it also holds ex-ante with any set of probabilities.

The Online Appendix includes the algebra to connect the flow (3.29) and present value relations (3.31) and (3.32).
3.6. CONTINUOUS TIME

3.6.2 Long-term debt

The flow relation is

\[B_t^{(t+j)} dt = P_t s_t dt + \int_{j=0}^{\infty} Q_t^{(t+j)} dB_t^{(t+j)} dj, \] (3.34)

or in real terms,

\[\frac{B_t^{(t)}}{P_t} dt = s_t dt + \int_{j=0}^{\infty} Q_t^{(t+j)} dB_t^{(t+j)} dj \frac{P_t}{P_t}. \]

Here, \(B_t^{(t+j)} \) is the quantity of debt due at time \(t+j \), i.e. between \(t+j \) and \(t+j+\delta j \), and \(Q_t^{(t+j)} \) is its nominal price. Debt \(B_t^{(t)} \) coming due between \(t \) and \(t+\delta t \) must be paid by primary surpluses or net sales of additional long-term debt. (If not, a \(dM_t \) would emerge but people don’t want to hold money.) The quantity \(dB_t^{(t+j)} \) represents the amount of debt of maturity \(j \) sold between time \(t \) and \(t+\delta t \). I simplify by writing debt that is paid continuously. One can straightforwardly add lumps of debt to be paid at specific instants.

The nominal market value of government debt is

\[\int_{j=0}^{\infty} Q_t^{(t+j)} B_t^{(t+j)} dj, \]

so the present value relations are

\[V_t = \int_{j=0}^{\infty} Q_t^{(t+j)} B_t^{(t+j)} dj \frac{P_t}{P_t} = E_t \int_{\tau=t}^{\infty} \Lambda_\tau \Lambda_\tau^\tau s_\tau d\tau \] (3.35)

and

\[V_t = \int_{j=0}^{\infty} Q_t^{(t+j)} B_t^{(t+j)} dj \frac{P_t}{P_t} = \int_{\tau=t}^{\infty} W_\tau \Lambda_\tau^\tau s_\tau d\tau, \] (3.36)

where \(W_\tau \) denotes the cumulated real return on the value-weighted portfolio of all government bonds. The nominal return on a single bond is

\[dR_t^{(n,j)} \equiv \frac{dQ_t^{(t+j)}}{Q_t^{(t+j)}} \]

and the real return is

\[dR_t^{(j)} = \frac{d \left(Q_t^{(t+j)}/P_t \right)}{\left(Q_t^{(t+j)}/P_t \right)}, \]
so the cumulated real return W_t obeys
\[
\frac{dW_t}{W_t} = dR_t \equiv \frac{\int_j^\infty \frac{d\left(Q_t^{(t+j)} / P_t\right)}{P_t} B_t^{(t+j)} dj}{\int_k^\infty \left(Q_t^{(t+k)} / P_t\right) B_t^{(t+k)} dk} = \frac{\int_j^\infty d\left(\frac{Q_t^{(t+j)}}{P_t}\right) B_t^{(t+j)} dj}{\int_k^\infty \frac{Q_t^{(t+k)} B_t^{(t+k)}}{P_t} dk}. \tag{3.37}
\]

To express the evolution of the market value of debt, take the differential.
\[
dV_t = d\left[\int_j^\infty \frac{Q_t^{(t+j)} B_t^{(t+j)}}{P_t} dj\right] = \int_j^\infty \frac{Q_t^{(t+j)} dB_t^{(t+j)} P_t}{P_t} + \int_j^\infty d\left(\frac{Q_t^{(t+j)}}{P_t}\right) B_t^{(t+j)} dj - \frac{B_t^{(t)}}{P_t} dt.
\]

Using the flow relation \([3.34]\),
\[
dV_t = -s_t dt + \int_j^\infty d\left(\frac{Q_t^{(t+j)}}{P_t}\right) B_t^{(t+j)} dj \tag{3.38}
\]
and the definition of portfolio return \([3.37]\),
\[
dV_t = -s_t dt + V_t dR_t. \tag{3.39}
\]

The total real market value of government debt grows at its ex-post real rate of return, less repayment via primary surpluses.

3.6.3 Linearized identities

We can derive the continuous-time versions of the linearized identities following the same logic as in discrete time. Use a steady state of \([3.39]\) with $dV = 0$, $dR_t = r dt$ and hence $s = r V$. Linearizing \([3.39]\), we have a flow identity,
\[
dV_t = -s_t dt + V(dR_t - r dt) + r V_t dt. \tag{3.40}
\]

If we wish variables that are deviations from steady states, the $r dt$ term vanishes here and later. We write
\[
dV_t = -(s_t - s) dt + V(dR_t - r dt) + r(V_t - V) dt
\]
and each term in parentheses is a deviation from steady state. Integrating (3.40) forward, we have a linearized value identity,

\[
\frac{V_t}{V} = \int_{\tau=0}^{\infty} e^{-r\tau} \frac{s_{t+\tau}}{V} d\tau - \int_{\tau=0}^{\infty} e^{-r\tau} (dR_t - r dt).
\] (3.41)

The nominal and real returns are related by

\[
dR_t^n = dR_t - \frac{d(1/P_t)}{1/P_t} = dR_t + \frac{dP_t}{P_t} = dR_t + \pi_t dt
\]

I apply these formulas in the model of section 5.7 in which the price level does not have jumps or diffusions, though the inflation rate may have them. The latter two equalities reflect this restriction, which I maintain for the rest of this section. I use the previous notation for surplus divided by steady state value of debt, now

\[
\tilde{s}_t = s_t/V,
\]

and I define

\[
v_t \equiv V_t/V.
\]

Note \(v_t \) here denotes the proportional deviation from steady state, not the log, as value can have an Ito or jump term.

With this notation, we can write the linearized flow and value identities (3.40) and (3.41) as

\[
dv_t = rv_t dt + dR_t - r dt - \tilde{s}_t dt
\] (3.42)

and

\[
v_t = \int_{\tau=0}^{\infty} e^{-r\tau} \tilde{s}_{t+\tau} d\tau - \int_{\tau=0}^{\infty} e^{-r\tau} (dR_{t+\tau} - r d\tau).
\] (3.43)

These are straightforward cousins of the discrete-time versions (3.17)-(3.18).

As in discrete time, I take innovations. I use the notation \(\Delta_t \) to denote innovations in continuous time, loosely, \(\Delta_t(x) = E_{t+\Delta}(x) - E_t(x) \). In continuous time we usually write a process explicitly, e.g. \(dx_t = \mu_t dt + \sigma_t dz_t \) where \(dz_t \) can be a compensated jump or a diffusion. Since \(E_t dz_t = 0 \), and \(E_t(dx_t) = \mu_t dt \), the innovation is then

\[
\Delta_t(dx_t) = dx_t - E_t(dx_t) = \sigma_t dz_t.
\]

Similarly, conditional expectations follow a stochastic process, \(y_t dt \equiv E_t(dx_{t+\tau}) \) or \(y_t dt \equiv E_t(x_{t+\tau} d\tau) \). If we write that process

\[
dy_t = \mu_t dt + \sigma_t dz_t,
\] (3.44)
then the innovation is
\[\Delta_t(dx_{t+\tau}) \text{ or } \Delta_t(x_{t+\tau}d\tau) = dy_t - E_t(dy_t) = \sigma_t dz_t. \quad (3.45) \]

For example, if \(s_t \) follows an AR(1),
\[ds_t = -\eta s_t + \sigma d\varepsilon_t. \]

Then
\[E_t s_{t+\tau} = e^{-\eta \tau} s_t + s \]
\[E_t \int_0^\infty e^{-r\tau} s_{t+\tau} d\tau = \int_0^\infty e^{-(r+\eta)\tau} s_t d\tau = \frac{s_t}{r + \eta}. \]

The innovation in the present value is then
\[\Delta_t \left(\int_0^\infty e^{-r\tau} s_{t+\tau} d\tau \right) = \frac{\Delta_t s_t}{r + \eta} = \frac{\sigma}{r + \eta} d\varepsilon_t. \]

From the linearized flow identity \((3.42)\), with no price-level jumps or diffusions, the innovation to the value of debt equals the bond-return innovation,
\[\Delta_t dv_t = \Delta_t dR^n_t. \]

Then, the innovation to the value identity \((3.43)\) gives
\[\Delta_t dR^n_t = \int_{\tau=0}^\infty e^{-r\tau} \Delta_t s_{t+\tau} d\tau - \int_{\tau=0}^\infty e^{-r\tau} \Delta_t dR_{t+\tau}. \quad (3.46) \]

This is the continuous-time cousin to the identity \((3.20)\). In this case, there is no unexpected inflation on the left hand side.

As in discrete time, I substitute out \(\Delta_t dR^n_t \) in terms of future expected bond returns and expected future inflation using a linearized bond pricing identity with a geometric maturity structure.

To model a geometric maturity structure, let government bonds pay a geometrically declining coupon. A bond at time \(t \) pays coupon \(e^{-\omega \tau} d\tau \) at time \(t + \tau \). The price of this bond is \(Q_t \). The bond yield \(y_t \) is defined as the constant discount rate that generates the bond price. By definition, the yield satisfies
\[Q_t = \int_{\tau=0}^\infty e^{-\tau y_t} e^{-\omega \tau} d\tau = \frac{1}{\omega + y_t}. \]
There are \(B_t \) such bonds. Between time \(t \) and \(t + \Delta \) each bond pays a coupon \(1\Delta \). Since its coupons at time \(t + \Delta + \tau \) are now \(e^{-(t+\Delta+\tau)} \), the time-\(t \) bond turns in to \(e^{-\omega \Delta} \) time \(t + \Delta \) bonds. The nominal return on government bonds is thus

\[
\frac{dR_t^n}{Q_t} = \frac{\Delta + e^{-\omega \Delta} Q_{t+\Delta} - Q_t}{Q_t} = \frac{\Delta + e^{-\omega \Delta} (Q_{t+\Delta} - Q_t) - (1 - e^{-\omega \Delta}) Q_t}{Q_t}
\]

\[
dR_t^n = \frac{1}{Q_t} dt + dQ_t - \omega dt = y_t dt + \frac{dQ_t}{Q_t}.
\]

(3.47)

(The 1 in \(1 dt \) is a bit pedantic mathematically, but I remind you here that the bond pays a $1 coupon.) Linearize the first definition of return in (3.47) around a steady state with \(dR_t^n = r dt \), \(\pi = 0 \), \(dQ = 0 \) and hence \(r + \omega = 1/Q \),

\[
Q_t dR_t^n = 1 dt + dQ_t - \omega Q_t dt
\]

\[
Q r dt + Q(dR_t^n - r dt) + (Q_t - Q) r dt = 1 dt + dQ_t - \omega Q_t dt
\]

\[
Q(dR_t^n - r dt) + Q_t r dt = 1 dt + dQ_t - \omega Q_t dt
\]

\[
(dR_t^n - r dt) = dq_t - (r + \omega)(1 - q_t) dt
\]

where

\[
q_t \equiv Q_t/Q
\]

is the proportional deviation of the bond price from steady state. Solve for the bond price change

\[
dq_t = (dR_t^n - r dt) + (\omega + r)(q_t - 1) dt.
\]

(3.48)

Integrate forward to express the bond price in terms of future returns,

\[
q_t = 1 - \int_{\tau=0}^{\infty} e^{-(r+\omega)\tau} (dR_{t+\tau}^n - r d\tau).
\]

(3.49)

We have from (3.48) that the unexpected proportional bond price movement is the unexpected return,

\[
\Delta_t dq_t = \Delta_t dR_t^n.
\]

(3.49)

So, taking innovations of (3.49), the unexpected bond return is

\[
\Delta_t dR_t^n = - \int_{\tau=0}^{\infty} e^{-(r+\omega)\tau} \Delta_t dR_{t+\tau}^n = - \int_{\tau=0}^{\infty} e^{-(r+\omega)\tau} \Delta_t (dR_{t+\tau} + \pi_{t+\tau} d\tau).
\]

(3.50)

This is the continuous-time counterpart to the bond-return identity (3.21).
Now substituting (3.50) into (3.46), we have the weighted-inflation identity

\[
\int_{\tau=0}^{\infty} e^{-(r+\omega)\tau} \Delta_t \pi_{t+\tau} d\tau = -\int_{\tau=0}^{\infty} e^{-r\tau} \Delta_t \tilde{s}_{t+\tau} d\tau + \int_{\tau=0}^{\infty} \left(e^{-r\tau} - e^{-(r+\omega)\tau} \right) \Delta_t dR_{t+\tau}.
\]

(3.51)

Equation (3.51) differs from its discrete-time counterpart (3.22) in that unexpected inflation at time \(t \) alone contributes an infinitesimal amount to the integral on the left-hand side. In present value terms, the entire fiscal shock is absorbed by a persistent fall in expected inflation which devalues long-term bonds. In the case of short-term debt \(\omega = 0 \), the left-hand side is zero and any fiscal shock is exactly matched by the discount rate term, i.e. a slow decline in the real value of short-term debt. (Again, this linearization specifies no price-level jumps or diffusions.)

3.6.4 Money in continuous time

The nominal flow condition in continuous time, corresponding to the discrete time version (2.1), is

\[
dM_t = i_t B_t dt + i^m_t M_t dt - P_t s_t dt - dB_t.
\]

(3.52)

The government prints money to pay interest on nominal debt, to pay interest on money, and the government soaks up money with primary surpluses and new debt issues. We can write this flow condition in real terms as

\[
\frac{B_t}{P_t} i_t dt + \frac{M_t}{P_t} i^m_t dt = s_t dt + \frac{dB_t}{P_t} + \frac{dM_t}{P_t}.
\]

The sum \(dB_t + dM_t \) is of order \(dt \). To keep the analysis simple I also specify that each of \(dB_t \) and \(dM_t \) is of order \(dt \) rather than allow offsetting diffusion terms or jumps.

To express seigniorage as money creation, specialize to \(i^m_t = 0 \), rearrange (3.52), and substitute the definition of the nominal interest rate and integrate forward with the transversality condition to obtain

\[
\frac{B_t}{P_t} = E_t \int_{\tau=t}^{\infty} \frac{\Lambda_{t+\tau}}{\Lambda_t} \left(s_{t+\tau} d\tau + \frac{dM_{t+\tau}}{P_{t+\tau}} \right).
\]

(3.53)

The algebra for this and other results of this section is a bit tedious, so I relegate it to Online Appendix Section 25.6.
To express seigniorage in terms of interest cost, including the case that money pays interest $0 < i^m_t < i_t$, start again from (3.52), and integrate forward differently, obtaining

$$\frac{M_t + B_t}{P_t} = E_t \int_{\tau=t}^{\infty} \frac{\Lambda_{\tau}}{\Lambda_t} \left[s_{\tau} + (i_{\tau} - i^m_{\tau}) \frac{M_{\tau}}{P_{\tau}} \right] d\tau. \quad (3.54)$$

To discount with the ex-post return, define W_t as the cumulative real value of investment in government bonds, all short-term here, so dW_t/W_t is the ex-post real return. After some more pleasant algebra in Online Appendix Section 25.6 we obtain

$$\frac{B_t}{P_t} = \int_{\tau=t}^{\infty} \frac{W_t}{W_{\tau}} \left(s_{\tau} d\tau + \frac{dM_t}{P_{\tau}} \right).$$

and

$$\frac{B_t + M_t}{P_t} = \int_{\tau=t}^{\infty} \frac{W_t}{W_{\tau}} \left[s_{\tau} + (i_t - i^m_t) \frac{M_{\tau}}{P_{\tau}} \right] d\tau. \quad (3.55)$$

Perhaps a more revealing way to express this condition, looking ahead to a model with long-term debt and debt with various liquidity distortions, is to write the discount factor as a rate of return that mixes the bond rate of return and the lower (zero) money rate of return. The demand for money allows the government to borrow at lower rates.

To pursue this idea, define W^{nm}_t and W^m_t as the cumulative nominal and real value of an investment in the overall government bond portfolio, now including money,

$$\frac{dW^{nm}_t}{W^{nm}_t} = \frac{B_t}{B_t + M_t} i_t dt + \frac{M_t}{B_t + M_t} i^m_t dt.$$

More algebra leads to the natural result

$$\frac{B_t + M_t}{P_t} = \int_{\tau=t}^{\infty} \frac{W^m_t}{W^m_{\tau}} s_{\tau} d\tau. \quad (3.55)$$

Here we fold seigniorage and money distortions into the discount rate for all government debt.
This chapter begins to tie fiscal theory to data. Two ingredients take center stage. First, to account for time-series data such as those of the postwar U.S., we must specify a surplus process with an s-shaped moving-average representation. A period of deficits, negative s_t, is expected to, and on average is, followed by a period of surpluses, positive s_t. With such a process, deficits are mostly financed by issuing debt, and surpluses pay down that debt. Many fallacies and apparently easy refutations of fiscal theory come down to assuming away that specification. Second, discount rate variation matters. Most clearly, inflation falls in recessions not because expected surpluses rise, but because the expected return on government bonds falls.

We start with some facts, and then move on to specifications of the theory that accommodate the facts.

4.1 U.S. surpluses and debt

Most variation in U.S. primary surpluses is related to output variation, with deficits in recessions and surpluses in expansions. There is little visible correlation between debt, deficits and inflation. The business cycle correlation often consists of higher deficits with less inflation during recessions, and vice versa in expansions. Surpluses clearly pay down debt.
One’s first reaction to the fiscal theory may be, “Surpluses, what surpluses? We seem to have only perpetual deficits. The right hand side of the valuation equation is negative!” Figure 4.1 plots the U.S. federal surplus-to-GDP ratio in the postwar period. Indeed, except for a few brief years in the late 1990s, the Federal government has run steadily increasing deficits since 1960, even as a percentage of GDP.

Figure 4.1: Surplus, unemployment, and recession bands. “Surplus” is the U.S. federal surplus/deficit as a percentage of GDP as reported by BEA. “Primary surplus” with symbols is imputed from changes in the market value of U.S. federal debt and its rate of return; without symbols (the slightly higher line) it is the BEA surplus plus BEA interest costs, both as a percentage of GDP. The graph plots the negative of the unemployment rate. Vertical bands are NBER recessions.

However, the valuation equation wants primary surpluses, i.e. not counting interest costs. The graph presents two measures. The thin higher line plots conventional NIPA data. The thicker line with symbols plots a more accurate measure based
on what the Treasury actually borrows each month, which I use in empirical work below. Both are ratios to GDP. The “primary surplus” lines in Figure 4.1 show that the U.S. historically ran small primary surpluses on a regular basis.

The difference between the usual surplus/deficit and the primary surplus is important to understanding the history of fiscal policy. For example, much of the “Reagan deficits” of the early 1980s represent interest payments on existing debt, as interest rates rose sharply, not unusually large tax and spending decisions in the primary surplus, especially when we account for the severe recession of that period as captured by the unemployment rate.

The primary surplus-to-GDP ratios in Figure 4.1 follow a clear cyclical pattern, shown by their close correlation with the negative of the unemployment rate, and by the NBER recession bands. Surpluses fall – deficits rise – in recessions. Surpluses rise in good economic times. Surpluses, like unemployment, are related to the level of economic activity, where recessions are defined by growth rates. The GDP gap, (GDP - potential GDP)/potential GDP, not shown, looks just about the same as the negative of unemployment in the plot.

This surplus movement has three primary sources. When income (GDP) falls, tax revenue = tax rate × income falls. Automatic stabilizers such as unemployment insurance increase spending, and the government predictably embarks on discretionary countercyclical spending. We see correlation with GDP and unemployment at decade frequencies as well.

The actual surplus matters in our theory, not the surplus-to-GDP ratio. Thus, variation in GDP growth amplifies these patterns. Higher surplus-to-GDP ratios at times of higher GDP are doubly higher actual surpluses.

The fact that so much primary surplus-to-GDP ratio variation is regularly and reliably related to the business cycle means that much of a current deficit or surplus is transitory, and does not tell us much about the present value of all future surpluses that appears in the fiscal theory. That fact also suggests an s-shaped surplus process, that much of a deficit in a recession is repaid by surplus in the following expansion. And it tells us that surplus policy rules, e.g. \(s_t = \theta_{s\times x_t} + \ldots \), will be key parts of a reasonable model.

First in the 1970s, and then dramatically since 2000, the trend has shifted towards large primary deficits even when unemployment is low, a development of obvious concern to a fiscal theorist. Reasons for this trend need research, but three obvious possibilities suggest themselves. First, both 1970 and 2000 showed a break in
productivity and GDP growth, the former reversed in 1980 but the latter ongoing. To some extent we are seeing the usual forces of lower surplus to GDP when GDP is lower, just in response to decade-long, growth-driven rather than business cycle fluctuations. That behavioral observation does not make the additional debt sustainable however. Second, since the 1980s real interest rates have come down steadily. Though debt is large, 100% of GDP in 2021, the combination of low real interest rates and short-term financing mean that real interest costs on the debt are very low. Governments may respond to low real interest costs as households and businesses do, by piling on debt. This habit may prove unwise if interest costs rise. Third, one may ascribe exploding debt and deficits to political dysfunction. However, the pattern appears also in Europe and Japan, and corporate and household debt have also bloomed.

Figure 4.2 presents the primary surplus along with debt, both as percentages of GDP, and CPI inflation. The U.S. debt-to-GDP ratio started at 90% at the end of World War II. It declined slowly to 1975, due to a combination of surpluses, inflation (especially in the late 1940s and early 1950s), GDP growth, and relatively low real interest rates. There were steady primary surpluses from the end of WWII all the way to 1975. The narrative that we entirely grew out of WWII debt is false. (Hall and Sargent (2011), Cochrane (2019) offer quantitative decompositions.) The downward trend ended with the large (at the time) deficits of the 1970s and 1980s. The surpluses of the 1990s drove debt down again, but then debt rocketed up starting in the 2008 great recession, with another immense surge starting with the Covid-19 recession after the data for my graph ends.

Comparing surplus and debt lines, you can see clearly at both cyclical and lower frequencies that surpluses pay down the value of debt, and deficits drive up the value of debt. This fact may seem totally obvious, but is an important piece of evidence for an s-shaped rather than AR(1) or positively correlated surplus processes, which make the opposite prediction. Fiscal inflation will have to be seen on top of this dominant pattern.

Looking at inflation in Figure 4.2 fiscal correlations do not jump out of the graph. They are not absent. Primary surplus/GDP ratios declined overall in the late 1960s and low-growth 1970s. One can eyeball a correlation between the structural shift in surplus/GDP ratios and the emergence of inflation, and lower GDP itself compounded fiscal problems. Historical accounts stress fiscal challenges in the late 1960s and early 1970s had a lot to do with the emergence of inflation, dollar devaluation and the end of Bretton Woods. Contrariwise, the economic boom that started in 1982 resulted in large primary surplus/GDP ratios, large surpluses, and the sudden end
of inflation. The end of inflation made fiscal sense, at least ex-post. Most successful inflation stabilization plans involve monetary, fiscal and microeconomic policy. The U.S. in the 1980s may well follow the rule. Typically, fiscal policy involves reforms, not just raising distorting tax rates, and microeconomic reform contributes to larger GDP growth, producing greater tax revenue at lower marginal rates, but with a reformed base. A well-articulated account of the emergence of inflation in the 1970s, and its decline in the 1980s, featuring fiscal events or at least coordinated fiscal and monetary policy remains an important project.
But that’s it for obvious correlations of debt or deficits with inflation in the postwar U.S. The inflation of the 1970s had deficits, but historically low debt-to-GDP ratios, relative to WWII or the 2000s. Primary surpluses turned into immense primary deficits after 2000, driven by another two-decade growth slowdown, the great recession, the covid-19 recession, and the inexorable expansion of entitlement programs. Long-term fiscal forecasts, such as the Congressional Budget Office’s long-term outlook, describe ever-rising deficits and warn darkly of debt unsustainability if policy does not change. Yet inflation continued its slow decline through 2020. Even if it breaks out soon after this book is completed, one will wonder what took so long. Low real interest rates will undoubtedly be part of the story, but the story needs telling. There is a positive correlation between surpluses and inflation in many business cycles. In most recessions, budget deficits increase, and inflation falls. In most recoveries, the budget turns toward surplus and inflation rises. This pattern is not ironclad. 1975 is a notable exception, emblematic of 1970s stagflation. We basically see here the Phillips curve, since deficits are so well correlated with unemployment. Like the Phillips curve, this correlation is a common but not universal pattern that our theory must be able to explain.

Clearly, if fiscal theory is to hope to explain the data, it will have to find more sophisticated prediction than a strong correlation between debt or deficits and inflation. Fortunately, that answer is not far off.

One cannot close a look at the data without some worry about our current (as I write in 2021) situation. The U.S. debt/GDP ratio has surpassed its peak at the end of WWII. The U.S. now runs primary deficits close to 5% of GDP in expansions, and immense deficits in the once-per-century crises that now seem to happen once a decade. Debt-funded transfer payments of the Covid recession seem, as I write, headed for permanence. Entitlement promises are about to kick in. Should a fiscal theorist worry? One school of thought says no. After all, the U.S. paid off the WWII debt. However, the U.S. did that by a combination of several factors absent now. The war, and its deficit spending, was over. The U.S. entered a period of unprecedented real growth, driven by the supply side of increasing productivity, in a lightly regulated economy with modest social spending and social program disincentives. The U.S. also had substantial financial repression holding down interest rates: financial regulation, capital controls, and so forth. Our economy has none of these features today. And even so, the 1972 end of Bretton Woods was essentially a U.S. debt crisis, and we did have two bouts of debt-reducing inflation. The late 1940s raised the price level about 40%, cutting the real value of mostly long-term war debt by that much.

Yet for most of the 2000s, inflation remained surprisingly low. As I write in 2021,
we see a spurt of inflation, but bond investors remain willing to lend the U.S. gov-
ernment astonishing amounts of money at surprisingly low real interest rates. Why?
Perhaps people recognize that the U.S. fiscal problems are not insoluble. Sensible
fiscal and entitlement reforms could easily solve the U.S. structural fiscal problems.
European benefits require European tax revenues, either from European tax rates or
from unleashed free-market growth. The uniquely expensive American health care
system could be reformed. The U.S. does not face external fiscal problems. A fiscal
crisis, leading either to inflation or partial default will be a self-inflicted wound of
a once grand political system turned inward to self-destruction. Investors, price-
setters, and shoppers may expect that the U.S. will once again, as the aphorism
goes, do the right thing after it has tried everything else. But both fiscal theory and
conventional fiscal sustainability analyses point out just how dangerous the situation
is. If bond investors change their minds, and decide that the debt will be defaulted
on or inflated away, then a classic crisis breaks out resulting in sharp inflation or
default. The combination of unsustainable fiscal plans, short-term debt, and politi-
cal chaos preventing sensible reforms leave the U.S. in danger of a debt crisis, which
likely will involve substantial inflation.

The market value of debt data in Figure 4.2 come from Hall, Payne, and Sargent
(2018). I derive the primary surplus measure in that figure and in Figure 4.1 from the
market value of government debt and its rate of return, i.e. using the flow identity:
Treasury borrowing or repayment equals growth in market value of debt less the rate
of return applied to the initial value of debt. This procedure measures how much
the government actually borrows. It gives us data series of the surplus and value
of debt that satisfy the flow identity, which helps a lot in empirical work. When
running VARs or evaluating terms of the linearized identities, I infer the surplus
from the linearized flow identity (3.17), so that linearized identities hold exactly.
The Appendix to Cochrane (2021a) details data construction.

Figure 4.2 also shows the standard NIPA value of debt, for comparison. This measure
gives the face value of debt, not market value. The face value is typically somewhat
larger than market value. This relationship changes over time as interest rates change
and as the composition of debt varies.

Figure 4.1 creates a NIPA primary surplus series by removing the NIPA measure of
interest expense from the NIPA surplus/deficit. This interest expense only tracks
coupon payments. As a result, the NIPA series do not measure the quantities we
want, nor do they satisfy accounting identities. The difference between the NIPA
primary surplus and my imputed surplus is not huge, however, which should give us
some comfort.
4.2 The surplus process – stylized facts

An array of stylized facts points to a surplus process with an s-shaped moving average representation, in which deficits this year correspond to subsequent surpluses, rather than an AR(1) or similar positively autocorrelated process.

With a positively correlated surplus process, inflation and deficits are strongly correlated, there is a lot of inflation, deficits lower the value of debt, deficits are financed by inflating away outstanding debt, bond returns are highly volatile, countercyclical, and give a high risk premium. With a surplus process that has an s-shaped moving average, all of these predictions are reversed, consistent with the facts. None of the counterfactual predictions are rejections of the fiscal theory. They are rejections of the auxiliary assumption that the surplus follows a positively correlated process. The risk premium on government debt is likely negative, so government bonds pay less than the risk free rate, because inflation and interest rates decline in recessions.

The s-shaped process is reasonable, not a technical trick. Any entity borrowing follows an s-shaped cashflow process, and any government desiring to borrow, to raise revenue by borrowing, and not to cause volatile inflation chooses an s-shaped surplus process.

What ingredients do we need to put in a model for it to be consistent with the facts? You know where we’re going – we need a surplus with an s-shaped moving average representation and we need discount rate variation. But many facts come together in this characterization, and some classic puzzles get solved along the way.

In this section, I focus on the surplus process. We can write any surplus process in moving-average form as

\[s_t = \sum_{j=0}^{\infty} a_j \varepsilon_{t-j} = a(L)\varepsilon_t. \]

(4.1)

In general, \(a(L) \) and \(\varepsilon_t \) can both be vectors. Think of the following scalar calculations as the response to one element of \(\varepsilon_t \) at a time.

By writing this moving average, we do not assume that surpluses are exogenous. The surplus may respond to endogenous variables, it may be generated by tax rates times endogenous income, and so forth. In the resulting general equilibrium, a moving average of the form (4.1) results. That’s the object we are looking at.

Consider this surplus process in the simplest model, with one-period debt, a constant real rate, and flexible prices. The linearized identity (3.22) then says that unexpected
inflation is the negative of the revision of the discounted value of surpluses,

\[\Delta E_{t+1} \pi_{t+1} = -\Delta E_{t+1} \sum_{j=0}^{\infty} \rho^j \tilde{s}_{t+1+j} = -\sum_{j=0}^{\infty} a_j \rho^j \varepsilon_{t+1} = -a(\rho)\varepsilon_{t+1}. \tag{4.2} \]

Thus the weighted sum of moving-average coefficients \(a(\rho) \) is a crucial discriminating feature of the surplus process. (The beautiful final formula in (4.2) comes from Hansen, Roberds, and Sargent (1992).)

The exact present value model gives similarly

\[\frac{B_t \Delta E_{t+1}}{P_t} \left(\frac{P_t}{P_{t+1}} \right) = \Delta E_{t+1} \sum_{j=0}^{\infty} \beta^j s_{t+j} = a(\beta)\varepsilon_{t+1}. \]

The points of this section can be made in either framework. I largely use the linearized identities which give slightly prettier algebra.

Keep in mind a few simple examples. First, the AR(1),

\[s_{t+1} = \eta s_t + \varepsilon_{t+1}; \quad a(L) = \frac{1}{1-\eta L} \tag{4.3} \]

is common, simple, and as we shall see utterly wrong. In this case

\[a(\rho) = \frac{1}{1-\rho \eta} \]

is a number greater than one. Its lesson extends to any moving average with positive coefficients, or loosely a process dominated by positive serial correlation.

Second, keep in mind \(a(\rho) = 0 \). In this case, shocks to current surpluses have no information at all about the discounted sum of surpluses, and there is no unexpected inflation at all. In the end, I conclude that a small, less than one, positive value for \(a(\rho) \) is a good choice, and thinking of these extremes will lead us there.

Since by normalization \(a_0 = 1 > 0 \), \(a(\rho) < 1 \) means that some of the higher moving average terms \(a_j \) must be negative. If smooth with one zero crossing, the plot of the moving average or impulse-response coefficients \(a_j \) must move from positive to negative, in an s-shape.

An MA(1) is the simplest example that captures the range of options for \(a(\rho) \),

\[s_{t+1} = \varepsilon_{t+1} - \theta \varepsilon_t = (1 - \theta L)\varepsilon_{t+1}. \]
CHAPTER 4. DEBT, DEFICITS, DISCOUNT RATES AND INFLATION

If this government has a deficit shock \(\Delta E_{t+1} s_{t+1} = \varepsilon_{t+1} = -1 \), then that shock changes the expected value of the next surplus to \(\Delta E_{t+1}(s_{t+2}) = \theta \). A deficit today is partially repaid by a surplus \(\theta \) next period. This process has

\[
a(\rho) = (1 - \theta \rho).
\]

For \(\theta = \rho^{-1} \), we have \(a(\rho) = 0 \). In this case, a shock \(s_1 = -\varepsilon_1 \) sets off an expectation \(s_2 = \rho^{-1} \varepsilon_1 \), i.e. that the borrowing will be paid off completely with interest. Smaller values of \(\theta \) accommodate \(0 < a(\rho) << 1 \) with partial repayment and some inflation. The value \(\theta = 0 \) gives an i.i.d. surplus process with \(a(\rho) = 1 \), and a negative \(\theta \) generates positive serial correlation and \(a(\rho) > 1 \) as in the AR(1) case.

Now, consider a range of model predictions and facts.

4.2.1 Inflation volatility and correlation with deficits

Equation (4.2)

\[
\Delta E_{t+1} \pi_{t+1} = -a(\rho) \Delta E_{t+1} \tilde{s}_{t+1} \tag{4.4}
\]

gives directly our first puzzle. A large \(a(\rho) \) produces highly volatile inflation for a given surplus process. Annual regressions in Section 4.3 below give a standard deviation of surplus shocks equal to roughly 5 percentage points. If the surplus follows an AR(1) with coefficient 0.55, as suggested by the regressions of Section 4.3, then we predict that unexpected inflation has \(5/(1 - 0.55) = 11\% \) annual volatility, an absurdly large value. On its own, the relative volatility of surpluses vs. inflation suggest \(a(\rho) \) well below one.

Moreover, if \(a(\rho) \) is a large number, as in the AR(1), then the model predicts a strong correlation between shocks to inflation and shocks to deficits. The deficits of recessions would correspond to inflation, and the surpluses of booms would correspond to deflation. There is typically little correlation between inflation and current deficits across time and countries, and if anything the opposite pattern.

By contrast, consider the case \(a(\rho) = 0 \), an s-shaped moving average in which debts are fully repaid. Now the model predicts no correlation between deficits and inflation. When we add other shocks, a value \(0 < a(\rho) << 1 \) can still remove the prediction of a strong correlation between deficits and inflation, since other shocks to inflation will swamp the small effect of surplus shocks.

One could go the opposite direction with \(a(\rho) < 0 \) to generate a negative correlation of inflation with surpluses, but this specification violates empirical results to
follow and common sense. Discount rates will account for the negative correlation of surpluses with inflation.

A correlation of inflation with current debt and current deficits is possible. Large inflations typically correlate with deficits, and some cross-country experience lines up inflation and devaluation with deficits. Some large inflations have followed unsustainable large debts. The surplus process does not have to be s-shaped as a matter of theory. The point here is that the surplus process can be s-shaped. A correlation of current debt or deficits with inflation is not a necessary prediction of the fiscal theory. Their absence is not a rejection of fiscal theory. When specifying or estimating models we should allow for an s-shaped process, not rule it out a priori.

4.2.2 Surpluses and debt

With an AR(1) surplus and constant expected return the value of debt is

\[v_t = E_t \sum_{j=0}^{\infty} \rho^j \tilde{s}_{t+1+j} = \frac{\eta}{1 - \rho \eta} s_t. \] \hspace{1cm} (4.5)

The AR(1) model makes a stark prediction: The value of debt and surplus are perfectly positively correlated. Figure 4.2 shows how horribly wrong that prediction is. Surpluses are roughly the negative of the growth in value of debt, not proportional to the level of the value of debt.

Break formula (4.5) down to

\[v_t = E_t \left(\tilde{s}_{t+1} + \sum_{j=1}^{\infty} \rho^j \tilde{s}_{t+1+j} \right) = E_t \left(\tilde{s}_{t+1} + \rho v_{t+1} \right). \] \hspace{1cm} (4.6)

With a positively correlated surplus, a higher surplus \(\tilde{s}_{t+1} \) raises the value of debt, since it raises subsequent surpluses. Conversely, deficits lower the value of debt. This is a disastrously wrong prediction for U.S. government debt. Higher surpluses lead to lower debts, and deficits are financed by borrowing which leads to larger debts, as you can see in Figure 4.2.

To state the point more precisely, take innovations of the flow identity to write

\[\rho \Delta E_{t+1} v_{t+1} = -\Delta E_{t+1} \pi_{t+1} - \Delta E_{t+1} \tilde{s}_{t+1} = [a(\rho) - 1] \varepsilon_{t+1}. \] \hspace{1cm} (4.7)
CHAPTER 4. DEBT, DEFICITS, DISCOUNT RATES AND INFLATION

If \(a(\rho) > 1 \), as with an AR(1), then a surprise surplus implies higher subsequent surpluses, and raises the value of debt. We see nothing like this in the data, an apparent puzzle. If \(a(\rho) < 1 \), however, then a higher surplus lowers subsequent surpluses and lowers the value of debt. In the case of full repayment \(a(\rho) = 0 \), then a higher surplus lowers the value of debt one for one. The s-shaped surplus moving average solves the value of debt puzzle. (This puzzle is due to Canzoneri, Cumby, and Diba (2001). They acknowledge that a s-shaped surplus process solves the puzzle, but regard it as implausible.)

The debt accumulation equation

\[
\rho v_{t+1} = v_t + i_t - \pi_{t+1} - \tilde{s}_{t+1}
\]

seems to state already that a higher surplus \(\tilde{s}_{t+1} \) lowers the value \(v_{t+1} \). That seems like an inescapable conclusion, and anything else absurd. How does the AR(1) example reverse that prediction? Because with \(a(\rho) > 1 \), the AR(1) example states that inflation \(\pi_{t+1} \) moves at the same time, in the opposite direction (more surplus, less inflation) and by a greater quantity as the surplus. A deficit tries to raise the value of debt, but it comes with a large inflation, which wipes out even more debt than the deficit implies. In the case \(a(\rho) = 0 \), inflation is unaffected by the surplus shock and the conventional reading of the equation applies.

4.2.3 Financing deficits - revenue or inflation?

How does the government finance a deficit? As before, it can borrow, inflate, or super-inflate. Equation (4.7) expresses the possibilities with our moving average representation and usefully ties our observations together.

We usually think that the government borrows to finance a deficit. Such borrowing naturally increases the debt. But to borrow and raise the value of debt, the government must promise to repay, to run an s-shaped surplus. Equation (4.7) captures this intuition with \(a(\rho) = 0 \).

Suppose instead that \(a(\rho) = 1 \) and the government runs an unexpected deficit at time \(t+1 \). Now, looking at equation (4.7), inflation \(\pi_{t+1} \) devalues the outstanding real debt, by just the amount of the unexpected deficit. The value of debt at the end of the period is then the same as it was at the beginning. In this sense we can say that the government finances the deficit entirely by inflating away outstanding debt. The burden falls on existing bondholders, not future taxpayers.
If \(0 < a(\rho) < 1\), then the deficit is partially financed by unexpected inflation, and partially financed by borrowing. For \(a(\rho) > 1\), the inflation-induced devaluation is even larger than the current deficit, and the government then sells even less debt than previously planned. The government finances the current and higher expected future deficits by inflating away outstanding debt.

Most deficits in postwar advanced-country time-series data are clearly financed by borrowing. The government raises additional revenue from debt sales. The value of debt rises after periods of deficit, and falls after periods of surplus. This is more evidence that \(a(\rho)\) is a small number.

The fact that debt sales raise revenue to finance deficits is perhaps the clearest indication of a s-shaped surplus process in investors’ expectations. Since the value of debt is set by investor’s expectations of future surpluses, the rise in value of debt after a period of deficits tells us that investors expect higher surpluses, no matter what economists may think.

This analysis may be clearer in the exact model from Section 2.7. From the flow identity

\[
\frac{B_t}{P_{t+1}} = s_{t+1} + Q_{t+1} \frac{B_{t+1}}{P_{t+1}}
\]

we can write

\[
\frac{B_t}{P_t} \Delta E_{t+1} \left(\frac{P_t}{P_{t+1}} \right) = \Delta E_{t+1} s_{t+1} + \beta \Delta E_{t+1} \left(\frac{B_{t+1}}{P_{t+2}} \right)
\]

\[
= \Delta E_{t+1} s_{t+1} + \beta \Delta E_{t+1} \left(\sum_{j=0}^{\infty} \beta^j s_{t+2+j} \right)
\]

\[
= \varepsilon_{t+1} + [a(\beta) - 1] \varepsilon_{t+1}.
\]

The second term on the right-hand side of (4.9)-(4.10) is the revenue that the government gets from bond sales at the end of period \(t+1\). Equation (4.9) says that the real revenue from bond sales equals the discounted value of subsequent surpluses. Relative to the earlier (2.27), we link the present values to the moving average representation via \(a(\beta)\).

If a deficit \(\Delta E_{t+1} s_{t+1} < 0\) corresponds to a positive innovation in subsequent surpluses, \(s_{t+2+j}\), then the revenue from selling debt at the end of the period rises, the value of debt rises, and that revenue finances the deficit. If \(a(\beta) = 0\), that extra revenue completely finances the deficit.
If, however, the negative surplus $\Delta E_{t+1}s_{t+1}$ is not followed by any net news about subsequent surpluses, if $a(\beta) = a_0 = 1$, then the government gets no additional revenue from bond sales. The extra deficit is entirely financed by inflating away outstanding debt, an inflation innovation $\Delta E_{t+1}(P_t/P_{t+1})$. If the negative surplus $\Delta E_{t+1}s_{t+1}$ is followed by additional negative surpluses, as modeled by an AR(1), if $a(\beta) > 1$, then the government raises less revenue from selling bonds at the end of the period, and the deficit is followed by lower values of debt as we have seen.

In terms of the linearized identity, (4.8)-(4.10) are the same as a rearrangement of the linearized flow identity (4.7),

$$v_t - \pi_{t+1} = s_{t+1} - i_t + \rho v_{t+1}$$

$$-\Delta E_{t+1}\pi_{t+1} = \Delta E_{t+1}s_{t+1} + \rho \Delta E_{t+1}v_{t+1}$$

$$= \Delta E_{t+1}s_{t+1} + \rho \Delta E_{t+1} \left(\sum_{j=0}^{\infty} \rho^j s_{t+2+j} \right)$$

$$= \varepsilon_{t+1} + [a(\rho) - 1] \varepsilon_{t+1}.$$

Though this formulation is algebraically simpler, the meaning of the terms of the formula may be clearer in the exact case.

4.2.4 The mean and risk of government bond returns

The ex-post real return on government debt in this simple example (constant expected return, one-period debt) is

$$\Delta E_{t+1}r_{t+1} = \Delta E_{t+1}(i_t - \pi_{t+1}) = -\Delta E_{t+1}\pi_{t+1} = a(\rho)\varepsilon_{t+1}.$$

As an AR(1) or other large $a(\rho)$ process predicts a large standard deviation of inflation, they predict a large standard deviation of ex-post real bond returns, on the order $5/(1 - 0.55) = 11\%$. As unexpected inflation actually has about a 1% per year standard deviation, the actual real one-year treasury bill return has about a 1% per year standard deviation. The AR(1) model predicts volatility of real bond returns that is off by a factor of 10.

A smaller $a(\rho)$ solves this puzzle. With $a(\rho) = 0$, unexpected inflation in this simple model is zero, and nominal government bonds are risk free in real terms, for any volatility of surpluses.
Surpluses are procyclical, falling in recessions at the same time as consumption falls, dividends fall, and the stock market falls. (See Figure 4.1.) A volatile, procyclical, positively autocorrelated surplus would generate a large procyclical risk, and therefore a high risk premium, similar to the equity premium. But government bonds have a very low average return, low volatility, and if anything a negative stock market and consumption beta – inflation is low and interest rates drop in recessions, so bonds have good returns in those events.

The s-shaped surplus process solves the expected return and positive beta puzzles as well. In turn, the low average return of government bonds and their acyclical or countercyclical returns are additional evidence for the s-shaped surplus process.

With an s-shaped surplus response, government debt becomes like a security whose price rises as its dividend falls, so even a volatile dividend stream has a steady return, and hence a low average return. Each deficit, each decline in \(s_t \), corresponds to a rise in subsequent surpluses, \(E_t \sum_{j=1}^{\infty} \beta^j s_{t+j} \), and hence a rise in value or “price.”

This point is easiest to see algebraically with the linearized identities and still specializing to one-period debt. From the debt accumulation equation (3.17) we can write the one-period real return

\[
\begin{align*}
 r_{t+1} &= i_t - \pi_{t+1} = \rho v_{t+1} - v_t + \tilde{s}_{t+1} \\
 \Delta E_{t+1} r_{t+1} &= \rho \Delta E_{t+1} v_{t+1} + \Delta E_{t+1} \tilde{s}_{t+1} \\
 \Delta E_{t+1} r_{t+1} &= [a(\rho) - 1] \varepsilon_{t+1} + \varepsilon_{t+1}.
\end{align*}
\]

Here I split the return into a “price change” and a “dividend.”

With \(a(\rho) \geq 1 \), the innovation in value \(v_{t+1} \) reinforces the surplus innovation, since higher surpluses at \(t+1 \) portend higher surpluses to follow. The rate of return is more volatile than surpluses. With \(a(\rho) = 0 \), a surprise surplus \(s_{t+1} \) is met by a decline in the value of debt \(v_{t+1} \), driven by a decline in subsequent surpluses, so the overall return is risk free.

Again, perhaps it is clearer to see the point in the nonlinear exact version of the model, at the cost of a few more symbols. The end-of-period value of debt is given by

\[
\frac{Q_t B_t}{P_t} = E_t \left[\beta \frac{u'(c_{t+1})}{u'(c_t)} s_{t+1} \right] + E_t \left[\sum_{j=2}^{\infty} \beta^j \frac{u'(c_{t+j})}{u'(c_t)} s_{t+j} \right] \\
= E_t \left[\beta \frac{u'(c_{t+1})}{u'(c_t)} s_{t+1} \right] + E_t \left[\beta \frac{u'(c_{t+1})}{u'(c_t)} \frac{Q_{t+1} B_{t+1}}{P_{t+1}} \right].
\]
The first term, and more generally the first few such terms, generates the apparent paradox. Shocks to the surplus s_{t+1} are positively correlated with shocks to consumption c_{t+1}, and thus negatively correlated with marginal utility growth. That negative correlation lowers the value on the left hand side, and thus raises the required return. But with an s-shaped moving average, subsequent surpluses rise. So, when consumption c_{t+1} declines, the value $Q_{t+1}B_{t+1}/P_{t+1}$ rises. The overall risk is reduced, absent, or even negative, so the mean return need not be large.

By contrast, a higher dividend typically raises the value of a stock, since the higher dividend forecasts uniformly higher subsequent dividends. But bonds are not stocks. Though the valuation formula looks the same and follows similar logic, the cashflow process for government debt is dramatically different from the process for stock dividends, and similar to that of corporate debt, in this crucial respect. What matters to one-period return risk is the covariance of surpluses and the value of debt with consumption. The value of debt behaves oppositely to surpluses and to stock prices, though immediate shocks to surpluses behave similarly to dividend or earnings shocks.

Another difference causes confusion: The government debt valuation formula applies to the total market value of government debt, where the usual asset pricing formula applies to a specific security. The individual bond investor does not receive a cashflow s_{t+1}. That investor receives the promised 1. There may be a surplus or deficit, and a corresponding decrease or increase in the value of debt, but that comes from selling fewer or more new bonds.

One can look at total market value or return to an individual asset holder, but do not confuse the two. One can also synthesize a security whose payoffs are the surplus and whose value is the total value of debt, by buying additional debt when the government sells it.

Consider the $a(\rho) = 0$ case. Individual bonds are risk free because they give a risk free 1 payout with no inflation risk. The total value of debt and its synthetic portfolio are also risk free, but now because the cashflow risk of one-period surplus is exactly matched by the “price” risk of the next period’s value of debt. These are two different but congruent views.

If the government follows an $a(\rho) > 1$ surplus process, then inflation is large in recessions when marginal utility is high. Individual bond real returns are then low in recessions. The total value or its portfolio strategy is risky because both cashflow and price – value of debt – decline in recessions. None of this happens.
In sum, that in the U.S. like other advanced economies in the postwar period we do not see volatile government bond returns, that their returns are if anything countercyclical, that the value of debt rises when there are deficits, and that mean bond returns are low, are all signs that the surplus process for normal advanced economies is negatively autocorrelated, closer to $a(\rho) = 0$ than to $a(\rho) = 1$.

Jiang et al. (2019) proclaim a puzzle of low mean bond returns. They omit the value of debt from their VAR forecast, which we will see leads to a false estimate of a large $a(\rho)$. They suggest very large bond liquidity premiums to explain the consequent average return puzzle. They do not address their model’s (large $a(\rho)$) prediction of volatile and countercyclical inflation, volatile and countercyclical bond returns, that current deficits lower the value of debt, or any of the other stylized facts that flow from a large $a(\rho)$. Tacking on a large liquidity premium to change the low mean return does not explain any of these other counterfactual predictions. They claim that the government of an economy whose GDP is nonstationary cannot issue riskless debt – it cannot promise $a(\rho) = 0$. But the mean surplus does not have to scale with GDP. And if their claim were true it would apply to all governments. A government with a unit root in GDP that does not borrow in its own currency – the members of the euro, gold standard governments, any government financed by foreign borrowing – would have eventually to default.

4.2.5 Stylized fact summary

These phenomena are tied together. With an AR(1) or $a(\rho) > 1$ surplus process, inflation and deficits are strongly correlated, there is a lot of inflation, deficits are followed by lower values of debt, deficits are financed by inflating away outstanding debt, bond returns are highly volatile, countercyclical, and give a high risk premium. With a surplus process that has an s-shape moving average with small $a(\rho)$, all of these predictions are reversed. And therefore all of these observations scream for a small value of $a(\rho)$, at least for postwar U.S. time series data and that of similar countries. None of the counterfactual predictions are rejections of the fiscal theory. They are rejections of the auxiliary assumption that the surplus follows an AR(1) or similar process with $a(\rho) \geq 1$, or econometric restrictions that force such estimates. The phenomena are tied together so you can’t fix one alone.

We move on in the next section to estimates of the surplus process. But I emphasize this set of stylized facts above particular estimates. Estimates vary based on regression specification and sample period, and honest standard errors are always
regrettably large in U.S. time series applications. Multiple shocks raise thorny or-
thogonalization issues.

By contrast the combined weight of the stylized facts in the context of the model is
more powerful evidence. The logic and cross-equation restrictions of the model tie
facts together. A direct estimate of $a(\rho)$ may be uncertain, but the indirect estimate
of $a(\rho)$ coming from the relative volatility of inflation and surpluses, the correlation
between surpluses and debt, and the other puzzles, as filtered through the model,
is more powerful evidence for the kind of surplus process that we will need for that
model to make sense. Of course, a formalization of this estimate should include time-
varying expected returns, and a model with sticky prices and other ingredients that
produce realistic results. But the signs and magnitudes are strong stylized facts that
will clearly be hard to turn around. We must at least allow that a surplus process
descriving U.S. postwar time series has a substantial component in which deficits
today are financed by expectations of surpluses to follow.

4.2.6 An s-shaped surplus process is reasonable

Perhaps an s-shaped surplus processes with $a(\rho) < 1$ seems like an artificial device
or a technical trick?

Governments under the gold standard, members of the euro, those using foreign
currency, and state and local governments must follow a surplus process with $a(\rho) = 0$
if they wish to avoid default. If they wish to borrow, they must repay in expectation.
People and businesses who wish to borrow must commit to an s-shaped cashflow
process and follow through in expectation. If you take out a mortgage, or a business
borrows, there is a big positive cash inflow today, mirrored by a long string of negative
cash outflows in the future. Weighted by interest rates, the inflows must be expected
to match the outflows: $a(\rho) = 0$. (By referring to $a(\rho)$, I refer to the model with
constant expected return. More generally, they must promise to repay their debts,
also adapting to potentially higher interest rates.)

Governments with their own floating currencies, facing temporary deficits, but that
do not want lots of unexpected inflation, will choose a surplus process with a small
if not zero $a(\rho)$. Such governments wish to finance deficits by borrowing rather than
inflating away outstanding debt, wish to raise revenue from bond sales rather than
just drive down bond prices. To do so, they must credibly promise to raise subsequent
surpluses.
4.2. THE SURPLUS PROCESS – STYLIZED FACTS

When transitioning from the gold standard or an exchange rate peg to fiat money, surely governments could and mostly did maintain the same general set of fiscal affairs and traditions that they followed to maintain the gold standard or peg; as a matter of prudence, deliberate inflation control, and desire to borrow in bad times; rather than instantly to abandon centuries of fiscal practice and reputation, becoming basket cases that always inflate away debt and thereby cannot borrow in the first place. An s-shaped surplus process is what one expects from the classic theory of public finance, such as Barro (1979): Governments adapt to temporary spending such as a war or recession by borrowing, and promise a long string of higher surpluses later to pay off the debt, in order to keep a smooth path of distorting taxes.

In short, choosing and committing to a surplus process with \(a(\rho) \) small or zero is not strange or unnatural. It is perfectly normal responsible debt management for a government that wishes to control inflation, and maintain its ability to borrow real resources in times of need. We do not have or need \(a(\rho) = 0 \) always. Governments inflate away some debt in some circumstances. The government may choose to meet bad news with an effective Lucas and Stokey (1983) partial “state-contingent default,” engineered by devaluation via inflation. The economic damage of inflation, which one may formalize with sticky prices, vs. the damage due to distorting taxation or explicit default, poses an interesting question in dynamic public finance, and often leads to an interior solution with a bit of both taxation and inflation. People sometimes distrust that the persistent component of surpluses will rise quite as much as needed to fully pay off the debt, and some inflation will arise. Or, the required surpluses may run into long-run Laffer limits: Permanent taxes reduce the growth rate of the economy enough that the present value of revenues does not increase. In all these cases, some or all of a deficit shock is met by an unexpected inflation, and we see \(a(\rho) > 0 \). But fiscal-theory governments do not have to fund every deficit with inflation. They do not need to follow \(a(\rho) \geq 1 \).

Canzoneri, Cumby, and Diba (2001) articulate the puzzle captured by (4.7): A positively correlated surplus process means that surpluses should paradoxically raise, rather than reduce, debt. They interpret their natural opposite empirical finding as a rejection of the fiscal theory. But it is not. It is a rejection of a positively correlated surplus process, not of fiscal theory per se. (Puzzles are useful. Thinking about this paper made me first realize the importance of an s-shaped surplus process.)

Unusually, Canzoneri, Cumby, and Diba (2001) recognize the observational equivalence problem, writing
“it is quite difficult (and perhaps impossible) to develop formal tests
that discriminate between R [active money] and NR [active fiscal] regimes,
since (as Cochrane, 1998, points out) both regimes use exactly the same
equations to explain a given data set.”

They acknowledge that a long-run negative autocorrelation of surpluses, $a(\rho) < 1$, as in these examples and their more convoluted precursor in Cochrane (2001), is possible and solves their puzzle. They opine that $a(\rho) < 1$ is not plausible:

“NR [fiscal-theory] regimes offer a rather convoluted explanation that
requires the correlation between today’s surplus innovation and future
surpluses to eventually turn negative. We will argue that this correlation
structure seems rather implausible in the context of an NR regime, where
surpluses are governed by an exogenous political process.”

This is just the right argument to have. Recognize observational equivalence, state
identifying assumptions used to overcome it, and think about whether those assum-
tions are plausible. Twenty years of hindsight, encapsulated above, may change one’s
mind about plausibility. We can now realize that an s-shaped response is not at all
convoluted, nor unnatural, nor special to passive-fiscal regimes.

In retrospect, this all may seem obvious. Of course governments promise higher
surpluses when they sell debts. Governments want to raise revenue when they borrow,
and not just inflate away debts! Of course the surplus process is s-shaped, just like
your cashflow process when you buy a house and then pay down the mortgage. Why
has this point taken decades to sort out? Well, everything in economics is only clear
in retrospect.

Part of the confusion has stemmed from a misunderstanding that the FTPL as-
sumes surpluses are “exogenous,” like an endowment, and that “exogenous” means
a fixed stochastic process, beyond the government’s control, as reflected in the lat-
ter Canzoneri, Cumby, and Diba (2001) quote. No, the surplus process is a choice.
Governments, even “political” governments, choose tax policies, choose spending
policies, and invest in a range of institutional commitments and reputations to en-
sure bondholders that the governments will usually repay rather than inflate away
debts. Fiscal theory is completely compatible with such a view, and does not re-
quire “exogenous” surpluses. An exogenous and positively correlated surplus, like an
endowment economy, is an easy modeling simplification. But sometimes modeling
simplifications take on a life of their own and get entrenched as true or necessary
assumptions. That realization also was not obvious at the time.
Indeed, other than a too-complex appearance in the back pages of too-long articles
Cochrane (1998a) and Cochrane (2001), most fiscal theory papers including my own
until Cochrane (2021b) use AR(1) or similar surplus processes, with large \(a(\rho) \).

(Leeper, Traum, and Walker (2017) is a rare exception. They specify fiscal rules
in which tax \(rates \) follow an AR(1), but endogenous movements in output generate
primary surpluses with an s-shaped pattern, see for example their Figure 4. The
same may be true of other papers. But the tax rate AR(1) is restrictive too, and
this specification is not necessarily flexible enough to capture the facts.)

Perhaps Cochrane (2005b) “Money as Stock” is also a bit to blame. That paper
emphasizes the analogy with stocks, to counter critiques that the government debt is
a “budget constraint,” rather a valuation equation. For example, Jiang et al. (2019)
are clearly influenced in their insistence that the surplus is positively autocorrelated
and procyclical by the analogy with stock dividends. Stocks plausibly have persistent
dividend processes. But government debt, like corporate debt, plausibly has an s-
shaped, debt-like payoff process. Perhaps I should have titled the paper “Money as
Bonds.” The s-shaped surplus is clear in Cochrane (1998a), but I didn’t emphasize
it in “Money as Stock.” Even I used AR(1) surpluses when they didn’t matter for
points at hand in later papers. Simplicity is not always an unalloyed virtue.

So, yes, these apparently simple realizations took time and a lot of effort. They were
not obvious in the thick of things. But with the benefit of hindsight we can recognize
that imposing a positively correlated surplus process, a-priori restricting fiscal (or
any) theory away from low \(a(\rho) \), thereby inducing a range of grossly counterfactual
behavior, is a conceptual mistake that we should not continue to make.

4.2.7 A generalization

This discussion has all taken place in the context of the constant discount rate
model. The Hansen, Roberds, and Sargent (1992) formula focusing on \(a(\rho) \) can be
generalized to time-varying expected returns as well.

In our context, the linearizations of Section 3.5 invite a natural generalization. Our
core linearized identities (3.20)-(3.22) are

\[
\Delta E_{t+1} \pi_{t+1} - \Delta E_{t+1} r^n_{t+1} = - \sum_{j=0}^{\infty} \rho^j \Delta E_{t+1} \tilde{s}_{t+1+j}
\]
\[-\sum_{j=0}^{\infty} \rho^j \Delta E_{t+1} g_{t+1+j} + \sum_{j=1}^{\infty} \rho^j \Delta E_{t+1} r_{t+1+j}, \quad (4.11)\]

\[\sum_{j=0}^{\infty} \omega^j \Delta E_{t+1} \pi_{t+1+j} = -\sum_{j=0}^{\infty} \rho^j \Delta E_{t+1} \tilde{s}_{t+1+j} - \sum_{j=0}^{\infty} \rho^j \Delta E_{t+1} g_{t+1+j} + \sum_{j=1}^{\infty} (\rho^j - \omega^j) \Delta E_{t+1} r_{t+1+j}, \quad (4.12)\]

Write each series as an element of a vector-valued moving-average representation,

\[\pi_t = a_\pi(L)\epsilon_t\]
\[\tilde{s}_t = a_s(L)\epsilon_t,\]

and so forth. Then the unexpected inflation identity \(4.11\) leads to

\[\Delta E_{t+1} \pi_{t+1} = [-a_s(\rho) - a_g(\rho) + a_r(\rho)]' \epsilon_{t+1}\]

which generalizes the expression

\[\Delta E_{t+1} \pi_{t+1} = -a_s(\rho)' \epsilon_{t+1}.\]

The equivalent of \(a(\rho)\) to characterize debt repayment is now

\[a_s(\rho) + a_g(\rho) = a_r(\rho). \quad (4.13)\]

The \(a_g(\rho)\) term transforms between surpluses and surplus-to-GDP ratios. The \(a_r(\rho)\) term expresses the important idea that a government which repays its debts must also raise surpluses when there is a rise in the interest costs of its debt.

The weighted-inflation identity \(4.12\) gives

\[a_\pi(\omega)' \epsilon_{t+1} = [-a_s(\rho) - a_g(\rho) + a_r(\rho) - a_r(\omega)]' \epsilon_{t+1}.\]

A similar exploration with these more general identities would help to understand what features of the discount rate response function are important to understanding the facts, and whether my characterization of the surplus response is indeed robust to adding discount rate responses. I know that discount rate variation can generate a negative correlation of inflation with deficits, without needing \(a_s(\rho) < 0\). Perhaps
discount rate variation significantly amends or overturns the sort of process we need to generate the other stylized facts.

A similar generalization of [Hansen, Roberds, and Sargent (1992)] may be useful in finance. From the [Campbell and Shiller (1988)] linearization,

\[p_t - d_t = \sum_{j=1}^{\infty} \rho^{j-1} \left(\Delta d_{t+j} - r_{t+j} \right) \]

we have the [Campbell and Ammer (1993)] decomposition,

\[\Delta E_{t+1} r_{t+1} = \Delta E_{t+1} \sum_{j=1}^{\infty} \rho^{j-1} \Delta d_{t+1} - \Delta E_{t+1} \sum_{j=2}^{\infty} \rho^{j-1} \Delta r_{t+j} \]

or,

\[\Delta E_{t+1} r_{t+1} = \{a_d(\rho) - [(a_r(\rho) - a_r(0))] \} \varepsilon_{t+1}. \]

It follows that

\[0 = a_d(\rho) - a_r(\rho), \]

generalizing the [Hansen, Roberds, and Sargent (1992)] test of a present value relation, \(a_d(\rho) = 0 \), to time-varying expected returns.

However, relations (4.13) and (4.14) are no longer tests of the present value relation or anything else. They are based on identities, so they hold as identities. Looking at identities is useful. It helps us to characterize what sorts of processes \(a_d(L), a_r(L) \), and so forth will account for the data. The whole discovery that price-dividend ratios move on news of expected returns rather than dividend growth comes from looking at terms of an identity. The original \(a(\rho) = 0 \) is, in retrospect, a test, but only a test of the hypothesis that expected returns are constant over time.

4.3 Surplus process estimates

I estimate the surplus process with a VAR, a small VAR and an AR(1). The VAR estimates show an s-shaped response. The AR(1) though barely distinguishable in its initial responses and forecasting ability gives a dramatically higher estimate of the sum of responses.

Table 4.1 presents three vector autoregressions involving surpluses and debt. Here, \(v_t \) is the log market value of U.S. federal debt divided by consumption, scaled by the
consumption/GDP ratio. I divide by consumption to focus on variation in the debt rather than cyclical variation in GDP. Consumption is a good stochastic trend for GDP, without the look-ahead bias of potential GDP. \(\pi_t \) is the log GDP deflator, \(g_t \) is log consumption growth, \(r^n_t \) is the nominal return on the government bond portfolio, \(i_t \) is the three month treasury bill rate and \(y_t \) is the 10 year government bond yield.

I infer the surplus \(\tilde{s}_t \) from the linearized identity (3.17), allowing growth,

\[
\rho v_{t+1} = v_t + r^n_{t+1} - \pi_{t+1} - g_{t+1} - \tilde{s}_{t+1}.
\]

Conceptually, \(\tilde{s}_t \) is the ratio of real primary surplus to consumption, scaled by the steady-state consumption/GDP ratio, and scaled by the steady-state debt-to-GDP ratio. I include the short-term interest rate \(i_t \) in the VAR, which represents monetary policy in our models, and the 10-year interest rate \(y_t \), which is an important forecasting variable for interest rates. [Cochrane (2021a)] describes the data and VAR in detail.

<table>
<thead>
<tr>
<th>(\tilde{s}_{t+1})</th>
<th>(v_t)</th>
<th>(\pi_t)</th>
<th>(g_t)</th>
<th>(r_{n_t})</th>
<th>(i_t)</th>
<th>(y_t)</th>
<th>(\sigma(\varepsilon))</th>
<th>(\sigma(s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tilde{s}_{t+1} =)</td>
<td>0.35</td>
<td>0.043</td>
<td>-0.25</td>
<td>1.37</td>
<td>-0.32</td>
<td>0.50</td>
<td>-0.04</td>
<td>4.75</td>
</tr>
<tr>
<td>std. err.</td>
<td>(0.09)</td>
<td>(0.022)</td>
<td>(0.31)</td>
<td>(0.45)</td>
<td>(0.16)</td>
<td>(0.46)</td>
<td>(0.58)</td>
<td></td>
</tr>
<tr>
<td>(v_{t+1} =)</td>
<td>-0.24</td>
<td>0.98</td>
<td>-0.29</td>
<td>-2.00</td>
<td>0.28</td>
<td>-0.72</td>
<td>1.60</td>
<td></td>
</tr>
<tr>
<td>std. err.</td>
<td>(0.12)</td>
<td>(0.03)</td>
<td>(0.43)</td>
<td>(0.61)</td>
<td>(0.27)</td>
<td>(0.85)</td>
<td>(1.04)</td>
<td></td>
</tr>
</tbody>
</table>

\(\tilde{s}_{t+1} = \)	0.55	0.027	5.46	6.60
std. err.	(0.07)	(0.016)		
\(v_{t+1} = \)	-0.54	0.96		
std. err.	(0.11)	(0.02)		

Table 4.1: Surplus and debt forecasting regressions. Variables are \(\tilde{s} = \) surplus, \(v = \) debt/GDP, \(\pi = \) inflation, \(g = \) growth, \(i = \) 3 month rate, \(y = \) 10 year yield. Sample 1947-2018.

The first group of regressions in Table 4.1 presents the surplus and value regressions in a larger VAR. I omit the other equations of the VAR in the table, but they are there in the following impulse response functions. The surplus is moderately persistent (0.35). Most importantly, the surplus responds to the value of the debt (0.043). This coefficient is measured with a t-statistic of barely 2, with simple OLS standard errors. However, this point estimate confirms estimates such as [Bohn (1998a)]. Bohn includes additional contemporaneous variables in the regression, which soak up a
4.3. **SURPLUS PROCESS ESTIMATES**

Figure 4.3: Responses to 1% deficit shocks. "∑ =" gives the sum of the indicated responses.

A good deal of residual variance. For this reason, and by using longer samples, Bohn finds greater statistical significance despite similar point estimates. Debt is very persistent (0.98), and higher surpluses pay down debt (-0.24).

The second group of estimates presents a smaller VAR consisting of only surplus and debt. The coefficients are similar to those of surplus and debt in the larger VAR, and we will see that this smaller VAR contains most of the message of the larger VAR for the surplus process. The third estimate is a simple AR(1). Though the small VAR and AR(1) have the same coefficient of surplus on lagged surplus, 0.55, we will see how they differ crucially on long-run properties.

Figure 4.3 presents responses of these VARs to a 1% deficit shock at time 0. *The VAR shows an s-shaped surplus response.* The initial 1.0% deficit is followed by two more periods of deficit, for a cumulative 1.75% deficit. But then the surplus response turns positive. The many small positive surpluses chip away at the debt. The sum of surpluses in response to the shock is only $\sum_{j=0}^{\infty} \tilde{s}_{1+j} = -0.31$, so $a(1) = 0.31$.
Mechanically, the value of debt jumps up when surplus jumps down due to contemporaneous correlation of surplus with debt shocks. This is already evidence for an s-shaped response, as in our AR(1) examples a lower surplus meant lower debt. The negative surpluses continue to push up the value of debt via the coefficients of debt on lagged surplus (-0.24). But surpluses also respond to the greater value of debt. After the autoregressive (0.35) dynamics of the surplus shock have died out, the surplus response to the more persistent debt (0.043) brings positive surpluses, which in turn help to slowly bring down the value of debt.

Thus, the s-shaped surplus response is robust and intuitive. It comes from the negative sign of the regression of surplus on debt, the persistent debt response, and the pattern that higher surpluses bring down the value of debt. The s-shape estimate here does not come from direct estimates of very long-run surplus autocorrelations.

The simple VAR shows almost exactly the same surplus response as the full VAR, emphasizing how the response comes from the intuitive features of that VAR. The point estimate of the sum of coefficients in the simple VAR is smaller, $a(1) = 0.26$. The simple VAR surplus response crosses that of the full VAR and continues to be larger past the right end of the graph, accounting for the smaller value of $a(1)$.

The simple AR(1) surplus response looks almost the same, but it does not rise above zero. It would be very hard to tell the AR(1) and VAR surplus responses apart based on autocorrelations or short-run forecasting ability emphasized in standard statistical tests. The coefficient of surplus on debt (0.027) is less than two standard errors from zero (0.016). But selecting variables based on t-statistics is a bad econometric habit. Zero is also less than two standard errors away from 0.027, and there is no reason one should be the null and the other the alternative. Adding debt to the surplus regression only lowers the standard error of the residual from 5.55% to 5.46%. But the long-run implications of the AR(1) are dramatically different. For the AR(1), we have $a(1) = 2.21$, a factor of 10 larger! In the context of our simple model with constant discount rates, short-term debt, and flexible prices, the VAR-implied surplus process predicts 0.26%-0.31% inflation in response to a 1% fiscal shock. The same model fed the AR(1) surplus model predicts 2.28% inflation – a factor of 10 larger – and the same increase in bond return volatility. Leaving the value of debt out of the VAR makes an enormous difference to the results.

The AR(1) estimate is not just different, it is wrong. We start with a present value
4.3. SURPLUS PROCESS ESTIMATES

relation based on people’s information, in the constant interest rate case

$$v_t = E \left(\sum_{j=0}^{\infty} \rho^j \tilde{\bar{s}}_{t+1+j} | \Omega_t \right)$$

where Ω_t is the set of all information used by people to form expectations at time t.

When we apply this formula, we must condition down to a smaller information set, such as that generated by the variables in the VAR. We take $E(\cdot | I_t)$ of both sides, where $I_t \subset \Omega_t$, to obtain

$$v_t = E \left(\sum_{j=0}^{\infty} \rho^j \tilde{\bar{s}}_{t+1+j} | I_t \right).$$

This conditioning down is valid, so long as $v_t \in I_t$, so long as we include v_t in the VAR. If not, the left hand side should be $E(v_t | I_t)$, not v_t.

It is a natural project, to forecast the surplus using a set of variables not including the value of debt, use a discount factor model to construct the present value of surpluses, see if the calculation spits out the value of debt, and proclaim a puzzle or rejection of the present value model if it does not do so. Empirical asset pricing wasted a lot of time on such exercises. But it is wrong to do so.

The only way to rescue such a calculation is to assume that people use exactly the same information to forecast that we include in the VAR, $I_t = \Omega_t$. Any (many) papers that make such calculations using present value formulas in consumption (permanent income), investment, asset pricing, and fiscal affairs make this assumption, usually implicitly. But in that case, v_t would be an exact function of the observed information, with 100% R^2. The value v_t would be redundant in the VAR. It is a testable implicit assumption, and it fails.

Non-invertibility is the second problem in this effort. If $\tilde{s}_t = a(L)\varepsilon_t$ with $a(\rho) = 0$, the moving average representation we are looking for has a root inside the unit circle, and therefore cannot be recovered from a VAR that excludes the value of debt.

Consider the MA(1) example again, and let $\theta = \rho^{-1}$. Now $\tilde{s}_t = \varepsilon_t - \rho^{-1}\varepsilon_{t-1}$, which has $a(\rho) = 0$. But $\rho^{-1} > 1$, a non-invertible root. (More precisely, the shock ε_t is a function of current and future surpluses, not current and past surpluses.) An autoregression will estimate $\tilde{s}_t = u_t - \theta u_{t-1}$ with $\theta = \rho$ and $u_t = s_t - E(s_t | s_{t-1}, s_{t-2}...)$.

You will falsely estimate $a(\rho) = 1 - \rho^2 \neq 0$. The structural representation we are interested in is a non-invertible moving average. There is nothing wrong with non-invertible structural moving averages, but you cannot recover them from any statistical procedure based on the history of surpluses alone.
In this example, we have $v_t = -\theta \varepsilon_t = -\rho^{-1} \varepsilon_t$. The value of debt reveals the true shock. Then a VAR including surplus and value of debt can recover the true process.

In this case, with only $\theta < 1$, and thus $a(\rho) > 1 - \rho$, the moving average is technically invertible. However, close-to-unit roots in moving averages are hard to estimate, so the non-invertibility problem bleeds over the boundary. Including the value of the debt makes for a more precise estimate, through the mechanism visible in the VAR.

If you do include the value of debt, and discount with expected returns, however, the present value relation is an identity. Even if you do not discount with returns, a discount rate always exists by which the present value relation holds. The present value relation per se is not testable. We should no longer try to forecast surpluses and discount rates, excluding the value of debt from the VAR, calculate what the value of debt should be and either test or proclaim puzzles. Doing so is simply wrong. This lesson took decades of hard work in macroeconomics and finance to learn. Let us not repeat the wasted effort.

This little exercise is over-simplified in one crucial respect. The response of actual surpluses matters, which sums the response of the surplus-to-consumption ratio, \tilde{s}_t here, and the response of consumption, g_t here. We should sum the two responses. The point, however, is an illustration of an econometric pitfall, not a good estimate. The next section presents that estimate also including discount rate variation.

4.4 The roots of inflation

I calculate impulse responses and estimate the terms of the inflation decompositions. A shock to inflation comes with deficits, but these deficits are almost entirely repaid by surpluses. Instead, the shock to inflation comes about $2/3$ from higher discount rates and $1/3$ from lower growth. Events such as 2008 in which inflation declines with huge deficits are an apparent puzzle. Examining an “aggregate demand” shock which lowers inflation and output 1% each, I find that deficits and lower growth each would produce inflation, but a large discount rate decline coming from persistently lower interest rates overwhelms those forces to account for lower inflation. A 1% shock to the sum of future surpluses produces essentially no inflation. Discount rates decline, offsetting the shock. A 1% shock to the discount rate uncovers the same events, with a rise in surpluses that produces no inflation.
In all these ways, understanding the time series of inflation in the postwar U.S. requires us to include time-varying discount rates, rather than just focus on changes in expected surpluses. Fortunately, relatively easily-measured real interest rates are the dominant movement in such discount rates.

Now, I use the full VAR from the top panel of Table 4.1 to answer the fundamental question, where does inflation come from? I estimate the terms of the linearized identity (3.22)

\[
\sum_{j=0}^{\infty} \omega_j \Delta E_1 \pi_{1+j} = -\sum_{j=0}^{\infty} \Delta E_1 \tilde{s}_{1+j} - \sum_{j=0}^{\infty} \Delta E_1 g_{1+j} + \sum_{j=1}^{\infty} (1 - \omega_j) \Delta E_1 r_{1+j}.
\]

(4.15)

Unexpected inflation, weighted by the maturity structure of government debt, corresponds to the revision in forecast future surpluses, growth, and discount rates. The surplus \(\tilde{s}_t \) is surplus-to-GDP ratio, so lower growth lowers actual surpluses. Thus we have two cash-flow terms and a discount-rate term. Relative to (3.22), here I use a weighting factor and point of linearization \(\rho = 1 \). All the variables are stationary, impulse-responses die out, so we do not need an additional weighting factor for convergence. Results using a \(\rho \) slightly less than one are nearly identical.

I also tabulate the mark-to-market constituents of this identity, (3.20) and (3.21)

\[
\Delta E_1 \pi_1 - \Delta E_1 r_1^n = -\sum_{j=0}^{\infty} \Delta E_1 \tilde{s}_{1+j} - \sum_{j=0}^{\infty} \Delta E_1 g_{t+1+j} + \sum_{j=1}^{\infty} \Delta E_1 \rho_{t+1+j}.
\]

(4.16)

\[
\Delta E_1 r_1^n = -\sum_{j=1}^{\infty} \omega_j \Delta E_1 r_{1+j} = -\sum_{j=1}^{\infty} \omega_j \Delta E_1 (r_{1+j} + \pi_{1+j}).
\]

(4.17)

Changes in the present value of surpluses coming from surpluses, growth, or discount rates are absorbed by inflation or by a decline in long-term bond prices. In turn, long-term bond prices reflect future expected real returns or inflation.

With a shock at time 1, the terms of these identities are sums of the VAR impulse-response functions. Therefore, we can compute each term of these decompositions by summing up impulse-response functions to understand the roots of inflation. Though they are identities, they can tell us whether inflation corresponds to changes in surpluses, in growth, or in discount rates, and by plotting the response functions we can see the pattern of those changes. The terms of the impulse response function can also be interpreted as decompositions of the variance of unexpected inflation. They
answer the question, “What fraction of the variance of unexpected inflation is due to each component?”

This section summarizes \textcite{cochrane2021}, which includes more detail. This approach to evaluating present value relations follows \textcite{campbell1988, campbell1993}. \textcite{cochrane2011} summarizes this literature in asset pricing. Asset pricing finds that discount rate variation accounts for a great deal of asset price variation, across many asset classes, and variation in expected cashflows accounts for much less asset price variation. From that perspective, finding the same result for government bonds is not terribly surprising.

The VAR has many shocks, so one has to choose interesting shocks. I start by examining an unexpected movement in inflation \(\Delta E_1 \pi_1 = \epsilon_{\pi,1} = 1 \). I allow all other variables to move contemporaneously with the inflation shock. We would not want, for example, to keep surpluses, the value of debt, or bond returns constant. A surplus or discount rate shock may have caused the inflation shock.

To allow all other shocks to move by their customary amount when there is an inflation shock, I fill in shocks to the other variables by running regressions of their shocks on the inflation shock. Denote the VAR

\[
 x_{t+1} = Ax_t + \varepsilon_{t+1}. \tag{4.18}
\]

For each variable \(z_t \in x_t \), then, I run

\[
 \varepsilon_{z,t+1} = b_{z,\pi} \epsilon_{\pi,t+1} + u_{z,t+1},
\]

where \(u_{z,t+1} \) denotes the regression error. Then I start the VAR at

\[
 \varepsilon_1 = - [\begin{bmatrix} b_{r,\pi} & b_{y,\pi} & \epsilon_{\pi,1} = 1 \ b_{s,\pi} \end{bmatrix}]'.
\]

This procedure is equivalent to the usual orthogonalization of the shock covariance matrix, but it is more transparent and it generalizes more easily later.

Figure 4.4 plots responses to this inflation shock. Table 4.2 collects the terms of the decomposition identities (4.15), (4.16), (4.17). Figure 4.4 also presents some of the main terms in the identities.

In Figure 4.4, the inflation shock is moderately persistent. Inflation initially follows AR(1) dynamics induced by its coefficient on its own lag, and then turns slightly negative. As result, the weighted sum \(\sum_{j=0}^{\infty} \omega^j \Delta E_1 \pi_{1+j} = 1.59\% \) is greater than the 1% initial shock. The subsequent inflation devalues long-term bonds, so we look for a 1.59% total fiscal shock.
Figure 4.4: Responses to 1% inflation shock. Σ gives the sum of the responses and $\Sigma \omega^i$ gives the ω-weighted sum of responses, which are terms of the inflation-decomposition identities.
\[\pi_1 - r_1^1 = -\sum_{j=0}^{\infty} \tilde{s}_{1+j} - \sum_{j=0}^{\infty} g_{1+j} + \sum_{j=1}^{\infty} (1 - \omega^j) r_{1+j} \]

<table>
<thead>
<tr>
<th>Shock Type</th>
<th>(\pi_1 - r_1^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflation</td>
<td>1.59</td>
</tr>
<tr>
<td>Recession</td>
<td>-2.36</td>
</tr>
<tr>
<td>Surplus</td>
<td>-0.10</td>
</tr>
<tr>
<td>Disc. Rate</td>
<td>-0.18</td>
</tr>
<tr>
<td>Surplus, no i</td>
<td>0.38</td>
</tr>
</tbody>
</table>

\[\pi_1 - r_1^n = -\sum_{j=0}^{\infty} \tilde{s}_{1+j} - \sum_{j=0}^{\infty} g_{1+j} + \sum_{j=1}^{\infty} r_{1+j} \]

<table>
<thead>
<tr>
<th>Shock Type</th>
<th>(\pi_1 - r_1^n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflation</td>
<td>1.00</td>
</tr>
<tr>
<td>Recession</td>
<td>-1.00</td>
</tr>
<tr>
<td>Surplus</td>
<td>0.02</td>
</tr>
<tr>
<td>Disc. Rate</td>
<td>-0.03</td>
</tr>
<tr>
<td>Surplus, no i</td>
<td>0.36</td>
</tr>
</tbody>
</table>

\[r_1^n = -\sum_{j=1}^{\infty} \omega^j r_{1+j} - \sum_{j=1}^{\infty} \omega^j \pi_{1+j} \]

<table>
<thead>
<tr>
<th>Shock Type</th>
<th>(r_1^n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflation</td>
<td>-0.56</td>
</tr>
<tr>
<td>Recession</td>
<td>1.19</td>
</tr>
<tr>
<td>Surplus</td>
<td>0.27</td>
</tr>
<tr>
<td>Disc. Rate</td>
<td>0.28</td>
</tr>
<tr>
<td>Surplus, no i</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Table 4.2: Terms of the inflation and bond return identities. The inflation shock is a 1 percent unexpected rise in inflation. The recession shock is a 1 percent unexpected decline in inflation and growth. The surplus shock is a 1 percent unexpected decline in the sum of current and future surpluses. The discount-rate shock is a 1 percent unexpected decline the sum of current and future expected returns. The “surplus, no i” shock holds the interest rate constant for two years after a surplus shock.

In the top panel of Figure 4.4, the inflation shock coincides with deficits \(\tilde{s}_1 \), which build with a hump shape. One might think that these persistent deficits account for inflation. But surpluses eventually rise to pay back almost all of the incurred debt with an s-shape. The sum of all surplus responses is \(-0.06\)%, essentially zero. In
response to this shock – an inflation shock, not directly a surplus shock – the government borrows but then repays essentially all of its deficits as a ratio to GDP.

The inflation shock also coincides with a persistent decline in economic growth g. Lower growth lowers surpluses, for a given surplus-to-GDP ratio. The growth decline contributes 0.49% to the inflation decompositions, accounting for about a third of the total inflation.

The line marked r plots the response of the real discount rate, $\Delta E_1 r_{1+j}$. These points are plotted at the time of the ex-post return, $1 + j$, so they are the expected return one period earlier, at time j. The line starts at time 2, where the terms of the discount-rate terms in the inflation decompositions start, and representing the time-1 expected return. After two periods, this discount rate rises and stays persistently positive. The weighted sum of discount-rate terms is 1.04% while the unweighted sum is 1.00% (really 1.004%). The weight ω is 0.69, chosen to make the identity (3.21) hold exactly for this response function. Therefore, weighting by 1 vs. $1 - \omega^j$ makes little difference in the face of such a persistent response. Weighted or unweighted, the discount-rate terms account for 1% inflation. A higher discount rate lowers the value of government debt, an inflationary force.

Overall, then, as also summarized in the first row of Table 4.2:

- A 1% shock to inflation corresponds to a roughly 1.5% decline in the present value of surpluses, and 1.5% overall inflationary devaluation of government debt. A rise in discount rate contributes about 1%, and a decline in growth accounts for about 0.5% of that decline. Changes in the surplus-to-GDP ratio account for nearly nothing.

This is an important finding for matching the fiscal theory to data, or for understanding the fiscal side of passive-fiscal models. Thinking in both contexts has focused on the presence or absence of surpluses, via taxing and spending policies, not surpluses induced by growth and least of all the discount rate. Thinking in both contexts has considered one-period unexpected inflation, to devalue one-period bonds, not a rise in expected inflation which can devalue long-term bonds.

The bottom panel of Figure 4.4 shows us the response of bond yields and returns to the inflation shock. This plot also allows us to examine the role of bond returns and the mark-to-market identities (4.16) and (4.17) shown in the second and third panels of Table 4.2. The interest rate i, bond yield y, and expected return r^n all rise with the inflation shock, and thereafter move together and persistently. The expected return moves a bit more than the interest rate, indicating a rise in risk premium.
The slight sawtooth in r^n is not significant. The immediate return shock r^n_1 moves in the opposite direction as the expected returns, as bond prices decline when yields rise unexpectedly.

The rise in real discount rates stems from the more persistent movement in nominal rates than that of inflation on the right-hand side of this graph. That nominal rates and inflation move in such disconnected ways is a bit disconcerting. An s-shaped real interest rate movement is hard to digest economically. But this calculation is pure data characterization and does not impose any economic structure. If inflation and nominal rates go their own way, we measure a movement in the real rate.

In terms of the decompositions (4.16) and (4.17), we now have a 1% inflation, which is soaked up in part by the 0.56% decline in bond return r^n_1. The bottom panel of Table 4.2 shows that the decline in bond return corresponds almost exactly to the 0.56% rise in subsequent expected inflation, with no contribution from discount rates. Discount rates matter in the inflation decompositions but not in this bond return decomposition because the former have weights that emphasize long-term movements (1 and $1 - \omega_j$), while the ω_j weights of the bond return decomposition (4.17) emphasize short-run movements in discount rate.

Comparing the two analyses, you see how the government bond return essentially marks to market the expected future inflation.

In sum, viewed through the lens of (4.16) and (4.17),

- The 1.5% fiscal shock that comes with 1% unexpected inflation is buffered by an 0.5% decline in bond prices, which corresponds to 0.5% additional expected future inflation.

These calculations are terms of identities, and can be interpreted with either active-fiscal or passive-fiscal points of view. In a fiscal-theoretic interpretation, they answer, “What changes in expectations caused the 1% inflation?” In a passive-fiscal interpretation, they answer, “What changes in expected surpluses and other variables follow a 1% inflation?” I emphasize the former because that’s what this book is about.

I use the words “shock,” and “response,” which have become conventional in the VAR literature, and compactly describe the calculations. The calculations do not imply or require a causal structure, or a truly structural interpretation of “shocks.” Responses answer the question, “If we see an unexpected 1% inflation, how should we revise our forecasts of other variables?” Indeed, I offer a reverse causal story: News about future surpluses and discount rates causes inflation to move. That news in turn reflects news about future productivity, fiscal and monetary policy, and other
4.4. THE ROOTS OF INFLATION

truly exogenous or structural disturbances. Dividends likewise “respond” to stock
price “shocks,” but we usually read causality in the other direction, and we regard
dividends as the result of deeper underlying economic shocks. A “shock” here is only
an “innovation,” a movement that the VAR does not forecast. A “response” is a
change in VAR expectations of a future variable coincident with such a movement.
Many VAR exercises do attempt to find an “exogenous” movement in a variable by
careful construction of shocks, and “structural” VAR exercises aim to measure causal
responses of such shocks. Not here.

We do not implicitly assume that agents use only the information in the VAR in
order to make these calculations. \(v_t = E(\cdot|\Omega_t) \) implies \(v_t = E(\cdot|x_t \subset \Omega_t) \) since
\(v_t \in x_t \). But “unexpected” here means relative to the VAR information set. The
VAR forecasts are only the average of people’s forecasts on dates with the same VAR
state variables, but other realizations of the variables they see. A decomposition
using larger information sets, survey forecasts, or people’s full information sets, may
be different. These calculations just capture history. They say, if we saw inflation
unexpected by the VAR, what happened on average after that event?

The impulse-responses characterize average events in the postwar U.S., the time
period over which the VAR was estimated. They provide no guarantee that today’s
immense debts and deficits, and the surpluses and discount rates to come, conform
to similar patterns.

4.4.1 Aggregate demand shocks

We can use the same procedure to understand the fiscal underpinnings of other
shocks. For any interesting \(\varepsilon_1 \), any linear combination of the 7 VAR shocks, we can
compute impulse-response functions, and thereby the terms of the inflation decom-
positions.

I start with a recession shock, which we might also call an aggregate demand shock.
The response to the inflation shock in Figure 4.4 is stagflationary, in that growth falls
when inflation rises. Unexpected inflation is, in this sample, negatively correlated
with unexpected consumption (and also GDP) growth. The stagflationary episodes
in the 1970s drive this result.

However, it is interesting to examine the response to disinflations which come in
recessions, and inflations that come in expansions, following a conventional non-
shifting Phillips curve. Such events are common, as in the recession following the
2008 financial crisis. But such events pose a fiscal puzzle: In such a recession, deficits soar, yet inflation declines. How is this possible? Well, as (3.22)-(4.17) remind us, larger subsequent surpluses or lower discount rates could give that deflationary force. Can we see these effects in the data, and which one is it?

To answer this question, we want to study a shock in which inflation and output go in the same direction. I simply specify that inflation and consumption each drop by one percent at the same time, \(\varepsilon_{\pi,1} = -1 \), \(\varepsilon_{g,1} = -1 \). The model is linear, so the sign doesn’t matter, but the story is clearer for a recession. Yes, we may combine and orthogonalize shocks as we please. These responses answer the question, “If we see a negative 1% inflation shock coincident with a negative 1% growth shock, how does that observation change our forecasts of other variables?”

Again, we want shocks to other variables to have whatever value they have, on average, conditional on the inflation and output shock. To initialize the other shocks of the VAR, then, I run a multiple regression

\[
\varepsilon_{z,t+1} = b_{z,\pi} \varepsilon_{\pi,t+1} + b_{z,g} \varepsilon_{g,t+1} + u_{z,t+1}
\]

for each variable \(z \). I fill in the other shocks at time 1 from their predicted variables given \(\varepsilon_{\pi,1} = -1 \) and \(\varepsilon_{g,1} = -1 \), i.e. I start the VAR at

\[
\varepsilon_1 = - \left[b_{r^n,\pi} + b_{r^n,g} \varepsilon_{g,1} = 1 \quad \varepsilon_{\pi,1} = 1 \quad b_{s,\pi} + b_{s,g} \quad \ldots \right]'.
\]

Figure 4.5 presents responses to this recession shock, and the “recession” rows of Table 4.2 tabulate terms of the decompositions. Inflation \(\pi \) and growth \(g \) responses start at -1%, by construction. Inflation is again persistent, with a \(\omega \)-weighted sum of current and expected future inflation equal to -2.36%. Consumption growth \(g \) returns rapidly, but does not much overshoot zero, so the level of consumption does not recover much at all. Consumption is roughly a random walk in response to this shock. The nominal interest rate \(i \) falls in the recession, and recovers more slowly than inflation. Long-term bond yields \(y \) also fall, but not as much as the short-term rate, for about 4 years. We see here the standard interest rate decline and upward-sloping yield curve of a recession. The expected bond return follows the long-term yield. The persistent fall in expected return corresponds to a large positive ex-post bond return \(\Delta E_1 r^n_p \). The recession includes a large deficit, which continues for three years. In short, we see a standard picture of an “aggregate demand” recession similar to the history of 2008-2009.

Why do we not see inflation with these deficits? Perhaps future surpluses offset the current deficits? Surpluses do subsequently turn positive with the usual s shape,
Figure 4.5: Responses to a recession or aggregate demand shock, $\varepsilon_{\pi,1} = \varepsilon_{g,1} = -1$.

paying down some of the debt. But the total surplus is still -1.15%. Left to their own devices, surpluses would produce a 1.15% inflation during the recession. Declining
growth also adds an inflationary force. The decline in consumption is essentially permanent, so the sum of growth is -1.46%. This would lead on its own to another 1.46% inflation.

Discount rates are the central story for disinflation in recessions. After one period, expected real returns \(r - g \) decline persistently, accounting for 4.96% cumulative disflation. In sum, rounding the numbers,

1. **Disinflation with an “aggregate demand” shock that lowers output and prices together is driven by a lower discount rate, reflected in lower interest rates and bond yields.** For each 1% disinflation shock, the expected return on bonds falls so much that the present value of surpluses rises by nearly 5%. This discount rate shock overcomes a 1.1% inflationary shock coming from persistent deficits, and 1.5% inflationary shock coming from lower growth. The overall fiscal shock is 1.6%, with the extra 0.6% spread to future inflation and soaked up by long-term bonds.

The opposite conclusions hold of inflationary shocks in a boom. Discount rate variation gives us a fiscal Phillips curve, accounting for the otherwise puzzling correlation of deficits with disinflation and surpluses with inflation.

This decomposition puts a present-value face on the obvious events. In 2008 there was a “flight to quality.” People wanted to hold more government debt, and people tried to sell private debt and equities to get it, as well as to buy fewer goods and services.

Just why people want to hold more government debt in such events, despite low prospective returns, and are reluctant to spend or buy private assets is not our job right now, though an economic model will need to include such a mechanism. Part of the answer is the liquidity premium for government debt. For example, Berentsen and Waller (2018) offer a theoretical model with changing liquidity premiums for government debt. They show such changing liquidity premium can lead to inflation and deflation with no changes in surpluses, by discount-rate movement and a fiscal-theory mechanism. The time-varying discount rate for government debt surely reflects also a pervasive rise in risk aversion, precautionary saving and flight to quality in recessions, and the perhaps negative-beta character of government debt. (Cochrane 2017a) “Macro-finance” is a recent survey.)

Likewise, the secular decline in real interest rates, and cross-country variation – very low interest rates in Japan and Europe – can account for low inflation, but raises the economic question just why real interest rates are so low.
4.4. THE ROOTS OF INFLATION

In the mark-to-market decompositions of the second and third rows of Table 4.2, we see here too that the bond price decline accompanying initial inflation comes almost entirely from future inflation, not discount rate changes.

4.4.2 Surplus and discount-rate shocks

We have studied what happens to surpluses and to discount rates given that we see unexpected inflation. What happens to inflation if we see changes in surpluses or discount rates? These are not the same questions. An inflation shock may come, on average, with a discount rate shock, but a discount rate shock may not come on average with inflation.

I calculate here how the variables in the VAR react to an unexpected change in current and expected future primary surpluses including growth,

$$\Delta E_1 \sum_{j=0}^{\infty} (\tilde{s}_{t+j} + g_{t+j}) = 1,$$

and all shocks to the VAR take their average values given this innovation. I call this event a “surplus shock.” A decline in growth with constant surplus-to-GDP ratio is also a shock to surpluses. The results are almost the same with or without the growth term in the shock definition, as growth declines in response to a pure surplus shock. A shock to s_1 alone turns out to provoke about the same responses as well.

Here I force a surplus response $a(\rho) = 1$. I find whatever linear combination of VAR shocks produces that result, and we see what inflation results. Since now we have other terms in the identity, the answer is not necessarily 1%.

Then I calculate responses to an unexpected rise in discount rates,

$$\Delta E_1 \sum_{j=1}^{\infty} (1 - \omega^j)r_{t+1} = 1,$$

again letting all other variables take their average values given this innovation. I call this event a “discount rate shock.” I do not orthogonalize the fiscal and discount rate shocks, and in fact we will see they are highly correlated.

Here, rather than move inflation on the left-hand side of the identities, to see which terms on the right-hand sides move, I move each of the two terms on the right-hand
side of the identities, to see how inflation moves, or how the other term on the right-hand side moves.

The response of the sum of future surpluses and growth to a shock ε_1 is

$$\Delta E_1 \sum_{j=0}^{\infty} (s_{1+j} + g_{t+j}) = (a_s + a_g)' (I - A)^{-1} \varepsilon_1,$$

in the notation of (4.18), where and a_s, a_g pick s and g out of the VAR, $s_t = a'_s x_t$.

To specify a surplus shock, then, I run for each variable z a regression

$$\varepsilon_{z,t+1} = b_z \times (a_s + a_g)' (I - A)^{-1} \varepsilon_{t+1} + u_{z,t+1}. \tag{4.19}$$

Then, I start the surplus-shock response function at

$$\varepsilon_1 = -[b_r \quad b_g \quad b_\pi \quad ...]'.$$

Similarly, to calculate responses to a discount-rate shock, I run

$$\varepsilon_{z,t+1} = b_z \times (a_r - a_\pi)' \left[A(I - A)^{-1} - \omega A(I - \omega A)^{-1} \right] \varepsilon_{t+1} + u_{z,t+1}.$$

I start the discount-rate response function with the negative of these regression coefficients as well, capturing the response to a discount rate decline.

Figure 4.6 presents the responses to the surplus shock, and the “surplus” rows of Table 4.2 tabulate the decompositions. The sum of surplus and growth responses to the surplus shock is $-0.66 - 0.34 = -1.00$ by construction. Surpluses follow an s-shaped response, but the initial deficits are not fully matched by subsequent surpluses.

This decline in surpluses and growth has essentially no effect on inflation. Starting in year 2, inflation declines – the “wrong” direction – by less then a tenth of a percent, and the overall weighted sum of inflation declines by a tenth of a percent.

Why is there no inflation? Because discount rates also decline, with a weighted sum of 1.10%, almost exactly matching the surplus decline. The lower panel of Figure 4.6 adds insight. We see a sharp and persistent decline in the interest rate, long-term bond yield, and expected bond return.

This figure captures the event of a widening deficit, accompanied by a decline in growth and interest rates, i.e. a recession. The deficits are not completely repaid by subsequent surpluses or growth. That fact occurs by construction, as we are selecting such events by forcing a 1% decline in the discounted sums. We find however,
4.4. THE ROOTS OF INFLATION

Figure 4.6: Responses to a surplus and growth shock, $\Delta E_1 \sum_{j=0}^{\infty} (s_{1+j} + g_{1+j}) = -1$. That real interest rates decline persistently in this recession and its aftermath. This decline in real returns essentially pays for the deficits. Viewed in ex-post terms, the
Figure 4.7: Responses to a discount-rate shock $\Delta E_1 \sum_{j=1}^{\infty} (1 - \omega^j) (r_n^{1+j} - \pi_{1+j}) = 1.$

1 government runs a deficit, builds up the debt and then a low real return brings the value of debt back rather than larger taxes or lower spending. There is, on average,
4.4. THE ROOTS OF INFLATION

very little inflation or deflation.

The response to the discount rate shock in Figure 4.7 is almost exactly the same. The weighted discount-rate response is -1.00 here by construction. This discount rate decline should be deflationary, and it is, a bit. But the disinflation peaks at -0.1% and the weighted sum is only -0.18%. Why is there no deflation? Because a sharp growth and surplus decline accompanies this discount rate decline, with a pattern almost exactly the same as we found from the growth and surplus shock. In the bottom panel, the expected return decline comes with a decline in interest rates and bond yields, as we would expect.

Clearly, the surplus + growth shock and the discount-rate shock have isolated essentially the same events: recessions in which growth falls, deficits rise persistently, interest rates fall, and, on average in this sample, inflation doesn’t move much, and the converse pattern of expansions. The fiscal roots of the absence of inflation, in the end, characterize these movements in the data.

One can read the responses as Fed reactions. In response to an adverse economic shock, which lowers surpluses and would cause fiscal inflation, the Fed persistently lowers interest rates. With sticky prices this move lowers real interest rates, the discount rate for government debt, which is a counteracting deflationary force. Or one can read them as straightforward economic reactions, that the same economic shocks lower real interest rates directly.

In sum,

- *Surplus and discount-rate shocks paint the same picture: Large deficits are not completely repaid by subsequent growth or surpluses. Instead, they correspond to extended periods of low returns. The deficit and discount-rate effects largely offset, leaving little inflation on average. Discount-rate variation explains why deficits, not repaid by future surpluses, do not result in inflation.*

These fiscal roots of the lack of inflation, a dog that did not bark, are just as important as the fiscal roots of inflation. Except for the 1970s, the postwar U.S. saw remarkably little and stable inflation, relative to the size of its recurring deficits and surpluses. Some recessions, like 2008, have disinflation, yet others do not, and the inflation is quite small relative to the deficit shocks. Yet we have a completely fiat currency, with no redemption promise – no gold. This period, along with similar outcomes in Europe and Japan, are the first time in a thousand years that fiat currency did not swiftly inflate at the first sign of trouble. What are the implicit fiscal and monetary commitments that allowed this miracle? We are looking at them. The U.S.
Treasury has gained a sufficient reputation for repaying its debts, either directly or by low real interest rates which bring the debt-to-GDP ratio back again. Studying and understanding these commitments is an essential precondition to speculating how long they will endure or whether and how they will fall apart.

4.4.3 Results vary with shock definitions

Since there are multiple shocks in the VAR, the results depend on which combination of shocks one looks at. One wishes for a one-dimensional story, that all recessions are in some sense alike. But the data are not one-dimensional. Some recessions come with disinflation, some come with more inflation. An inflation shock, that ends up being negatively correlated with output, and an aggregate demand shock that forces a positive correlation of output and inflation come to different results. Conditioning on seeing inflation, there is no change in the discounted sum of surpluses. Conditioning on a change in the discounted sum of surpluses, there is no inflation. The last two exercises suggest that deficit shocks in a recession are not repaid with subsequent surpluses. Yet Cochrane (2019) finds that deficit shocks in recessions are largely repaid by surpluses in the following expansion. Well, here we define the shock by a permanent reduction in surpluses, so of course there is a permanent reduction in surpluses. There I looked only at the event of a recession.

Beyond this VAR, one would like to identify monetary and fiscal policy shocks. For example, one might want to identify a movement in interest rates unconnected to changing fiscal policy as well as the traditional goal that the shock is unconnected with changing forecasts of the economy. One would like to identify the true structural shocks of explicit models. This is a characterization of the relatively benign 1948-2018 U.S. economy. Our past, our future, and other countries may be different.

The multiple ways to define shocks should not surprise us or discourage us. There are many shocks to the economy. Recessions are not all alike, as the Phillips curve literature found out long ago. The economy responds differently as different shocks are turned on and off. Defining and orthogonalizing interesting shocks is hard, and remains fertile ground for both theory and empirical investigation. Once again, there is much low-hanging fiscal-theory fruit.
Chapter 5

FTPL in sticky-price models

Now, we build towards a fiscal theory of monetary policy model that is consistent with data. To do that, we add three essential ingredients: Sticky prices, long-term debt, and a surplus process with an s-shaped moving-average representation.

The models so far have been completely frictionless, representatives of the “classical dichotomy” that changes in the price level have no effect on real quantities. Inflation is like measuring distances in feet rather than in meters. In reality, changes in the price level are often connected to changes in real quantities. Monetary economics is centrally about studying ways that inflations and deflations can cause temporary booms and recessions.

Many mechanisms have been considered to describe nominal-real interactions. I work here with the standard and simple model that prices are a bit sticky. I’m no happier about the assumption of sticky prices than anyone else who works in this area, or with the specification of common sticky price models. We certainly need a deeper understanding of just why monetary shocks often seem often to have real effects, yet sometimes none whatsoever as in currency reforms. But one should not innovate in two directions at once. Therefore, in this book I explore how the fiscal theory of the price level behaves if we combine it with utterly standard, though unrealistic, models of sticky prices. Equivalently, I explore how standard sticky-price models behave if we give them fiscal underpinnings rather than the conventional “active” monetary policy assumption. Let us first to see how to mix price stickiness with fiscal theory, how fiscal theory alters this most familiar model, and then add ingredients or innovations to those ingredients.
Adding sticky prices we also see how close the statement and techniques of fiscal
theory of monetary policy can be to standard new-Keynesian DSGE models. The
results, however, can be quite different. By using the same specification as in stan-
dard new-Keynesian models, we see clearly how the fiscal theory assumption alone
changes the results.

I proceed by building models of increasing complexity, adding one ingredient at a
time. Though it takes a bit more space, I find this approach helps to understand the
intuition, mechanisms, and practical application of a model, that are obscured if we
start with the most general case.

5.1 The simple new Keynesian model

We meet the standard new-Keynesian sticky-price model

\[x_t = E_t x_{t+1} - \sigma (i_t - E_t \pi_{t+1}) \]
\[\pi_t = \beta E_t \pi_{t+1} + \kappa x_t. \]

The standard new-Keynesian sticky-price model is

\[x_t = E_t x_{t+1} - \sigma (i_t - E_t \pi_{t+1}) \quad (5.1) \]
\[\pi_t = \beta E_t \pi_{t+1} + \kappa x_t. \quad (5.2) \]

These two equations generalize the simple model \(i_t = E_t \pi_{t+1} \) of Section 2.5 to include
sticky prices, which affect output \(x_t \). Equation (5.1) is the “IS” equation, which I like
to call the Intertemporal Substitution equation. Higher real interest rates induce the
consumer to save more, and to consume less today than tomorrow. With no capital
and no government purchases, consumption equals output. Equation (5.2) is the
new-Keynesian Phillips curve. Output is high when inflation \(\pi \) is high relative to
expected future inflation.

To derive (5.1), start from consumer first-order conditions,

\[1 = E_t \left[\beta \left(\frac{C_{t+1}}{C_t} \right)^{-\gamma} (1 + i_t) \frac{P_t}{P_{t+1}} \right]. \]

Linearize and approximate to

\[E_t (c_{t+1} - c_t) = -\sigma \delta + \sigma (i_t - E_t \pi_{t+1}) \]
where \(c_t = \log C_t \), \(\sigma = 1/\gamma \) and \(\delta = -\log \beta \). Suppressing constants and with consumption equal to output \(c_t = x_t \) we get (5.1):

The Phillips curve (5.2) comes from the first-order condition for monopolistically-competitive price setters, facing costs of changing prices or a random probability of being allowed to change price. Firms set prices today knowing that prices will be stuck for a while, so they set prices with expected future prices in mind. While prices are stuck, they meet extra demand by selling more. Both equations are deviations from steady states, so \(x \) represents the output gap.

I jump to these linearized equilibrium conditions, but a big point of the new-Keynesian enterprise is that this structure has detailed micro-foundations, and can thus hope to survive the Lucas (1976) critique. King (2000), Woodford (2003) and Galí (2015) are good expositions.

We can integrate the equations separately to express some of their intuition:

\[
x_t = -\sigma E_t \sum_{j=0}^{\infty} (i_{t+j} - \pi_{t+j+1})
\]

\[
\pi_t = \kappa E_t \sum_{j=0}^{\infty} \beta^j x_{t+j}.
\]

Output is low when current and expected future real interest rates are high. Inflation is high when current and expected future output gaps are high. Equation (5.4) helps us to see that \(\kappa \to \infty \) is the flexible-price limit. In that limit, output is the same for any value of inflation.

Most models add disturbances to equations (5.1) and (5.2), and study the economy’s responses to shocks to these disturbances, in addition to the responses to fiscal and monetary policy shocks that I study here. IS shocks to (5.1) can be formalized as discount rate shocks, and are often viewed as a stand-in for financial shocks such as 2008. Phillips curve shocks, often called “marginal cost” shocks, are also important in the data.

I leave out such disturbances for now. My purpose is pedagogical: Once you see how to adapt this model to fiscal theory, adding other disturbances is technically easy. We are often most interested in analyzing the effects of policy, so that is a good place to start as well.

However, analyzing the effects of other shocks and how fiscal theory affects those responses is likely to be revealing as well. In this simple model, most inflation is
explained by inflation shocks, and most output is explained by output shocks. The
structure of the model, and the effects of policy or other-equations’ shocks add little.
This is unfortunate. Does fiscal theory change the picture? It will be interesting
to find out. However, a question like that needs to move quickly to more realistic
models, not just this textbook playground.

5.1.1 An analytical solution

The model can be written with inflation as a two-sided moving average of interest
rates, plus a moving average of past fiscal shocks. We set the stage for impulse-
response functions.

We can eliminate output \(x_t \), from (5.1)-(5.2), leaving a relation between interest rates
\(i_t \) and leads and lags of inflation \(\pi_t \). First difference (5.2), substitute in (5.1), invert
the lag polynomial and expanding by partial fractions to obtain

\[
\pi_{t+1} = \frac{\sigma \kappa}{\lambda_1 - \lambda_2} \left[i_t + \sum_{j=1}^{\infty} \lambda_1^{-j} i_{t-j} + \sum_{j=1}^{\infty} \lambda_2^j E_{t+1} i_{t+j} \right] + \sum_{j=0}^{\infty} \lambda_1^{-j} \delta_{t+1-j}.
\]

\[(5.5) \]

(Algebra in Section 25.7 of the Online Appendix.) Here,

\[
\lambda_{1,2} = \frac{(1 + \beta + \sigma \kappa) \pm \sqrt{(1 + \beta + \sigma \kappa)^2 - 4 \beta}}{2},
\]

\[(5.6) \]

and \(\delta_{t+1} \) is an expectational shock, corresponding to an undetermined initial condi-
tion in a non-stochastic difference equation, with \(E_t \delta_{t+1} = 0 \). I use the letter \(\delta \) to
indicate expectational shocks as distinct from structural \(\varepsilon \) shocks. In words, inflation
in is a two-sided moving average of past and expected future interest rates. We have
\(\lambda_1 > 1 \) and \(\lambda_2 < 1 \), so the moving averages as expressed converge.

Taking innovations of (5.5), we now have

\[
\Delta E_{t+1} \pi_{t+1} = \frac{\sigma \kappa}{\lambda_1 - \lambda_2} \left[\sum_{j=1}^{\infty} \lambda_2^j \Delta E_{t+1} i_{t+j} \right] + \delta_{t+1}.
\]

\[(5.7) \]

Since changing expectations of future interest rates also enter (5.5), we no longer
have \(\delta_{t+1} \neq \Delta E_{t+1} \pi_{t+1} \) in this expression of the results.
5.1. THE SIMPLE NEW KEYNESIAN MODEL

We have

\[\frac{\sigma \kappa}{\lambda_1 - \lambda_2} = \left(1 + \frac{\lambda_1^{-1}}{1 - \lambda_1} + \frac{\lambda_2}{1 - \lambda_2} \right)^{-1}. \]

(5.8)

This expression shows that the sum of the coefficients in (5.5) is one. A one percent permanent interest-rate rise leads eventually to a one percent rise in inflation.

Recognize in (5.5) a generalization of the simple model

\[\pi_{t+1} = i_t + \delta_{t+1} \]

(5.9)

deriving from its flexible-price “IS” equation,

\[i_t = E_t \pi_{t+1}. \]

(5.10)

Equation (5.5) is the same equation, with moving averages on the right-hand side as a result of sticky prices. We can anticipate that sticky prices will give us smoother and thus more realistic dynamics by putting a two-sided moving average in place of sharp movements. In (5.5), past expectational shocks also affect inflation today, again leaving more realistic delayed effects in place of the sudden jumps of the frictionless model. Similarly, (5.7) naturally generalizes \(\Delta E_{t+1} \pi_{t+1} = \delta_{t+1} \).

Equation (5.5) looks like the response of inflation to a time-varying peg, but it is more general than that. It describes the relationship between equilibrium interest rates and inflation, no matter how one arrives at those quantities. It tells you what inflation is given the interest rate path. For example, if one writes a monetary policy rule \(i_t = \theta \pi_t + u_t \), \((5.5) \) still holds of the equilibrium \(i_t \) and \(\pi_t \).

We have multiple equilibria and an expectational shock \(\delta_t \) because we haven’t completed the model. Our next job is to complete the model by adding the government debt valuation equation. Our task, conceptually, is to proceed exactly as in Section 2.5. There, we united \(i_t = E_t \pi_{t+1} \) with

\[\Delta E_{t+1} \pi_{t+1} = -\varepsilon_{\Sigma s, t+1} \]

(5.11)

where

\[\varepsilon_{\Sigma s, t+1} \equiv \Delta E_{t+1} \sum_{j=0}^{\infty} \rho^j \tilde{z}_{t+1+j}, \]

to conclude

\[\pi_{t+1} = i_t - \varepsilon_{\Sigma s, t+1}, \]

(5.12)

I plotted responses to monetary and fiscal shocks. We take the same steps here.
To compute the simplest example, start with short-term debt $\omega = 0$. With short-term debt, the nominal bond return equals the nominal interest rate $i_t = r^m_t + 1$. Then, the linearized unexpected inflation identity (3.22) adds a discount rate term to (5.11), because real interest rates may vary,

$$\Delta E_{t+1} \pi_{t+1} = \Delta E_{t+1} \sum_{j=1}^{\infty} \rho^j (i_{t+j} - \pi_{t+1+j}) - \varepsilon_{s,t+1}. \quad (5.13)$$

The model thus consists of (5.5) and (5.13) in place of (5.11).

In addition to the smoothing effects of sticky prices, monetary policy now has a fiscal effect, by changing the real discount rate for government debt. Higher interest rates can provoke an unexpected inflation without any direct change in surpluses.

Output now varies as well. We can find output from inflation via the Phillips curve, or directly,

$$\kappa x_{t+1} = \frac{\sigma \kappa}{\lambda_1 - \lambda_2} \left[(1 - \beta \lambda_1^{-1}) \sum_{j=0}^{\infty} \lambda_1^{-j} i_{t-j} + (1 - \beta \lambda_2^{-1}) \sum_{j=1}^{\infty} \lambda_2^j E_{t+1} i_{t+j} \right] +$$

$$+ (1 - \beta \lambda_1^{-1}) \sum_{j=0}^{\infty} \lambda_1^{-j} \delta_{t+1-j}. \quad (5.14)$$

5.1.2 Responses to monetary and fiscal shocks

We add fiscal theory of the price level to the basic new-Keynesian model by adding the linearized flow equation for the real value of government debt $\rho v_{t+1} = v_t + i_t - \pi_{t+1} - s_{t+1}$. I calculate the response to monetary and fiscal policy shocks. The responses resemble those of the frictionless model, but with dynamics drawn out by sticky prices.

While the present-value expressions of individual equations or pairs of equations such as (5.13) or (5.5) provide a lot of intuition, they are not a practical route to solving more complex models. Instead, it is easier to write the model in first-order form and then solve the whole system, usually numerically, by matrix methods.

To specify and compute solutions to this model, then, I add the linearization (3.17) of the fiscal flow condition to the new-Keynesian model (5.1) - (5.2). Retaining one-period debt and hence $i_t = r^m_t + 1$, the resulting model is

$$x_t = E_t x_{t+1} - \sigma (i_t - E_t \pi_{t+1}) \quad (5.15)$$
5.1. **THE SIMPLE NEW KEYNESIAN MODEL**

\[
\begin{align*}
\pi_t &= \beta E_t \pi_{t+1} + \kappa x_t \\
\rho \nu_{t+1} &= v_t + i_t - \pi_{t+1} - \tilde{s}_{t+1}. \\
\end{align*}
\] (5.16)

We write this set of equations in matrix form, and then solve unstable eigenvalues of the system forward and stable eigenvalues backward, rather than solve forward or backward individual equations and then attempt to solve for individual endogenous variables. I defer the algebra to Online Appendix Section 25.9. Since \(\rho \leq 1 \), equation (5.16) provides the additional forward-looking root needed to determine the expectation error \(\delta_{t+1} \) and give a unique solution. The previous identities came from solving (5.16) forward on its own, so they are incorporated by this method. They remain useful guides to the intuition of model solutions.

![Figure 5.1](image)

Figure 5.1: Response to an unexpected permanent interest-rate shock, with no fiscal shock, in the simple sticky-price model. Parameters \(r = 0.01, \sigma = 1, \kappa = 0.25 \).

Figure 5.1 presents responses to an unexpected permanent interest-rate rise, with no change to surpluses. Compare this figure to the responses in the flexible-price model of Figure 2.1. There are two big differences and one disappointment. First, sticky prices are, well, sticky. The inflation response is drawn out.
Second, there is an immediate positive inflation response, $\pi_1 > 0$ on the same date as the interest rate shock, while previously inflation did not move until the next period. How can inflation move instantly without a shock to surpluses? Inflation moves because of the discount rate effect, seen in equation (5.13). Expected interest rates rise, expected inflation does not rise by the same amount, so the real interest rate rises. A higher real interest rate raises the discount rate for unchanged future surpluses. The present value of unchanged surpluses falls, pushing up inflation π_1. Equivalently, the higher debt service costs resulting from higher real interest rates and rolling over one-period debt add to the fiscal burden, and provoke the same response that a decline in surpluses would provoke.

This is an important mechanism. Monetary policy can have indirect fiscal effects on inflation, because monetary policy can change the discount rate for surpluses, or, using flow budget intuition, the real interest costs of the debt.

However, I define here a monetary policy shock as one that leaves surpluses unchanged. If the Treasury raises surpluses to cover real interest costs, then higher surpluses just match higher discount rates. The present value of surpluses remains unchanged and this immediate inflation does not appear.

Which is the right assumption? There is no easy answer. Do the Treasury and Congress routinely adapt other parts of the budget to pay for higher interest costs? Does the “fiscal rule” start with a commandment to pay for interest costs on the debt out of current and future surpluses? More generally, how does fiscal policy respond to a monetary policy change, or to the economic consequences (inflation, output, employment, interest costs of the debt) of a monetary policy change? There are lots of possibilities, and no hard and fast rule covering all countries and all times. We see again the more general point: The nature of fiscal policy responses to endogenous variables matters a lot to the effects of changes in the interest-rate target.

No matter what the Treasury typically does, the question, what if interest rates change and there is no change to surpluses, remains a valid question to ask, as a policy what-if, as are its alternatives. The issue is whether it’s an interesting question. One may ask multiple questions. One might well imagine Fed officials wanting to know the path of output and inflation following an interest rate rise under several different assumptions about fiscal policy reactions.

For example, one might say the immediate rise in inflation is more likely to happen for a government in fiscal difficulty, whose Treasury is less likely to raise taxes to cover larger interest costs on the debt, and less likely to occur in an economy whose Treasury announces that its notion of fiscal responsibility aims to zero overall deficits,
i.e. to raising surpluses in order to pay higher real interest costs of the debt, and has the fiscal space to do it. One might say that the rise in inflation is more likely for a government or a time with larger outstanding debt, which raises interest costs of interest-rate rises proportionally.

The disappointment is that sticky prices alone do not lead to a negative response of inflation to interest rates. You might have thought higher nominal interest rates would mean higher real rates, which depress aggregate demand, and via the Phillips curve lead to less inflation. That ISLM thinking does not apply in this model.

In fact, stickier prices lead to more positive time-1 inflation in this model, as shown by the dashed line in Figure [5.1](#). As inflation becomes infinitely sticky, as \(\kappa \to 0 \), this model approaches an inflation jump at time 1. That response is not just “Fisherian” -- inflation starts at time 2, one period after the interest rate rise -- but “super-Fisherian” -- inflation starts immediately at time 1, and rises exactly by the amount of the nominal interest rate. A nominal interest rate permanently above inflation has a large discount rate effect.

Higher interest rates do lead to lower output. With this forward-looking Phillips curve, output is low when inflation is low relative to future inflation. Equivalently, output is low when current and future real interest rates are high as in (5.3). So, this model generates the conventional wisdom that higher interest rates with sticky prices lower output.

Output does not return exactly to zero, as this model features a small permanent inflation-output tradeoff. From (5.2), permanent movements in \(x \) and \(\pi \) follow

\[
x = \frac{1 - \beta}{\kappa} \pi.
\]

One way to eliminate the long-run tradeoff is to set \(\beta = 1 \), so that expected future inflation shifts the Phillips curve one for one. Another solution, which also helps to fit the data, is to include a lag of inflation,

\[
\pi_t = (1 - \theta) \pi_{t-1} + \theta E_t \pi_{t+1} + \kappa x_t.
\]

Now there is no long-run output-inflation tradeoff, and this modification improves the empirical fit. This change can be rationalized as the effects of indexation ([Cogley and Sbordone (2008a)](#)).

Figure [5.2](#) presents the response to a fully expected rise in interest rates. In the simple model of Figure [2.1](#) we found that expected and unexpected interest rates
CHAPTER 5. FTPL IN STICKY-PRICE MODELS

Figure 5.2: Response to a fully expected rise in interest rates in the fiscal theory model with price stickiness. Parameters $r = 0.01$, $\kappa = 0.25$, $\sigma = 1$.

had exactly the same effect on inflation. That is no longer true. Inflation now moves
ahead of the expected interest rate rise, reflecting the two-sided moving average
in (5.5). The expected interest rate rise also lowers output, but now output goes
down in advance of the interest rate rise that causes it. We see a form of “forward
guidance”: Announcements of future interest-rate changes, if believed, affect inflation
and output today.

Figure 5.3 presents the model’s response to a time-1 fiscal shock, with no change in
nominal interest rates. Compare this response to the response to the same shock
without price stickiness in Figure 2.1.

First, a deficit shock still raises inflation. But with price stickiness we now have a
drawn-out response, rather than a one-period price-level jump. We are on our way
to describing drawn-out inflation in response to fiscal shocks.

Second, the 1% fiscal shock now only produces a 0.4% immediate rise in inflation,
not 1% as before. In the first period we see the lower real return, a lower discount
rate, which is a deflationary force.

Cumulative inflation is still 1% however. The deficit still must all come eventually
out of the pockets of period-0 bondholders. One-period bondholders receive a lower real return on their bonds. With flexible prices and constant real rates, expected future inflation cannot devalue one-period bonds. But with sticky prices, higher expected inflation can produce lower real returns, so even one-period debt can be slowly devalued. This mechanism helps to overcomes the unrealistic instantaneous price-level jumps of the flexible-price model. In continuous time, below, it becomes the entire mechanism, with no price-level jumps.

Third, high inflation relative to future inflation means an output expansion in response to the deficit shock. This inflationary fiscal expansion thus looks a bit like “fiscal stimulus.” Again, however, the present value of future surpluses matters, not the current deficit. The usual promises of deficit today, returning to budget balance and debt repayment tomorrow, if believed, have no effect in this model.

The shock is a shock to the weighted sum of current and future surpluses. If the shock is to expectations of future deficits, this graph or its opposite offers an interesting picture of a boom and inflation, or recession and disinflation, that seems to come from nowhere, from animal spirits or sunspots, without any visible fundamental shocks to

Figure 5.3: Response to a deficit shock $\varepsilon_{s,1} = -1$ with no interest rate movement in the sticky-price fiscal theory model. Parameters $r = 0.01$, $\sigma = 1$, $\kappa = 0.25$, $\eta_s = 0$.
the economy or to policy. We see a lot of such events.

5.1.3 A comment on responses to expected movements

I highlight responses to expected as well as unexpected policy movements. The response to expected policy variables is not often calculated, but it should be.

The habit of plotting responses to unexpected disturbances derives from comparing the results to vector autoregressions (VARs). VARs want to answer the causal question, what if the central bank deviates from the policy rule or raises interest rates? But we cannot answer this question by simply regressing inflation on interest rates. If, say, higher interest rates are followed by higher inflation, it might be the case that the Fed raises interest rates when it sees higher inflation ahead, not that higher interest rates cause higher inflation. To estimate the answer to the causal question, VARs try to find a movement in interest rates that is not taken in response to changing expectations of future inflation or output growth. It helps in this quest to find interest rate disturbances that are unanticipated. I write “helps,” as being unexpected is neither necessary nor sufficient for the causal question. An interest rate movement known ahead of time may still be orthogonal to inflation or output forecasts, and an unexpected movement can respond to contemporaneous revisions to inflation forecasts. The latter possibility is the subject of the huge orthogonalization search, but variables left out of the VAR remain.

The habit of looking at responses to unexpected shocks also derives from experience with information-based rational-expectations models such as Lucas (1972), in which only unexpected monetary policy shocks have any real output effect. To characterize the economics of such a model, it makes sense to calculate the response to unexpected movements.

But those habits are not relevant to our purposes here. Many of our central banks’ policy interventions are announced months or years ahead, with no contemporaneous change in interest rates. Such “forward guidance” has become an explicit part of the Federal Reserve’s “toolkit.” The response of the economy to the announcement of future interest rate changes is a more relevant exercise to this policy question than “What if we surprise people with an out-of-the-blue 1% interest rise, followed by AR(1) decay?”

Unexpected and identified monetary policy shocks are also too emphasized in seeing how a model matches data. Truly exogenous and unexpected monetary policy shocks
are tiny, if they exist at all. Our central banks explain every action as a response to events, not as deliberate random experiments. Monetary policy shocks account for small fractions of the variation of interest rates, inflation, and output in most VAR estimates and model-based variance accounting.

We often make response plots to understand the workings of a model. Sticky-price models give output responses to expected monetary policy disturbances, unlike the early rational expectations models, so responses to expected policy are interesting characterizations of the models. And even in the information-based rational-expectations models, expected monetary policy moves inflation.

For understanding the logic of a model, conventional impulse-response functions mix several ingredients. The policy variable also responds to the shock. An interest rate surprise raises our forecast of subsequent interest rates. Is the response of endogenous variables such as inflation and output a structural, economic, lagged response to the original shock? Or is it a structural, contemporaneous response to the future disturbance? Does the model have interesting dynamics, or are the dynamics all coming from dynamics of the forcing variables?

The flexible price model offers an example. We have \(i_t = E_t \pi_{t+1} \) and thus \(E_t i_{t+j} = E_t \pi_{t+j+1} \). A drawn-out response of inflation \(\pi_{t+j} \) to an interest rate shock \(\varepsilon_{t,t} \) is entirely the result of a drawn-out interest rate response to the same shock, and a one-period response of inflation to those future interest rates. The model has no dynamics, no matter how pretty the dynamics of the plot. Figure 2.2 is a good example.

The effects of expected policy changes are also rarely calculated, because the solution method leads naturally to AR(1) representations. It’s not hard to shoehorn an expected movement into an AR(1), but people tend not to do it.

For all these reasons, it’s interesting to know how the economy reacts to anticipated policy movements, or more generally it’s interesting to separate announcement effects from effects of the later expected policy variable movement.

(In Cochrane (1998b) I reinterpreted monetary VAR estimates them through the lens that anticipated money might matter, unwinding thereby the response function to the structural effect and the effect of expected future policy. Since policy shocks are persistent, that exercise led to a much less persistent estimate of the dynamic structure in the economy than obtains if we regard the response function as a delayed economic response to the initial shock. Cochrane (1994c) documents the view that VARs assign little output and inflation variance to monetary policy shocks. The
view that recessions are primarily the Fed’s fault as a result of such shocks, does not hold up in VAR estimates. The VAR survey in Ramey (2016) offers updates.)

5.2 Long-term debt

I introduce long-term debt into the discrete-time sticky-price model. The model modifies the debt-accumulation equation, and adds an expectations-hypothesis model of bond prices:

$$\rho v_{t+1} = v_t + r^n_{t+1} - \pi_{t+1} - \bar{s}_{t+1}. $$
$$E_t r^n_{t+1} = i_t$$
$$r^n_{t+1} = \omega q_{t+1} - q_t.$$

This modification gives a temporary inflation decline after a rise in interest rates.

Next, I add long-term debt. As a reminder, in Section 3.1 with flexible prices, we found that with long-term debt, an interest-rate rise leads to a one-period inflation decline, see Figure 3.1. We have just seen how sticky prices give rise to smooth dynamics. Putting the two ingredients together, we produce smooth dynamics and negative output and inflation responses to higher interest rates.

The model consists of the usual IS and Phillips curves, (5.1)-(5.2), the linearized flow condition now with long-term debt (3.17), and two bond-pricing equations to determine the government bond portfolio rate of return r^n_{t+1}:

$$x_t = E_t x_{t+1} - \sigma (i_t - E_t \pi_{t+1})$$
$$\pi_t = \beta E_t \pi_{t+1} + \kappa x_t$$
$$\rho v_{t+1} = v_t + r^n_{t+1} - \pi_{t+1} - \bar{s}_{t+1}.$$
$$E_t r^n_{t+1} = i_t$$
$$r^n_{t+1} = \omega q_{t+1} - q_t.$$

Just adding (5.19) with $r^n_{t+1} \neq i_t$ would not be enough, as we need to determine the ex-post nominal bond return r^n_{t+1}. To this end I assume the expectations hypothesis that the expected return on bonds of all maturity is the same in equation (5.20), and I add the linearized pricing equation for bonds with geometric maturity structure $B_{t-1}^{(t+j)} = \omega^j B_{t-1}$ in (5.21). The variable q_t in equation (5.21) is the log bond price.
This equation is derived as equation (25.24) in the Online Appendix. Generalization
to time-varying bond risk and liquidity premiums and the actual maturity structure
beckons.

Again, we solve all the flow relations together by the matrix method outlined in
Online Appendix Section 25.9. I write \(r_{t+1}^n = i_t + \delta r_{t,1+1} \). I then substitute
out \(r_{t+1}^n \). Equations (5.19)-(5.21) become
\[
\rho v_{t+1} = v_t + i_t - \pi_{t+1} - \bar{s}_{t+1} + \delta r_{t,1+1} \\
\omega q_{t+1} = q_t + i_t + \delta r_{t,1+1}.
\]

The latter, solved forward, gives one more explosive root to determine the additional
expectational error \(\delta r_{t,1+1} \).

Figure 5.4: Response to an unanticipated permanent interest rate rise, with sticky
prices, no change in surpluses, and long-term debt. Parameters \(r = 0.001, \sigma = 1, \kappa = 0.25, \omega = 0.8 \).

Figure 5.4 presents the response to an unexpected permanent interest-rate rise in
this model using \(\omega = 0.8 \). Where with short-term debt and sticky prices in Figure
5.1 inflation started rising immediately, now we have a disinflation. Relative to
the flexible-price long-term debt case in Figure 3.1, we have a drawn-out disinflation, rather than a one-time downward price-level jump. The temporary disinflation coincides with an output decline as well, capturing standard intuition.

Higher inflation eventually reemerges. This model does not produce the view, common in the policy world, that higher interest rates permanently reduce inflation. That result occurs in an old-Keynesian, irrational-expectations model, but not in rational-expectations models. Sims (2011) calls the pattern of lower and then higher inflation “stepping on a rake,” and Sims advances it as a description of the 1970s, in which interest-rate increases temporarily reduced inflation and caused recessions, but inflation then came back more strongly.

The dashed line marked “π, ω = 0.9” shows inflation with longer maturity structure, ω = 0.9 rather than ω = 0.8. Sensibly, a longer maturity structure produces a larger and more protracted disinflation from the same interest rate path.

The lower dashed line marked “π, κ = ∞” shows inflation in the flexible-price case κ = ∞. Without sticky prices, as in Figure 3.1, the inflation decline lasts one period and then inflation rises immediately to 1%. (I cut off the line so it does not overlap with the others.) The initial decline in inflation is larger when prices are less sticky, though the decline in inflation doesn’t last as long. Discount-rate variation accounts for this effect. Higher nominal rates mean higher real rates, which discount surpluses more heavily and act as a countervailing inflationary force. Look at the inflation identity (3.20) in this case:

\[\Delta E_1 \pi_1 - \Delta E_1 r^n_1 = \sum_{j=1}^{\infty} \rho^j \Delta E_1 \left(r^n_{1+j} - \pi_{1+j} \right). \]

The negative nominal bond return \(\Delta E_1 r^n_{t+1} \) is set by the interest rate rise and the expectations hypothesis, independent of the debt maturity structure. Without the right-hand term, inflation has to decline by the same amount as the bond return. But with sticky prices, the right-hand term kicks in. The higher discount rate in that last term is an inflationary force, which partially offsets the deflation induced by higher interest rates.

That stickier prices imply less disinflation reminds us that even though the response functions capture common ISLM or monetarist intuition, the mechanism is entirely different. The disinflation is entirely a wealth effect of government bonds. The usual intuition would not work at all with flexible prices. Yet flexible prices produce a greater disinflation in this model.
5.3. HIGHER OR LOWER INFLATION?

Long-term debt has no effect on the responses to a fully-anticipated interest-rate rise, so Figure 5.2 with sticky prices and short-term debt also applies to long-term debt. Inflation rises one period after the interest rate rise. Like a fiscal shock, only an unanticipated shock to bond prices can lower their value. More generally, an announcement of higher future interest rates lowers long-term bond prices and inflation on the day of the announcement, not when the interest rates actually rise.

Long-term debt has no effect at all on the response to a fiscal shock when interest rates do not change in this model – Figure 5.3 is also completely unaltered. If current and expected future nominal rates do not respond to the fiscal shock, then long-term nominal bond prices do not respond to the fiscal shock, and the only reason in this model for a difference between long and short term debt disappears.

We can mix fiscal and monetary shocks. For example, monetary policy may offset the inflationary effect of a fiscal shock by raising interest rates. By doing so, the central bank can substitute the long slow later inflation for the current inflation of the fiscal shock. A policy rule can achieve the same thing, as we will see shortly: If the central bank systematically raises interest rates in response to inflation, then it will raise interest rates in response to a fiscal shock, and automatically perform this inflation-smoothing function.

5.3 Higher or lower inflation?

Do higher interest rates raise or lower inflation? I summarize the lessons of this simple model for this question with a list of considerations: Is the interest rate rise permanent, or temporary? Is the policy likely to be reversed, if inflation goes temporarily the other way? Is there a lot of long-term domestic-currency debt outstanding? Is the interest rate rise a surprise or widely anticipated? Are prices sticky? Is fiscal policy likely to react either to the same events or to the monetary policy intervention? How will fiscal policy react to larger interest costs? Each of these considerations is important to the sign of the effect of interest rates on inflation.

So, does raising interest rates raise or lower inflation, and conversely? These models offer a loud “it depends.” There is no mechanistic answer. Sometimes you will see a positive sign and sometimes a negative sign. That is a useful observation, as we see conflicting evidence. If the theory is right, and if we interpret it right, the theory will help us to avoid exporting experience from one event to another where the preconditions have changed. The theory will help us to design policies with either
sign: It will tell us how to raise inflation by raising interest rates, or how to lower inflation by raising interest rates. The point of an economic model is to spell out the “it depends” clauses. Historical correlations are always contingent, but without theory we know not on what.

The issue was in the air throughout the 2010s. The U.S., Japan and Europe, despite long periods of near-zero or even negative interest rates, and forward guidance of more to come, still had inflation below their targets. Most policy discussion remained anchored on how to raise inflation by applying more “stimulus,” lowering long-term rates through quantitative easing bond purchases, or by banning cash to allow negative interest rates. But a few academics and commentators started to question that perhaps the steering wheel is attached backwards. Perhaps a steady and widely pre-announced interest-rate rise might raise inflation, at least eventually. For examples, see Schmitt-Grohé and Uribe (2014), Uribe (2018), and Kocherlakota (2010). A Fisherian response is a frequent prediction of standard new-Keynesian models, as these authors, Garín, Lester, and Sims (2018), and Section 17 below point out, only made stronger when one rules out or limits the fiscal contraction contemporary to an interest rate rise that such models imply. Could these countries, if they wished to do so, raise inflation by raising interest rates? If so how? What combination of announcement, commitment, persistence, debt, and fiscal support is necessary?

A range of opinion in Brazil and Turkey, each dealing with persistent inflation, started to think that perhaps lowering interest rates is the secret to lowering inflation. But do these economies have the preconditions for that strategy to work?

Contrariwise, the memory of 1980 is strong, in which a sharp, unexpected, and persistent interest rate rise is thought to have been the key for lowering inflation. The memory of the 1970s, is likewise strong, in which too-low interest rates are thought to have raised inflation. Are these memories always-and-everywhere conclusive?

For an interest rate rise to lower inflation in this simple model, the interest rate rise must be persistent and unexpected. It must lower long-term bond prices, and only a credible and persistent interest rate rise will do that. It’s easy to write down a persistent process, but harder for the central bank to communicate that expectation and to commit to its communications. If people think this is a trial or experimental effort, or if they worry that the bank will quickly back down if events don’t conform to the banks’ forecasts, then people will not perceive the move as persistent. The rate rise must also be unexpected, or the bond prices will have already declined and the deflationary effect will have passed. A sudden shock, that is believed to
be long-lasting, a belief reflected in bond prices, is most likely to be disinflationary. The 1980-82 shock, for example, is widely thought to have had more commitment behind it than earlier attempts to lower inflation by raising interest rates, and it had a greater impact on long-term rates.

These preconditions for a negative effect differ from those of the standard new-Keynesian model with an AR(1) monetary policy disturbance, in which temporary interest rate rises have a larger negative inflation effect than do persistent interest rate rises. (Section 17.4.3.)

For an interest rate rise to lower inflation in this model, there must be long-term debt outstanding. Many countries in fiscal stress have moved to short-term financing, so there just isn’t that much long-term debt left. They are more likely to see higher interest rates raise inflation and vice versa.

Conversely, in this model, if the government wants to raise inflation by raising interest rates, the rise should be pre-announced far ahead of time, and also persistent. If the move is pre-announced before a lot of debt is sold, the inflation decline induced by the long-term debt mechanism is reduced. It helps if there is not much long-term debt outstanding so the initial negative effect can be smaller. The U.S. slow, widely pre-announced, and credible interest rate rises of the 2015-2019 period, which led to more inflation than in Europe which did not follow that policy, is a suggestive example of how to raise inflation, or at least a good contrast with 1980-1982.

The interest rate rise only affects domestic currency debt. A government that has largely borrowed in foreign debt cannot change the value of that debt by interest rate rises. Thus, a country that borrows more abroad is likelier to see inflation rise rather than decline when it raises interest rates.

The discount rate or interest cost effect adds an inflationary force of interest rate rises. With sticky prices, a nominal rate rise raises real rates, which lowers the present value of surpluses. Higher real rates also raise overall deficits, worsening the fiscal situation, i.e. requiring either surpluses or a faster increase in the debt. Loyo (1999) finds higher interest rates raised inflation in Brazil. Loyo points to a discount rate effect. Higher interest rates raise interest costs on the debt, worsening a fiscally-driven inflation. Argentina in the late 2010s may be an example. Under fiscal stress, the central bank tried to defend the currency and to lower inflation by repeated sharp interest rate rises. Each one seemed to quickly and perversely lower the exchange rate and result in more inflation.

The discount-rate or interest-cost effect is more important for highly indebted coun-
tries. At 100% debt-to-GDP ratio, each one percentage points rise in real interest rates adds 1% of GDP to interest costs. At 10% of GDP, the same rate rise only adds 0.1% of GDP to interest costs. So highly indebted countries, with much short-term debt and sticky prices are more likely to see higher interest rates translate into higher, not lower inflation, and vice versa, as they are less likely to take fiscal actions that offset interest costs.

The stickier prices, the more likely it is that higher interest rates raise inflation.

Concurrent fiscal events and monetary-fiscal interactions matter for the effects of interest rate policies. If fiscal authorities react to higher real interest costs by reducing primary deficits, that adds a deflationary effect of an interest rate rise. If fiscal authorities react to a reduction in real interest costs by abandoning fiscal reforms, a reduction in rates that monetary authorities hope to create disinflation will fail to do so. In analyzing episodes, we are likely to see a contemporaneous fiscal shock, or a fiscal response to monetary policy. If fiscal authorities see a rate rise and say, “Whew, the central bank is going to solve inflation for us, we can relax,” or if the monetary authorities tighten in response to what they see as too much fiscal stimulus, then we may see fiscal inflation, not temporary monetary disinflation, when the central bank raises rates. If the fiscal authorities cooperate with a joint monetary-fiscal contraction, then the inflation decline can be larger.

The Fisherian long-run prediction is not tied to fiscal theory vs. conventional models. All models have a Fisherian steady state, \(i = r + \pi \), and eventually real interest rates \(r \) revert to steady state. Thus, in all models, in the long run, \(i \) varies with \(\pi \). (There is some debate whether distortions make the relationship a bit more or less than one for one, which is not the point here.) The central question: Is this a stable, or an unstable steady state? If the central bank raises the interest rate target, permanently and immutably, once all the short run dynamics work out, will inflation converge to that higher rate, plus the real rate, or will we see spiraling deflation? Models in which the steady state is stable predict that eventually higher interest rates will lead to higher inflation, but there may be a lot of short-run dynamics in the opposite direction along the way. Since we mostly observe transitory interest rate target fluctuations, seeing that long-run response in the data is likely to be difficult. And if the short-run opposite dynamics are strong enough, and central banks understand them, central banks may wish to exploit them to push inflation where the banks desire more quickly, at least away from the effective lower bound. The pattern of lowering rates to get inflation going, and then raising interest to contain the inflation is consistent with the long-run Fisherian prediction that if the central bank were to raise rates, wait out a negative response, and sit there, inflation
would eventually rise.

The opposite story is instability, that raising interest rates and leaving them there forever leads to spiraling deflation. But central banks never do that. Telling a well-controlled unstable system – a seal balancing a ball on its nose – from a stable system – a pendulum – apart is not easy in the data. In both cases the top and bottom move together in the long run.

This model captures only one simple mechanism, long-term debt, by which higher interest rates may lead temporarily to lower inflation. The large literature on channels of monetary policy suggests many other mechanisms that might work, and continue to work in a fiscal theory model. More elaborate Phillips curves, credit constraints, balance-sheet channels and more financial frictions offer potential mechanisms. Higher real interest rates mean that households with short-term mortgages have to pay higher rates, and if the corresponding receipt of more interest revenue by lenders does not offset, inflation may decline. Integrating such models with fiscal theory is more low-hanging fruit. The results may deliver interesting additional preconditions for the sign of interest rates on inflation.

Empirical work is surprisingly unclear, given the strong and widespread belief that of course higher interest rates lower inflation and vice versa. Starting with Sims (1980), VAR estimates routinely find a “price puzzle” that tighter monetary policy raises inflation. The opposite prior being so strong, the result was chalked up to reverse causality, the Fed tightening in response to information about future inflation. It took a lot of delicate shock-identification carpentry to deliver the hoped-for result, prominently in Christiano, Eichenbaum, and Evans (1999), and even then a monetary tightening only slowly sets off a small downward drift in the price level. (Most of the literature also identifies tightening with a change in monetary aggregates.) In a survey and replication of this vast literature, Ramey (2016) finds that the “price puzzle” that higher interest rates result in higher inflation remains the central finding of VARs. Rusnak, Havranek, and Horvath (2013) conduct a meta-analysis of monetary VARs, using a variety of statistical techniques to correct for the selection and publication biases that want to produce a negative effect of interest rates on inflation, with the same result. Uribe (2018), looking with a different prior in mind, presents VAR evidence that permanent interest rate rises increase inflation in the U.S. Cochrane (1994a) discusses a key problem why this seemingly simple response is hard to measure: Central banks always react to events, and never randomly change interest rates. One must look for interest rate changes that do not respond to the specific variable one wishes to examine, a so-far unused suggestion.)
In sum, nothing is easy in economics. The answer to “What happens if the central bank raises rates and leaves them there forever?” is not easily answered by historical experience of transitory and reversible rate changes, and monetary and fiscal policy which continuously reacts to events. But economics does point to a list of items that go on one hand or on the other.

5.4 A surplus process

I introduce a simple parametric surplus process that allows an s-shaped response, allows some unexpected inflation, and retains active fiscal policy. The surplus responds to a latent variable:

\[
\begin{align*}
\tilde{s}_{t+1} &= \alpha v^*_t + u_{s,t+1} \\
\rho v^*_{t+1} &= v^*_t + \beta_s \varepsilon_{s,t+1} - \tilde{s}_{t+1} \\
u_{s,t+1} &= \eta_s u_{s,t} + \varepsilon_{s,t+1}.
\end{align*}
\]

We may interpret the latent variable \(v^*_t\) as the value of debt if the surplus responds to changes in the value of debt that come from past deficits, but does not respond to changes in the value of debt brought about by arbitrary unexpected inflation or deflation. In equilibrium, debt \(v_t\) is equal to \(v^*_t\).

Our next step is to write a reasonable, flexible, realistic, and tractable surplus process. Building to larger models, we want a process written in first-order, VAR(1) form, describing variables at time \(t + 1\) in terms of variables at time \(t\) and shocks at time \(t + 1\), as most recently the standard new-Keynesian IS and Phillips equations (5.17)-(5.21). We want a process that allows an s-shaped moving average, i.e. that today’s deficits \((s < 0)\) are followed by future surpluses \((s > 0)\) that can at least partially pay off the debt.

The natural way to induce an s-shaped moving average in a VAR(1) structure is to add a latent state variable, which I denote \(v^*_t\). I write

\[
\begin{align*}
\tilde{s}_{t+1} &= \alpha v^*_t + u_{s,t+1} \\
\rho v^*_{t+1} &= v^*_t + \beta_s \varepsilon_{s,t+1} - \tilde{s}_{t+1} \\
u_{s,t+1} &= \eta_s u_{s,t} + \varepsilon_{s,t+1}.
\end{align*}
\]

A positive shock \(\varepsilon_{s,t+1}\) raises \(\tilde{s}_{t+1}\) and following \(\tilde{s}_{t+j}\) persistently. But higher \(\tilde{s}_{t+j}\) mean lower \(v^*_{t+j}\) in (5.23), and lower \(v^*_{t+j}\) gradually bring \(\tilde{s}_{t+j}\) back down again via (5.22).
To see this behavior explicitly, we can find the moving-average representation for \(\tilde{s}_t \) implied by the system (5.22)-(5.24). Substituting (5.22) in (5.23),

\[
\rho v^*_t = (1 - \alpha) v^*_t + \beta_s \varepsilon_{s,t+1} - u_{s,t+1}
\]

\[
v^*_t = \frac{\rho^{-1}}{1 - (1 - \alpha) \rho^{-1} L} (\beta_s \varepsilon_{s,t+1} - u_{s,t+1}).
\]

(I specify \(\alpha > (1 - \rho) \).) Substituting back to (5.22),

\[
\tilde{s}_{t+1} = \alpha \frac{\rho^{-1} L}{1 - (1 - \alpha) \rho^{-1} L} (\beta_s \varepsilon_{s,t+1} - u_{s,t+1}) + u_{s,t+1}
\]

\[
\tilde{s}_{t+1} = \left[1 - \frac{\alpha \rho^{-1} L}{1 - (1 - \alpha) \rho^{-1} L} \right] u_{s,t+1} + \frac{\alpha \rho^{-1} L}{1 - (1 - \alpha) \rho^{-1} L} \varepsilon_{s,t+1}.
\]

(5.25)

This representation is convenient for some intuition below. We can go further, writing

\[
\tilde{s}_{t+1} = a(L) \varepsilon_{s,t+1} = \frac{(1 - \rho^{-1} L) a_u(L) + \beta_s \alpha \rho^{-1} L}{1 - (1 - \alpha) \rho^{-1} L} \varepsilon_{s,t+1}.
\]

(5.26)

where, reflecting (5.24),

\[
a_u(L) \equiv \frac{1}{1 - \eta_s L}.
\]

The point so far: The structure (5.22)-(5.24) can be seen as a way to encode the moving average (5.25) or (5.26) in standard VAR(1) form.

This initially intimidating surplus process is actually pretty and intuitive. Let us see how it works in a simple frictionless model with one-period debt,

\[
i_t = E_t \pi_{t+1}
\]

\[
\tilde{s}_{t+1} = a(L) \varepsilon_{s,t+1}
\]

\[
\Delta E_{t+1} \pi_{t+1} = -a(\rho) \varepsilon_{s,t+1}.
\]

(5.27)

In (5.25) and (5.26) we have quickly

\[
a(\rho) = \beta_s.
\]

(5.28)

Now you know what the \(\beta_s \) is doing in (5.23)! With \(\beta_s = 0 \), the latent variable setup (5.22)-(5.24) embodies a completely s-shaped surplus process. All deficits are paid, inflation is always zero, yet surpluses vary, and the model is completely fiscal theory.
Fiscal theory of the price level does not require that the government refuses to pay its debts, or always inflates away all or even any debt, or that there is any correlation at all between debt, deficits and inflation.

The first term in (5.25) shows more clearly how debt is repaid. We can write it

\[1 - \frac{\alpha \rho^{-1} L}{1 - (1 - \alpha) \rho^{-1} L} = 1 - \frac{\alpha}{\rho} \left[L + \frac{1 - \alpha}{\rho} L^2 + \left(\frac{1 - \alpha}{\rho} \right)^2 L^3 + \ldots \right]. \]

This term has a movement in one direction, 1, followed by a string of small negative movements in the opposite direction. They are small, since \(\alpha \) is a small number. And they decay over time slowly, with a \((1 - \alpha)/\rho \) autocorrelation coefficient. Adding dynamics \(u_{s,t+1} \) smears out this pattern, giving a persistent stream of deficits which are slowly followed by a longer-lasting persistent stream of surpluses.

However, we want the model to allow some unexpected inflation. The \(\beta_s \neq 0 \) parameter introduces unexpected inflation in a convenient way. The second term of (5.25) adds a small, AR(1)-shaped decay in same the direction of the original shock.

Now, what happens to debt? Debt follows the identity

\[\rho v_{t+1} = v_t + i_t - \pi_{t+1} - \tilde{s}_{t+1} \]

or, with \(i_t = E_t \pi_{t+1} \),

\[\rho v_{t+1} = v_t - \Delta E_{t+1} \pi_{t+1} - \tilde{s}_{t+1}. \]

Comparing this identity with the latent variable definition (5.23),

\[\rho v_{t+1}^* = v_t^* + \beta_s \varepsilon_{s,t+1} - \tilde{s}_{t+1}, \]

and the outcome for unexpected inflation (5.27)-(5.28) \(\Delta E_{t+1} \pi_{t+1} = -\beta_s \varepsilon_{s,t+1} \), we see that in this simple model, in equilibrium, debt \(v_t \) turns out to be equal to the latent variable \(v_t^* \). (Some reverse-engineering went into this model!) You can also derive \(v_t = v_t^* \) by taking the present value \(v_t = E_t \sum_{j=0}^{\infty} \rho^j s_{t+1+j} \) using the surplus moving average, and either some algebra or the Hansen-Sargent prediction formulas. Or, you can difference the last two equations to note

\[\rho \left(v_{t+1} - v_{t+1}^* \right) = \left(v_t - v_t^* \right) - \left(\Delta E_{t+1} \pi_{t+1} + \beta_s \varepsilon_{s,t+1} \right), \]

and the condition that debt cannot explode means \(v_t = v_t^* \), \(\Delta E_{t+1} \pi_{t+1} = -\beta_s \varepsilon_{s,t+1} \).

The latent variable \(v^* \) is not, automatically equal to debt, and \(v^* \) is not equal to debt away from equilibrium. It is, so far, just a latent state variable that helps us...
5.4. A SURPLUS PROCESS

Figure 5.5: Response of the simple example surplus process to a unit deficit shock. The solid lines present the case $\beta_s = 1.0$. The dashed lines present the case $\beta_s = 0$. Other parameters $\rho = 1$, $\eta_s = 0.7$, $\alpha = 0.1$.

to create a s-shaped and (here) exogenous surplus process. Debt v_t turns out, in equilibrium, to equal v^*_t, but that is a result not an assumption.

Figure 5.5 presents two cases of the surplus and debt process (5.22)-(5.24), equivalently the surplus moving average (5.26). The dashed lines present $\eta_s = 0.7$, $\alpha = 0.1$, $\beta_s = 0$. I plot the response to a deficit shock, $\varepsilon_{s,1} = -1$, which tells a cleaner story.

The surplus starts by following the AR(1) pattern of the surplus disturbance $u_{s,t}$.

These deficits increase debt v_t. In turn, increased debt slowly pushes up surpluses.

Eventually deficits cross the zero line to surpluses, and positive surpluses start to pay down debt. The many small positive responses on the right-hand side of the graph exactly pay off the initial deficits, $\sum_{j=1}^{\infty} \rho^{j-1} \tilde{s}_j = -a(\rho) = 0$, and there is no unexpected inflation.

The solid lines plot the case $\beta_s = 1.0$. In this case $\sum_{j=1}^{\infty} \rho^{j-1} \tilde{s}_j = -a(\rho) = -1$, so the entire initial deficit s_1 is inflated away by a unit unexpected inflation. We see this behavior by the fact that the initial debt response is zero – the two terms on the right-hand side of (5.23) offset. Debt rises subsequently however. The persistent
disturbance \(u_s \) adds persistent additional deficits \(s_j < 0 \) for \(j > 1 \). These additional deficits are paid off by subsequent surpluses. The disturbance has cumulative response \(\sum_{j=1}^{\infty} \rho^{j-1} u_j = -1/(1 - \rho u_s) = -3.33 \). If we had an AR(1) surplus \(s_t = u_{s,t} \), we would see a 3.33% inflation shock at time 0.

5.4.1 A debt target, and active vs. passive fiscal policy

The \(v^* \) latent variable has a deeper intuition, which will also be useful in generalizing the model. For completeness, write the whole model as

\[
\begin{align*}
 i_t &= E_t \pi_{t+1} \\
 \tilde{s}_{t+1} &= \alpha v^*_t + u_{s,t+1} \\
 \rho v^*_{t+1} &= v^*_t - \Delta E_{t+1} \pi^*_{t+1} - \tilde{s}_{t+1} \\
 \rho v_{t+1} &= v_t - \Delta E_{t+1} \pi_{t+1} - \tilde{s}_{t+1} \\
 \Delta E_{t+1} \pi^*_{t+1} &= -\beta \varepsilon_{s,t+1} \\
 u_{s,t+1} &= \eta_s u_{s,t} + \varepsilon_{s,t+1}.
\end{align*}
\]

Equation (5.29) repeats the flexible-price model with an interest rate target. Equations (5.30), (5.31) and (5.33) jointly describe the evolution of primary surpluses \(\tilde{s}_t \). Equation (5.32) is the debt evolution equation (3.17), with one-period debt so \(i_t = r^n_{t+1} \), using the Fisher equation (5.29).

As a first step towards solving the model, difference (5.31) and (5.32) to give

\[
(v_{t+1} - v^*_{t+1}) = \rho^{-1} (v_t - v^*_t) - \rho^{-1} \left(\Delta E_{t+1} \pi^*_{t+1} - \Delta E_{t+1} \pi^*_{t+1} \right).
\]

As in the last section, the condition that debt \(v_t \) does not explode tells us that \(v_t = v^*_t \) and \(\Delta E_{t+1} \pi^*_{t+1} = \Delta E_{t+1} \pi^*_{t+1} \).

(The variable \(v^*_t \) does not explode either, so \(v_t - v^*_t \) not exploding is the same as \(v_t \) not exploding. Substitute (5.30) into (5.31) to obtain

\[
\rho v^*_{t+1} = (1 - \alpha) v^*_t - \Delta E_{t+1} \pi^*_{t+1} - u_{s,t+1}.
\]

Thus, adding the natural assumption that \(\Delta E_{t+1} \pi^*_{t+1} \) is stationary, \(v^*_t \) grows at less than the steady-state interest rate for \(\alpha > 0 \), and it is stationary for \(\alpha > 1 - \rho \). Choosing \(\rho = 1 \) conveniently unites the two cases.)
Now, you may ask, why do I go through all the trouble of specifying a latent state variable v^*_t that turns out to be equal to debt, in equilibrium, rather than just let the surplus respond to debt itself? It would seem simpler to write

$$\tilde{s}_{t+1} = \gamma v_t + u_{s,t+1}$$ \hspace{1cm} (5.36)
$$\rho v_{t+1} = v_t - \Delta E_{t+1}\pi_{t+1} - \tilde{s}_{t+1}$$ \hspace{1cm} (5.37)
$$u_{s,t+1} = \eta_s u_{s,t} + \varepsilon_{s,t+1}.$$

A deficit, negative \tilde{s}_{t+1}, that comes with no inflation in (5.37) raises the value of debt v_{t+1}. In turn, the higher debt gives rise to larger subsequent surpluses, which can pay off the debt: an s-shaped surplus process. If the deficit in (5.37) is matched by inflation then there is no change in value of debt and no subsequent surpluses. So, the structure can also accommodate both cases. These simpler equations seem to flexibly capture a general surplus process in a first-order system.

The trouble with this idea is that fiscal policy becomes passive. Substituting the surplus equation (5.36) into the value equation (5.37) we have

$$\rho v_{t+1} = (1 - \gamma) v_t - \Delta E_{t+1}\pi_{t+1} - u_{s,t+1}.$$

For $\gamma > 1 - \rho$, debt converges going forward for any value of unexpected inflation. Any unexpected inflation leads to a change in debt which leads to changes in surpluses that validate that unexpected inflation. We lose the central idea of the whole project, that fiscal policy can determine unexpected inflation. Indeed, this is a standard specification of passive fiscal policy, which we shall return to.

(For $\gamma > 0$, debt grows at less than the interest rate, so the transversality condition holds. Any unexpected inflation is an equilibrium. It is convenient for empirical work to deal in stationary quantities. If one wishes to allow debt, or a debt-to-GDP ratio that grows over time, one can deflate everything by a geometric factor smaller than the discount rate before starting. However, we often think of constraints beyond the transversality condition, that the debt-to-GDP ratio must be bounded for example. I generally work with that case, and require a stationary debt-to-GDP ratio, so I do not spell out the case that debt grows but slowly enough that the transversality condition applies.)

Comparing the v^* equation (5.31) to the debt v equation (5.32), then, we can give a deeper interpretation. The surplus responds to a version of debt v^*_t that accumulates past deficits in the same way as does the actual value of debt v_t, but v^*_t ignores changes in the value of debt that come from unexpected inflation different from one
specific value $\Delta E_{t+1} \pi_{t+1} \neq \Delta E_{t+1} \pi^*_t$. This specification gives us a fiscal policy that remains active, picks one specific value for unexpected inflation, but nonetheless pays off debts accumulated from past deficits in a way that $s_t = u_{s,t}$ plus an AR(1) for $u_{s,t}$ would not do.

By contrast, when the surplus responds to debt itself in (5.36)-(5.37), the surplus responds to all variation in the value of debt, that induced by past deficits, but also variation in the value of debt induced by arbitrary unexpected inflation or deflation.

It is common to specify, measure and test active vs. passive fiscal policy by the regression coefficient of surplus on debt, $\gamma > 0$ vs. $\gamma = 0$ in (5.37). The v vs. v^* formulation shows us how overly restrictive this approach is. Indeed, since we have $v_t = v^*_t$ in equilibrium, we have in hand a counterexample: In equilibrium, we see $s_{t+1} = \alpha v_t + u_{s,t+1}$ with $\alpha > 0$, even though this is an active fiscal regime, and the surplus actually responds to v^* not to v. We could write

$$\tilde{s}_{t+1} = \alpha v^*_t + \gamma (v_t - v^*_t) + u_{s,t+1}. \quad (5.38)$$

The condition for active fiscal policy is $\gamma = 0$, not $\alpha = 0$.

I introduce notation $\Delta E_{t+1} \pi^*_t$ in (5.31) and (5.33) for additional intuition. We can regard $\Delta E_{t+1} \pi^*_t$ as a stochastic inflation target. The target is stochastic, as it may vary over time and in response to shocks to other variables. Equation (5.33), $\Delta E_{t+1} \pi^*_t = -\beta_s \varepsilon_{s,t+1}$, relates this inflation target to the surplus shock. I use the notation β_s, as when there are multiple shocks, this setup generalizes to a regression coefficient of the stochastic inflation target on the multiple underlying shocks.

We can view the government in this model as having an interest rate target i_t and an unexpected inflation target $\Delta E_t \pi^*_t$. Expected inflation follows from the interest rate target via $i_t = E_t \pi_{t+1}$. We can also think that the government starts with a stochastic inflation target, $\{\pi^*_t\}$. The government implements the inflation target by setting the interest rate target to $i_t = E_t \pi^*_t$ and by using the unexpected value of the inflation target in the fiscal rule (5.31).

The star variables disappear in equilibrium, and the fiscal and monetary parts of the model separate. With $v_t = v^*_t$ and $\pi_t = \pi^*_t$ in equilibrium, inflation determination now reduces to the pair

$$i_t = E_t \pi_{t+1} \quad (5.39)$$

$$\Delta E_t \pi_{t+1} = -\beta_s \varepsilon_{s,t+1}. \quad (5.40)$$
5.4. A SURPLUS PROCESS

We can then find the surplus and value of debt from the equilibrium versions of (5.30), (5.31) and (5.34),

\[
\begin{align*}
\tilde{s}_{t+1} &= \alpha v_t + u_{s,t+1} \\
\rho v_{t+1} &= v_t - \beta_s \varepsilon_{s,t+1} - \tilde{s}_{t+1} \\
u_{s,t+1} &= \eta_s u_{s,t} + \varepsilon_{s,t+1}.
\end{align*}
\]

(5.41)

Equations (5.39)-(5.41) are the system we see, estimate, and simulate. The \(v\) and \(v^*\) business serves one purpose, to understand why unexpected inflation is given by \(\Delta E_{t+1} \pi_{t+1}^* = -\beta_s \varepsilon_{s,t+1}\) not some other value. Empirically, one could just estimate \(\beta_s\) and ignore the theory, or relegate the theory to a footnote about equilibrium uniqueness. We do not see \(v_t \neq v_t^*\) or \(\pi_t \neq \pi_t^*\) in equilibrium.

One could also choose unexpected inflation and justify (5.40) by an analogous “active-money” specification,

\[
i_t = i_t^* + \phi(\pi_t - \pi_t^*), \quad \phi > 1,
\]

(5.42)

standard in the new-Keynesian literature, in which \(\pi_t \neq \pi_t^*\) generates an explosion. I explore this alternative model below.

Writing active fiscal policy as in equation (5.38) makes the analogy clear and expresses observational equivalence. In equilibrium, when the starred variables equal their unstarred counterparts, the observables (5.39)-(5.41) do not distinguish active-money, passive-fiscal \(\phi > 1, \gamma > 0\), from active-fiscal passive-money \(\phi < 1, \gamma = 0\) theories of why \(\pi_t^*\) or \(\beta_s\) in (5.40) are unique.

I argue that we should embrace observational equivalence, rather than spend a lot more time on identifying assumptions to try to test for regimes. Observational equivalence just means that we have look at the plausibility and consonance with institutional and historical facts of the equilibrium-selection underpinnings, my \(v\) vs. \(v^*\) story, and the corresponding new-Keynesian \(\phi > 1\) story, rather than hope some fancy time-series test will settle the issue. More on this issue follows. For now note that the \(v\) vs \(v^*\) parameterization of fiscal policy gives us a simple parametric form in which to think about the issues.

5.4.2 Active and passive policy in a nonlinear model

The active vs. passive policy, \(\alpha\) vs. \(\gamma\) issues are important and confusing enough that they bear expression in a simple exact nonlinear context. Start by remembering
how real debt works. If the government issues real debt b_t at constant rate r, then
the flow condition is
\[
\frac{db_t}{dt} = rb_t - s_t. \tag{5.43}
\]
Integrating forwards, and assuming perfect foresight for simplicity,
\[
b_t = \int_{\tau=0}^{T} e^{-r\tau} s_{t+\tau} d\tau + e^{-rT} b_{t+T}. \tag{5.44}
\]
The present value formula results when the transversality condition
\[
\lim_{T \to \infty} e^{-rT} b_{t+T} = 0
\]
holds. Equivalently, turning (5.44) around,
\[
b_{t+T} = e^{rT} \left[b_t - \int_{\tau=0}^{T} e^{-r\tau} s_{t+\tau} d\tau \right].
\]
Debt grows at the interest rate. The transversality condition is violated unless the
valuation equation holds.

For real debt, we interpret this condition as a constraint on surplus processes: To
avoid default, or to raise debt in the first place, the government must arrange sur-
pluses to satisfy the right-hand side of the valuation equation.

One, but not the only, way to generate such a policy is for the primary surplus to
respond to the value of debt,
\[
s_t = s_{0,t} + \gamma b_t, \tag{5.45}
\]
where $\{s_{0,t}\}$ does not grow over time. If $\gamma > 0$ – if the primary surplus responds
to debt at all – then debt grows more slowly than the interest rate, and the present
value condition and transversality conditions hold. If $0 < \gamma < r$, debt grows, but
more slowly than the interest rate. If $\gamma \geq r$ – if the primary surplus at least pays
interest on outstanding debt – then the value of debt remains finite. Stated in terms
of the more conventional total surplus $s_t - r b_t$, a positive total surplus, a surplus
that at least pays interest on outstanding debt, keeps debt bounded.

To see these results, substitute (5.45) into the flow condition (5.43), yielding
\[
\frac{db_t}{dt} = (r - \gamma) b_t - s_{0,t}.
5.4. A SURPLUS PROCESS

Integrating forward,

\[b_{t+T} = e^{(r-\gamma)T} \left[b_t - \int_{\tau=0}^{T} e^{-(r-\gamma)\tau} s_{0,t+\tau} d\tau \right]. \]

Then, so long as \(\gamma > 0 \) and \(s_{0,t} \) is bounded, real debt grows more slowly than the interest rate, and the transversality condition and present value relation (5.44) hold. (The integral in brackets is not the present value, and discounting \(s_{0,t} \) at rate \(r - \gamma \) doesn’t have a particular interpretation that I see. The point of this equation is only to find the growth rate of \(b_{t+T} \), and thereby to verify the present value relation (5.44). The surpluses in the present value formula include the \(\gamma b_t \) term, per (5.45).)

The response \(\gamma b_t \) generates endogenously an s-shaped surplus response function, that deficits today are matched by future surpluses. The condition \(\gamma > 0 \) is sufficient, but not necessary for debt repayment, however. The process \(s_{0,t} \) could have the negative autocorrelation property \(a(\rho) = 0 \) all on its own. That point is one of many important qualifiers for attempted tests based on \(\gamma \).

With nominal debt, the flow condition is

\[\frac{d}{dt} \left(\frac{B_t}{P_t} \right) = r \left(\frac{B_t}{P_t} \right) - s_t. \]

Integrating forwards,

\[\frac{B_t}{P_t} = \int_{\tau=0}^{T} e^{-r\tau}s_{t+\tau}d\tau + e^{-rT} \left(\frac{B_{t+T}}{P_{t+T}} \right). \] (5.46)

The present value formula results with the transversality condition

\[\lim_{T \to \infty} e^{-rT} \left(\frac{B_{t+T}}{P_{t+T}} \right) = 0. \]

Equivalently, writing (5.46) as

\[\left(\frac{B_{t+T}}{P_{t+T}} \right) = e^{rT} \left[\left(\frac{B_t}{P_t} \right) - \int_{\tau=0}^{T} e^{-r\tau}s_{t+\tau}d\tau \right], \]

we see that for a given surplus process \(\{s_t\} \), real debt grows at the interest rate, so the transversality condition is violated, unless the value of debt is given by the present value relation

\[\frac{B_t}{P_t} = \int_{\tau=0}^{T} e^{-r\tau}s_{t+\tau}d\tau. \] (5.47)
The transversality condition is a first-order condition for consumer optimization. We conclude that the price level adjusts so that the valuation equation holds.

Passive policy results if the stream of surpluses adjusts so that \[(5.47) \] holds for any price level \(P_t \). Surplus policies that react to debt are one way to produce a passive policy. If the primary surplus responds to the value of debt,

\[
s_t = s_{0,t} + \gamma \frac{B_t}{P_t}, \gamma > 0
\]

then we have

\[
\frac{d}{dt} \left(\frac{B_t}{P_t} \right) = s_{0,t} + (r - \gamma) \frac{B_t}{P_t}.
\]

Again integrating forward,

\[
\frac{B_{t+T}}{P_{t+T}} = e^{(r-\gamma)T} \left[\frac{B_t}{P_t} - \int_{\tau=0}^{T} e^{-(r-\gamma)\tau} s_{0,t+\tau} d\tau \right].
\]

If \(\gamma > 0 \) and \(\{s_{0,t}\} \) is bounded, real debt grows more slowly than the real interest rate, and the transversality condition and valuation equation hold for any \(P_t \). Again the last integral has no particular interpretation, and the valuation equation \[(5.47) \] discounts the entire surplus including the \(\gamma B_t/P_t \) term. If \(\gamma > r \), then real debt is also bounded for any \(P_t \).

This observation looks pretty damning for the fiscal theory, and several authors have interpreted it that way. Don’t responsible governments raise surpluses to pay off debts, at least until they run into Laffer limits?

But active fiscal policy can respond to debt. It need only not respond to arbitrary variation in the price level. Define a price level target \(P_t^* \). Let the government follow

\[
s_t = s_{0,t} + \alpha V_t^*
\]

\[
\frac{dV_t^*}{dt} = rV_t^* - s_t
\]

\[
V_0^* = \frac{B_0}{P_0^*},
\]

while the flow equation remains

\[
\frac{d}{dt} \left(\frac{B_t}{P_t} \right) = r \left(\frac{B_t}{P_t} \right) - s_t.
\]

\[(5.50) \]
If \(\alpha > 0 \) the latent variable \(V_t^* \) grows more slowly than the interest rate, and if \(\alpha > r \), \(V_t^* \) is bounded. To see this, write

\[
\frac{d}{dt} V_t^* = (r - \alpha) V_t^* - s_{0,t}
\]

\[V_{t+T}^* = e^{(r-\alpha)T} \left[V_t^* - \int_{\tau=0}^{T} e^{-(r-\alpha)\tau} s_{0,t+\tau} d\tau \right].\]

Integrating (5.49) forward, then \(V_t^* \) is the present value of surpluses,

\[
V_t^* = \int_{0}^{\infty} e^{-rt} s_{t+\tau} d\tau + \lim_{T \to \infty} e^{-rT} V_{t+T} = \int_{0}^{\infty} e^{-rt} s_{t+\tau} d\tau.
\]

Differencing (5.49) and (5.50),

\[
\frac{d}{dt} \left(\frac{B_t}{P_t} - V_t^* \right) = r \left(\frac{B_t}{P_t} - V_t^* \right)
\]

then the real value of debt \(B_t/P_t \) grows at or faster than the interest rate, violating the consumer’s transversality condition, unless

\[
\frac{B_t}{P_t} = V_t^*.
\]

Only one value of the price level, \(P_t = P_t^* \), is consistent with the transversality condition. Fiscal policy is active, although the surplus responds to the value of debt as in (5.48). Again, we can also have an s-shaped surplus and an apparent response to debt via an s-shaped \(\{s_{0,t}\} \).

12 **5.4.3 Is it reasonable?**

Once one considers its possibility, specifying that fiscal policy responds to changes in the value of debt that result from accumulated deficits and (later) from changes in the real interest rate, but does not respond to re-valuation of the debt stemming from arbitrary unexpected inflation or deflation, is not unreasonable or artificial.

Yes, governments often raise surpluses after a time of deficits, which builds up their debt. Doing so makes good on the explicit or implicit promise made when borrowing, and sustains the reputation needed for future borrowing. Governments often raise
revenue from debt sales, and the value of debt increases after such sales, which essentially proves that investors believe surpluses will rise to pay off new debts. We see many institutions in place to try to pre-commit to repayment, rather than default or inflation. Those institutions help the government to borrow in the first place.

But the same governments may well and sensibly refuse to accommodate changes in the value of debt that come from arbitrary unexpected inflation and deflation, and people may well expect such behavior. Should, say, a 50% cumulative deflation break out, likely in a severe recession, does anyone expect the U.S. government to sharply raise taxes or to drastically cut spending, to pay an unexpected real windfall to nominal bondholders—Wall Street bankers, wealthy individuals, and foreigners, especially foreign central banks? Will not the government regard the deflation as a temporary aberration, prices “disconnected from fundamentals,” like a stock market “bubble,” that fiscal policy should ignore until it passes? Indeed, is the response to such an event not more likely to be additional fiscal stimulus, deliberate unbacked fiscal expansion, not heartless austerity?

Even when discussing explicit default, such as in the 2021 debt-limit negotiations, it is remarkable how quickly Administration, Treasury, and Congress jump to formal default rather than reducing spending on other items, though the US could always prioritize repaying debt should it choose to do so. Reducing spending to quickly repay a deflation-induced rise in the value of debt is even less likely.

Concretely, [Cochrane (2017c)] and [Cochrane (2018)] argue that this expectation is why standard new-Keynesian models’ predictions of a large sharp deflation, and old-Keynesian predictions of a “deflation spiral,” did not happen when the U.S. hit the zero bound on nominal interest rates in 2008-2009, and Japan two decades earlier. Such deflation requires a large “passive” fiscal tightening that would be anything but “passively” regarded in a stimulus-minded Congress and Administration.

Many economists call for governments to pursue helicopter-drop unbacked fiscal stimulus in response to below-target inflation. ([Benhabib, Schmitt-Grohé, and Uribe (2002)] is an influential example.) Such a policy likewise represents a refusal to adapt surpluses to deflation, but to repay debts incurred from deficits in normal circumstances. Conversely, is not fiscal “austerity” a common response to inflation or currency devaluation? Rather than enjoy the debt devaluation that inflation or devaluation offer, governments increase fiscal surpluses, often at great pain.

We can see institutions and reputations at work to communicate these intentions and turn them into commitments. A gold standard is a commitment to raise surpluses to buy gold, or to borrow gold against credible future surpluses, rather than to enjoy
the bounty of an inflation-induced debt reduction. A foreign currency peg or foreign
currency borrowing commits the government to raise surpluses as needed to repay
debt at the pegged exchange rate, no more and no less. Both commitments suffer
because of variation in the relative price of goods and services to gold or foreign cur-
rency, which force a fiscal response to undesired inflation and deflation – the implied
inflation target π^*_t is unnecessarily volatile. But both contain a devaluation escape
clause, which is a deeper refusal to adapt fiscal policy to undesired deflation.

When governments in the 1930s abandoned the gold standard, they abandoned ex-
actly a commitment to repay debt in higher real terms after undesired deflation.
Jacobson, Leeper, and Preston (2019) argue persuasively that the Roosevelt Ad-
ministration, in its abandonment of the gold standard during the deflation of 1933,
refused to raise surpluses to pay off a deflation-induced increase in the real value of
the debt. The rise in the real relative price of gold would otherwise have triggered an
automatic fiscal response, paying greater than expected real returns to bondholders.
Moreover by separating the budget into an “emergency” and “regular” budget, the
Roosevelt Administration preserved its reputation for repaying debt once the price
level returned to the Administration’s desired target, a reputation that allowed the
U.S. to borrow in real terms for WWII.

An inflation-target agreement between government and central bank includes, explic-
itly or implicitly, the government’s fiscal commitment to pay off nominal debt at the
inflation target, neither more nor less, as much or more than it signals the govern-
ment’s desired value for coefficients in a central-bank Taylor rule. Many economists
have suggested an analogous fiscal rule that runs unbacked deficits in the event of
deflation, commits to surpluses to fight inflation, but still repays debts incurred from
past deficits should inflation come out on target. The latter provision allows the
government to borrow, promising repayment, in normal times.

Committing to repay debts is wise, as it allows governments to borrow. Committing
not to accommodate revaluation, due to any value of unexpected inflation and defla-
tion that comes along, is also wise, as it allows the government to produce a stable
price level, and also to avoid volatile taxes and spending.

Admittedly, appealing to episodes bends the rules about on and off equilibrium.
It is useful though if both behaviors point in the same direction. Formally, one
can identify off-equilibrium behavior if one can credibly say that the off-equilibrium
behavior corresponds to some observable behavior. Governments that run stimulus
when they see low inflation “in equilibrium” credibly would also do so if a “multiple
equilibrium” inflation were to emerge.
There is also a long and useful tradition of breaking the equilibrium wall a bit, and treating observed behavior in rare events or moments in which policy rules are changing as indications of off-equilibrium behavior, either directly, or how off-equilibrium behavior might look once a new regime is in place, though a strict reading of a rational-expectations paradigm says we should never see off-equilibrium events.

We do not need to interpret the stochastic inflation target π^*_t as a value happily chosen, proudly announced, easily enforced, and exactly implemented. It may vary with external shocks. It may represent the value inflation that the government acquiesces to, not the one it desires. Observed low inflation in the 2010s can represent a low π^*_t, though central banks’ official inflation targets and government desires are higher, just as deficit projections are largely aspirational. Central banks and governments could have done a lot more to raise inflation, but saw those steps as too costly. The same is true of the spurt of inflation in 2021, which the Fed did not intend, but ignores as “transitory.” The rise of unexpected (!) inflation in this case clearly represents external shocks, or equivalently economic model failures, which the Fed and treasury acquiesce to, as we see from the fact that they took no action to do anything about it. Central banks routinely describe their official targets as aspirations, toward which they wish to nudge the economy. That’s a different kind of target.

This parametric model, and my interpretation that the variables v^*_t, $\Delta E_{t+1}\pi^*_{t+1}$ encode a set of institutions and policy reputations is attractive, I think, but it is not the only way to write active fiscal policy. It may prove more intuitive or consonant with institutions to write surplus rules that react directly to inflation or the price level, for example mandating greater surplus if inflation breaks out. Latent variables that are not point-by-point equal to debt in equilibrium may eventually be more useful. Writing the inflation target as long-run goal, similar to central bank’s 2% inflation goals, is possible as well. I return to these points below.

5.4.4 Thinking about the parameters

The parameter β_s in $\Delta E_{t+1}\pi^*_{t+1} = -\beta_s\epsilon_{s,t+1}$ is convenient for the modeler, as it directly controls unexpected inflation and the cumulative surplus response $a(\rho)$. However, β_s is best regarded as a reduced-form parameter, a modeling convenience; rather than an independent policy lever, a description of the mechanics of fiscal or monetary policy. The parameter β_s lets the modeler control $a(\rho)$. In reality the government does the hard work of raising surpluses, and $\beta_s = a(\rho)$ is the result.
By analogy, consider an AR(1) surplus \(\hat{s}_{t+1} = \eta_s \hat{s}_t + \varepsilon_{s,t+1} \) in the flexible price model, producing \(\Delta E_{t+1} \pi_{t+1} = -a(\rho) \varepsilon_{s,t+1} = \varepsilon_{s,t+1}/(1 - \rho \eta_s) \). This algebraic specification invites an economically sensible modeling procedure: Specify the surplus process, and then find the unexpected inflation produced by the model. We could proceed backward: Specify unexpected inflation and then reverse-engineer the surplus-process parameter \(\eta_s \) that produces it. But the algebra of the model does not suggest this unnatural procedure. A practical defect of my \(v^*, \pi^* \), \(\beta_s \) model is that it is parameterized in a way that invites this sort of reverse logic. We want instead to specify sensible economic and policy primitives and then derive the model’s prediction for unexpected inflation. To do that, we have to reverse engineer the \(\Delta E_{t+1} \pi_{t+1} \) result that produces primitives of fiscal policy which we think are sensible.

Concretely, though one can estimate \(\beta_s \) in \(\Delta E_{t+1} \pi_{t+1}^* = -\beta_s \varepsilon_{t+1}, \) or one may specify it in a model, it typically does not make sense to hold \(\beta_s \) constant as one examines alternative values for other parts of the fiscal and monetary policy specification, as one might vary \(\eta_s \) or \(\sigma(\varepsilon_{s,t}) \) independently in an AR(1) surplus model. That is what I mean by calling \(\beta_s \) a “reduced form” parameter. Keeping \(\beta_s \) constant while moving other parameters of the policy process typically does not ask an interesting or sensible question. In practical terms, \(\beta_s \) directly controls unexpected inflation. If you hold \(\beta_s \) constant as you move other parameters of the policy process, those parameters cannot produce a different value of unexpected inflation.

In the simple \(v^* - \pi^* \) model (5.29)-(5.34), the persistence \(\eta_s \) of the surplus disturbance is the main other policy parameter. As persistence \(\eta_s \) rises, cumulative deficits rise, and one would naturally expect the government to inflate away more of this cumulatively larger fiscal shock. But if we keep the same value of \(\beta_s \), we always find the same unexpected inflation by construction.

In keeping \(\beta_s \) constant as we raise \(\eta_s \), we assume that the government chooses to inflate away the same fraction of the initial deficit shock. It is arguably more interesting to compare the inflationary effects of two values of \(\eta_s \) by specifying that the government will inflate away the same fraction of the overall deficit shock. The overall deficit shock is \(a_u(\rho) = \sum_{j=1}^{\infty} \rho^{j-1} u_j = -1/(1 - \rho \eta_s) \). Thus, it seems more interesting to specify a larger value \(\beta_s = \beta_{s,0}/(1 - \rho \eta_s) \); or equivalently that \(a(\rho) \) is the same fraction of \(a_u(\rho) \) not the same number while varying \(\eta_s \). We would then naturally conclude that if deficit shocks become more long-lasting, unexpected inflation is larger.

There is no right or wrong here, there are only interesting and uninteresting values of policy parameters to compare with each other. Interesting policy experiments invite
us to change β_s along with other parameters.

5.5 Responses and rules

We add monetary and fiscal policy rules to the model,

\[
\begin{align*}
 i_t &= \theta_{i\pi} \pi_t + \theta_{ix} x_t + u_{i,t} \\
 \tilde{s}_{t+1} &= \theta_{s\pi} \pi_{t+1} + \theta_{sx} x_{t+1} + \alpha v_t^* + u_{s,t+1}
\end{align*}
\]

I calculate responses to fiscal and monetary policy shocks. I first calculate responses to shocks with no output and inflation reactions in the policy rules, $\theta = 0$. Then I calculate responses with those reactions in place. Policy rules buffer the effect of shocks by moving inflation forward. The responses to monetary policy shocks show a disinflation and recession, followed by Fisherian responses in the very long run.

Last, I add policy rules to the model and put all of these ingredients together.

Yes, we can ignore policy rules and study the response of inflation and output to specified paths or processes for interest rates and surpluses, which are after all what we observe. But it’s often more interesting to model policy rules.

To ask what happens if the Fed raises interest rates, it is really not interesting to hold the path of surpluses constant. Surpluses naturally rise when output and inflation rise. We, or the Fed, would likely want to include such predictable reactions in an evaluation of the effects of monetary policy. Likewise, to ask for the consequences of a fiscal shock, it is really not interesting to imagine that the Fed keeps interest rates fixed. The Fed routinely raises interest rates in response to inflation and output. An interesting analysis of how the economy will evolve following a fiscal shock surely takes account of that fact. We may not always want to include policy reactions, but we sometimes do, so let’s see how to do it and how they affect the results.

The model, from Cochrane (2021b), adds fiscal and monetary policy rules to the sticky-price model with long-term debt and fiscal theory:

\[
\begin{align*}
 x_t &= E_t x_{t+1} - \sigma(i_t - E_t \pi_{t+1}) \\
 \pi_t &= \beta E_t \pi_{t+1} + \kappa x_t \\
 i_t &= \theta_{i\pi} \pi_t + \theta_{ix} x_t + u_{i,t} \\
 \tilde{s}_{t+1} &= \theta_{s\pi} \pi_{t+1} + \theta_{sx} x_{t+1} + \alpha v_t^* + u_{s,t+1} \\
 \rho v_{t+1}^* &= v_t^* + r_{t+1} - \pi_{t+1} - \tilde{s}_{t+1}
\end{align*}
\]
The monetary policy rule (5.53) is conventional and straightforward. The Fed raises interest rates in reaction to inflation and to the output gap. The monetary policy disturbance $u_{i,t}$ is serially correlated, following an AR(1). When the Fed deviates from a rule, typically in reacting to some other variable like the exchange rate or a financial crisis, it does so for a long time.

The fiscal policy rule starts analogously. Primary surpluses are likely to react to output and inflation for both mechanical and policy reasons. Tax receipts are naturally procyclical, as tax rate times income rises with income. Spending is naturally countercyclical, due to entitlements such as unemployment insurance and deliberate but predictable stimulus programs. Chapter 4 shows a strong correlation of surpluses with the unemployment rate and GDP gap. Imperfect indexation potentially makes primary surpluses rise with inflation. Beyond fitting current data and the current policy regime, we want to think about fiscal policy rules that can better stabilize inflation or avoid deflation, especially in a period of zero bounds or other constraints on monetary policy. Such rules may introduce a greater sensitivity of surpluses to inflation or react to the price level.

The latent variable v_t^* works much as in the simple model of the last few sections. Now the rate of return r^n_{t+1} appears in both v_{t+1} and v^*_t equations. A higher ex-post return on government debt raises the value of debt. By including $r^n_{t+1} - \pi^*_{t+1}$ in the v_{t+1} equation, I specify that fiscal policy raises surpluses in reaction to such changes in the value of debt. One can make the opposite assumption, and such variations bear exploration. In (5.58), with β_s and β_i terms, the unexpected inflation target is correlated with the interest rate shock as well as the surplus shock.

Like the rest of the model, this surplus process can and should be generalized towards realism in many ways. News about future surpluses and historical episodes are likely not well modeled by AR(1) shocks. It is likely that the government’s split between inflating away debt and borrowing against future surpluses to fund a deficit varies

5.5. RESPONSES AND RULES

$\rho v_{t+1} = v_t + r^n_{t+1} - \pi_{t+1} - \delta_{t+1}$ \hspace{1cm} (5.56)

$E_t \pi^*_{t+1} = E_t \pi_{t+1}$ \hspace{1cm} (5.57)

$\Delta E_{t+1} \pi^*_{t+1} = -\beta_s \varepsilon_{s,t+1} - \beta_i \varepsilon_{i,t+1}$ \hspace{1cm} (5.58)

$E_t r^n_{t+1} = i_t$ \hspace{1cm} (5.59)

$r^n_{t+1} = \omega q_{t+1} - q_t$ \hspace{1cm} (5.60)

$u_{i,t+1} = \eta_i u_{i,t} + \varepsilon_{i,t+1}$ \hspace{1cm} (5.61)

$u_{s,t+1} = \eta_s u_{s,t} + \varepsilon_{s,t+1}$ \hspace{1cm} (5.62)
over time or state of the economy and nature of the fiscal shock.

Differencing (5.55) and (5.56), we obtain again
\[\rho (v_{t+1}^* - v_{t+1}) = (v_t^* - v_t) - (\pi_{t+1}^* - \pi_t). \] (5.63)

The parameter \(\rho \leq 1 \), so this equation has a forward-looking or unit root. Therefore, the unique stationary equilibrium of the model includes \(v_t = v_t^* \), \(\pi_t = \pi_t^* \), and thus \(\Delta E_{t+1} \pi_{t+1} = \Delta E_{t+1}^* \pi_{t+1}^* \).

The pair (5.51)-(5.52) has two expectational errors, one to output and one to inflation, but only one forward-looking root. The combination (5.55)-(5.56) then provides the extra forward-looking root, which is the fiscal theory’s job. Equations (5.55)-(5.56) determine unexpected inflation, while (5.51)-(5.52) then determine unexpected output.

While we can feed the computer the entire system (5.51)-(5.62), and it will figure out \(v_t = v_t^* \), \(\pi_t = \pi_t^* \) along the way, we can also now just eliminate the * variables, citing (5.63). Reordering them, the equilibrium conditions (5.51)-(5.62) reduce to

\[x_t = E_t x_{t+1} - \sigma (i_t - E_t \pi_{t+1}) \] (5.64)
\[\pi_t = \beta E_t \pi_{t+1} + \kappa x_t. \] (5.65)
\[i_t = \theta i_t \pi_t + \theta i_t x_t + u_{i,t} \] (5.66)
\[u_{i,t+1} = \eta_i u_{i,t} + \varepsilon_{i,t+1} \] (5.67)
\[\Delta E_{t+1} \pi_{t+1} = -\beta s \varepsilon_{s,t+1} - \beta i \varepsilon_{i,t+1} \] (5.68)
\[\tilde{s}_{t+1} = \theta s \pi_{t+1} + \theta s x_{t+1} + \alpha v_t + u_{s,t+1} \] (5.69)
\[u_{s,t+1} = \eta_s u_{s,t} + \varepsilon_{s,t+1} \] (5.70)
\[\rho v_{t+1} = v_t + r_{t+1}^\pi - \pi_{t+1} - \tilde{s}_{t+1} \] (5.71)
\[E_t r_{t+1}^\pi = i_t \] (5.72)
\[r_{t+1}^\pi = \omega q_{t+1} - q_t. \] (5.73)

The group (5.64)-(5.68) can be solved for inflation, output and interest rates. Equations (5.69)-(5.73) then let us find surpluses, debt, and bond prices and returns. There is nothing deep or general about this separation between the first and second halves of the model. Many models include ingredients, such as government spending or distorting taxes in consumer first-order conditions, by which fiscal events feed back to the output and inflation equilibrium. I have kept those out of the model so we see the minimum necessary feedback from fiscal to inflation and output affairs.
This setup shows that we can extend a standard model to an explicit description of fiscal policy without changing the standard model at all, but we do not have to extend it in that way, and doing so rules out many interesting phenomena relevant to both facts and policy. This is the first, not the last step.

The whole v_t vs. v_t^* business justifies that (5.68) is the unique value of unexpected inflation, that the apparently passive fiscal policy of (5.69)-(5.71) is in fact active, because surpluses do not react to other values of unexpected inflation.

Again, we do not see $v_t \neq v_t^*$ or $\pi_t \neq \pi_t^*$ in equilibrium, so that part of this model is not testable by examining time-series of these variables drawn from an equilibrium. Again, an “active money” specification can also deliver (5.68) with no other restrictions on the observable time series by specifying a different explosion for $\pi_t \neq \pi_t^*$. Again, this is a feature not a bug: it means all of the armchair refutations of fiscal theory are false, because the model is capable of producing any data that the active-money specification of the same model can produce. Observational equivalence also makes it easy to translate any active-money model to active-fiscal, and only then change parameters if one wishes to improve its performance.

5.5.1 The unexpected inflation parameters

As in the simple model, linking the unexpected inflation target directly to policy shocks in (5.57) is a convenient reduced-form simplification, but the β_s, β_i parameters should not be seen as independent or economically interesting policy levers. We can estimate them in fitting data, but in doing policy experiments one should consider changing β_s and β_i as we change other parameters in order to make interesting comparisons of policy settings. We should think of the government choosing the underlying surplus process and β_i, β_s are its consequence.

In Section 5.4, we saw how we want to modify β_s as we make surplus shocks more persistent, raising η_s. Here, we also want similar modifications to the β parameters as we change policy rules θ. For example, we might want to specify the first part of the unexpected inflation target as

$$\Delta E_{t+1} \pi^*_{t+1} = -\hat{\beta_s} \Delta E_{t+1} \tilde{\pi}_{t+1}$$ (5.74)

in place of (5.58). Now $\hat{\beta_s}$ specifies how much of an unexpected deficit will be met by unexpected inflation, not how much of the shock to the surplus disturbance will be so met. Since there are other variables in the surplus rule that move contemporaneously,
the two shocks are not the same. To see the effect of (5.74), use the surplus policy rule (5.54), and also simplify to \(\theta_{sx} = 0 \), yielding
\[
\Delta E_{t+1} \tilde{s}_{t+1} = \theta_{s\pi} \Delta E_{t+1} \pi_{t+1} + \varepsilon_{s,t+1}.
\]
Equation (5.74) then implies
\[
\Delta E_{t+1} \pi_{t+1} = -\hat{\beta}_s (\theta_{s\pi} \Delta E_{t+1} \pi_{t+1} + \varepsilon_{s,t+1})
\]
and thus
\[
\Delta E_{t+1} \pi_{t+1} = -\frac{\hat{\beta}_s}{1 + \hat{\beta}_s \theta_{s\pi}} \varepsilon_{s,t+1} = -\beta_s (\theta_{s\pi}) \varepsilon_{s,t+1}.
\]
We’re back to where we started, but the parameter \(\beta_s \) of the original specification depends on the \(\theta_{s\pi} \) parameter.

So, if it is interesting to think of a government policy that splits a constant fraction of shocks to actual deficits between repayment and inflation, rather than so splitting shocks to the disturbance part of a policy rule, then we would want to specify (5.74). Equivalently, we recognize that the parameter \(\beta_s \) is a reduced-form parameter, and we change \(\beta_s \) as we change \(\theta_{s\pi} \) in thinking about the effects of alternative policies.

5.5.2 Deficit shocks without policy rules

I plot responses to unexpected fiscal \(u_s \) and monetary \(u_i \) disturbances, in each case holding the other disturbance constant. I start with no policy reactions \(\theta = 0 \) which helps to see what responses are due to the economics of the model, rather than to endogenous policy reactions. Then I add policy reactions \(\theta \neq 0 \), which lets us see how systematic policy rules modify the effects of fiscal and monetary policy shocks. I use an s-shaped surplus process induced by \(\alpha \neq 0 \), in both calculations. The comparison is only between policy rules that do and don’t react to inflation and output.

Throughout I use \(\rho = 0.99, \beta = 0.99, \sigma = 0.5, \kappa = 0.5, \alpha = 0.2, \omega = 0.9, \eta_i = 0.7, \eta_s = 0.5 \). I pick the parameters to illustrate mechanisms, not to match data.

Figure 5.6 presents the responses of the variables in this model to a deficit shock \(\varepsilon_{s,1} = -1 \), with no policy reactions \(\theta = 0 \) and no monetary disturbance \(u_{i,t} = 0 \).

I choose this value of \(\beta_s \), with the weighted-inflation identity (3.20) in mind, so that the \(\omega \)-weighted sum of current and expected future unexpected inflation relative to
Figure 5.6: Responses of the sticky-price model to a fiscal shock with no policy rules.

Figure 5.7: Responses of the sticky-price model to a fiscal shock, with policy rules.
the overall size of the fiscal shock is 0.4,

\[
\sum_{j=0}^{\infty} \omega^j \Delta E_1 \pi_{1+j} = 0.4. \tag{5.75}
\]

I use the same ratio to infer \(\beta_s \) for the following calculation with \(\theta \neq 0 \) policy-rule parameters. The numerator can be interpreted as the reduction in real face value of the bond portfolio, the total amount that time-0 bondholders will eventually lose due to inflation. The denominator is the amount of inflation that the surplus shock would produce on its own absent all policy rules including \(\alpha v_t^* \), and with constant discount rates. In that case, the surplus equals the disturbance \(s_t = u_{s,t} \) and the discount-rate terms in the inflation identities vanish. Fundamentally, then, I choose \(\beta_s \) by specifying that the government meets the fiscal shock with a 40% state-contingent default via inflation. This value is likely a significant overstatement of U.S. data. I choose a larger value so inflation shows up on the graphs. The choice \(\beta_s = 0.36 \) for the calculation with no rules \(\theta = 0 \) in Figure 5.6. Consequently unexpected inflation at time 1 is 0.36%.

Inflation then decays with an AR(1) pattern. The deficit shock results in drawn-out inflation, not just a one-period price-level jump. Output rises, following the forward-looking Phillips curve that output is high when inflation is high relative to future inflation. This deficit stimulates.

Drawn-out inflation is more realistic than a one-period price-level jump. It is entirely the effect of sticky prices. Inflation is a two-sided moving average of the interest rate, with a geometrically-decaying transient [see (5.5)]. We’re just seeing that transient, after an initial shock.

With neither monetary policy shock nor rule, the interest rate \(i_t \) and therefore long-term nominal bond return \(r_{t+1}^n \) do not move. Long-term debt therefore has no influence on these responses, which are the same for any bond maturity \(\omega \). The real rate falls exactly as inflation rises.

The surplus \(\tilde{s}_t \) and the AR(1) surplus disturbance \(u_{s,t} \) are not the same. The surplus initially declines, but resulting deficits raise the value of debt. Larger debt in turn raises subsequent surpluses. A long string of small positive surplus responses on the right side of the graph then partially repays the debt incurred from initial deficits. Lower real bond returns also bring down the value of debt. It would be easy to mistake this surplus process for an AR(1).

That inflation rises at all comes from the specification \(\beta_s = 0.36 \). With \(\beta_s = 0 \), the long-run surplus response would be higher, the discounted sum of all future surpluses
would be exactly zero, and there would be no inflation. Conversely, the government may inflate away more debt in response to this deficit shock, which we would model with a higher value of β_s, capturing lower subsequent surpluses. Again, we should think of β_s as a consequence not a cause of this surplus behavior. At a minimum, if we regard unexpected inflation as a conscious movement of an unexpected inflation target, such surplus movements are necessary to implement that target.

\[
\sum_{j=0}^{\infty} \omega^j \pi_{1+j} = - \sum_{j=0}^{\infty} \rho^j \bar{s}_{1+j} + \sum_{j=1}^{\infty} (\rho^j - \omega^j) r_{1+j}
\]

<table>
<thead>
<tr>
<th>Shock and model</th>
<th>$\sum_{j=0}^{\infty} \omega^j \pi_{1+j}$</th>
<th>$- \sum_{j=0}^{\infty} \rho^j \bar{s}_{1+j}$</th>
<th>$+ \sum_{j=1}^{\infty} (\rho^j - \omega^j) r_{1+j}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiscal, no θ</td>
<td>(0.79)</td>
<td>(-0.90)</td>
<td>(+0.11)</td>
</tr>
<tr>
<td>Fiscal, yes θ</td>
<td>(0.79)</td>
<td>(-0.82)</td>
<td>(+0.02)</td>
</tr>
<tr>
<td>Monetary, no θ</td>
<td>(0.00)</td>
<td>(-2.58)</td>
<td>(+2.58)</td>
</tr>
<tr>
<td>Monetary, yes θ</td>
<td>(0.00)</td>
<td>(-0.28)</td>
<td>(+0.28)</td>
</tr>
</tbody>
</table>

\[
\pi_1 - r_1^n = - \sum_{j=0}^{\infty} \rho^j \bar{s}_{1+j} + \sum_{j=1}^{\infty} \rho^j r_{1+j}
\]

<table>
<thead>
<tr>
<th>Shock and model</th>
<th>$\pi_1 - r_1^n$</th>
<th>$- \sum_{j=0}^{\infty} \rho^j \bar{s}_{1+j}$</th>
<th>$+ \sum_{j=1}^{\infty} \rho^j r_{1+j}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiscal, no θ</td>
<td>(0.36)</td>
<td>(-0.00)</td>
<td>(-0.90)</td>
</tr>
<tr>
<td>Fiscal, yes θ</td>
<td>(0.14)</td>
<td>(-0.63)</td>
<td>(-0.82)</td>
</tr>
<tr>
<td>Monetary, no θ</td>
<td>(-0.65)</td>
<td>(-2.43)</td>
<td>(-2.58)</td>
</tr>
<tr>
<td>Monetary, yes θ</td>
<td>(-0.69)</td>
<td>(-1.75)</td>
<td>(-0.28)</td>
</tr>
</tbody>
</table>

\[
r_1^n = - \sum_{j=1}^{\infty} \omega^j r_{1+j} - \sum_{j=1}^{\infty} \omega^j \pi_{1+j}
\]

<table>
<thead>
<tr>
<th>Shock and model</th>
<th>r_1^n</th>
<th>$- \sum_{j=1}^{\infty} \omega^j r_{1+j}$</th>
<th>$- \sum_{j=1}^{\infty} \omega^j \pi_{1+j}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiscal, no θ</td>
<td>(0)</td>
<td>(-0.44)</td>
<td>(-0.44)</td>
</tr>
<tr>
<td>Fiscal, yes θ</td>
<td>(-0.63)</td>
<td>(-0.02)</td>
<td>(-0.66)</td>
</tr>
<tr>
<td>Monetary, no θ</td>
<td>(-2.43)</td>
<td>(-0.64)</td>
<td>(-0.64)</td>
</tr>
<tr>
<td>Monetary, yes θ</td>
<td>(-1.75)</td>
<td>(-1.06)</td>
<td>(-0.64)</td>
</tr>
</tbody>
</table>

Table 5.1: Inflation and bond-return decompositions.

The “Fiscal, no θ” rows of Table 5.1 present the terms of the unexpected inflation decompositions (3.20) and (3.22) and the bond return decomposition (3.21) for these responses.

The cumulative fiscal disturbance is $\Delta E_1 \sum_{j=0}^{\infty} \rho^j u_{s,1+j} = 1/(1 - \rho \eta_s) = -1.98\%$, which on its own would – with $s_t = u_{s,t}$ and no discount-rate change – lead to 1.98% inflation. Two mechanisms buffer this fiscal shock. First, the s-shaped endogenous response of surpluses to accumulated debt pays off about one percentage point of the accumulated deficits, leaving a $\Delta E_1 \sum_{j=0}^{\infty} \rho^j s_{1+j} = -0.90\%$ unbacked fiscal expansion. Second, higher inflation with no change in nominal rate means a lower real
interest rate, which raises the value of debt, a deflationary force. This discount rate effect offsets another 0.11% of the fiscal inflation in the top row, leading to 0.79% \(\omega \)-weighted inflation.

In the second and third panels of Table 5.1 these responses behave differently from those I found in data, Table 4.2, and the “surplus” shock in particular. There, I found as here a higher \(\omega \)-weighted (top panel) than raw (second panel) unexpected inflation, as inflation decays with an AR(1) pattern. But there, the one-period accounting of the second panel found that a bond return \(r_{t+1}^n \) accounted for the difference, and in the third panel that bond return was almost entirely due to future inflation. As a result, the discount rate terms of the first and second panel were almost the same. Here, because I hold interest rates constant, there is no bond return in the second panel. In the third panel, inflation and real returns exactly offset in accounting for the absence of bond return. As shown by Figure 5.6, the expected return is entirely caused by an inflation movement with no interest rate movement, so, obviously, inflation and real interest rates move exactly together. The top and second panel then attribute the difference between immediate (0.36%) and \(\omega \)-weighted (0.79%) inflation to this shorter-horizon discount rate movement, for which the weighted (-0.11%) and unweighted (-0.55%) sums now differ.

An obvious lesson: Well, these are different shocks, since the “surplus” shock of Table 4.2 allowed an interest rate and hence bond-return response. Let’s get on to responses with a monetary policy rule that allows interest rate reactions. (Since I pick parameters to make pretty plots rather than to match response estimates, it is also not a good idea to compare the tables too closely. In this case, the qualitative behavior is substantially different however.)

5.5.3 Deficit shocks with policy rules

Next, add fiscal and monetary policy reaction functions. I use values

\[
i_t = 0.8 \pi_t + 0.5 x_t + u_{i,t} \tag{5.76}
\]

\[
\tilde{s}_{t+1} = 0.25 \pi_{t+1} + 1.0 x_{t+1} + 0.2 v_t^* + u_{s,t+1} \tag{5.77}
\]

\[
u_{i,t+1} = 0.7 u_{i,t} + \varepsilon_{i,t+1} \tag{5.78}
\]

\[
u_{s,t+1} = 0.4 u_{s,t} + \varepsilon_{s,t+1} \tag{5.79}
\]

\[
\beta_s = 0.14. \tag{5.80}
\]

Figure 5.7 plots responses that include these policy rules. This plot presents the
responses to a deficit shock $\varepsilon_{s,1} = -1$, holding constant the monetary policy disturbance $u_{i,t}$ but now allowing interest rates and surpluses themselves to change. Table 5.1 quantifies the corresponding decompositions, in the “Fiscal, yes θ” rows.

These parameters are also intended only as generally reasonable values that illustrate mechanisms clearly in the plots. Estimating policy rules is tricky, as the right-hand variables are inherently correlated with errors.

I specify an interest-rate reaction to inflation $\theta_{i\pi}$ less than one, to easily generate a stationary passive-money model. The monetary policy parameter $\theta_{i\pi}$ can in principle be measured in this fiscal theory, since it relates equilibrium quantities rather than describe off-equilibrium threats, so regression evidence is relevant. But the evidence for $\theta_{i\pi}$ substantially greater than one in the 1980 to 2008 data, such as Clarida, Gali, and Gertler (2000), is sensitive to specification, instruments, and sample period. OLS regressions lead to a coefficient quite close to one — the “Fisher effect” that interest rates rise with inflation dominates the data. Regressions of interest rates on inflation can have a coefficient greater than one even with $\theta_{i\pi} < 1$ (Cochrane (2011b)). But, as I do not try to match regressions and independent estimates of the other parameters of the model, I leave estimation of the policy response functions along with those other parameters for another day.

I use a surplus reaction to output $\theta_{s\pi} = 1.0$. The units of surplus are surplus/value of debt, or surplus/GDP divided by debt/GDP, so one expects a coefficient of about this magnitude. For example, real GDP fell 4 percentage points peak to trough in the 2008 recession, while the surplus/GDP ratio fell nearly 8 percentage points. Debt to GDP of 0.5 (then) leads to a coefficient 1.0. Surpluses should react somewhat to inflation, as the tax code is less well indexed than spending, but it’s hard to see that pattern in the data. Surpluses were low coincident with inflation in the 1970s. An OLS regression that includes both inflation and output, though surely biased, gives a negative coefficient. (The Appendix to Cochrane (2021b) presents simple OLS regressions, which also suggest $\eta_s = 0.4$.) I use $\theta_{s\pi} = 0.25$ to explore what a small positive reaction to inflation can do.

I use $\beta_s = 0.14$ in this case, in order to produce the same 0.4 ratio of ω-weighted cumulative inflation to the fiscal shock, as in (5.75).

The fiscal shock now induces a monetary policy reaction. Higher inflation and output lead to a higher interest rate. (The nominal interest rate, labeled i, is just below the inflation π line.) This unexpected interest-rate rise pushes inflation forward and thereby reduces current inflation. It produces a negative ex-post bond return, which soaks up inflation in the one-period accounting.
The inflation rate is now only slightly larger than the nominal interest rate, so real rates move much less. By making inflation persistent, nearly a random walk, and by reducing real-rate variation, the endogenous monetary policy response almost entirely eliminates the output response to the fiscal shock. The policy rules produce even more drawn-out inflation in response to a fiscal shock.

Greater inflation and output also raise fiscal surpluses through the \(\theta_{sx} \) and \(\theta_{s\pi} \) parts of the fiscal policy rule. The surplus line is slightly higher in Figure 5.7 than in Figure 5.6 (Look hard. Small changes add up.) These higher subsequent surpluses also reduce the inflationary effects of the fiscal shock.

In the decompositions of Table 5.1, the shock to \(\omega \)-weighted inflation with rules is the same as without rules, 0.79%, by construction. Instantaneous inflation 0.14% is less than half its previous value 0.36%, reflecting how inflation is now smoothed forward. The weighted sum of surpluses is slightly smaller, a result of several offsetting forces. Since the interest rate moves with the inflation rate, there is much less real interest rate and discount rate variation, only 0.02% and 0.04% not 0.11% and 0.55% deflationary pressure. The monetary policy reaction \(\theta_{i\pi} \) nearly eliminates the real interest rate and consequent output response of the fiscal shock. In the second and third panels, a 0.63% negative bond return, reflecting future inflation, now soaks up the fiscal shock in the mark-to-market accounting. This is a measure of how much monetary policy smoothed the inflation shock by moving inflation forward.

The endogenous policy responses smooth forward and thereby reduce the inflation response, produce offsetting future surpluses, and nearly eliminate the output and real interest-rate responses. Policy rules reactions to endogenous variables help to buffer shocks. This is an important argument in favor of such policy rules, and we will see it in many different responses.

5.5.4 Monetary policy shocks without policy rules

Figure 5.8 presents responses to a monetary policy shock \(\varepsilon_{i,1} \), with no policy rule reactions to endogenous variables \(\theta = 0 \).

Again, the tricky question in this response is what value of \(\beta_i \) to specify. What is the most interesting way to define a monetary policy shock that does not move fiscal policy? I already specify that the monetary policy shock comes with no direct fiscal shock \(u_{s,t} = 0 \). But monetary policy may still have fiscal consequences: Following the systematic part of the fiscal policy rule, surpluses react to changes in output,
Figure 5.8: Responses to a monetary policy shock, no policy rules.

Figure 5.9: Responses to a monetary policy shock, with policy rules.
inflation, and the value of debt that are induced by monetary policy changes. Even
with no fiscal policy reactions, \(\theta_{st} = \theta_{sx} = 0 \), when we choose a \(\beta_i \), or equivalently
first-period inflation, we choose the response of the value of debt, \(v_1 \) to the monetary
policy shock. Larger debt sets off larger subsequent surpluses via \(s_{t+1} = \ldots + \alpha v_t + \ldots \).
Economically, of course, it is the larger surpluses which cause the lower unexpected
inflation.

So, we want to pick \(\beta_i \) in a way that, beyond \(u_{s,t} = 0 \), expresses the idea that
monetary policy does not move fiscal policy. Mirroring the treatment of the surplus
shock, \((5.75) \) and with the weighted inflation decomposition \((3.20) \) in mind, I choose
\(\beta_i \) so that the weighted sum of inflation responses is zero,

\[
\sum_{j=0}^{\infty} \omega^j \Delta E_1 \pi_{1+j} = 0. \tag{5.81}
\]

Interpreting this quantity as the total reduction in the real value of debt, I thereby
specify that the government reacts to a monetary policy shock with no state-contingent
inflationary default at all. Any fiscal policy responses are backed. Any induced
deficits are repaid by subsequent higher surpluses, not by inflating away initial debt.
Obviously one may make lots of other choices. The point is that we have to make
some choice, the answers depend on it, so we need to think about it.

With no policy rule reactions \(\theta = 0 \), The nominal interest rate \(i_t \) in Figure \(5.8 \) just
follows the AR(1) shock process \(u_{i,t} \).

Inflation \(\pi \) declines initially, and then rises to meet the higher nominal interest
rate. Output also declines, following the Phillips curve in which output is low when
inflation is lower than future inflation.

The response of the expected nominal return \(r_{i+1}^{\pi} \) follows the interest rate \(i_t \), as this
model uses the expectations hypothesis. That rise in expected returns and bond
yields sends bond prices down, resulting in the sharply negative instantaneous bond
return \(r_{i+1}^{\pi} \). Subtracting inflation from nominal bond returns, the expected real interest
rate, expected real bond return, and discount rate rise persistently.

In sum, this model can produce a negative response of inflation to a monetary policy
shock, and with it a contraction, negative ex-post bond return, a lower market value
of debt, and a rise in expected real bond returns. Long-term debt is the crucial
ingredient in this model and parameterization for these results.

The left-hand side of the weighted inflation identity \((3.20) \) is constant, by construction, \((5.81) \), and seen in the “Monetary, no \(\theta \)” row of Table \(5.1 \) top panel. With this
5.5. RESPONSES AND RULES

Parameter choice, monetary policy can rearrange inflation, lowering current inflation by raising future ω-weighted inflation, but monetary policy cannot create less inflation overall without a fiscal response. The surplus and discount rate terms offset. The positive interest rate and negative inflation responses lead to higher real interest rates, giving a 2.58% inflationary discount rate effect. Though we see large initial deficits, those turn around to persistent surpluses past the right end of Figure 5.8 both to repay the initial deficits and in response to the increase in debt coming from high interest rates, generating an overall offsetting 2.58% surplus rise.

I have, perhaps unwisely, turned off two interesting pathways for fiscal-monetary interaction that may lead to a lower inflation response. The period-1 value of debt declines sharply. First, lower nominal bond prices reduce the value of debt more than lower inflation increases the value of debt. That decline in the value of debt leads to lower surpluses, which might raise inflation. Second, higher nominal interest rates and lower inflation give a higher real return, a higher discount rate, which might also might lower inflation. But in choosing β_s so that inflation does not devalue outstanding debt, so that there is no change in ω-weighted inflation, I specify that these responses to monetary policy all add up to naught: Every deficit-induced or return-induced change in value of debt is repaid in full by a following change in surplus, and so cannot contribute to unexpected inflation. I rule out here all of the tantalizing deflationary effects of monetary-fiscal interactions that I argued for in Section [2.5.1] Specifying that some of the endogenous fiscal response is unbacked would change matters and potentially restore these channels.

I tried choosing β_s so that the market value of debt does not move $\Delta E_1 v_1 = 0$. One can think of that specification as implementing the view that monetary policy does not change fiscal policy. Via $s_{t+1} = \ldots + \alpha v_t + \ldots$, no change in v_1 means no induced change in surpluses. However, interest rate hikes do seem to lower the market value of debt, and that assumption leads to a decline in ω-weighted inflation. I start instead with a calculation that shows some inflation decline with the most conservative assumption, but leave as a suggestion that a better definition of monetary-fiscal interactions could deepen the inflation decline.

Perhaps specifying that fiscal responses are partially unbacked, with the same (0.4 here) ratio of weighted inflation to surplus movement as one uses for fiscal policy is a more sensible approach. That approach would also allow the fiscal responses to affect inflation.

Rather than a definitive answer, we see once again just how important endogenous fiscal responses are to the effects of monetary policy. It matters not only how sur-
pluses react to inflation and output, which we capture via θ_{is} and θ_{ir}, but whether induced surpluses and deficits are backed by subsequent deficits and surpluses. In this parameterization, we capture these effects indirectly, and obscurely, via β_s.

5.5.5 Monetary policy shocks with policy rules

Figure 5.9 plots responses to the monetary policy shock, now adding fiscal and monetary policy rules θ that react to output and inflation.

The monetary policy reactions to inflation and growth push the interest rate i initially below its disturbance u_i. I held down the coefficient $\theta_{ir} = 0.8$, rather than a larger value, to keep the interest rate response from being negative, the opposite of the shock. Such responses are common, but confusing. (Cochrane (2018) p. 175 shows some examples.) The interest rate response is then quite flat. The policy rule times rising inflation and output offset the declining interest-rate disturbance $u_{i,t}$. Long-term bonds again suffer a negative return on impact, due to the persistent rise in nominal interest rate. Expected bond returns then follow interest rates with a one-period lag, under the expectations hypothesis. The real rate, the difference between interest rate and inflation, again rises persistently.

Output and inflation responses have broadly similar patterns as without policy rules, but with more persistent dynamics. Since inflation is more persistent, the output response is smaller.

The surplus, reacting to low output and inflation, now declines sharply on impact and persists negatively for a few years before recovering. This persistent deficit could offset the monetary policy shock, had I not assumed otherwise by choice of β_i – that fiscal responses are financed by borrowing, fully repaid, and generate no shock to ω-weighted inflation or deflation. Likewise, the persistent rise in real interest rate would remain an inflationary force, had I not assumed otherwise. Other definitions of the monetary policy shock can again turn on these interesting mechanisms.

The “Monetary, yes θ” rows of Table 5.1 quantify these offsetting effects. The ω-weighted sum of inflation is again zero by assumption. Monetary policy only rearranges inflation. However, the offsetting surplus and discount-rate effects are an order of magnitude smaller, 0.28 not 2.58, as we also see in the second and third panels.

As a second instance of a general pattern, policy rules smooth and therefore help to buffer the inflation and output responses to shocks. Taylor-type monetary policy
5.5. RESPONSES AND RULES

rules and automatic stabilizers have a useful function here, having nothing to do with
equilibrium selection and determinacy. Of course, if policy-makers want their shocks
to have big responses, the buffering properties of rules act against that desire.

5.5.6 Shock definition

These calculations require us to think how we wish to define and orthogonalize mone-
tary and fiscal policy disturbances. In the simplest model, I defined monetary policy
as a movement in interest rates that does not change surpluses. In this more general
model, that definition does not seem interesting. Here I define a monetary policy
shock as a movement in the policy-rule residual $u_{r,t}$ that does not affect the fiscal
disturbance $u_{s,t}$. But monetary policy nonetheless has fiscal consequences: Surpluses
respond to output, to inflation, to changes in the value of debt induced by varying
real interest rates, unexpected inflation, and past surpluses.

Should an analysis of the effects of monetary policy include such systematic fiscal
policy responses? In many cases, yes. If one is advising Federal Reserve officials
on the effects of monetary policy, they likely want to know what happens if the Fed
were to raise interest rates persistently $u_{r,t}$, but the Treasury takes no unusual action.
But they would likely want us to include “usual” fiscal actions and responses, as we
include the usual behavioral responses of all agents.

Perhaps not, however. Perhaps the Fed officials would like us to keep fiscal surpluses
constant in such calculations, so as not to think of “monetary policy” as having
effects merely by manipulating fiscal authorities into austerity or largesse. An aca-
demic description of the effects of monetary policy might likewise want to turn off
predictable fiscal reactions, again to describe the monetary effects of monetary pol-
cy on the economy, not via manipulation of fiscal policy. In that case, even if one
estimates $\theta_{s\pi}$ and θ_{sx} response parameters in the data, one should turn them off to
answer the policy question.

There is no right and wrong in specifying policy questions, there is only interesting vs.
uninteresting, and transparent vs. obscure. The issue is really just what do we find
an interesting question, and have we made clear what the question is. Calculations
of the effects of monetary policy must and do, implicitly or explicitly, specify what
parts of fiscal policy are held constant or allowed to move. This eternal (and eternally
forgotten) lesson is especially important here.

Though orthogonal shocks are interesting for policy experiments, if we are describing
history, estimating the model, or thinking about how external shocks affect the economy, we will surely confront monetary $u_{i,t}$ and fiscal $u_{s,t}$ disturbances that occur at the same time, and coincident with other shocks to the economy, as both authorities respond to similar events. For this reason, the responses I calculate holding one of the fiscal $u_{s,t}$ and monetary $u_{i,t}$ disturbances constant in turn are surely unlikely guidelines to interpreting specific historical events. Even the classic “monetary policy shock” of the early 1980s involved joint monetary, fiscal (deficits, two rounds of tax reform), and regulatory (supply or marginal cost shock) reforms. At a minimum, this fact means that estimating policy shocks with a fiscal sensibility needs one more difficult orthogonalization. The VAR literature has had a hard enough time finding movements in interest rates not taken in response to macroeconomic variables and forecasts. Now we need to find such movements also orthogonal to fiscal policy in some interesting sense. And perhaps the Fed officials, since they are seeing events that make them consider raising interest rates, do want you to put in whatever fiscal policy disturbance Treasury officials are likely to pursue in the same circumstance, in order to figure out what is likely to happen now.

These calculations are also important rhetorically and methodologically. Yes, one can include such endogenous reactions or policy rules. There is nothing in fiscal theory that requires “exogenous” surpluses. We can model observed and hypothetical fiscal and monetary policy quite flexibly.

5.6 Alternative surplus processes

The v^*, π^* surplus process, in which $v_t = v^*_t$ and $\pi_t = \pi^*_t$ in equilibrium, is particularly convenient for showing the potentially close relation between new-Keynesian and fiscal theory models, and highlighting their essential differences, for importing new-Keynesian models to fiscal theory, for seeing how broadly fiscal theory can apply, for exploring observational equivalence, and for identifying assumptions that might surmount it. However, as my tussles with the β parameters indicate, it may not be the best structure to use for fiscal theory models going forward, once one has accepted all those previous points. Choosing β parameters, the nature of the stochastic inflation target π^*_t, specifying what parts of fiscal policy are backed and what parts are unbacked, and integrating sticky-price models with more standard and micro-founded models of public finance all may push us in the direction of alternative parameterizations for fiscal policy.

Identifying the inflation target with actual inflation point by point, and identifying
the latent variable \(v_t^* \) with the value of debt point by point are convenient for the
former purposes, but not necessary. Abandoning those equalities may help to create
more transparent models of fiscal policies, whose mathematical expression lies closer
to the decisions of actual policy.

For a simple example, revert to one-period debt and flexible prices, and consider this
modification of the simple model (5.29)-(5.34):

\[
\begin{align*}
\rho v_{t+1} &= v_t - \Delta E_{t+1} \pi_{t+1} - \tilde{s}_{t+1} \\
\tilde{s}_t &= s_t^* + \tilde{s}_t \\
s_{t+1}^* &= \alpha v_t^* + u_{s^*,t+1} \\
\rho v_{t+1}^* &= v_t^* - s_{t+1}^* \\
\hat{s}_{t+1} &= u_{\hat{s},t+1} \\
u_{s^*,t+1} &= \eta_{s^*} u_{s^*,t} + \varepsilon_{s^*,t+1} \\
u_{\hat{s},t+1} &= \eta_{\hat{s}} u_{\hat{s},t} + \varepsilon_{\hat{s},t+1}.
\end{align*}
\]

Starting in (5.82) I write a two-component model of the surplus. The surplus has a
backed component \(s_t^* \), and an unbacked component \(\hat{s}_t \). The backed component has,
by construction, \(a(\rho) = 0 \), and shocks \(\varepsilon_{s^*,t+1} \) cause no unexpected inflation. The
unbacked component has whatever \(a(\rho) \) emerges from its process, \(1/(1 - \rho \eta_{\hat{s}}) \) here.
Thus the inflationary effect of an overall \(\tilde{s}_t \) surplus shock will depend on the extent
to which it comes from each of the two surplus components.

The latent variable component (5.83)-(5.84) offers a different intuition than before.
Here, we can think of the government’s “inflation target” as an unchanging value, 2%,
say, and hence it disappears from (5.84). Actual inflation now differs from that target.
We can think of the government committing to repay completely debts generated
under the backed component of the budget, but not debts generated by the unbacked
component of the budget. The Jacobson, Leeper, and Preston (2019) separation of a
budget into “regular” and “emergency” components could be written this way. One
could imagine (or hope!) that entitlement, military, and infrastructure spending
goes into the backed component, and stimulus spending, anti-inflation austerity,
state-contingent default spending, or a \(\theta_{s\pi} \) rule designed to stabilize inflation going
into the unbacked component.

The moving average representation for this surplus process is, using (5.26)

\[
\tilde{s}_{t+1} = \frac{(1 - \rho^{-1}L)}{1 - (1 - \alpha) \rho^{-1}L} \frac{1}{1 - \eta_{s^*} L} \varepsilon_{s^*,t+1} + \frac{1}{1 - \eta_{\hat{s}} L} \varepsilon_{\hat{s},t+1}.
\]
You can verify that \(a(\rho) = 0 \) for the first term and \(a(\rho) = 1/(1 - \rho s \eta s) \) for the second term. Thus,

\[
\Delta E_{t+1} \pi_{t+1} = -\frac{1}{1 - \rho \eta s} \varepsilon_{s,t+1}.
\]

The state variable \(v^* \) follows

\[
v^*_{t+1} = -\frac{\rho^{-1}}{[1 - (1 - \alpha) \rho^{-1} L]} \frac{1}{(1 - \eta s^* L)} \varepsilon_{s^*,t+1} = E_{t+1} \sum_{j=0}^{\infty} \rho^j s^*_{t+1+j},
\]

while the value of debt follows

\[
v_{t+1} = \frac{\eta s}{(1 - \rho \eta s)} \frac{1}{(1 - \eta s^* L)} \varepsilon_{s^*,t+1} - \frac{\rho^{-1}}{[1 - (1 - \alpha) \rho^{-1} L]} \frac{1}{(1 - \eta s^* L)} \varepsilon_{s^*,t+1}
\]

\[
v_{t+1} = E_{t+1} \sum_{j=0}^{\infty} \rho^j \delta_{t+1+j} + E_{t+1} \sum_{j=0}^{\infty} \rho^j s^*_{t+1+j}
\]

The state variable is not equal to the value of debt, and each value of debt cumulates its own surplus.

This is a bare-bones beginning. The point is that one can also construct models of this sort to represent s-shaped surplus processes, and for quantitative work within fiscal theory, models of this form may be more fruitful in the future.

Other aspects of the surplus process may be important for realism, and for today’s policy issues. For example, it is attractive in understanding today’s amazingly high debt, with so far nothing but larger and larger deficits on the horizon, to specify that governments respond to interest costs on the debt rather than to the value of debt directly. One might write

\[
s_{t+1} = \alpha \left[E_t \left(r^n_{t+1} - \pi_{t+1}\right) v^*_t \right] + \theta s \pi_{t+1} + \theta sx_{t+1} + \ldots + u_{s,t+1}.
\]

This specification would account for the alacrity with which U.S., European, and Japanese governments treat 100% debt-to-GDP ratios at very low real interest rates, compared to earlier eras. This change may produce interesting dynamics. In particular, a resurgence of real interest rates would provoke a sharp fiscal contraction, made worse by the debt accumulated in a previous period of low real interest rates.

Politicians seem to respond to nominal, not real, interest costs, which we could also model, eliminating the \(\pi_{t+1} \) in the above equation, and replacing the correct \(E_t(r^n_{t+1}) \) with the conventional accounting of interest costs. These considerations could add an
important mechanism by which central banks affect fiscal policy via purely nominal or debt-structure changes.

I have specified that surpluses respond to the real market value of debt. Since U.S. debt accounting measures face value of principal, not market value, it may make more sense to model fiscal rules that respond to face values, not marked to market. For example, the regular debt ceiling fracas occurs when the face, not market, value of debt hits a limit.

5.7 Continuous time

I introduce the sticky-price model in continuous time.

It is useful to express the sticky-price model in continuous time. Continuous-time formulas are often simpler, as they avoid the timing conventions of discrete time, what variables are dated at t vs. $t + 1$. Continuous time also forces us to think more carefully about which variables can and can’t jump, or follow diffusions. The price-level jumps of the frictionless model are unattractive. Do we need them? The answer turns out to be no, a major point of this section. Taking the flexible-price limit makes that point clear.

(The models in this section and the following build on Cochrane (2017e) and Sims (2011). Cochrane (2015a) is a short introduction to continuous-time stochastic models, dz vs. dt, Ito’s lemma and so forth. Cochrane (2012) shows how to do linear operator mechanics in continuous time, i.e. how to write the equivalent of $a(L)x_t = \varepsilon_t$, how to invert $a(L)$ to a moving-average representation, and so forth.)

I start with the continuous-time equivalent of the standard IS and Phillips curve model, with instantaneous debt:

\begin{align*}
 dx_t &= \sigma(i_t - \pi_t)dt + d\delta_{x,t} \\
 d\pi_t &= (\rho\pi_t - \kappa x_t)dt + d\delta_{\pi,t} \\
 dp_t &= \pi_t dt \\
 dv_t &= (rv_t + i_t - \pi_t - \tilde{s}_t)dt \\
 di_t &= d\varepsilon_{m,t} \\
 ds_t &= d\varepsilon_{s,t}.
\end{align*}

These equations are linearized and all variables are deviations from steady state.
Here dx_t, roughly the limit of $dx_t = x_{t+\Delta} - x_t$, is the forward-differential operator used in continuous time with either diffusion or jump shocks.

Equations (5.85) and (5.86) are the continuous-time equivalents of the IS and Phillips curves (5.1) and (5.2). Equation (5.85) is the consumer’s first-order condition, linearized, and using the absence of price-level jumps or diffusion terms. It is usually written $E_t dx_t = \sigma (i_t - \pi_t) dt$. I add the expectational shock $d\delta_{x,t} = dx_t - E_t dx_t$ to write an equation with the outcome dx_t on the left-hand side. It is easiest to see this equation’s analogy to its discrete time counterpart (5.1) by integrating forward to

$$x_t = -\sigma E_t \int_{\tau=0}^{\infty} (i_{t+\tau} - \pi_{t+\tau}) d\tau.$$

This is the obvious analogue of the integrated version of the discrete-time IS equation, (5.3). Consumption and therefore output are low if future real interest rates are high, driving the consumer to substitute intertemporally from present to future. Equation (5.86) is the continuous-time version of the new-Keynesian Phillips curve. The analogy to the discrete-time version is again easiest to see in integral form,

$$\pi_t = \kappa E_t \int_{\tau=0}^{\infty} e^{-\rho \tau} x_{t+\tau} d\tau,$$

which parallels the discrete-time version (5.4). Inflation is high if current and future output gaps are high. As $\kappa \to \infty$, output variation becomes smaller for given inflation variation, so $\kappa \to \infty$ is the frictionless limit.

Equation (5.87) specifies that though inflation may move unexpectedly with a jump or diffusion component, the price level is continuous, differentiable, and hence completely predictable, $dp_t = E_t dp_t$. If a fraction λdt of producers changes price in each instant dt, the aggregate price level cannot jump or move unexpectedly. The previous discrete-time one-period debt models include a price-level jump that devalues short-term nominal debt. That mechanism is ruled out here, and our first task is to see what takes its place. While one can write models of price stickiness that allow for price-level jumps and diffusions, and hence for inflation to devalue instantaneous debt, it is interesting to focus on the case that this cannot happen. We see that the fiscal theory does not need such effects. The resulting model is elegant and intuitive.

Equation (5.88) is the linearized evolution of the real market value of government debt, from (3.42), with $i_t dt = dR^a_t$ since we have short-term debt and without rdt since variables are deviations from steady state. Debt grows with the real interest rate, and declines with primary surpluses.
I use ρ to denote the discount rate in the Phillips curve (5.86), and r for the steady-state real interest rate in the debt accumulation equation (5.88), in place of $\beta = e^{-\rho}$ in the discrete-time Phillips curve and a different $\rho = e^{-r}$ in discrete-time debt accumulation equation and consequent forward-looking linearized identities. This is a standard notation in continuous time, so I use it despite recycling symbols.

The $d\varepsilon_t$ shocks are structural shocks, i.e. exogenous to this model. One should add structural shocks to the IS and Phillips curves as well, and study responses to such shocks. As in discrete time, solving the model involves solving the $d\delta_t$ expectational errors in terms of the $d\varepsilon_t$ shocks. Both $d\delta_t$ and $d\varepsilon_t$ may be diffusions or compensated jump processes. (A “compensated” jump process has mean-zero innovations.) Since the model is linear, we can compute impulse-response functions as responses to “MIT shocks,” one-time unexpected shocks $d\varepsilon_0$ at time 0, and perfect foresight thereafter.

5.7.1 An analytic solution

I solve the model analytically, giving inflation as a two-sided moving average of interest rates with a transient selected by the government debt valuation equation. I work out an example response to fiscal and monetary policy shocks. The government debt valuation equation selects equilibria. The valuation equation adjusts entirely via discount-rate variation. Unexpected time-0 inflation does not devalue outstanding debt. Instead, the path of inflation adjusts until the real interest rate brings the unchanged value of debt into line with the discounted value of surpluses. A period of low real returns devalues outstanding debt smoothly. The frictionless limit of discount-rate variation to a price-level jump is smooth.

In this section, I solve this simplest version of the model analytically. This analysis is the continuous-time equivalent of Section 5.1.1. This analytical solution shows how the continuous-time model works. In particular we see how it can work with no price-level jumps or diffusion terms, and how it smoothly approaches a frictionless solution that does have price-level jumps or diffusions.

Before time 0, all variables are at the steady state, so deviations from steady state are zero. At time 0, people learn new paths for interest rates and surpluses, starting with \tilde{s}_0 and i_0. There is perfect foresight for $t > 0$ after one unexpected initial movement $(d\delta_0, d\varepsilon_0)$ at time 0. In the perfect foresight region $t > 0$, we solve

$$\frac{dx_t}{dt} = \sigma(i_t - \pi_t)$$

(5.91)
\[
\frac{d\pi_t}{dt} = \rho \pi_t - \kappa x_t \\
\frac{dv_t}{dt} = i_t - \pi_t + rv_t - \bar{s}_t.
\]
(5.92)
(5.93)

The solutions to the pair (5.91)-(5.92) are

\[
\pi_t = C_0 e^{-\lambda_2 t} + \left(\frac{1}{\lambda_2} + \frac{1}{\lambda_1}\right)^{-1} \left[\int_{\tau=0}^{t} e^{-\lambda_2 \tau} i_{t-\tau} d\tau + \int_{\tau=0}^{\infty} e^{-\lambda_1 \tau} i_{t+\tau} d\tau\right]
\]
(5.94)

where

\[
\lambda_1 \equiv \frac{\rho + \sqrt{\rho^2 + 4\kappa \sigma}}{2}; \quad \lambda_2 \equiv -\frac{\rho + \sqrt{\rho^2 + 4\kappa \sigma}}{2}
\]

and \(C_0\) is an arbitrary constant. (Algebra in Online Appendix Section 25.12.) As in discrete time, equilibrium inflation is a two-sided average of equilibrium interest rates, plus an exponentially-decaying transient. There is a family of stable solutions, indexed by \(C_0\), or equivalently by the initial value of inflation \(\pi_0\).

The solution to the debt evolution equation (5.93) is

\[
v_0 = \int_{\tau=0}^{\infty} e^{-r\tau} [\bar{s}_\tau - (i_\tau - \pi_\tau)] d\tau.
\]
(5.95)

This is our usual linearized present value formula. The real value of debt is the present value of surpluses, discounted at the real interest rate. We substitute (5.94) into (5.95) to solve for the initial \(\pi_0\) or \(C_0\), thereby completing the solution.

In the flexible-price case, (5.94) becomes \(\pi_t = i_t\), (5.95) becomes

\[
v_0 = \int_{\tau=0}^{\infty} e^{-r\tau} \bar{s}_\tau d\tau,
\]

so the price level must move unexpectedly, with a jump or diffusion component, if the right-hand side does so. Since \(B_0\) is predetermined, the denominator \(P_0\) of \(V_0 = B_0/P_0\) must jump.

In this model of price stickiness, we can no longer have price-level jumps or diffusion terms. However, the model allows for an unexpected persistent rise in inflation starting at time \(t = 0\). The discount rate path \((i_\tau - \pi_\tau)\) on the right-hand side of (5.95) adjusts until there is no need for the left-hand side to jump. Each of
the possible inflation paths in \((5.94)\) implies a different path of real rates in \((5.95)\), corresponding to different values of the initial constant \(C_0\) or initial inflation \(\pi_0\).

For example, fixing the nominal rate path, a negative surplus shock leads to more inflation, which lowers the discount rate, restoring the time-0 real value of debt. After some time, higher inflation, generating a lower real rate of return, erodes the real value of debt.

With flexible prices and therefore constant real interest rates, expected inflation cannot devalue debt. The nominal interest rate rises one for one with inflation, protecting bondholders, so there must be a price level jump. But with sticky prices, a protracted inflation can lower real returns, so even holders of instantaneous debt lose value of their investments.

• With sticky prices and instantaneous debt, a fiscal shock leads to a protracted inflation, and a protracted period of low real interest rates. This discount rate change absorbs the entire fiscal shock in accounting for the present value of surpluses at time 0, with no change in the market value of debt. There is no price-level jump devaluing outstanding debt. A period of low real returns and steady inflation takes its place.

The story and economic mechanism are different than that of a price-level jump. In turn, that fact tells us to interpret the price-level jumps of the discrete-time model as a look at this slow erosion over an interval, rather than a literal overnight or instantaneous price-level jump. This is a fundamentally different and, I think, better parable to tell for the fiscal theory of the price level.

To work out a simple example, start at a steady state with interest rate \(i = r\), debt \(v_0\) and surplus \(\tilde{s} = r v_0\). Consider a permanent and unexpected monetary policy shock to \(i_0\) at time 0, and a fiscal policy shock to \(\tilde{s}_0\) at time 0. We can parameterize the family of solutions \((5.94)\) by initial inflation \(\pi_0\),

\[
\pi_t = (\pi_0 - i_0) e^{-\lambda_2 t} + i_0.
\]

The government debt valuation equation \((5.95)\) then becomes

\[
v_0 = \frac{\tilde{s}_0}{r} + \frac{\pi_0 - i_0}{r + \lambda_2}.
\]

With no price-level jumps, \(v_0\) is predetermined, so we solve the second equation for \(\pi_0\) and the first equation gives the path of inflation over time. Doing so, the unique
path for inflation is
\[
\pi_t = (r + \lambda_2) \left(v_0 - \frac{\tilde{s}_0}{r}\right) e^{-\lambda_2 t} + i_0.
\] (5.96)

A fiscal shock, a decrease in surplus with no interest-rate change, moves the first term but not the second. It results in a transitory rise in inflation, melting away at \(e^{-\lambda_2 t}\), but no price-level jump. The value of debt evolves as
\[
v_t - \frac{\tilde{s}_0}{r} = \pi_t - i_0 = \left(v_0 - \frac{\tilde{s}_0}{r}\right) e^{-\lambda_2 t}.
\]
The value of debt is initially unchanged. It then erodes over time, until we reach the new steady state \(v_t = \tilde{s}_0/r\). The first interval of this erosion looks like a price-level jump to discrete-time analysis.

The responses are similar but prettier than those of the discrete-time case, Figure 5.3. In that case we thought of an initial devaluation and then a discount rate effect. Here we see it’s really all a discount rate effect.

Suppose there is no fiscal shock, \(\tilde{s}_0 = \tilde{s}\), so the first term of (5.96) is zero, but the interest rate \(i_0\) rises. The response is perfectly Fisherian: Inflation \(\pi_t\) rises immediately by exactly the interest rate rise \(i_0\) and stays there.

This is qualitatively different behavior than the discrete-time case of Figure 5.1. In that case, we saw inflation rise immediately when the interest rate rose, but it did not fully rise to match the interest rate unless prices are completely sticky. We see now that this behavior is an artifact of discrete time. In that case, an increase in time-1 inflation devalued outstanding one-period debt. Had inflation risen immediately to match the interest rate, one-period debt would have been devalued, but there would not have been any corresponding change in discount rate or surpluses. The halfway inflation response balanced a higher discount rate with debt devaluation. In continuous time, even an instantaneous rise in inflation has no effect on the price level, and thus does not devalue debt \(v_0\). With no change in surplus, there now needs to be no change in discount rate either, so inflation jumps immediately and completely.

One should worry about a model that has no price-level jump for nonzero price stickiness, but requires a price-level jump at the frictionless limit point. In fact, the frictionless limit is well behaved. As \(\kappa \to \infty\), \(\lambda_2 \to \infty\). The path (5.96) has a larger and larger rise in inflation, but one that lasts a shorter and shorter time. The price
level path smoothly approaches the jump of the truly frictionless model. Cumulative inflation is
\[
\int_{t=0}^{\infty} \pi_t dt = (r + \lambda_2) \left(v_0 - \tilde{s}_0 \right) \int_{t=0}^{\infty} e^{-\lambda_2 t} dt = \left(\frac{r}{\lambda_2} + 1 \right) \left(v_0 - \frac{\tilde{s}_0}{r} \right),
\]
so
\[
\lim_{\kappa \to \infty} \int_{t=0}^{\infty} \pi_t dt = v_0 - \frac{\tilde{s}_0}{r},
\]
exactly the size of the price-level jump of the frictionless model. Figure 5.10 plots an example of this limit, described in the next section.

In reality one does not solve the model this way, solving forward one or groups of equations at a time. One uses matrix methods on the system (5.91)-(5.93), solving the unstable roots of the whole system forward and the stable roots backwards, as detailed in Section 25.13. One ends up at the same solution of course, but not an analytic expression.

5.7.2 S-shaped surpluses

I add the s-shaped surplus process in continuous time.

We can write the s-shaped surplus process in continuous time analogously to the discrete-time version. Start with a simple example. Let the surplus have an AR(1) shock, but the surplus then responds to a state variable \(v_t^* \),
\[
s_t = \alpha v_t^* + \int_{\tau=0}^{\infty} e^{-\eta \tau} d\xi_{s,t-\tau} \quad (5.97)
\]
\[dv_t^* = (r v_t^* + \beta_s d\xi_{s,t} - s_t) dt. \quad (5.98)
\]
The state variable \(v_t^* \) is, in equilibrium, the value of debt in a flexible-price version of the model, featuring a constant real rate \(r \) and allowing a price level diffusion or jump \(dP/P = -\beta_s d\xi_{s,t} \) which can devalue debt. We will adapt the surplus process in the next section to the sticky-price model.

Solving (below), the implied surplus process is the difference between two AR(1) processes. In operator notation with \(D = d/dt \):
\[
s_t = \left[\frac{\eta + r}{\eta + r - \alpha \eta + D} - \left(\frac{\alpha}{\eta + r - \alpha} - \alpha \beta_s \right) \frac{1}{(\alpha - r) + D} \right] D\xi_{s,t}, \quad (5.99)
\]
or explicitly,

\[s_t = \frac{\eta + r}{\eta + r - \alpha} \int_0^\infty e^{-\eta \tau} d\varepsilon_{s,t+\tau} - \left(\frac{\alpha}{\eta + r - \alpha} - \alpha \beta_s \right) \int_0^\infty e^{-(\alpha-r)\tau} d\varepsilon_{s,t+\tau}. \] (5.100)

The first term is a multiple of the driving AR(1) in (5.97). The second term captures debt repayment, which goes in the opposite direction. Since we generally write \(\eta >> \alpha - r \), the first term is larger, but decays more quickly. The second, opposite term is smaller but longer lasting. Thus, we have a pretty s-shaped response formed by offsetting AR(1) processes. A negative shock \(d\varepsilon_{s,t} \) sets off persistent deficits in the first term. Those deficits eventually turn to surpluses when the second term takes over. Eventually, the surpluses die off as well.

As in discrete time, we can regard the moving average representation (5.100) as primitive, or we can regard the government as “reacting to” the state variable \(v_t^* \), which is the value of debt in equilibrium.

Hansen-Sargent prediction formulas capture present values in continuous time as well. If we write the surplus moving average such as (5.99) in operator form as

\[s_t = \mathcal{L}(D)D\varepsilon_{s,t}, \]

then

\[E_t \int_0^\infty e^{-r\tau} s_{t+\tau} d\tau = \frac{\mathcal{L}(D) - \mathcal{L}(r)}{r - D} D\varepsilon_{s,t}. \]

The shock, loosely speaking \(E_{t+\Delta} - E_t \) of the present value, is given by

\[\Delta_t \left(\int_0^\infty e^{-r\tau} s_{t+\tau} d\tau \right) = \mathcal{L}(r)D\varepsilon_{s,t} \]

which in this case is just \(\mathcal{L}(r) = -\beta_s \). Here I use the notation \(\Delta_t(x_t) = dx_t - E_t(dx_t) \) to denote an innovation in continuous time, equivalently the jump or diffusion component of a process. Thus, the price-level diffusion/jump is given by

\[-\Delta_t(1/P_t) = - \left[\frac{d(1/P_t)}{1/P_t} - \frac{E_t d(1/P_t)}{1/P_t} \right] = -\mathcal{L}(r)d\varepsilon_{s,t} = \beta_s d\varepsilon_{s,t}. \]

\(\mathcal{L}(r) \) is the continuous-time equivalent of \(a(\rho) \). With \(\beta_s = 0 \), deficits are fully repaid.
Algebra

To derive (5.100), as in discrete time, first substitute (5.97) in (5.98) to find the \(v^*_t \) process, then substitute back in to (5.97) to find the \(s_t \) process. The algebra is much easier with operator notation, which avoids messy double integrals. In operator notation, the model is

\[
s_t = \alpha v^*_t + u_t \tag{5.101}
\]

\[
u_t = \frac{1}{\eta + D} D\varepsilon_{s,t} \tag{5.102}
\]

\[
Dv^*_t = rv^*_t + \beta_s D\varepsilon_{s,t} - s_t \tag{5.103}
\]

where, loosely, \(Dx_t \equiv (1/dt)dx_t \) and \(dx_t \) is the forward-differential operator.

First eliminate \(s_t \) in (5.103),

\[
Dv^*_t = -(\alpha - r)v^*_t + \beta_s D\varepsilon_{s,t} - u_t
\]

\[
v^*_t = -\frac{1}{D + (\alpha - r)} (-\beta_s D\varepsilon_{s,t} + u_t).
\]

Then, substituting back in (5.101),

\[
s_t = \left(1 - \frac{\alpha}{D + (\alpha - r)}\right) u_t + \frac{\alpha}{D + (\alpha - r)} \beta_s D\varepsilon_{s,t}
\]

\[
s_t = \frac{D - r}{D + (\alpha - r)} \frac{1}{D + \eta} D\varepsilon_{s,t} + \frac{\alpha \beta_s}{D + (\alpha - r)} D\varepsilon_{s,t}.
\]

Decomposing the last expression by partial fractions,

\[
s_t = \left(\frac{\eta + r}{\eta + r - \alpha} \frac{1}{\eta + \frac{\eta + r}{\eta + r - \alpha} D} - \frac{\alpha}{\eta + r - \alpha} \frac{1}{\eta + \frac{\eta + r}{\eta + r - \alpha} D} + \frac{\alpha \beta_s}{D + (\alpha - r)}\right) D\varepsilon_{s,t},
\]

and simplifying we obtain (5.99).

This section is an advertisement for operator methods in continuous time to manipulate linear models, analogously to discrete time. Cochrane (2012) is a reference.

5.7.3 Long-term debt and policy rules

I add long-term debt and monetary and fiscal policy rules to the model.
Next, I add long-term bonds and monetary and fiscal policy rules, mirroring the discrete-time treatment. The model becomes

\[
\begin{align*}
 dx_t &= \sigma (i_t - \pi_t) dt + d\delta_{x,t} \\
 d\pi_t &= (\rho \pi_t - \kappa x_t) dt + d\delta_{\pi,t} \\
 dp_t &= \pi_t dt \\
 dq_t &= [(r + \omega) q_t + i_t] dt + d\delta_{q,t} \\
 dv_t &= (rv_t + i_t - \pi_t - \bar{s}_t) dt + d\delta_{q,t} \\
 di_t &= -\zeta_i [i_t - (\theta_i \pi_t + \theta_ix_t + u_{i,t})] dt + \theta_i d\varepsilon_{i,t} \\
 \bar{s}_t &= \theta_s \pi_t + \theta_s x_t + \alpha v^*_t + u_{s,t} \\
 dv^*_t &= (rv^*_t + i_t - \pi^*_t - \bar{s}_t) dt + (r + \omega) d\delta_{Q,t} \\
 E_t d\pi^*_t &= E_t d\pi_t \\
 d\pi^*_t - E_t d\pi_t^* &= -\beta_s d\varepsilon_{s,t} - \beta_i d\varepsilon_{i,t} \\
 du_{i,t} &= -\eta_i u_{i,t} + d\varepsilon_{i,t} \\
 du_{s,t} &= -\eta_s u_{s,t} + d\varepsilon_{s,t}
\end{align*}
\]

Equation (5.104) derives from the linearized bond pricing equation (3.48),

\[
dq_t = (dR^n_t - rdt) + (\omega + r) (q_t - 1) dt.
\]

I impose the expectations hypothesis so that \(E_t (dR^n_t) = i_t\), and I denote the unexpected bond price

\[
d\delta_{q,t} \equiv dR^n_t - i_t.
\]

Equation (5.105) derives from the linearized debt accumulation equation (3.42),

\[
dv_t = rv_t dt + dR^n_t - (r + \pi_t) dt - \bar{s}_t dt.
\]
I make the same substitution (5.113). I drop $r dt$ to take deviations from steady state. Debt grows with the real interest rate, and declines with primary surpluses. A shock to bond prices $d \delta_q t$ raises the real value of debt, so the same expectational error appears in both equations. The only difference between long-term and instantaneous debt is this term $d \delta_q t$, just as $r_{t+1}^n \neq i_t$ distinguishes long-term debt in discrete time.

Equations (5.106) and (5.111) comprise a monetary policy rule. The parameter ζ describes a partial-adjustment process, in which interest rates move slowly towards the policy rule. In discrete time, this rule is

$$i_t - i_{t-1} = -\zeta [i_t - (\theta_{i,\pi} \pi_t + \theta_{i,x} x_t + u_{i,t})] + \theta_{i,\varepsilon} \varepsilon_{i,t}$$

$$u_{i,t+1} - u_{i,t} = -\eta_i u_{i,t} + \varepsilon_{i,t}.$$

This is equivalent to a rule with a lagged interest rate and a serially correlated disturbance,

$$i_t = (1 - \zeta) i_{t-1} + \zeta (\theta_{i,\pi} \pi_t + \theta_{i,x} x_t) + \zeta u_{i,t} + \theta_{i,\varepsilon} \varepsilon_{i,t}$$

$$u_{i,t+1} = (1 - \eta_i) u_{i,t} + \varepsilon_{i,t}.$$

(5.114)

I add a direct impact of the shock $d \varepsilon_{i,t}$ in (5.106). Without it, the interest rate itself does not jump or have diffusions. The Federal Funds rate does jump when the Fed changes its target. This is a helpful first step, but to accurately model high-frequency Federal Funds rate behavior, one should follow the sort of time-series specification in Piazzesi (2005). I include $u_{i,t}$ at all in order to investigate the difference between partial adjustment and serially correlated disturbances, and to produce a model that looks like the discrete-time model above. One could also view partial adjustment as being enough, and write instead

$$d i_t = -\zeta [i_t - (\theta_{i,\pi} \pi_t + \theta_{i,x} x_t)] dt + d \varepsilon_{i,t}.$$

A partial-adjustment dynamic formulation is important in continuous time. Recall the discrete-time flexible-price model with a monetary policy rule $i_t = \theta_{i,\pi} \pi_t$ and $i_t = E_{t+1} \pi_t$, so dynamics are $E_{t+1} \pi_t = \theta_{i,\pi} \pi_t$. In continuous time with differentiable prices, as here, $i_t = E_{t+1} \pi_t$ becomes just $i_t = \pi_t$. If we specify $i_t = \theta_{i,\pi} \pi_t$ without dynamics, we get $\pi_t = \theta_{i,\pi} \pi_t$, so $\pi_t = 0$ with instant dynamics. Instead, if we write

$$d i_t = -\psi_i (i_t - \theta_{i,\pi} \pi_t) dt$$
together with \(i_t = \pi_t \), we have
\[
d\pi_t = -\psi_t (1 - \theta_\pi) \pi_t dt
\]
and thus
\[
\pi_t = \pi_0 e^{-\psi_t (1 - \theta_\pi) t}
\]
a dynamic model that resembles the discrete time result.

This is a nice example of how continuous time helps to clarify ideas and distinguish economics from timing conventions. In discrete time we get into trouble if we specify a rule that responds (sensibly) to expected inflation, \(i_t = \theta E_t \pi_{t+1} \). Then with \(i_t = E_t \pi_{t+1} \) we obtain a silly equilibrium condition \(E_t \pi_{t+1} = \theta E_t \pi_{t+1} \), so \(E_t \pi_{t+1} = 0 \).

The discrete-time model implicitly introduces dynamics via the policy rule in which interest rates \(i_t \) respond to today’s inflation \(\pi_t \), while the Fisher relation relates \(i_t \) to tomorrow’s expected inflation \(E_t \pi_{t+1} \). In continuous time, we must build in the same lag consciously, which is good for clarity of what we are doing. (Cochrane (2011b) explores the effects of timing conventions on the Taylor rule in a discrete-time Keynesian model in some detail.)

Equations (5.107)-(5.112) specify a fiscal policy rule, in analogy to the similar rule in discrete time of Section 5.5. The surplus responds to inflation and output, via proportional taxes, an imperfectly-indexed tax code, countercyclical spending, and so forth. The surplus disturbance \(u_{s,t} \) is positively correlated, modeled as an AR(1). The surplus responds to the state variable \(v^*_t \) which evolves just as does the value of debt, except that it substitutes the stochastic inflation target \(\pi^*_t \) for inflation \(\pi_t \).

Equation (5.109), specifying that the expected inflation target must equal expected inflation, captures a lot. The inflation target \(\pi^*_t \) is not arbitrary. The target \(\pi^*_t \) must be a candidate equilibrium of the model. Given the interest rate path, the only degree of freedom in the choice of \(\pi^*_t \) is its innovation. We could express this idea by writing out the whole model with \(\pi^*_t \) to define its properties. Equation (5.109) has the same effect with a lot fewer equations.

Equation (5.110) expresses the relation between the inflation innovation and innovations in the structural shocks of the model. As in discrete time, this formulation invites abuse, and requires thought about what \(\beta \) values to specify as we change other parameter values. We should regard the time 0 inflation shock as a result of fiscal and monetary policy rather than as a policy lever.

As in discrete time, we can quickly difference (5.105) and (5.108) to obtain
\[
d \left(v^*_t - v_t \right) = \left[- \left(\pi^*_t - \pi_t \right) + r \left(v^*_t - v_t \right) \right] dt.
\]
The transversality condition ruling out debt explosions then implies $v_t = v^*_t$ and $\pi_t = \pi^*_t$. We can now simplify equations (5.107)-(5.110) to eliminate all the starred variables,

$$\tilde{s}_t = \theta_s \pi_t + \theta_s x_t + \alpha v_t + u_{s,t}$$
$$d\delta_{\pi,t} = -\beta_s d\varepsilon_{s,t} - \beta_i d\varepsilon_{i,t}.$$

5.7.4 Response functions and price-level jumps

I plot responses to monetary and fiscal shocks in continuous time, with long-term debt. The basic patterns are the same as in discrete time but prettier.

The price level does not jump. Inflation, driving real discount rate changes, brings the present value relation in line. As pricing frictions are removed, the inflation or deflation becomes larger and shorter-lived, smoothly approaching a price-level jump.

I compute responses using the full model (5.85)-(5.90), including long-term debt and policy reactions. Mirroring the discrete-time treatment, I solve the model by writing it in standard form,

$$dz_t = Az_t dt + Bd\varepsilon_t + Cd\delta_t.$$

Solving the unstable eigenvalues forward we find expectational errors $d\delta_t$ in terms of structural shocks $d\varepsilon_t$. Then we have a standard autoregressive representation driven by the structural shocks $d\varepsilon_t$. Online Appendix Section 25.13 gives details.

I start without monetary or fiscal policy rules, turning off all the θ parameters. I also set $\alpha = 0$. The surplus does not respond at all to interest rate shocks, and follows an exogenous AR(1) with no debt repayment or s-shape. I use $\omega = 0$, a perpetuity.

The top panel of Figure 5.10 shows the responses to an unexpected interest rate rise with no change in surpluses $d\varepsilon_{s,t} = 0$ for this case. The responses are essentially the same as the corresponding Figure 5.4 for discrete time, only smoother since we have a value at every point, and since shocks are instantaneous jumps. Long-term debt means that higher nominal interest rates can produce lower inflation. The response to an expected interest rate rise, not shown, is essentially the same as Figure 5.2 for discrete time, as are responses to fiscal shocks and other exercises.

The bottom panel of Figure 5.10 plots the **price-level** response to the unexpected interest rate increase for a variety of price-stickiness parameters. The disinflation
Figure 5.10: Top: Responses to an unexpected permanent interest rate shock with long-term debt. Parameters $r = 0.05$, $\kappa = 0.2$, $\sigma = 0.5$, $\omega = 0$, $\alpha = 0$, $\theta = 0$. Bottom: Response of the price level, with different price-stickiness parameters κ.

Shown in the top panel of Figure 5.10 results in a protracted price-level decline, which recovers when the disinflation turns to inflation. Sensibly, as prices become...
stickier, as κ declines, the period of disinflation lasts longer.

As prices become less sticky, as κ increases, the price-level response approaches the downward jump followed by inflation shown in the frictionless model of Figure 5.4. The fiscal theory of monetary policy has a smooth frictionless limit. This point is important by contrast with some standard new-Keynesian models, which, as we will see, blow up as you remove price stickiness, though their frictionless limit point is well behaved.

The smooth frictionless limit means that the simple frictionless models provide a useful approximation. The frictionless model generates a downward price-level jump, followed by inflation. The sticky-price model generates a period of deflation followed by slowly emerging inflation. Price stickiness just drags out and makes more realistic the dynamics suggested by the stark frictionless model.

Higher interest rates lower inflation, but by a seemingly different mechanism than we are used to. With perfect foresight, the government debt valuation equation is

\[V_t = \frac{Q_t B_t}{P_t} = \int_{\tau=t}^{\infty} e^{-\int_{w=\tau}^{\infty} (iw - \pi_w) dw} s_\tau d\tau. \] (5.115)

Higher interest rates give rise to a downward bond price Q_t jump. In a flexible-price model, that jump is matched by a downward price-level P_t jump. With sticky prices and varying real rates in discrete time, some of the lower bond price is absorbed by higher real interest rates and some is absorbed by a smaller downward price-level jump. In continuous time with no price-level jumps, the discount-rate effect is the entire mechanism. In turn, we can think of the discrete-time price-level jump as an artifact of looking coarsely at the time-path of the economy.

The response to a fiscal policy shock with constant nominal rate is likewise nearly identical to the discrete-time case, Figure 5.3, though again slightly prettier. Again, inflation jumps down but the price level does not jump at time 0, unlike discrete time which combines the two effects. If there is a decline in expected surpluses on the right-hand side of (5.115), we get a period of high inflation, lowering the discount rate of government debt so that the present value is unchanged despite the decline in surpluses. Equivalently, there is a period of low real returns, which devalue debt. As we reduce price stickiness, the period of low inflation gets shorter and more dire, smoothly approaching the price-level jump.

There is not much point in recreating the previous graphs with prettier continuous time versions, so instead I use the model to explore novel issues.
5.7.5 Monetary-fiscal coordination

With a fiscal policy rule that reacts to inflation and output, higher interest rates, can produce lower inflation, even with short-term debt. Higher long-run inflation produces higher long-run surpluses, which push the economy to a path with lower inflation. For this effect to work, however, the fiscal response must be “unbacked,” i.e. it must produce a change in the weighted sum of surpluses. A rule that pays off deficits with higher later surpluses has no effect on inflation, even when those deficits react to inflation and output. I explore the parametric model of surpluses generated by α, θ, and β parameters, and find that the weighted sum of surpluses is now controlled by a mixture of parameters.

Figure 5.11: Responses to an interest-rate shock with a surplus rule. The surplus follows $s_t = 1.0x_t + 1.0\pi_t + \alpha v_t$. In the solid line, $\alpha = 0$. In the dashed line, $\alpha = 0.4$, $\beta = 0.8$. Short-term debt $\omega = \infty$. Other parameters are $\kappa = 2$, $r = 0.05$, $\rho = 0.05$, $\theta_{ix} = \theta_{i\pi} = 0, \theta_{i\kappa} = 0.25$, $\zeta = 1$, $\eta = 0.3$.

Figure 5.11 shows how a surplus rule that reacts to inflation and output can induce a negative inflation response to higher interest rates, even with no long-term debt, and no direct response or correlation between monetary and fiscal policy shocks.

To produce the graph, I use a surplus rule that reacts strongly to output and to
inflation, but does not respond to debt at all, \(\tilde{s}_t = 1.0x_t + 1.0\pi_t + u_{s,t} \) with \(\alpha = 0 \). This is a larger value of \(\theta_{s\pi} \) than I use elsewhere, in order to show the effect more clearly. With \(\alpha = 0 \), the whole starred set of equations drops from the model, so \(\beta_i \) in particular is now irrelevant and does not select unexpected inflation. I graph the response to a moderately persistent interest-rate shock. I use \(\eta_i = 0.3 \), corresponding to an 0.7 disturbance \((u_{i,t}) \) autocorrelation in annual data, and \(\zeta_i = 1 \), so the interest rate converges to the rule with a one-year half-life. I specify \(\theta_{ix} = 0.25 \), so a 1% monetary policy shock \(\varepsilon_{i,t} \) starts with an 0.25% shock to interest rates. In order to focus on the fiscal policy rule, monetary policy has no reaction to inflation and output, \(\theta_{ix} = \theta_{i\pi} = 0 \), so the interest rate just follows the graphed path exogenously. Other parameters are \(r = 0.05 \), \(\rho = 0.05 \), \(\theta_{ix} = \theta_{i\pi} = 0 \). In order to make a pretty graph, I use a large value of \(\kappa = 2 \).

Higher future nominal interest rates eventually produce higher inflation. The higher inflation produces larger surpluses, a fiscal tightening through \(\theta_{s\pi} \). Though the short-term disinflation and recession – lower \(x \) – produce short-term deficits, these deficits are more than made up by the subsequent surpluses to create an overall fiscal tightening contemporaneous with the monetary policy shock. Inflation falls immediately with the higher interest rate, even though there is no long-term debt. This is the main point of the graph:

- A fiscal rule in which surpluses respond to inflation can induce a negative response of inflation to higher interest rates.

Despite low price stickiness, the real interest rate rises substantially for four years.

To better understand the mechanisms, Table [5.2](#) presents the terms of the linearized identity \((3.51) \) for this and following impulse-response functions. Applied to a response function \((t = 0, x_\tau = \Delta_0 x_\tau) \), and with short-term debt so \(dR_\tau = (i_\tau - \pi_\tau)d\tau \), that identity is

\[
\int_{\tau=0}^{\infty} e^{-(r+\omega)\tau} \pi_\tau d\tau = -\int_{\tau=0}^{\infty} e^{-r\tau} \tilde{s}_\tau d\tau + \int_{\tau=0}^{\infty} \left(e^{-r\tau} - e^{-(r+\omega)\tau} \right) (i_\tau - \pi_\tau) d\tau. \tag{5.116}
\]
With short-term debt \(\omega = \infty \), the left-hand side is zero. Future expected inflation cannot devalue long-term bonds, and the value of debt cannot change on impact. Thus, the weighted sum of future surpluses must equal the weighted sum of future real interest rates. By raising the sum of surpluses, with a constant nominal interest rate, the economy must settle on an equilibrium path with lower inflation.

In the first row of Table 5.2, the weighted sum of surpluses rises by 1.28 percentage points, a deflationary shock. The weighted sum of discount rates must then rise by a matching 1.28 percentage points. Cumulative inflation must decline 1.28 percentage points, selecting an equilibrium path with low immediate inflation.

This example shows again that the fiscal regime is crucial to the effects of monetary policy. Fiscal authorities here do not react directly to the monetary policy change, nor do they react passively to a price level or unexpected inflation chosen by monetary authorities. The fiscal policy rule reflects how fiscal authorities habitually react to inflation and output, and it reflects the effect of endogenous inflation and output on tax receipts, benefits, and other payments. It represents people’s expectations of such endogenous responses. Its presence causes inflation and output to decline in response to higher interest rates. Without the fiscal rule, inflation rises uniformly.

It is central to the result that this fiscal rule represents “unbacked” variation in surpluses and deficits. If surpluses respond to inflation and output, but all such induced higher surpluses correspond to subsequent lower surpluses, then the induced overall fiscal contraction vanishes.

I show two variations to explore this issue and to give some additional intuition for how the surplus process parameterized by \(\nu^* \) and \(\pi^* \) via \(\alpha \) and \(\beta_i \) work. In this model with time-varying returns, backed vs. unbacked fiscal policy is no longer as simple as \(a(\rho) = 0 \) or \(\beta_i = 0 \).

First, I use a value \(\alpha = 0.4 \), so the surplus rule is now \(\tilde{s}_t = 1.0x_t + 1.0\pi_t + 0.4v_t \). This is an unrealistically high value for \(\alpha \), but it helps to keep the graphs clear. I use \(\beta_i = 0.8 \), in order to produce the same time-0 unexpected inflation as in the first case.

Since unexpected inflation at time 0 is unchanged, the whole path of inflation and output are unchanged, as shown in Figure 5.11. The interest-rate path sets the family of solutions. Fiscal policy chooses only unexpected inflation at time zero. If that does not change, the inflation and output paths do not change. In more general models, different fiscal policy can change the equilibrium path, but not here where the model separates.
The change from $\alpha = 0$ to $\alpha = 0.4$, $\beta_i = 0.8$ produces a different surplus process, shown in the dashed line of Figure 5.11 marked “s, $\alpha = 0.4$.” The initial deficits increase the value of debt (not shown), which in turn leads to lesser deficits in the medium run. As debt builds up, surpluses stay persistently larger to pay off the larger debt. As we see in the second row of Table 5.2, however, the weighted sum of surpluses does not change at all. The larger earlier surpluses are matched by lower long-term surpluses. Raising α and choosing $\beta_i = 0.8$ to leave unexpected inflation unchanged merely changes the timing of surpluses. This is an example of a “backed” change in surpluses, so have no effect on inflation or output. Multiple fiscal policies can produce the same inflation and output paths. If the weighted sum of surpluses does not change, their effect on inflation and output does not change in this model.

Figure 5.12: Responses to an interest rate shock with a surplus rule. The surplus follows $s_t = 1.0x_t + 1.0\pi_t + 0.4v_t$, with $\beta_i = 0$. Short-term debt $\omega = \infty$. Other parameters are $\kappa = 2$, $r = 0.05$, $\rho = 0.05$, $\theta_{lx} = \theta_{l\pi} = 0$, $\phi_i = 0.3$, $\zeta_i = 1$, $\theta_{i,\varepsilon} = 0.25$.

Next, Figure 5.12 shows responses for $\beta_i = 0$, keeping $\alpha = 0.4$. The parameter β_i controls unexpected inflation at time 0 when $\alpha > 0$, so unsurprisingly unexpected inflation at time 0 is now 0, and inflation rises smoothly after that. We lose the negative inflation response of inflation to higher interest rates.
Again, we should regard the surplus process as creating β_i and unexpected inflation, not the other way around, so the point of this graph is to look at the surplus process that produces no unexpected inflation. Aside from the initial period of deficits, the surplus is lower throughout than in Figure 5.11 and declines more swiftly. (Note the different vertical scales.) As measured in the third row of Table 5.2, the weighted sum of surpluses is 0.50, not 1.28. The left-hand side is still zero, so the smaller sum of surpluses is matched by smaller discount rates. Smaller discount rates mean that the selected inflation path rises, closer to the unchanged interest rate path, as we can see in the graph.

It is initially surprising that the weighted sum of surpluses is not zero in Table 5.2. In the original analysis of this surplus rule, in the context of the flexible-price model of Section 5.7.2, setting $\beta_i = 0$ not only set unexpected inflation to zero, it also set to zero the weighted sum of surpluses $\mathcal{L}(D) = 0$. Here we see that while the former feature is general, the latter is not. With policy rules $\theta_{sx} \neq 0$ and $\theta_{s\pi} \neq 0$, the parameters that lead to a zero weighted sum of surpluses are not the same parameters that lead to zero unexpected inflation, and vice versa.

In this example, I do not change the inflation and output reaction parameters $\theta_{s\pi}$ and θ_{sx}. By changing α and β_i, I change how much of an induced surplus or deficit is backed or unbacked, how much it corresponds to subsequent deficits or surpluses. Both aspects of fiscal policy are important for driving an inflationary or disinflationary fiscal effects.

The monetary policy shock, parameters, and interest rate path are unchanged. The contrast between Figure 5.11 and 5.12 makes again the central point: The economy’s response to monetary policy depends on the fiscal policy rule, in this case to what extent current fiscal reactions are backed or not by changes in later fiscal policy.

In Figure 5.13 and the last row of Table 5.2 I search for the value of β_i that along with $\alpha = 0.4$ produces a zero weighted sum of surpluses $\mathcal{L}(D) = 0$ and $\int_{\tau=0}^{\infty} e^{-r\tau} s_\tau d\tau = 0$. The consequent value of β_i is -0.51, generating a positive 0.51 percentage point unexpected inflation. By the identity, if it produces no weighted sum of surpluses, the model produces no weighted sum of discount rates. You can see dynamics in the difference between interest rate and inflation line, but they must stay relatively close together to produce no weighted sum of their difference. In the family of solutions to this model with a given interest rate path, there are no solutions with inflation strongly below interest rates early and strongly above interest rates later. The early surpluses, driven by the reaction of surplus to inflation and output, pay down debt. The α term then quickly allows the government to run deficits to offset the decline
Figure 5.13: Responses to an interest rate shock with a surplus rule. The surplus follows $s_t = 1.0x_t + 1.0\pi_t + 0.4v_t$, with $\beta_t = -0.5085$. Short-term debt $\omega = \infty$. Other parameters are $\kappa = 2$, $r = 0.05$, $\rho = 0.05$, $\theta_{tx} = \theta_{t\pi} = 0$, $\zeta_t = 1$, $\theta_{te} = 1$, $\eta_i = 0.3$

in debt, which balance out the early surpluses. The parameter configuration that produces both no weighted sum of surpluses and no discount rate effects is essentially Fisherian, with inflation quickly rising to match interest rates.

5.7.6 Sims’ model

I add habit persistence in consumption. The model produces more realistic hump-shaped impulse-response functions.

Sims (2011) is a model of this form that illustrates the sorts of steps one can take toward realism, and by including standard elements of DSGE models. Sims’ linearized model is, in my notation, and with a few modifications,

\begin{align*}
 d_i & = -\zeta_i (i_t - \theta_{i\pi} \pi_t - \theta_{ix} x_t) \, dt + d\xi_{i,t} \\
 d\pi & = (\rho \pi_t - \kappa c_t) \, dt + d\delta_{\pi,t} \\
 dq & = (rq_t + i_t) \, dt + d\delta_{q,t}
\end{align*}

(5.117) (5.118) (5.119)
\[d\tilde{s}_t = \theta x \dot{x}_t dt + d\tilde{z}_{s,t} \quad (5.120) \]

\[dv_t = (rv_t + i_t - \pi_t - \tilde{s}_t) dt + d\delta_{Q,t} \quad (5.121) \]

\[d\lambda_t = -(i_t - \pi_t) dt + d\delta_{\lambda,t} \quad (5.122) \]

\[dx_t = \dot{x}_t dt \quad (5.123) \]

\[d\dot{x}_t = (\psi \lambda_t + \sigma \psi x_t + r\dot{x}_t) dt + d\delta_{\dot{x},t}. \quad (5.124) \]

Equation (5.117) is a monetary policy rule. Sims specifies that the policy rule reacts to output gap growth, \(d\tilde{s}_t = \theta x \dot{x}_t \ldots \). I use a more conventional response to the output gap itself. Equation (5.118) is the Phillips curve. Sims specifies perpetuities, \(\omega = 0 \). Equation (5.119) describes the perpetuity price under the expectations hypothesis. Sims uses the bond yield \(y_t = 1/Q_t \) rather than bond price \(q_t \) as the state variable, which is prettier but requires one to approximate away an Ito or jump nonlinearity term. Fiscal policy (5.120) responds to output growth, but does not contain a response to debt \(\alpha \neq 0 \). The model needs that extension. Equation (5.121) is the fiscal flow condition with long-term debt.

The last three equations are the novelty relative to the previous models in this book. Preferences include a cost of quickly adjusting consumption, a sort of habit. Equation (5.122) describes the evolution of the marginal utility of wealth. But now it is connected to output via (5.123) and (5.124). The appendix to Cochrane (2017e) contains a derivation. A term of this sort is a common ingredient to generate hump-shaped dynamics. (I use \(\psi \) in place of Sims’ \(1/\psi \) to make the equation prettier.)

Figure 5.14 and Figure 5.15 present responses to an unexpected monetary policy shock and to a fiscal shock respectively in this model. You can see similar qualitative lessons of previous graphs, but with prettier dynamics. The monetary policy shock leads to an extended disinflation and recession, with a nice hump-shaped output response. But inflation eventually rises. This model is Fisherian in the long run, which was Sims’ point in writing this model. Sims’ “stepping on a rake” is similar to the Sargent and Wallace (1981) “unpleasant monetarist arithmetic,” in warning that monetary tightening without fiscal support can only help temporarily and will make matters worse in the long run. However, as a general model beyond making this specific point, one might easily miss the inflation rise in VAR estimates.

The fiscal shock leads to a recession with disinflation. The Fed lowers interest rates endogenously to fight the recession, which as before raises inflation over what it would otherwise be, reducing the output decline.

This sort of response function starts to look very much like what comes out of standard new-Keynesian model-building exercises, and standard views of the effect...
Figure 5.14: Response to an unexpected monetary policy shock in the modified Sims model.

Figure 5.15: Response to a fiscal shock in the Sims model.
of monetary policy. The methodological point, if it was not already clear: One can quickly and productively solve new-Keynesian models with fiscal theory foundations, and obtain results that are interesting, plausible, and novel.

5.8 Review and preview

A wide-open investigation awaits. It is technically easy to import standard DSGE ingredients into fiscal theory of monetary policy models. Doing so, however, typically produces different results, invites one to ask different policy questions, to examine the usually-ignored fiscal implications. The successful ingredients of the past may not be the same ingredients in the future.

Though the economic models in this chapter are almost identical to standard new-Keynesian models, the models uncover novel results, mechanisms, policy analysis, and economic intuition that will likely underpin more complex and realistic models. That intuition is often clouded by larger models’ complexity.

The models in this chapter show by example how technically easy it is to adapt current DSGE or new-Keynesian models to fiscal theory. Just write the government debt and fiscal policy equations, choose parameters that specify an active-fiscal passive-money regime, and solve the model as usual.

Though the model is little changed, what one regards as a sensible policy question may change. For example, it is natural here to think of a “monetary policy” shock as somehow holding fiscal policy constant, where the passive-fiscal assumption in standard new-Keynesian models leads one to pair monetary and fiscal shocks. That difference in what counts as an interesting question accounts for much of the difference in results.

Once we specify and take seriously fiscal policy, we are induced to write different and more realistic fiscal policy specifications, as I have begun to do here, and to check fiscal predictions in data. That elaboration is also likely to lead to important differences in specification, parameters, and policy analysis. At a minimum, the fiscal-theory effort should invite passive-fiscal modelers to check whether the fiscal implications of their models make any sense. For example, when new-Keynesian models predict a disinflation, they implicitly predict a sharp “passive” increase in lump-sum taxes to pay off the now more valuable government debt. We don’t see that austerity in the data. Even if I do not persuade the reader to write active fiscal
policies, that fact invites a re-evaluation and re-writing of passive-fiscal models.

The models I have treated here remain simple and unrealistic. One hungers for models that one can bring to data, estimate parameters, match impulse-responses to well-identified structural and policy shocks, and make credible analysis of the effects of policies or structural changes in the economy. We see an invitation to import many of the ingredients of the vast new-Keynesian and DSGE effort. Since the results will almost certainly change, this will not just be a relabeling or better-footnote exercise. Rather, we have scattered around the floor well-understood ingredients that will likely produce new and different results when imported to a fiscal theory framework. Which ingredients to include, with which parameters, will certainly change.

More realistic IS and Phillips equations – the economic heart of the model – are an obvious need, and a long literature has investigated alternatives.

One active branch of the new-Keynesian literature basically looks for foundations to make the IS and Phillips curves look more like traditional ISLM equations. Rule-of-thumb or hand-to-mouth investors or sophisticatedly irrational expectations can make current income appear in the IS curve, and discount future inflation in the Phillips curve. (See Gabaix (2020), Cochrane (2016), García-Schmidt and Woodford (2019)). The standard version here \(x_t = E_t x_{t+1} - \sigma r_t \) captures only intertemporal reallocation of consumption around the steady state, and thus has zero marginal propensity to consume and produces no traditional multiplier. Current heterogenous agent (HANK) models are particularly active here, including Kaplan, Moll, and Violante (2018), Auclert, Rognlie, and Straub (2020), and Alves et al. (2021).

Since we cannot really evaluate equations in isolation, it is likely that the form of these equations that best fits the facts will be different in a fiscal model than in a standard new-Keynesian model. New-Keynesian lessons about which ingredients produce a tastier soup are likely not to hold. For example, new-Keynesian models have a lot of trouble at the zero bound, detailed in Chapter 20. Complex alternatives to rational expectations emerged to repair these problems. The FTMP version of the simple models does not display zero-bound troubles. You are not likely to be led to drastic surgery of basic ingredients to fix nonexistent problems.

Asset-pricing research emphasizes that time-varying risk premiums rather than risk-free rates are the central feature of asset price variation over the business cycle, and that Q theory linking investment to stock market risk premiums rather than risk-free interest rates is central to understand cyclical variation in investment. (For an overview, see Cochrane (2017a)). Recessions are, at heart, times when people’s and institutions’ willingness and ability to bear risk and to make risky investments
CHAPTER 5. FTPL IN STICKY-PRICE MODELS

changes, not times when people desire consumption today less than consumption in the future. (Di Tella and Hall (2021) is a good example of the nascent risk-premium based literature in macroeconomics.)

The Phillips curve has always stood on shaky theoretical ground. It makes intuitive sense that firms produce more when prices are higher, but that intuition links higher output to higher prices relative to wages, not to higher prices and wages together. Similarly, it makes intuitive sense that people work harder when wages are higher, but that intuition links more work to higher wages relative to prices, not higher prices and wages together. Lucas (1972) famously solved this conundrum with imperfect information – people mis-perceive unexpected inflation as higher relative prices and wages. But linking output only to unexpected inflation does not produce persistent output and unemployment variation. Micro-foundations of new-Keynesian Phillips curves don’t withstand a casual look out the window at the costs of changing prices or the slope of individual businesses’ demand curves. They are a parable for something else. Maybe a good parable, but a parable nonetheless.

The Phillips curve stands on increasingly shaky empirical ground as well. The large rise in unemployment during the 2008 recession, with little price or wage deflation, and the long slow recovery with high unemployment but steady inflation leads to the impression that the Phillips curve has become flat. Another interpretation is that the Phillips curve has become a meaningless cloud of points, not a flat but exploitable curve; that a tiny bit of inflation would not suddenly cure unemployment, or that inflation can move without immense employment or unemployment that a flat curve requires. (See Hall and Kudlyak (2021) for a search-theory account the 2008-2019 recovery, which basically says a standard Phillips curve is mis-specified.) A huge microeconomic effort to understand and model product-level prices has not yet resulted in a better aggregate Phillips curve. The common habit of viewing the Phillips curve as a causal link, either that the Fed causes unemployment that causes inflation, or that the Fed causes inflation that causes unemployment, is also questionable.

Much of the history of macroeconomics comes down to shifting the time index in the reference point \(\pi_t^e \) of the Phillips curve \(\pi_t = \pi_t^e + \kappa x_t \). The original Phillips curve sported a constant \(\pi_t^e = \pi \). Adaptive expectations had a lag, \(\pi_t^e = \pi_{t-1} \) or \(\pi_t^e = a(L)\pi_{t-1} \). Rational-expectations models move the index forward to \(\pi_t^e = E_{t-1}\pi_t \) (Lucas (1972)). The new-Keynesian form uses expected future inflation \(\pi_t^e = E_t\pi_{t+1} \). While it makes great economic sense that expected future inflation should shift the Phillips curve, that specification means that output is high when inflation is declining, not when inflation is rising (Mankiw and Reis (2002)). The latter seems to fit
the facts better, though as always that conclusion depends on the process driving inflation expectations (Cogley and Sbordone (2008b)): If past inflation forecasts future inflation, then rational expectations look adaptive. And adaptive expectations start adapting much more quickly as inflation looms.

Much effort goes into justifying lagged inflation terms, again reviving ISLM tradition and also fitting existing U.S. time series somewhat better, though in the same breath abandoning the triumph of Lucas’ formulation that also fits times of high inflation (Lucas (1973)), ends of inflation, and currency reforms; when inflation has little output effect. The new-Keynesian theory also really wants marginal cost, not output or unemployment on the right hand side. Marginal cost measures can show little correlation with output or employment, perhaps rescuing the curve but reducing its utility to understand recessions of output and employment. Empirically-oriented new-Keynesian models emphasize wage stickiness, not price stickiness, thereby allowing profit to be procyclical.

In sum, the IS and especially Phillips curves of the models in this book surely need much improvement. However, standard more successful alternatives have not yet emerged, especially forms that are likely to be stable across policy rule and regime changes. And as always, what works in one model may not work in another model. We don’t have solid evidence on individual equations separate from how they function in the context of a full model.

A long list of additional ingredients beckons, including habits or other dynamic preferences, human, physical and intangible capital accumulation, investment adjustment costs, individual and firm heterogeneity, varying risk aversion and risk premiums, labor market search, real business cycle production-side elaboration, financial frictions, lower bounds on interest rates, and so forth. Technically, one can simply import standard specifications of all of these generalizations from the existing new-Keynesian and real business cycle literature.

So, I do not stop here with models that ignore these features because I think these toy models are the end. They are the beginning.

Two key properties bear watching. First, in the simple models of this book, long-term debt or a fiscal policy rule are needed to produce an even temporary decline in inflation after an interest-rate rise. But other ingredients including IS (preference) modifications, investment reactions, and financial frictions may contribute such effects. Search for more potential reasons behind this cherished belief is worthwhile.

Second, this book is really about the broad determinacy and stability properties of
monetary models. In one sense, the conclusions of these simple models are likely to be robust, because stability and determinacy depend on which eigenvalues are greater or less than one. As long as a model modification does not move an eigenvalue across that boundary, the stability and determinacy conclusions are not changed. But once a modification moves an eigenvalue across that boundary, it can change a new-Keynesian model – stability, indeterminacy – to an old-Keynesian model – instability, determinacy – or have other large consequences.

The specification of monetary and fiscal policy in these simple models can and should be improved. My monetary policy rule is simplistic, needing at least lags and a lower bound, plus matching policy-rule regressions, VARs, and full-model estimates. The surplus process, which allows governments to borrow to finance deficits and to promise partial repayment in an active-fiscal regime, is the most novel ingredient here. But it is only a first stab at the specification. News about future surpluses and historical episodes are likely not well modeled by AR(1) shocks to the surplus disturbance $u_{s,t}$. Specifying and estimating the fiscal policy rule responses to inflation, output, and other variables, is a challenge of similar order, not yet started. Parametric models other than my v vs. v^*, π vs. π^* may be empirically more productive and transparent, as I suggested above. The right specification of just how our institutions and leaders are likely to respond “off equilibrium” clearly needs more thought. The parameters of both fiscal and monetary policy rules are likely to change over time, and people expect such shifts when deciding what to do. In particular the choice to finance deficits by inflating existing debt vs. borrow against future surpluses, $a(\rho)$ is likely to change over time and in response to state variables.

On the other hand, much of the fiscal policy rule might be estimated from knowledge of the tax code and the rules for automatic stabilizers, where the monetary policy rule consists only of modeling the human decisions of central bankers. Estimating the parameters θ_s of fiscal policy may thus be easier than running regressions with dubious instruments that pervades monetary policy rule estimation.

More deeply, it is clearly better to specify fiscal policy via tax rates and spending decisions, both entitlement and discretionary, rather than to model primary surpluses. I have avoided all the economically important ways that fiscal policy feeds back into the economic portion of the economic model, in order to focus on the determinacy issues and the similarity with new-Keynesian models. But once we agree that the fiscal part of the model is important, it cries for integration with the standard public finance approach. All-in marginal tax rates are high, including the marginal tax rates associated with benefit phase-outs. They distort physical and human capital investment, labor supply, and more. The government buys goods and services, which
subtract from output, and some purchases may enter utility functions in a way that
affects other margins. Once fiscal policy enters macroeconomics, fiscal distortions
should enter as well, not just via multipliers and government debt valuation con-
siderations. Incentives matter, not just income and wealth. It’s possible that the
distorting and wealth effects separate, so the two investigations can remain simple
by remaining separate. But we won’t know that until we look.

Linearization is an important weakness of these models and the surrounding liter-
ature. Now, one should be wary of this common complaint. Underlying economic
models are nonlinear, but we don’t necessarily know which nonlinearities are the
right ones. Linearization can be more robust that wrong nonlinear model. However,
a few linearizations stand out as important. Linearization about a steady-state debt-
to-GDP ratio raises the problem that the debt-to-GDP ratio has varied widely. This
is a nonlinear effect: Terms such as $v_t r_t$ expand to $v (r_t - r) + r (v_t - v)$ but leave out
$(v_t - v)(r_t - r)$, the fact that a response of a variable to r_t is different for low rather
than high debt-to-GDP ratios. Monetary policy with a debt-to-GDP ratio of 25% in
1980 may be quite different from monetary policy with a debt-to-GDP ratio of 100%
in 2021. The interest costs of a higher interest rate are four times larger.

But nonlinear models are hard to solve, and more importantly hard to understand
once one has solved them. Black boxes are not yet useful in macroeconomics. The
black-box approach, useful in meteorology or engineering, requires one to know the
ingredients with great precision. We do not have that knowledge, so we must preserve
an intuitive understanding of the whole model as a quantitative parable. A useful
first step may be to linearize models around different points; for example linearize
around a lower debt-to-GDP ratio to analyze the 1970s, and a higher one today.

One may wish to pursue a medium-scale macro model, something like a Smets and
Wouters (2007), or Christiano, Eichenbaum, and Evans (2005), adapted to fiscal
theory as I have adapted the textbook new-Keynesian model here. Or one may
wish to aim even larger. Adapting the large-scale models such as the Fed’s FRBUS
model to fiscal theory is not technically hard. Getting sensible answers out of such a
project may be hard, however, but getting sensible answers out of the current model
isn’t easy either. The project of constructing large general-purpose macroeconomic
models that can simultaneously fit data, explain history, forecast the future, and
evaluate policies has been going on since the 1960s. It peaked in the 1970s, and
has never really recovered. Most economic fluctuations are not due to monetary and
fiscal policy shocks, and the mechanisms at work in large models are often obscure.
So, much policy evaluation remains tied to smaller purpose-built models, and, in the
end, back-of-the-envelope intuition. But this is a larger observation about model
building, not specific to fiscal theory.

In sum, one can quite easily adapt current macroeconomic models to fiscal theory foundations. There are many ingredients to explore, and models that include them are likely to behave differently in a fiscal theory context than their original context. As a recipe for writing papers, this is great news. Of course, we do not build complexity for complexity’s sake. We do not often write good economic research by randomly mixing ingredients. Computing models is easy. Finding the right model is hard, and understanding its central message is harder. That 30 year and ongoing specification search has not been so easy for standard new-Keynesian models either.

Not all of this speculation describes the future. A variety of more complex and therefore potentially more realistic models have been built in the fiscal theory tradition, combining fiscal price determination, detailed fiscal policy rules, interest rate targets, and many of the above ingredients. Chapter 22 includes a critical review, with speculation about where this important investigation may go in the future.
Chapter 6

Fiscal constraints

This chapter takes a closer look at the present value relation and the nature of fiscal constraints. Inflation depends on the present value of surpluses, so I start with the present value Laffer curve. Tax rates may have no effect on labor supply, but by reducing economic growth can run in to a long-run or present-value Laffer curve. Other policies that influence growth are potentially even more important than tax rates for driving surpluses and hence inflation.

I analyze an instructive example in which the surplus is limited, say by a Laffer curve. Inflation is steady despite debt and deficits, and monetary policy lowers inflation. As debt and deficits build, however, a moment comes when the long-run Laffer limit is reached. Inflation suddenly breaks out, deficits cause more inflation, and monetary policy loses its power. Further interest rate hikes raise future inflation rather than lower current inflation.

I tackle the troublesome possibility that the rate of return on government debt may be less than the economy’s growth rate, in which case fiscal theory seems to stop working, and government debt becomes a free lunch. Much of the case stems from mixing up average returns in our stochastic economy with the constant risk-free rate of a perfect-foresight economy.

Finally, I think about how productively to include promises such as Social Security and assets such as national parks and federal lands in the valuation equation.
6.1 The present value Laffer curve

There is always a fiscal limit, at which governments can no longer raise tax revenue needed to contain inflation. The usual discussion of the Laffer curve, is static, and centers on the tradeoff of work vs. leisure. The fiscal theory responds to the present value of surpluses. Small effects of tax rates on growth have large effects on the present value of surpluses, even if tax rates have no immediate effect on labor supply, tax avoidance or other reductions in the flow of tax revenue. Microeconomic and growth-oriented policies also affect long-term growth and thus can have profound effects on the present value of surpluses and the sustainability of debt.

As we think about surpluses and fiscal rules it is natural to jump to tax rate and spending policy decisions. In fact, for the present value of surpluses that matters in the fiscal theory, economic growth is likely to be more important. Figure 4.1 reminds us that output is the primary determinant of the surplus-to-GDP ratio: Tax revenue grows in expansions and falls in contractions, spending does the opposite. And more GDP raises the surplus for any given surplus-to-GDP ratio.

Economic policies that change growth by a small amount can cumulate to large changes in tax revenue, even if they have little short-run impact. Poorly-crafted “austerity” policies in particular run this danger: Raising marginal tax rates may bring a short-run revenue increase, but by decreasing growth such policies can lower long-run revenues and the present value of surpluses. The present value Laffer curve may bite at lower tax rates than the usual flow Laffer curve, and for different taxes. [Alesina et al. (2019) document that fiscal contractions focused on lower spending have better growth outcomes than those focused on higher marginal tax rates.]

(The “Laffer curve” is popularly associated with its maximum, and the possibility that higher tax rates lower revenue. I use the word to refer to the the whole curve, not just its maximum and right-hand portion.)

The usual Laffer-curve analysis focuses on static labor supply. Higher marginal tax rates are, effectively, lower wages. Wages have income and substitution effects: A lower return to work encourage people to substitute from work to leisure. Lower wages also encourage people to more pleasant but less productive work, an effect that seems important in life but which is not commonly modeled in economics. But lower income induces people to work harder. The substitution and income effects are usually thought to roughly offset, hence the usual view that higher tax rates do not significantly dampen labor supply and output, at least not enough to lower tax revenue. Very high all-in taxes on labor are the result of this belief.
This simple parable is a poor approximation to the U.S. tax system. U.S. tax rates are highly progressive, not a flat tax on wages. Overall incentives include all taxes, including state and local taxes, payroll taxes, sales and property taxes, as well as federal income taxes. Overall incentives also include benefits and the implied marginal tax rates from the fact that benefits phase out with income. Mankiw (2018) makes a simple calculation that based on tax and income data, “the effective marginal tax rate when a person moves from the bottom to the middle quintile is... 76 percent.” Mulligan (2012) documents the details of many programs, especially health insurance, finding even larger marginal tax rates, and many cliffs of tax rates far above 100% when a benefit phases out suddenly.

Transfers and benefits combined with high marginal tax rates offers a double-whammy of disincentives, uniting the income and substitution effects against work, and against unpleasant but productive work.

The central question for us is, how would this situation change if – when – the government wishes to raise more revenue. U.S. political winds from both parties seem to blow towards higher but means-tested benefits with higher marginal tax rates. Even if a simple rise in a flat tax on wages has no labor supply effect, such a change produces large disincentives for given rise in tax rate, and thereby less revenue than a flat wage-tax model suggests.

But the main worry for fiscal theory is that the long-run or present-value Laffer curve may pose a much harsher tradeoff than this static analysis suggests. The long run offers much more room for tax-avoiding, GDP-lowering, and tax-revenue-lowering adjustment. In the short run, most people have settled into careers and jobs. Labor market regulation and custom make it hard for most people to raise or lower work hours. The “extensive margins” of joining or leaving the labor force or changing careers are small in the short run. But give it decade or so. A higher marginal tax rate may not cause a doctor, lawyer, or entrepreneur to change hours of work that much, or to become an artist or non-profit activist. But high and progressive marginal tax rates influence people’s career choices, willingness to take unpleasant and difficult college majors, invest in education, innovate new products, or invest time and effort in starting businesses; rather than to skip school, take fun majors, settle into easier or more fun jobs. A convex tax code lowers the incentive for entrepreneurial risks whose upside is taxed away, towards safer human and physical investments. These margins can take a generation to take effect.

Though economists focus on economic effects, much of the disappointing revenue of tax-rate increases comes from tax avoidance. Tax avoidance takes time, as we
can witness from the steady accretion of patches to our insanely complex tax code. Estate-tax sheltering takes decades to have an effect.

Capital taxes are different from labor income taxes. The capital gains tax cuts of the late 1980s unequivocally raised revenue. Corporate taxes lead to quite different margins of avoidance, like moving to Ireland.

Raising capital taxes is a classic temptation and a classic example of the difference between current and long-run or present-value revenue calculations. Unexpected capital taxes hit irreversible investments today, so generate revenue without distortion. But capital taxation removes the incentive to create tomorrow’s capital, and thus can fail to raise the present value of tax revenue. High and progressive labor or total income taxation acts as a tax on human and intangible capital, with the same tradeoff. As the sorry history of rent controls illustrates, taxing capital can seem to work for a while, but in a few decades there is nothing left. (The classic Judd (1999) and Chamley (1986) result states that the optimal capital tax rate is zero. Higher capital taxes just lead to lower capital until the after-tax marginal product of capital is unchanged. Like all classic results, it spawned a long debate, for example Straub and Werning (2020), but also captures a robust channel for revenue disappointment.)

There is worse possibility: What if high marginal tax rates lower the incentives to innovate, to create productivity-enhancing ideas and the firms that embody them, and thereby lower the economy’s long-run growth rate? Jones (2020b) presents some sobering analysis in an endogenous growth model with distorting taxation, finding much lower Laffer limits than in standard analysis. Integrating fiscal theory or debt sustainability with endogenous growth theory is an obvious important step.

For a simple calculation, consider a flat income tax at rate τ. The conventional Laffer curve calculation asks for the effect on tax revenue of a change in the tax rate:

$$\frac{\partial \log(\tau y)}{\partial \log \tau} = 1 + \frac{\partial \log y}{\partial \log \tau}.$$

The second term is typically negative, as a higher tax rate lowers output and therefore lowers tax revenue from what it would otherwise be. But that elasticity is usually thought to be less than negative one, so raising taxes raises some revenue, just less than static analysis predicts.

But write the present value of tax revenue

$$PV_t = \int_{u=0}^{\infty} e^{-ru} \tau y_{t+u} du = \tau y_t \int_{u=0}^{\infty} e^{-(r-g)u} du = \frac{\tau y_t}{r-g}.$$
Here g denotes the output growth rate. Now the elasticity of the present value of surpluses with respect to the tax rate τ is
\[
\frac{\partial \log (PV_t)}{\partial \log \tau} = 1 + \frac{\partial \log y_t}{\partial \log \tau} + \frac{1}{r - g} \frac{\partial g}{\partial \log \tau}.
\]

We have a second dynamic effect. Since $r - g$ is a small number, small growth effects can have a big impact on the fiscal limit. For example, if $r - g = 0.01$, 1%, then $dg/d \log \tau = -0.01$ puts us at the top of the present value Laffer curve, even with no static effect. Thus, if a tax rate τ rises from 50% to 60%, which is a 20% rise in tax rate, implies $0.01 \times 20 = 0.2$ percentage point reduction in long-term growth, then we are at the fiscal limit already. A value of r closer to g seems nice, as it produces a larger present value for a given stream of surpluses. But r closer to g also makes the present value more sensitive to variation in either r or g. Smaller growth effects then imply larger reductions in the present value of tax revenue.

The point here is not to argue quantitatively where the U.S. or other advanced economies are on the present value Laffer curve. The point is that there is a distinct present-value Laffer curve which describes fiscal limits; and that present-value Laffer curve may more stringent than the static curve most commonly discussed, because it includes the effect of distorting taxation on investment, business formation, human capital formation, innovation, and thereby on long-run growth, as well as slowly growing tax avoidance. The danger of high taxes is decades of sclerosis, not an immediate vacation.

Taxes are tax rate times GDP, τy, so the more general point is that GDP growth matters a lot to the present value of surpluses. Economic regulation is potentially a larger disincentive to growth than tax policy and social program disincentives. Keeping the taxi monopoly in and Uber out does not help government finances, but it lowers economic activity and thus the tax base. The vast array of protection and regulation of labor, health care, housing, education, banking, energy and more, largely focused on transferring resources from one to another, retard economic activity without even a direct benefit to tax collection. Ease of doing business indices correlate well with enormous differences in GDP per capita, and thus tax revenue, across countries. The license Raj, not marginal tax rates, kept India poor for generations. Communism, not high marginal tax rates, kept China poor.

In thinking about the fiscal theory, then, we must broaden our vision from just tax and spending policies. Pro-growth regulatory economic and financial reforms are likely to raise the present value of surpluses and thereby help to lower inflation, potentially as or more effectively than pro-growth reduction in marginal taxation.
This beneficial effect of microeconomic reform, or “structural adjustment” seems an important part of many successful disinflation plans. They are plausibly part of the story of the 1970s and 1980s in the U.S. and U.K. as well. The 1970s endured a productivity slowdown and growth malaise as inflation broke out. In the early 1980s the U.S. and U.K. embarked on tax reform sharply lowering marginal rates but broadening the base, and also regulatory reform, starting with trucks, airlines, and telephones. The later 1980s saw robust growth which eventually led to unprecedented surpluses.

Looking forward, how will debt and deficits resolve? It must be one of higher long-run tax revenues, lower spending, inflation, default, or stronger GDP growth. The latter is the one hopeful path!

6.2 Discount rates

Lower growth may come with lower real interest rates, partially offsetting the present-value Laffer curve effect, and vice-versa. Higher real interest rates without higher growth – a sovereign credit spread – pose a larger danger of inflation. The debt crisis mechanism that causes default and currency crashes can also cause inflation.

The present value of surpluses also depends on the discount rate. And discount rates are related to growth. Higher growth g may bring higher real interest rates r, offsetting some of growth’s beneficial properties for the present value of surpluses. Conversely, the ill effects of lower growth on government finances may be tempered by lower interest rates, secularly as they are in recessions. Discount-rate variation unrelated to growth, or growth variation without a change in discount rates has more potent effects than when growth and discount rates change together. Thus, the source of changes in growth and interest rates matters a lot.

A natural force connects real interest rates to growth. When real interest rates are higher, people consume less today and more tomorrow. Formally, the first-order condition for a representative dynastic (cares about children) consumer says that the real interest rate equals the subjective discount rate δ plus the inverse of the intertemporal substitution elasticity γ times the growth rate g,

$$r = \delta + \gamma g.$$ \hspace{1cm} (6.1)

Higher growth usually comes with, or is caused by, a higher marginal product of capital, $r = f'(k)$, which also translates to higher real interest rates.
The simplest fiscal theory in steady state with a constant surplus/GDP ratio says

\[
\frac{B_t}{P_{tyt}} = \int_{u=0}^{\infty} e^{-ru} \frac{S}{y} y_t^u du = \frac{S}{y} \int_{u=0}^{\infty} e^{-(r-g)u} du = \frac{s/y}{r-g}.
\] (6.2)

So, a real interest rate rise accompanying more growth tempers the long-run or present-value effect of growth.

If \(\gamma = 1 \), then \(r \) and \(g \) rise and fall one for one, and higher or lower growth has no effect on the value of debt. We typically think \(\gamma > 1 \), in which case higher growth lowers the value of debt and vice versa. The discount rate effect is larger than the cashflow effect.

6.2.1 Sources of low interest rates, and their durability

As I write in 2021, real interest rates have been on a steady downward trend since 1980. Why did real interest rates decline? How long will low interest rates and consequent low interest costs last? The answer to the former is key to speculating on the latter.

Long-run growth also slowed down, tragically, with an especially clear decline since 2000. A benchmark that \(r \) fell because \(g \) fell, as described by (6.1) with \(\gamma \approx 2 \) makes sense to consider. The rise in the value of government debt, the steady decline in inflation, the decline in long-run growth and the somewhat larger decline in real interest rates all fit together in this interpretation.

This reverse of this story suggests a paradoxical worry. Suppose growth were to return to its previous level, up from 2% to 4%. That happy event would, in this story, result in a greater rise in real interest rates. The present value of surpluses would then fall, requiring either inflation or a fiscal adjustment.

Should we fear a return to growth? I think not, because of the most important point left out so far: The surplus-to-GDP ratio is much improved by a higher level of GDP. Expenditures on health and retirement do not scale with GDP, and social program expenditures decline. If we write \(s(y)/y \), not \(s/y \), we may make the intuitive case that a return to strong growth would be a fiscal bonanza, despite the higher discount rates and interest costs that such an event would imply. Strongly growing countries seldom have fiscal troubles or inflation.

A lower marginal product of capital, \(r = \theta f'(k) \) is the first place to look for a lower interest rate and lower growth rate. Ultimately changes in technology \(\theta \) are
the central driving force of long-run economic growth. Why might the marginal product of capital be declining? Why is growth declining? There are lots of stories. Perhaps the shift of the economy to information and services means we need less capital than we needed in the era of steel mills and car factories. But the cries for languishing infrastructure, for massive green investments, as well as a quick look at any less developed country suggests plenty of need for capital. Moreover, a shift to less capital-intensive production should increase output, as products need fewer inputs. Less productivity growth θ is a more natural cause, but why? It could be the result of increasing regulation and barriers to entry and competition. Or, if the techno-pessimists are right (Bloom et al. (2020), Gordon (2016)) it could be that we are just running out of ideas, either temporarily or permanently. However, this is all shaky speculation for government debt, as capital is risky, and its expected return depends more on the risk premium than on the level of real interest rates.

The changing risk of nominal bonds is a second basic force for a low government-debt discount rate. This and remaining forces are unrelated to growth, so lower rates are a directly deflationary force and vice versa. Since the sharp inflation decline in the 1980s, and especially since 2000, government debt has become a reliable negative-beta security. Recessions see deflation or disinflation and lower long-term nominal interest rates, and thus a positive ex-post real return for government bonds when everything else is collapsing. Such a negative beta results in average returns below the real risk free rate.

Much discussion of declining interest rates does not focus on these basic forces, but instead focuses on more fun and novel ideas, such as a “savings glut,” demographic changes, central bank interest rate and quantitative easing policy, special demands for U.S. government debt by foreign central banks, “exorbitant privilege” stemming from the fact that much trade is invoiced in dollars, a liquidity premium due to the usefulness of treasury securities as collateral in financial transactions, or a more general “scarcity” of “safe assets” despite the rapidly rising supply of government debt. (Krishnamurthy and Vissing-Jorgensen (2012) is a classic.)

All are contentious. The trend to lower interest rates has been steady since 1980, with no sign whatsoever of the interventions of central banks, QE, or any other actions to artificially hold down rates. (Cochrane (2018) Figure 1 makes this clear.) And just how central banks could drive a 40 year trend in real interest rates, or decade-long risk premiums requires novel monetary and financial economics. The “safe asset” demand does not appear in portfolio theory, so must be somewhat psychological. Assets can be risky yet instantly liquid, for example stock index ETFs. Goods may be invoiced or paid for in dollars, but those dollars bought seconds before the transaction. U.S.
treasurys are useful collateral, but the spread between treasury and corporate AAA or other illiquid debt securities is less than a percent, and Euro and Japanese debt has lower yields still than the U.S. Old people usually dis-save. Still, each of these frictions offers the chance to add a few basis points, or interesting spreads, on top of the bigger picture, and in a manner unrelated to growth g.

Once we state economic forces that may lie behind the trend to lower interest rates, however, we see many forces that could rapidly reverse rather than an immutable law of nature.

The financial, friction-based, or policy-based stories can change especially quickly. Negative bond beta and flight to quality is not written in stone. In an economy subject to stagflation, such as the U. S. in the late 1970s, or in countries subject to frequent debt and currency crises and flights from rather than to local currency in bad times, we see higher inflation in bad times, not the current opposite (if any) correlation. In countries where bad times coincide with periodic government crises, interest rates may rise, not fall, in recessions. [Campbell, Pflueger, and Viceira (2020) document a shift in bond beta from positive to negative around 1980. However, they focus on high-frequency financial correlations. A business-cycle frequency investigation of my consumption-beta speculation beckons.) If it’s all central bank’s doing, then it will reverse as soon as central banks change policy.

It is remarkable in the broad sweep of history that advanced-country nominal bonds are considered default-free, markets seem to believe they will never be inflated away, and they consequently enjoy such low interest rates, compounded by liquidity premiums. This situation reverses centuries of experience with sovereign debt and the experience of most of the rest of the world. Doubts about the sanctity of sovereign debt in an economic, medical, or military crisis, with the background of so much debt and so many unfunded promises, could rapidly change the return investors require to roll over that debt.

6.3 Crashes and breakouts

Inflation and currency crashes are asymmetric. I explore a little model of this asymmetry, which also shows how inflation and loss of monetary control can emerge suddenly. Governments promise to repay debt at a price level target, but they cannot raise surpluses above a fixed amount. In the unconstrained region, the price level is unaffected by surpluses and deficits, and higher interest rates lower the price
level immediately. In the constrained region, deficits cause immediate inflation, and
higher interest rates only raise future inflation. The economy switches endogenously
from the unconstrained to constrained region as debts or deficits build up, or when
monetary policy tries a large interest-rate increase.

Currency devaluations and sudden inflations are more common than upward jumps
in currency values and sudden deflations. Miller (2021) presents a simple model
that produces this behavior. The model also offers a useful parable of the current
situation, and how larger debts may sneak up and suddenly lead to inflation and
powerless monetary policy.

Use the two-period model with a fiscal rule as in Section 2.5.1. The surplus \(s_1 \) pays
off debt \(B_0 \) at a price-level target \(P^* \), but now there is a maximum surplus the
government can or is willing to raise,

\[
s_1 = \min \left(\frac{B_0}{P^*}, s_{1\text{max}} \right)
\]

Equilibrium still consists of

\[
\frac{B_0}{P_1} = s_1 \\
\frac{B_{-1}}{P_0} = s_0 + \beta E_0 s_1.
\]

The central bank sets an interest rate target \(i_0 \).

The two regimes of Section 2.5.1 now emerge endogenously. So long as \(s_1 < s_{1\text{max}} \), we
have \(P_1 = P^* \), \(P_0 = P^*/[\beta(1 + i_0)] \), unaffected by fiscal shocks. Additional deficits
\(s_0 \) are financed by greater bond sales \(B_0 \) and repaid by greater surpluses \(s_1 \) with no
effect on \(P_0, P_1 \). Monetary policy works in the standard way: If the central bank
raises the interest rate target, it lowers \(P_0 \), leaving \(P_1 = P^* \) alone.

Once over the limit, with \(s_1 = s_{1\text{max}} \), we have

\[
\frac{B_{-1}}{P_0} = s_0 + \beta s_{1\text{max}} \\
\frac{B_0}{P_1} = s_{1\text{max}}.
\]

Any \(s_0 \) flow immediately into inflation \(P_0 \). Larger nominal rates \(i_0 \) have no effect on
\(P_0 \) and just increase inflation \(P_1 \).
6.4. WHAT IF $R < G$?

The condition $s_1 < s_1^{\text{max}}$ occurs for

$$\beta(1 + i_0)\frac{B_{-1}}{P_*} - s_0 < \beta s_1^{\text{max}}$$

A lot of outstanding debt B_1, big deficits s_0, or a large nominal interest rate forcing a low P_0 can push the economy over the limit.

So, imagine an economy with steadily increasing debt B_{-1} and deficits s_0. It trundles along with no inflation despite recurring deficits. When the central bank wants to lower inflation, it raises the interest rate i_0, and inflation P_0 dutifully declines.

One day, though, the wall is breached. Perhaps debt B_{-1} has grown too large. Perhaps the deficit s_0 is too large. Perhaps the Congress’ willingness to fight future inflation with austerity s_1^{max} declines. Perhaps the central bank raises rates too much, asking for too much fiscal backing via a too-large rise in i_0. Now, all of a sudden, deficits s_0 cause inflation, and further central bank interest rate increases i_0 do nothing to stop it, and just fuel later inflation. The story is an obvious warning.

Miller adds a probability distribution over s_1^{max}, and specifies that people can learn the value of s_1^{max} at a cost. As the probability of $s_1 > s_1^{\text{max}}$ increases, people suddenly pay the cost to learn the true state. If it is the bad state, the price level jumps up discontinuously. We have an apparent run or multiple equilibrium jump to inflation and currency crash despite no current deficits or big news about the future.

Debt can default, but never rise in value like equity. Nominal debt in the fiscal theory acts a lot like real debt. Here, I imagine that a government is more limited in its ability to raise surpluses than it is in its ability to lower surpluses, which is a natural and parallel assumption.

6.4 What if $r < g$?

What if $r < g$? In a perfect foresight frictionless model, $r < g$ implies price-level indeterminacy. The debt-to-GDP ratio melts away for any initial price level. $r < g$ offers the chance of a small persistent average primary deficit, but realistic variation in deficits still must be repaid, or cause inflation. Measuring $r < g$ from our world and applying perfect foresight models is a mistake. Recognizing uncertainty or liquidity values of debt, we can see converging present value formulas, weighting as we should by marginal utility. Attempting to discount using rates of return on government debt leads to misleading formulas that blow up.
What if $r < g$? With a constant surplus-to-GDP ratio s/y, and an economy that grows at rate g, with perfect foresight and real interest rate r, the government debt valuation equation is

$$\frac{b_t}{y_t} = \frac{B_t}{P_t y_t} = \int_{\tau=0}^{\infty} e^{-(r-g)\tau} \frac{s}{y} d\tau = \frac{1}{r-g} \frac{s}{y}. \quad (6.3)$$

With $r < g$, the present value of surpluses is then apparently infinite. Is this case in which the fiscal theory must give up? The rest of this section argues no.

The $r < g$ question is central in current debates over whether U.S. fiscal policy is sustainable. The question for us is whether $r < g$ is an empirically relevant trouble for fiscal theory. The questions are related, but not identical.

Generally, fiscal theory applies so long as government debt is not a free lunch, so long as greater debts today must be repaid by greater surpluses in the future, so long as the present value of surpluses is well defined. Whether that is true or not depends on the source of $r < g$. If we see $r < g$ because of liquidity or uncertainty, then present values can remain well defined and fiscal theory applies. In these cases, the average return on government bonds is misleading, as the properly discounted value of government surpluses converges and behaves well.

Low average returns on government bonds r are important both theoretically and empirically when applying the fiscal theory. As we have seen, surpluses follow a debt-like process with an s-shaped moving average, not a persistent process like that of corporate dividends. Government debt appears to be a negative beta security. Both considerations are consistent theoretically with observed expected returns much below those of stocks, and consequently much lower discount rates.

6.4.1 Sustainability and fiscal theory in risk-free analysis

The debt-to-GDP ratio evolves as

$$\frac{d}{dt} \left(\frac{b_t}{y_t} \right) = (r_t - g_t) \frac{b_t}{y_t} - \frac{s_t}{y_t}. \quad (6.4)$$

$r < g$ seems to offer a delicious scenario: Run a sequence of large primary deficits $s_t < 0$, which increase the debt. Hand cash to consumers. Then, just keep rolling over the debt without raising surpluses. Debt grows at r, GDP grows at g, and the debt-to-GDP ratio slowly declines at rate $r - g$. With $r < g$, the debt-to-GDP ratio
converges on its own, with no additional surpluses. The fiscal expansion and transfer to consumers apparently has no cost.

Indeterminacy is the potential problem for fiscal theory when \(r < g \). A deflation raises the initial value of nominal debt \(b_0 = B_0/P_0 \). Again, the larger debt-to-GDP ratio melts away, for any price level \(P_0 \), with no change in primary surpluses.

Technically, if \(r < g \), we should solve the differential equation (6.4) backward,

\[
\frac{b_t}{y_t} = \int_{\tau=0}^{t} e^{(r-g)\tau} \frac{s_{t-\tau}}{y_{t-\tau}} d\tau + e^{(r-g)} \frac{b_0}{y_0}.
\] (6.5)

The integral tells us what the value of debt is for any history of surpluses and initial value of the debt.

For these arguments to work, the \(r < g \) opportunity must truly be permanent. If the \(r < g \) opportunity fades away, fiscal theory reemerges. In the same scenario, suppose that after 20 years of \(r - g = -1\% \), the economy returns to \(r - g = +1\% \). Then in order to avoid a debt-to-GDP explosion, we return to solving the differential equation forward, e.g.

\[
\frac{b_t}{y_t} = \int_{\tau=0}^{20} e^{0.01\tau} \frac{s_{t-\tau}}{y_{t-\tau}} d\tau + e^{0.01 \times 20} \int_{\tau=20}^{\infty} e^{-0.01(\tau-20)} \frac{s_{t-\tau}}{y_{t-\tau}} d\tau.
\]

The debt-to-GDP ratio converges for 20 years, but then values of debt different from this forward-looking integral lead to explosions. This situation is similar to economies that switch between active-fiscal/passive-money and active-money/passive-fiscal regimes, which I analyze in Section 20.2.1. An apparently passive fiscal regime can really be active, if people expect a switch to active fiscal policy later, and vice versa.

Sustainability and determinacy differ in this case. In the same situation, one could well argue that while the fiscal expansion is not entirely cost-free, it’s a good deal. The debt-to-GDP ratio declines for 20 years, requiring only \(e^{-0.2} = 80\% \) repayment. One might argue likewise that fiscal theory has less force if large changes in value of debt today respond to small declines in far-future surpluses. But the point here is just to understand the technical fact of determinacy. If we wish quantitative assessment, especially of the force of equilibrium conditions – tail and dog arguments – we need a lot richer model.

Basic economics tells us there must be a limit to the opportunity offered by even permanent \(r < g \). Can the government really borrow, send us money, and never raise taxes, simply rolling over the debt and watching GDP grow faster? If our government
can borrow arbitrarily, and never repay debts, why should any of us repay debts?
The government could borrow to pay our debts too. Why should we pay taxes? Why
should we work or save? Let the government borrow, send us checks, and we can all
just all stay home and order from Amazon. Obviously not. But why not?

Well, obviously, because someone has to work at Amazon, and at the companies
that make things that Amazon sells. The government can send us cash, but it does
not send us real resources. We have to trade cash for real resources, to someone
who wants that cash. If the government sends us real resources it too has to buy
them. The real, supply side of the economy limits the opportunity for a consumption
bonanza. If nobody works, g declines. If nobody saves, or if government debt issues
absorb all savings, the capital stock depreciates and the marginal product of capital
and interest rate r rise, “crowding out.” Marginal $r - g$ is not average $r - g$. As the
government exploits it, the $r < g$ opportunity vanishes.

If r is low because of a liquidity premium, a money-like demand for government
debt, “exorbitant privilege,” that opportunity also swiftly declines as debt increases.
Large debt-to-GDP ratios also leave the government more open to a doom loop,
absent from this perfect-certainty theorizing. If markets sniff a default or inflation
in the future, they demand higher real interest rates. Higher rates raise interest
costs, which means a faster rise in debt/GDP. Investors get more nervous still, and
eventually the feared default or inflation happens.

Without writing down a full general equilibrium model, especially one with these
sorts of frictions, we can think through some of these economic limitations by rec-
ognizing that the debt-to-GDP ratio cannot be arbitrarily large. We can model
an upper limit on the debt-to-GDP ratio. In reality, there is no precise, hard and
fast limit. High debt-to-GDP ratios can persist a long time, see Japan, while other
countries have experienced debt crises with quite low debt-to-GDP ratios. Investors’
willingness to roll over debt combines current debt and the likelihood of fiscal sobriety
ahead, expectations of which can change quickly.

With an upper debt-to-GDP limit, even permanent $r < g$ does not imply an economic
perpetual motion machine, or a globally indeterminate price level.

The opportunity is first reduced to a local possibility: The U.S. could borrow an
additional finite amount, until $r = g$ or until we reach whatever the sustainable upper
limit on debt to GDP is. For fiscal theory, we might see a local indeterminacy as long
as the value of debt is below an upper amount; a limit on potential deflation.

But this view relies on permanent zero surpluses as well as a permanent $r < g$.
Suppose we generate the surplus by an AR(1) \(ds_t = -\eta(s_t - \bar{s}) + \sigma_s dz_s \). An AR(1) ranges over the entire real line, as does the integral of an AR(1) \((6.5)\). So at some point the future debt-to-GDP ratio following \((6.5)\) will eventually exceed any bound. That fact means that the initial value of debt \(b_0/y_0 \) in \((6.5)\) is not sustainable. People will not lend to the government knowing that a default, inflation, or whatever happens at the upper bound is coming sooner or later. Even if we limit the support of the surplus distribution, but let it follow a stationary process, the integral of the surplus eventually exceeds any bound. You eventually flip 100 heads in a row.

The result now seems to be that no value of debt \(b_0/y_0 \) is sustainable. But the conclusion I take is that with an upper limit on debt-to-GDP ratio, we must already imagine a managed surplus process. As the debt starts to grow, the government increases surpluses so as to avoid the boundary. Now a change in the value of debt today can no longer be ignored. A higher value of debt, induced by deflation, will push the government over the boundary absent a rise in future surpluses. A plan that exceeds the bound by a finite amount will lead to an initial price level rise, lowering the initial value of debt, until the government is again able to keep debt below the boundary. We are back to global determinacy of the price level.

Limited debt and limited time act in much the same way. They restore the proposition that deficits must be repaid by future surpluses, lacking which the value of debt must fall to re-establish a sustainable path.

6.4.2 The empirical relevance of \(r < g \)

The \(r < g \) debate is questionably relevant to current (2021) U.S. fiscal policy issues, and thus the related question whether fiscal theory applies to the U.S. economy. The U.S. is running $1 trillion, 5% of GDP deficits in good times, and a cumulative $5 trillion, 25% of GDP in each decade’s crises. And then in about 10 years unfunded Social Security, Medicare, and other entitlements really kick in. The debt-to-GDP ratio is growing exponentially, and forecast to continue to do so. (See, for example, the CBO long-term budget outlook, [Congressional Budget Office (2020)](https://www.cbo.gov).)

The \(r < g \) scenario starts with zero surpluses and slowly declining debt to GDP. It then allows for a “one-time” fiscal expansion, or a one-time deflation that increases the value of debt, followed by decades-long mean-reversion of debt/GDP with zero primary surpluses. But zero primary surpluses – taxes equal spending, for two generations, and gently declining debt to GDP ratios – are a debt hawk’s dream come true. That’s not our situation.
In flow terms, \(r < g \) of 1% with 100% debt/GDP allows a 1% of GDP steady primary deficit, not 5% in good times, 25% in bad times, and then pay for Social Security and health care. If we had \(r < g \) of 5% or more, if we had an already-declining debt-to-GDP path that could be bumped to a higher level, that would be a different story. But that’s not the size of the problem or the nature of the opportunity.

The U.S. fiscal path of large permanent primary deficits is unsustainable, even if low interest rates last another 50 years, with \(r < g \) of 1% or so. Our fiscal path must end in default, or inflation, sharply higher surpluses or sharply higher growth. Even default or inflation would not solve the fiscal problem, as the fiscal path of continued deficits would remain unsustainable. Sharply higher surpluses or higher growth would have to follow default or inflation.

6.4.3 Flows and the \(r = g \) discontinuity

It seems that a theoretical cliff separates \(r > g \) from \(r < g \). If \(r \) is one basis point (0.01%) above \(g \), we solve the differential equation forward to a present value, debts must be repaid, and fiscal theory applies. If \(r \) is one basis point below \(g \), we solve the differential equation (6.4) backward, public debts never need to be repaid, and fiscal theory is empty. Obviously not. So why not?

Looking at flows makes sense of this apparent \(r = g \) discontinuity. The steady state of (6.4) features a surplus equal to \(r - g \) times the value of debt. As we move from \(r - g = 0.01\% \) to \(r - g = -0.01\% \) at 100% debt-to-GDP ratio, we move from a steady 0.01% of GDP ($2 billion) surplus, to a steady 0.01% ($2 billion) of GDP deficit. That’s not going to finance anyone’s spending wish list! This transition is clearly continuous. Likewise, the opportunity to grow out of debt with \(r - g = -0.01\% \), means 150% debt to GDP will, with zero primary surpluses, resolve back to 50% debt to GDP in \(-\log(0.5/1.5)/0.0001 = 11,000\) years. On the other hand, \(r - g = +0.01\% \) means an “explosive” debt to GDP ratio, starting at the same 150%, it only explodes to \(150 \times e^{0.0001 \times 11,000} = 450\% \) after the same 11,000 years.

Thus, a sensible understanding of how equations map to the economy is continuous as \(r \) passes \(g \). If there is a “wealth effect,” a transversality condition violation in a debt-to-GDP ratio that rises by a factor of three from 150% to 450% in 11,000 years, then there is surely a “wealth effect” in a debt-to-GDP ratio that takes 11,000 years to decay by a factor of three from 150% to 50% in the same time period.
6.4.4 **Average vs. variation**

So what does \(r < g \), by something on the order of 1%, mean for the U.S. and similar western economies? \(r < g \) may shift the *average* surplus to a slight, 1% of GDP or so, perpetual deficit, just as seigniorage allows a slight perpetual deficit. But any substantial *variation* in deficits about that average – large business cycles, crises, wars, the U.S. green new deal or the European green deal – must be met by a substantial period of above-average surpluses, to bring back debt to GDP in a reasonable time. The *variation about the average* remains well described by the standard forward-looking model.

The same insight applies to fiscal theory. With small \(r < g \) that may not last forever, and with limits on the debt-to-GDP ratio, variation in the value of debt still has to be met by variation in subsequent surpluses. If surpluses are not sufficient, the initial debt will still devalue via inflation. The linearized identities can apply to deviations about a small negative average surplus.

6.4.5 **Population, demographics, and dynamic efficiency**

The basic representative-agent perfect-foresight growth model does not easily deliver \(r < g \). With utility function \(\int e^{-\delta t} c_t^{1-\gamma}/(1-\gamma)dt \), the dynastic (cares about their children) representative agent’s first-order conditions give

\[
\dot{r} = \delta + \gamma g
\]

(6.6)

We usually think that \(\delta > 0 \), people prefer the present to the future, and that \(\gamma \geq 1 \). Hence \(r > g \).

One can deliver \(r < g \) with small \(\delta, \gamma < 1 \) and low \(g \). However, in this case the transversality condition is more stringent than a non-explosive debt-to-GDP ratio. Using even \(\delta = 0 \),

\[
\lim_{T \to \infty} u'(c_T)b_T = c_{\infty}^{1-\gamma} \frac{b_T}{c_T}.
\]

For \(\gamma > 1 \), steady \(b_T/c_T \) and growth in \(c_T \) implies the transversality condition. But for \(\gamma < 1 \), the right-hand side continues to grow as consumption grows. A steady debt/GDP ratio is not enough.

Population growth \(n \) allows \(r < g \) more easily. If people do not care about their children or immigrants, the consumer’s first-order conditions are

\[
r = \delta + \gamma (g - n),
\]
Government finances get the benefit of more people, and thus an income stream that
grows faster than the individual income stream which is connected to the interest
rate. Jones (2020a) links population growth to the long-term growth rate, multiply-
ing its effect. Again, sustainability, fiscal theory and endogenous growth need to be
better integrated.

Still, the US population growth rate was only 0.4% in 2020. Population growth has
been trending downwards along with the real interest rate, so cannot account for
the interest rate decline. And all estimates say population growth will slow further,
raising r or lowering g.

Demographics are sometimes said to drive the decline in real interest rate. The baby-
boom generation entered their high saving years. If so, \(r < g \) will soon pass, as the
U.S., Europe, Japan, and China rapidly age.

Population growth can allow the government to take a little from each generation
and give it to the previous one, which can be implemented by government debt. The
government can run a slow Ponzi scheme, giving each generation a rate of return
equal to the population growth rate. In such dynamically inefficient overlapping
generations models, the present value condition fails. Government debt is not in-
finately valuable however, and cannot overcome production limitations. Population
growth must go on literally forever for this story to work. For this reason I don’t pay
much attention to dynamic inefficiency or fiscal theory. But I acknowledge the lac-
cunae. Investigation of nominal debt in a dynamically inefficient environment seems
still an open theoretical question.

These thoughts may all be reasons that the \(r < g \) debate has focused on frictions
rather than simple growth theory.

6.4.6 Liquidity

Liquidity, a money-like aspect to government bonds, can produce \(r < g \). But present
values hold, and the fiscal theory continues to work. It is dangerous to discount at
the government bond return rather than the stochastic discount factor.

A government that finances itself entirely by non-interest-bearing money is a clear
and simple example. This government can run slight deficits forever, earning a steady
seigniorage revenue proportional to GDP. But this opportunity does not scale. If the
government tries a large fiscal expansion by printing money, it creates inflation, and
real money demand falls. In the extreme, additional money printing raises inflation
and lowers real money demand so much that it generates less revenue. For this economy, the rate of return on government debt is the negative of the inflation rate \(r = -\pi \) so \(r < g \). Yet the present value relation is well-defined and determines the price level.

To see how these statements work, suppose the real risk free rate \(r^f \) satisfies \(r^f > g \).

The government finances itself entirely from money, so the rate of return on government debt is \(r = -\pi < g \). There is a demand for non-interest bearing money

\[
MV(i) = Py.
\]

Differentiating, steady-state (constant \(i \)) money growth equals inflation plus economic growth,

\[
\frac{1}{M} \frac{dM}{dt} = \pi + g.
\]

Deficits financed by printing money are

\[
\frac{dM_t}{dt} = -Ps_t.
\] (6.7)

There is a steady state with constant money-to-GDP ratio, \(M/(Py) \), at which

\[
(\pi + g) \frac{M}{Py} = -\frac{s}{y}.
\] (6.8)

The government can finance a steady deficit equal to inflation + growth times real money demand.

Now, how do we think of this money-financed government and its price level in terms of present values? Recall (3.54), the present value relation with money and debt. I specialize to certainty, a real interest rate \(r^f \), no interest on money \(i^m = 0 \), and an endowment \(y_t \) growing at rate \(g \). Expressing debt as a fraction of GDP we then have

\[
\frac{M_t + B_t}{Py_t} = E_t \int_{\tau=t}^{\infty} e^{-(r^f-g)(\tau-t)} \left(\frac{s_\tau}{y_\tau} + i_\tau \frac{M_\tau}{P_\tau y_\tau} \right) d\tau.
\] (6.9)

The value of debt is the present value of surpluses, plus the interest savings due to the fact that money provides a stream of liquidity benefits.

In (6.9) we see also that in the steady state with \(i = r^f + \pi \), the government can run a steady primary deficit, \(s_\tau < 0 \). You may have scratched your head about a
positive present value with perpetually negative surpluses, but the combined middle term of (6.9) is positive. With surpluses given by (6.8), that middle term is
\[
\frac{s}{y} + i \frac{M}{P_y} = (r^f - g) \frac{M}{P_y}.
\]
The seigniorage term is larger than the deficit term, and “pays back” the initial value of debt at the real rate of interest.

Yes, fiscal theory applies even with non-interest-bearing money that is never formally retired or repaid. The value of money is the present value of its benefits.

Equation (6.9) makes clear that if the government does not want inflation, any additional deficits must be paid for by issuing interest-bearing debt, which pays \(r^f > g\), and repaid by subsequent larger surpluses discounted at \(r^f\). We have an example in which the marginal \(r = r^f > g\), though the average rate of return on government debt \(r = -\pi < g\).

Now, what happens if we try to discount using the rate of return \(r = -\pi < g\) on the government bond portfolio? The steady-state real money-to-GDP ratio follows
\[
\frac{d}{dt} \left(\frac{M_t}{P_t y_t} \right) + \frac{M_t}{P_t y_t} \left(\pi + g \right) = - \frac{s_t}{y_t} \tag{6.10}
\]
or equivalently
\[
\frac{d}{dt} \left(\frac{M_t}{P_t y_t} \right) + \frac{M_t}{P_t y_t} \left(i - r^f + g \right) = - \frac{s_t}{y_t}. \tag{6.11}
\]
From (6.11), and with \(r^f > g\) so integrating forward, we get (6.9), discounting using \(r^f\) and counting the interest rate term as seigniorage. But we can also integrate forward the equivalent (6.10), effectively using \(r = -\pi\) as a discount rate, yielding
\[
\frac{M_t}{P_t y_t} = E_t \int_{\tau = t}^{T} e^{(\pi + g)(\tau - t)} \frac{s_\tau}{y_\tau} d\tau + e^{(\pi + g)(T - t)} \frac{M_T}{P_T y_T}. \tag{6.12}
\]

\(^1\)To get to (6.10), differentiate
\[
\frac{d}{dt} \left(\frac{M_t}{P_t y_t} \right) = \frac{M_t}{P_t y_t} \left(\frac{1}{M_t} \frac{dM_t}{dt} - \pi - g \right).
\]
Then use (6.7) to get
\[
\frac{d}{dt} \left(\frac{M_t}{P_t y_t} \right) = - \frac{M_t}{P_t y_t} \left(\frac{P_t}{M_t} s_t + \pi + g \right),
\]
and rearrange.
Here, the terminal condition explodes for the steady state. Since the left-hand side is finite, the present value integral also explodes negatively. The value of government debt is the same, but we express it with a present value and a terminal condition that each explode in opposite directions.

Now compare (6.12) with (6.9), including a terminal condition and without debt,

$$\frac{M_t}{P_t y_t} = E_t \int_{\tau=t}^{T} e^{-(r^f-g)(\tau-t)} \left(\frac{s_{\tau}}{y_{\tau}} + \frac{i_{\tau} M_{\tau}}{P_{\tau} y_{\tau}} \right) d\tau + E_t e^{-(r^f-g)(T-t)} \frac{M_T}{P_T y_T}. \quad (6.13)$$

Both the present value and the terminal condition converge.

Both (6.13) and (6.12) are correct. We just integrate forward differently. The question is, which expression is more useful or insightful? Is it more useful to think of the liquidity services of money as providing a convenience yield flow, seigniorage in the form of a lower interest cost of debt, which we discount at the real interest rate? Or is it more insightful to think of the liquidity services of money as lowering the discount rate, thereby thinking of a present value and terminal condition which explode in opposite directions?

I prefer the former. The latter can very quickly lead to mistakes. You may take the terminal condition limit first, and conclude that the value of debt is infinite. You may think that the terminal condition is a “bubble” that is “mined” for surpluses. (The terminology is from Brunnermeier, Merkel, and Sannikov (2020) who explore a related model.) You may forget about the terminal condition and conclude that the value of debt is infinite. You can miss the fact that additional surpluses still need to be repaid and conclude that money-financed expansion is painless.

The central difference between the two expressions is that in (6.9) and (6.13) we discount using the consumer’s marginal rate of substitution,

$$\beta^{\tau-t} \frac{u'(c_{\tau})}{u'(c_{t})} = \frac{\Lambda_{\tau}}{\Lambda_{t}} = e^{-r^f(\tau-t)}. \quad \text{Equation (6.5)}$$

The terminal condition in (6.9) converges because the transversality condition specifies discounting with the marginal rate of substitution,

$$\lim_{T \to \infty} E_t \left[e^{-\rho(T-t)} \frac{u'(c_T) M_T}{u'(c_T) P_T} \right] = \lim_{T \to \infty} E_t \left[e^{-r^f(T-t)} \frac{M_T}{P_T} \right] = 0.$$

Even when the transversality condition holds, the terminal condition does not necessarily hold discounting with the ex-post return, as it does not in this example.
If we ignore the terminal condition in (6.12), we see a clear mistake. Since the expression is a present value discounting at the government bond return, we can phrase the mistake as using a rate of return measured in a world with a liquidity premium, and applying a risk-free frictionless present value formula.

I reiterate the main point. By conventional sustainability accounting this is an "$r < g$" example, since the rate of return on government debt is less than the growth rate. Yet the value of debt is finite, transversality conditions hold, government debt is not a free lunch, and the fiscal theory determines the price level. That fact is easiest to see if we discount surpluses and the convenience yield of government debt with the stochastic discount factor, and only use alternative discount factors when they happen to converge and therefore give the same result.

6.4.7 Discount rates vs. rates of return

This example illustrates a more general theoretical subtlety. One can always discount one-period payoffs with the ex-post rate of return. It is trivially true that

$$1 = E_t \left(R_{t+1}^{-1} R_{t+1} \right).$$

It does not follow that one can always discount infinite streams of payoffs with the ex-post return. It can happen that the present value of cashflows, discounted by the stochastic discount factor, is finite and well-behaved, that both terms of

$$p_t = E_t \left(\sum_{j=1}^{T} \frac{\Lambda_{t+j}}{\Lambda_t} d_{t+j} \right) + E_t \left(\frac{\Lambda_{t+T}}{\Lambda_t} p_{t+T} \right)$$

converge, yet if we attempt to discount using returns $R_{t+1} = (p_{t+1} + d_{t+1})/p_t$,

$$p_t = E_t \left(\sum_{j=1}^{T} \prod_{k=1}^{j} \frac{1}{R_{t+k}} d_{t+j} \right) + E_t \left(\prod_{k=1}^{T} \frac{1}{R_{t+k}} p_{t+T} \right),$$

the present value term and the limiting term explode in opposite directions. Moreover, where my money example generated this behavior from a convenience yield, this explosion can happen in a frictionless market when all assets are priced by the stochastic discount factor. (Two examples follow.)

It is not always wrong to discount by the ex-post return. The present value discounted at the ex-post return is correct, if the sum and terminal value converge.
When they do converge, discounting with returns is quite useful. For example, it underlies the linearizations. But that the sums converge is an extra assumption, not guaranteed by transversality conditions. And the condition that the second term in (6.14) converges is a stochastic version of \(r > g \).

Thus, we have a warning that the linearizations, which use ex-post returns to discount, may show a non-converging present value term and a non-converging terminal term. But we don’t need general theorems. We can examine that convergence directly, and use the return-based linearizations when sums converge and not use them when they don’t converge. Moreover, the linearizations apply to deviations from the mean. So when we subtract a mean surplus to GDP ratio, potentially negative, the linearizations may converge for deviations about that mean, and remain valid.

The issue is a bit open in asset pricing. For one-period returns, it is convenient to construct alternative discount factors, especially linear discount factors, in this one-asset case \(\Lambda_{t+1}/\Lambda_t = R_{t+1}/E_t(R_{t+1}^2) \). Cochrane (2005a) is full of such tricks. But these alternative discount factors do not always deliver convergent terminal conditions in infinite-period settings. Extending the substitute discount factors to infinite sums is a potentially useful investigation in theoretical asset pricing, opening the door to a view focused on streams of payoffs rather than one-period returns.

6.4.8 Aggregate uncertainty

In perfect-foresight models with no liquidity distortions, all discount factors are the same. Uncertainty opens wedges between the risk-free rate, the average return on government bonds, the marginal product of capital, and the consumer’s marginal rate of substitution. With uncertainty, we again can have an average return on government bonds \(E(r) \) that is less than the average rate of economic growth \(E(g) \), yet the properly-discounted present value of government debt is well defined, debts must be repaid by surpluses, and the fiscal theory applies. Here too it is a tempting mistake to take the average return and average growth rate, plug them in to a perfect-certainty model, and come falsely to the opposite conclusion.

We can see the issue in a very simple model. Write the equation that debt equals the present value of surpluses as

\[
\frac{b_t}{y_t} = E_t \left(\sum_{j=1}^{\infty} \beta_j \frac{u'(c_{t+j})}{u'(c_t)} \frac{y_{t+j}}{y_t} \frac{s_{t+j}}{y_{t+j}} \right).
\]

(6.15)
It is tempting but incorrect to move the expectation sign inside the sum, effectively
using averages from an uncertain world as parameters in a perfect-foresight formula.
If we do that, we obtain
\[
\sum_{j=1}^{\infty} E_t \left(\beta^j u'(c_{t+j}) \right) E_t \left(\frac{y_{t+j}}{y_t} \right) E_t \left(\frac{s_{t+j}}{y_{t+j}} \right) = \sum_{j=1}^{\infty} \left(\frac{1 + g}{1 + r} \right)^j E_t \left(\frac{s_{t+j}}{y_{t+j}} \right)
\]
(6.16)
where the right hand equality specifies that consumption and GDP growth are inde-
pendent over time.
But this is incorrect. It leaves out the covariance terms. The true present value can
converge while this mistaken one explodes. For example, consider power utility and
lognormal consumption, \(c = y \) and a constant \(s/y \). Now the terms of the correct
formula (6.15) are
\[
E_t \left[\frac{u'(c_{t+j})}{u'(c_t)} \frac{y_{t+j}}{y_t} \right] = E_t \left[\left(\frac{c_{t+j}}{c_t} \right)^{1-\gamma} \right] = e^{[(1-\gamma)g + (1-\gamma)^2\sigma^2/2]j},
\]
while the terms of the incorrect \(r - g \) version (6.16) are
\[
E_t \left[\frac{u'(c_{t+j})}{u'(c_t)} \right] E_t \left(\frac{y_{t+j}}{y_t} \right) = E_t \left[\left(\frac{c_{t+j}}{c_t} \right)^{-1} \right] E_t \left(\frac{c_{t+j}}{c_t} \right) = e^{[(1-\gamma)g + \gamma^2\sigma^2/2]j}.
\]
With \(\gamma > 1 \) we have \((1 - \gamma)^2 < \gamma^2\). Thus, it is entirely possible that
\[
e^{-\delta(1-\gamma)g + (1-\gamma)^2\sigma^2/2} < 1 < e^{-\delta(1-\gamma)g + \gamma^2\sigma^2/2},
\]
where \(\delta \equiv -\log(\beta) \). In this circumstance, using the risk-free rate \(r \) and average
GDP growth \(g \) to discount indicates an explosive present value, where the correctly-
discounted present value is finite.
You may still be puzzled. After all, the rate of return on government debt is here
the riskfree rate \(r \). It is lower than the average growth rate of the economy \(g \). If the
government borrows and rolls over debt, the economy should outpace the growth of
debt. And it will, on average. But the states of nature in which growth is bad, and
debt outpaces growth, are states with high marginal utility, high contingent claims
prices. These are exactly the states in which it is particularly painful to face fiscal
austerity. Weighting states by marginal utility, we see a finite present value. The
situation is similar to the classic finance trick of writing out-of-the money index put
options and calling it arbitrage. It will work most of the time and on average. But when it fails, it fails at the most painful moment possible.

Bohn (1995) offers an example that connects well to the circumstance of government debt. (Cochrane (2021c) covers Bohn’s example in more detail.) Consumption equals income. Growth is i.i.d., and a representative consumer has power utility.

Growth is volatile enough to drive the risk free rate below the growth rate. In the linearized formula,

\[r = \delta + \gamma g - \frac{1}{2} \gamma (\gamma - 1) \sigma^2 < g. \]

We had trouble above generating \(r < g \) from a representative-agent model. With uncertainty, precautionary saving can drive down interest rates. This effect is small for power utility with \(\gamma \) not too large and \(\sigma \approx 0.01 \). But it is a theoretical possibility for other parameters. Other utility functions such as habits, rare disasters, and other devices to match the equity premium, effectively large \(\gamma \), also raise this precautionary saving effect. As with this example they emphasize the need to discount in a way that recognizes risk premiums.

Suppose the government keeps a constant debt/GDP ratio. At each date \(t \) the government borrows an amount equal to GDP, \(c_t \), and then repays it the next day, paying \((1 + r)c_t \) at time \(t + 1 \). The primary surplus is then

\[s_t = (1 + r)c_{t-1} - c_t. \]

Now, the end-of-period value of government debt at time \(t \), just after the government has borrowed \(c_t \), is obviously, \(b_t = c_t \). (It is more convenient for this example to look at end-of-period debt, which is the usual timing in asset pricing formulas.) Our job is to express that fact in terms of sensible present value relations.

If we construct a present value, discounting with marginal utility, we obtain

\[b_t = E_t \left[\sum_{j=1}^{T} \beta^j \left(\frac{c_{t+j}}{c_t} \right)^{-\gamma} s_{t+j} \right] + E_t \left[\beta^T \left(\frac{c_{t+T}}{c_t} \right)^{-\gamma} c_{t+T} \right] \]

\[= E_t \left\{ \sum_{j=1}^{T} \beta^j \left(\frac{c_{t+j}}{c_t} \right)^{-\gamma} [(1 + r)c_{t+j-1} - c_{t+j}] \right\} + E_t \left[\beta^T \left(\frac{c_{t+T}}{c_t} \right)^{-\gamma} c_{t+T} \right]. \]

The intermediate consumptions all cancel, leaving

\[b_t = \left\{ c_t - E_t \left[\beta^T \left(\frac{c_{t+T}}{c_t} \right)^{-\gamma} c_{t+T} \right] \right\} + E_t \left[\beta^T \left(\frac{c_{t+T}}{c_t} \right)^{-\gamma} b_{t+T} \right] = c_t. \]
The present value of borrowing \(c_{t+j} \) and repaying \((1+r)c_{t+j} \) the next period \(t+j+1 \) is zero, so only the first term, the time-\(t \) value of \((1+r)c_t \) paid at time \(t+1 \) survives. The last term converges to zero, via the transversality condition.

Now try to discount at the risk free rate, which is the government bond return.

\[
b_t = \sum_{j=1}^{T} \left(\prod_{k=1}^{j} \frac{1}{R_{t+k}} \right) s_{t+j} + \left(\prod_{k=1}^{T} \frac{1}{R_{t+k}} \right) b_{t+T} =
\]

\[
= \sum_{j=1}^{T} \frac{(1+r)c_{t+j-1} - c_{t+j}}{(1+r)^j} + \frac{1}{(1+r)^T} c_{t+T}
\]

Taking expected value,

\[
b_t = c_t \left(1 - \frac{(1+g)^T}{(1+r)^T} \right) + c_t(1+g)^T \frac{(1+g)^T}{(1+r)^T}.
\]

With \(r < g \) the present value of cashflows term builds to negative infinity, and the terminal value builds to positive infinity.

Again, compare the present value discounted using marginal utility, (6.17) to the present value discounted using the ex-post return (6.18). Both equations are correct. Which is more useful? At a minimum, the latter invites mistakes. The present value equation without the offsetting exploding terminal condition is wrong.

In sum, we have an example in which government debt pays the risk-free rate, the risk-free rate is below the economy’s growth rate \(r < g \), yet the value of debt equals the present value of future surpluses, additional deficits must be repaid by surpluses, and fiscal theory applies if one generalizes to nominal debt. Debt sustainability analysis and a present value that discount at the risk-free rate or government bond return give the wrong answer, as they ignore the high state-prices of poor outcomes. Don’t mix perfect-certainty modeling with return measurements from an uncertain world. When in doubt, discount with marginal utility.

6.4.9 Summary

The key insight for fiscal theory: Do not give up just because the average ex-post return on government debt is persistently a bit below the economy’s growth rate!
6.4. WHAT IF $R < G$?

Plausible values for $r < g$ are small, like plausible values of seigniorage, meaning that substantial deficits must still be repaid with subsequent surpluses. The present value of surpluses may be well defined, correctly discounting using the stochastic discount factor or consumer’s marginal rate of substitution, where present value formulas that use the risk free rate or the ex-post rates of return on government debt explode.

The intersection of low interest rates, fiscal sustainability, and fiscal theory constitutes an active research area, and one’s wish for a more definitive treatment should be a spur to more work on the question. Most prominently, perhaps, [Blanchard (2019)] investigates $r < g$ and the consequent possibility for a large fiscal expansion that has no fiscal cost. Given on the eve of an immense debt-fueled expansion, Blanchard’s address is destined to be influential. Blanchard carefully outlines most of the limitations of the “no fiscal cost” view, including crowding out and doom-loop scenarios. He considers the optimal size of debt, and many more models including models with fiscal multipliers that add to the benefits of debt. But as his sympathies side with expansion, his address is likely to be remembered either as opening our eyes to an unprecedented opportunity, or as stoking the fires of disaster.

[Bassetto and Cui (2018)] is an excellent clear statement of many cases when low interest rates do and do not trouble the FTPL, covering most of my points and more. They emphasize as I do that why interest rates are low is a key question. They give an example with large risk premiums, in which debt corresponds to a well-defined present value of surpluses, even though expected surpluses are always negative. Surpluses are positive in high marginal utility states. They give a sophisticated treatment of the case that debt appears in the utility function, generating analysis similar to the simple case with money that I present. Contrariwise, they gives a clear example of an overlapping generations, dynamically inefficient economy in which government debt is a free lunch, and present values do not converge.

[Reis (2021)] gives a new example in which the return on government debt is different from the marginal product of capital in a risky economy. Reis investigates an economy with uninsured individual risk, despite no aggregate risk, which also can drive r below g and separate the returns on government bonds from the marginal product of capital. [Mehrotra and Sergeyev (2021)] construct a model with aggregate risk and rare disasters, in which again the present value of debt is well defined though $r < g$. See also [Berentsen and Waller (2018)], [Brunnermeier, Merkel, and Sannikov (2020)] with liquidity distortions in government bonds, and [Williamson (2018)].
6.5 Assets and liabilities

What about other liabilities, like Social Security, pensions, health care and so on? What about the national parks or other assets? By and large, I suggest including them on the right-hand side as streams of state-contingent surpluses rather than include them as debt.

What about all the other assets and liabilities of the government? Social Security, pensions, Medicare, Medicaid, and social programs are all promises to pay people that act in some ways like government debt. Adding them up, depending on how one takes present values, one can compute a “fiscal gap,” an effective debt, of $70 trillion to over $200 trillion (Kotlikoff and Michel (2015)), dwarfing the official $20 trillion (in 2020) federal debt.

The federal government also makes a lot of state-contingent promises, or has contingent liabilities. It offers deposit insurance. It is likely to bail out private and state and local pension funds, and student debt, and these bailouts are more likely in bad states of the world. It offers formal credit guarantees, including those on home mortgages that pass through Fannie and Freddie. Credit guarantees are a favorite method of offering subsidies to businesses. Unemployment insurance, food stamps and other social programs automatically create additional spending in recessions. The U.S. government is more and more likely to bail out banks, other financial institutions, and large corporations including auto makers and airlines.

The government has assets as well, including national parks and vast swaths of the Western states, spectrum and oil drilling rights, and toll roads.

Where do we put these assets and liabilities in the valuation equation? Marketable assets are easy to include on the right-hand side. Federal Reserve assets – loans to banks, private securities – belong there, though corresponding Federal Reserve liabilities – reserves – also belong on the left-hand side. The assets of countries with sovereign wealth funds belong on the right-hand side. But the chance that the Federal government would sell the national parks, and that it could raise resources in the trillions by doing so, seems remote.

I think such assets and liabilities are better treated by adding them to the uncertain, managed, and state-contingent flow of surpluses rather than try to compute present values, for the purpose of applying fiscal theory.

Social Security, health, and pensions are promises to pay, as coupon and principal payments are promises to pay. Social programs are formally “entitlements” to receive
6.5. ASSETS AND LIABILITIES

payment. However, the government can at any time reduce those promises without
formal default. Many governments around the world have reform pension and health
payment systems in response to fiscal pressures. The U.S. will, eventually, do the
same. There is a qualitative difference between interest and principal on 30-year U.S.
Treasury debt and the promises to keep raising Social Security and health benefits for
30 years, that should make one hesitate to throw them into the same bucket.

More importantly, perhaps, these promises are not marketable debt, and they are
long-term debt. There is no way to run on promised pension and health-care pay-
ments. If you think the government will default, inflate, cut benefits, or if you just
want the cash now, you cannot demand your share of Social Security or Medicare in
a lump sum. You cannot sell your share to someone else. More than anything else,
this feature drives me to think of them them as state-contingent flows of surpluses
on the right-hand side rather than as a present value on the left-hand side.

The government writes many implicit put options. But figuring out a market value
of state-contingent, option-like liabilities and treating them like debt does not seem
that productive. Perhaps I am too leery of complex option-pricing models, but it
seems more productive to keep track of them as state-contingent payments, while
also keeping track of the higher state prices when spending must be cut back.

Forecasts of future health and retirement payments, along with forecasts such as
those of the Congressional Budget Office (CBO) of the overall budget, are clearly
not forecasts, conditional expected values. They are “here is what will happen if you
don’t do something about this” warnings. What is unsustainable eventually does not
happen, so the CBO calculations simply tell us that somewhere down the road the
U.S. must reform its spending promises, reform its tax system, trade more growth
for less regulation, and likely all three, or face a monumental debt crisis. One should
definitely not use such projections as conditional mean forecasts.

This is not a right or wrong question, it is a question of what kind of accounting
seems likely more productive to understand inflation and fiscal dynamics. Sometimes
a state-contingent flow accounting is more useful than a present-value accounting.
The discount factor adds to the trouble. With \(r \) close to \(g \), small changes in discount
rates make huge changes in present values. As I did digesting the discontinuity of
present values at the \(r < g \) boundary, sometimes issues are clearer on a flow rather
than present-value basis. But one should understand the state-contingent nature of
flows, and the state-dependent costs of changing them as well. The fact that so many
state-contingent government liabilities come in bad times suggests their true value is
larger than even discounting at a low risk free rate suggests. On the other hand, bad
fiscal times can often be met by borrowing, spreading out the pain over subsequent decades.

How surpluses depend on the price level matters. If government worker salaries are not indexed for inflation, then inflation reduces real government liabilities. If medical care prices are administered by the government – as they are – and they are sticky to respond to inflation, then inflation reduces real government deficits. Non-neutralities in the tax code, including progressive tax brackets that are not indexed, taxation of nominal capital gains, and the fact that depreciation schedules are not indexed, all mean that inflation helps government finance, at least once, until people demand better indexation. On the other hand, Social Security payments are aggressively indexed for inflation, so Social Security is at least a real debt, or even a debt whose value increases with inflation.

In sum, government assets and liabilities matter. These considerations are all important for figuring out how sensitive inflation is to fiscal and other shocks, and how tempting it will be for the government to inflate rather than reform or default when in trouble. However, it is not necessarily best to take parts of the surplus or deficit encoded as entitlement promises in current law, and separate them off as a separate present value, as if they were formal debt, to try understand the current price level, and in particular to understand the last percent or two of inflation and its timing.
Chapter 7

Long-term debt dynamics

Long-term debt adds many wrinkles to the fiscal theory. It is important to understanding policy choices, episodes, and patterns in the data.

Here I explore long-term debt in greater detail. I start by analyzing forward guidance, promises of future interest rates. I then analyze how changes in the quantities of long-term debt affect the path of inflation, and what pattern of debt sales support interest-rate or price-level targets. The result is a unified view of interest-rate targets, forward guidance, quantitative easing, and fiscal stimulus, that can produce standard beliefs about the signs of these policies’ effects. The mechanism behind such effects is utterly different from standard models, however, as are some ancillary predictions.

I examine these mechanisms in the flexible-price constant real interest rate model, now with long-term debt. I ask the simple questions from the first chapters: What happens if the government sells more debt B, holding surpluses constant? What happens if the government sets an interest-rate or bond-yield target and offers any quantity of debt B at that price, holding surpluses constant? What happens if there is a shock to surpluses s? With long-term debt, the answers are richer.

This analysis is just a starting point. Pricing frictions will give output effects and more realistic dynamics, and will introduce real interest-rate and discount-rate variation. Monetary frictions, financial frictions, or liquidity effects of government bonds should add to those interesting dynamics. As usual though, it is best first to understand the simple model and see how many effects don’t require frictions.

The tools are simple. With long-term debt, flexible prices, and a constant real
interest rate, the flow condition is (3.2),

\[B_{t-1}^{(t)} = P_t s_t + \sum_{j=1}^{\infty} Q_t^{(t+j)} \left(P_t^{(t+j)} - B_{t-1}^{(t+j)} \right), \]

and the present-value relation becomes (3.3)

\[\frac{\sum_{j=0}^{\infty} Q_t^{(t+j)} B_{t-1}^{(t+j)}}{P_t} = E_t \sum_{j=0}^{\infty} \beta^j s_{t+j}. \]

We can also eliminate bond prices

\[Q_t^{(t+j)} = E_t \left(\frac{\beta^j}{P_t} \right) \]

to express the flow and present value relations between debt and price levels directly,

\[\frac{B_{t-1}^{(t)}}{P_t} = s_t + \sum_{j=1}^{\infty} \beta^j \left(B_t^{(t+j)} - B_{t-1}^{(t+j)} \right) E_t \left(\frac{1}{P_{t+j}} \right), \quad (7.1) \]

\[\sum_{j=0}^{\infty} \beta^j B_{t-1}^{(t+j)} E_t \left(\frac{1}{P_{t+j}} \right) = E_t \sum_{j=0}^{\infty} \frac{1}{R^j} s_{t+j}, \quad (7.2) \]

This is a useful step to understanding the relationship between debt quantities and the price level.

7.1 Forward guidance and bond-price targets

Announcements of future interest-rate changes can change bond prices and thus change the price level today. In this sense the model captures forward guidance. However, an announcement whose horizon exceeds the maturity of all outstanding bonds has no effect on the price level today. In this sense, fully expected interest rate increases have no temporary disinflationary effect.

The central bank can peg all nominal bond yields. That policy obtains the desired inflation effect without doubtful promises of future interest rates.
We have seen how a rise in an interest rate target can create higher expected inflation. With long-term debt we have seen how an unexpected persistent interest rate rise produces a temporary disinflation. Here, I investigate forward guidance: if the central bank can credibly commit to higher or lower future interest rates, that announcement alone changes long-term bond prices, and changes the price level immediately, with no change at all in current short-term interest rates.

Figure 7.1 picks up where Figure 3.1 left off. Figure 3.1 plotted the effects of an immediate sustained interest-rate rise. Figure 7.1 plots a forward guidance policy. At time 0, the government announces that interest rates will rise starting at time 3, and stay higher. This anticipated rise in interest rates induces long term bond yields at time 0 to rise as indicated by “yields at t=0.” (Yields are plotted as a function of maturity, interest rates as a function of time. The algebra for Figure 7.1 is in Online Appendix Section 25.2.1.)

Figure 7.1: Price-level response to a forward-guidance interest rate rise. At time 0, the government announces that interest rates will rise at time 3, and stay higher. Long-term debt with a geometric maturity structure \(\omega = 0.8 \) is outstanding.

The price level jumps down at time 0. Much “forward guidance” has been an announcement that future interest rates will be lower than expected, in attempt to stimulate time 0 inflation. Just flip the graph for that experiment.
However, the price-level drop in Figure 7.1 is smaller than that in Figure 3.1. Fewer bonds change price, and those that do so change price by a smaller amount.

- An interest-rate shock in the form of forward guidance has less effect than the same shock made immediately. The maturity structure of outstanding debt controls how the effect of forward guidance falls with announcement horizon.

An announcement today of a future interest rate change only affects the value of debt whose maturity exceeds the time interval before rates change. This forward guidance mechanism eventually loses its power altogether once the guidance period exceeds the longest outstanding bond maturities.

To see these points, suppose that at time 0, the government announces unexpectedly that interest rates will rise starting at time \(T \) onward, and bonds of maturity up to \(k > T \) are outstanding (30 years in the U.S.). Nominal bond prices fall, and the price level \(P_0 \) must fall since surpluses are not affected. Only bond prices of maturity \(T+1 \) or greater are affected. In the present value relation

\[
\frac{\sum_{j=0}^{T} Q_0^{(j)} B_{-1}^{(j)} + \sum_{j=T+1}^{k} Q_0^{(j)} B_{-1}^{(j)}}{P_0} = E_0 \sum_{j=0}^{\infty} \beta^j s_j, \quad (7.3)
\]

only the second term in the numerator on the left-hand side is affected by this forward-guidance shock. Furthermore, for given interest-rate rise, bond-price declines in that second term are smaller: For a permanent rise from \(r \) to \(i \) starting at time \(T \), the prices of bonds that mature at \(j \leq T \) are unaffected, and the prices of bonds that mature at \(T+j \) are only affected by interest rates later in their lives. The bond price reaction is

\[
Q_0^{(T+j)} = \frac{1}{(1+r)^T} \frac{1}{(1+i)^j} > \frac{1}{(1+i)^{T+j}}.
\]

If \(T > k \), and forward guidance exceeds the longest outstanding maturity, the price level \(P_0 \) does not decline at all, as was the case with one-period debt.

In Figure 7.1, the price level stays at the new lower level after it drops, since with no current change in interest rate, expected inflation does not change. Inflation starts when the interest rate actually rises. On the date that the interest rate rises there is no second price-level jump, since this rise is expected.

- The negative response of the price level to higher interest rates happens when the interest-rate rise is announced, not when the interest-rate rise happens. Fully-expected interest-rate rises have no disinflationary effect.
Though the answer reflects some of what forward guidance advocates hope for, the inflationary or deflationary force of the announcement flows from an entirely different mechanism than those in standard Keynesian or new-Keynesian thinking. Here there is no variation in real interest rates, no Phillips curve, no intertemporal substitution reacting to current or future interest rates, and so forth. The time-zero disinflation is entirely a “wealth effect” of government bonds. This forward guidance is less effective for promises in the further future. And this forward guidance relies on long-term debt, while standard analysis does not mention the maturity structure.

The price-level effects here all result from the effect of the time-path of interest rates on long-term bond prices. The central bank could also implement the long-term bond prices directly, by offering to freely buy and sell long-term bonds at fixed prices, with no change in surpluses, in exactly the same way as we studied a short-term interest rate target achieved by offering to buy and sell short-term bonds at a fixed rate.

Thus we can read Figure 7.1 as the answer to a different question: Rather than promise and try to commit to the plotted path of future short-term rates, suppose the central bank at time 0 announces a full set of bond prices or the plotted yields as a function of maturity, and offers to buy and sell bonds of any maturity at those prices. By doing so, the central bank immediately creates the plotted yield curve, and obtains the plotted disinflation. I verify below that such bond price targets work. Central banks shy away from direct yield control by announcing and trading at fixed prices, but in this analysis there is no reason for them to do so.

7.2 Bond quantities

What price-level paths follow from given bond quantities? What bond quantities support a given price-level path?

What are the effects of long-term bond sales on the sequence of prices, given surpluses? What is the effect of surplus shocks on the sequence of prices, with fixed long-term bond supplies? What happens if the government offers bonds for sale at fixed prices – how many bonds does it sell?

The answers to these questions turn out to be algebraically challenging in the presence of long-term debt. We want to solve the sequence (for each t) of flow conditions
CHAPTER 7. LONG-TERM DEBT DYNAMICS

\[\frac{B_{t-1}(t)}{P_t} = s_t + \sum_{j=1}^{\infty} \beta^j \left(B_t^{(t+j)} - B_{t-1}^{(t+j)} \right) E_t \left(\frac{1}{P_{t+j}} \right) \]

(7.4)

or present-value conditions

\[\sum_{j=0}^{\infty} \beta^j B_{t-1}^{(t+j)} E_t \left(\frac{1}{P_{t+j}} \right) = E_t \sum_{j=0}^{\infty} \beta^j s_{t+j} \]

(7.5)

for \(\{P_t\} \), given \(\{s_t\} \) and \(\{B_t^{(t+j)}\} \). (The notation \(\{x_t\} \) denotes the sequence \(x_0, x_1, ...x_t, ... \)) Alternatively, given a path of \(\{P_t\} \) and \(\{s_t\} \) we search for corresponding debt policies \(\{B_t^{(t+j)}\} \).

In the one-period bond case, the present-value relation (7.5) by itself provides such a solution. There is only one price level, \(P_t \), on the left-hand side, so we find the price level given debt and surplus policy settings. Now we have to solve the system of such equations simultaneously at each date to find the solution.

These operations are not mathematically hard. These are linear equations. But the general formulas don’t lead to much intuition, so I start with a set of examples that isolate some important channels. I turn on three important pieces of long-term debt policy one by one. First, I consider a government that inherits a maturity structure \(\{B_{t-1}^{(j)}\} \) at time 0 and simply pays off this outstanding long-term debt as it matures. Next, I consider the effects of purchases or sales at time 0 across the maturity spectrum, \(\{B_0^{(j)} - B_{t-1}^{(j)}\} \), holding constant future purchases and sales as well as surpluses. I consider the effects of expected future purchases and sales \(\{B_t^{(t+j)} - B_{t-1}^{(t+j)}\} \). Finally, I present general-case formulas.

7.2.1 Maturing debt and a buffer

The government inherits a maturity structure \(\{B_{t-1}^{(j)}\} \) and pays off outstanding long-term debt as it matures. The price level each period is then determined by that period’s surplus and maturing debt only. Bond prices in the present value of nominal debt, reflecting future price levels, adjust completely to news in the present value of future surpluses, and the current price level no longer adjusts. In this way, long-term debt buffer shocks to expected future surpluses.

I start with a simple case: Turn off sales or repurchases, the right-hand side of the flow
condition (7.4). The government pays off outstanding long-term bonds by surpluses \{s_t\} at each date as the bonds mature. Figure 7.2 illustrates the example.

Figure 7.2: Example with outstanding debt, and no subsequent sales or purchases.

Without subsequent sales or repurchases, the bond \(B_{-1}^{(t)} \) outstanding at time 0 becomes the bond \(B_{t-1}^{(t)} \) maturing at time \(t \). The government prints up money, \(M \) in the picture, to redeem the bond, and then soaks up the money with a surplus \(s_t \), neither selling nor redeeming additional debt. The price level at each date \(t \) is then set by debt coming due at that date, and that date’s surplus,

\[
\frac{B_{-1}^{(t)}}{P_t} = \frac{B_{t-1}^{(t)}}{P_t} = s_t.
\]

(7.6)

Each date becomes a version of the one-period model.

There is still a full spectrum of bonds outstanding, \(\{B_{t-1}^{(t+j)}\} \) at each date. Their presence just doesn’t affect the price level until they come due. There is a stream future of future surpluses and deficits \(\{s_{t+j}\} \) at each date too, but they don’t affect the price level at time \(t \) either.

The linkage between the price level and future surpluses seems to have disappeared in this example. What’s happening? The present value condition is still valid,

\[
\sum_{j=0}^{\infty} Q_t^{(t+j)} B_{t-1}^{(t+j)} = \sum_{j=0}^{\infty} \beta^j B_{t-1}^{(t+j)} E_t \left(\frac{1}{P_{t+j}} \right) = E_t \sum_{j=0}^{\infty} \beta^j s_{t+j}.
\]
From (7.6), bad news about a future surplus s_{t+j} raises the future expected price level, lowering $E_t(1/P_{t+j})$ and hence lowering the bond price $Q_{t(t+j)}$. So the real value of nominal debt at time t still equals the present value of future surpluses at time t. But the market value of debt in the numerator does all the adjusting to lower future surpluses, needing no help from the price level in the dominator. Taking innovations of both sides, all of the impact of a shock to future surpluses shows up in today’s bond prices, and none of it shows up in the price level, the exact opposite of the case with one-period debt that is constantly rolled over. A surprise fall in the present value of surpluses still results in an unexpected devaluation of bondholder value. But that devaluation shows up entirely in bond prices today and future inflation, rather than showing up entirely in today’s inflation.

In this way, long-term debt can be a useful buffer against shocks to expectations of future surpluses, allowing their affects to be absorbed by bond prices today and expected future inflation rather than force an adjustment in the price level today.

(Cochrane (2001) finds long-term debt optimally smooths inflation. Lustig, Sleet, and Şevin Yeltekin (2008) give a sophisticated analysis of the term structure, in a model with nominal debt, distorting taxes, sticky prices, and financial frictions. They find that optimal policy “prescribes the almost exclusive use of long term debt” as it allows “the government to allocate [fiscal shocks] efficiently across states and periods.” Angeletos (2002) also argues for what I characterize as the smoothing and doom-loop-prevention characteristics of long-term debt. He shows how buying and selling long-term debt can implement state-contingent payoffs.)

7.2.2 Intertemporal linkages, runs and defaults

With the long-term debt case in front of us, in which future surpluses have no effect on today’s inflation, I return to the mechanics of inflation under one-period debt. Future surpluses affect today’s inflation through a roll-over process. People become concerned about repayment in year 30. They then fear bond sales in year 29 will not yield enough revenue, and thus inflation in year 29. This process works its way back so that people try to sell government debt today on fear the government will not be able to roll it over tomorrow. People investing today fear that other investors will not be there to roll over their debt, rather than necessarily holding precise expectations about far-off events. The mechanism is similar to that of a financial crisis or run. It is inherently unpredictable, and its fiscal roots are hard to see when it breaks out.
It is initially puzzling that short-term debt leads to a present-value formula, and long-term debt leads to a one-period formula. We are used to thinking of long-term assets leading to a long-term present value relation, and short-term assets valued by short-term present value relations.

Short-term assets lead to a long-term present value relationship because short-term bonds are rolled over. That roll-over provides the intertemporal linkage. The present-value relation describes the portfolio of government bonds, or a strategy that invests dynamically in that portfolio, not the value of an individual security. The individual short-term bond issued at time t is repaid at time $t + 1$, but the portfolio then buys additional bonds issued at time $t + 1$.

Figure 7.3 reminds us of the mechanics of short-term debt, in contrast to Figure 7.2. In this case, money printed to redeem bonds each day is soaked up by selling new bonds as well as by primary surpluses.

The present-value relation comes from the flow relation

$$\frac{B_{t-1}^{(t)}}{P_t} = s_t + Q_t^{(t+1)} \frac{B_{t+1}^{(t+1)}}{P_t} = s_t + E_t \left(\beta \frac{B_{t+1}^{(t+1)}}{P_{t+1}} \right). \quad (7.7)$$

The second term on the right represents revenue from new debt sales.

Suppose people become worried that there will be inadequate surpluses s_T far in the future. They then worry that $B_{T-1}^{(T)}/P_T = s_T$ will result in a high price level P_T. Given that fear, they reason that investors won’t want to pay a lot for debt at time t.

\[\begin{align*}
B_{-1}^{(0)} & \xrightarrow{M} B_0^{(1)} & M & B_1^{(2)} & M
\end{align*}\]

\[\begin{align*}
s_0 & \downarrow & s_1 & \downarrow & s_2
\end{align*}\]
CHAPTER 7. LONG-TERM DEBT DYNAMICS

1. \(T - 1 \), so revenue from bond sales at time \(T - 1 \) will be disappointing. With

\[
\frac{B_{T-2}^{(T-1)}}{P_{T-1}} = s_{T-1} + E_{T-1} \left(\frac{B_{T-1}^{(T)}}{P_{T}} \right) = s_{T-1} + E_{T-1} (\beta s_T),
\]

they realize that disappointing revenue from bond sales at \(T - 1 \) (the second term) will lead to a greater price level at time \(T - 1 \). Working backwards, investors are reluctant to hold government bonds at time 0 because they fear that the government will have trouble rolling them over at time 1. People at time 0 try to get rid of the bonds and drive up the time 0 price level.

Short-term financing is fragile. As in a bank run, people do not need direct and precise expectations of far-future surpluses. The fear that leads to inflation need not be about a specific time, just that eventually the government will run into an intractable fall in surpluses, or default explicitly.

The fear need not directly involve future surpluses. If people worry that other people won’t be there to roll over debt tomorrow, for whatever reason, people don’t buy debt today. The government then prints up money to pay off current bonds, but it is unable to sell enough new bonds to soak up that money, so inflation breaks out today. The soothing present value formula and law of iterated expectation hides a great fragility.

The mechanism is really a rollover crisis. As usual, it is easy in the event to miss its fiscal roots. Commenters, not seeing obvious fundamental news, will be tempted to attribute the inflation to sunspots, self-confirming expectations, multiple equilibria, contagion, irrational markets, bubbles, sudden stops, or other chimera from the colorful menagerie of economic synonyms for “I don’t understand it.”

Stopping such events requires a display of fiscal force. The government must undertake a reform or other durable commitment that allows it to soak up money by selling debt.

This run-like nature of inflation is useful when thinking about events. Why does inflation seem to come so suddenly and unexpectedly? Well, for the same reason that financial crises come suddenly and unexpectedly. If people expect a run tomorrow, they run today. If people expect a fiscal inflation tomorrow, it happens today.

Why, conversely, can economies go on for years with economists scratching their heads over large debts and deficits, but no inflation? Well, like short-term debt backed by mortgage-backed securities in 2006, or Greek debt before 2009, it all looks
fine until suddenly it doesn’t. The U.S., Europe, and Japan easily have the means to pay off our debts if we choose to do so. The question is whether our governments will choose to undertake the straightforward tax, pro-growth economic, and entitlement spending reforms that will let them pay down the debt, or whether the U.S. and other advanced economies will really careen to an unnecessary debt crisis sometime in the next few decades.

Government bonds are a bet against extreme events and against extreme political dysfunction. Do not look for a marker such as a precise value of debt-to-GDP ratio or sustained primary deficits that signals that event in the minds of bond investors. Do not look for warnings in long-term interest rates. Interest rates did not forecast the inflation of the 1970s, the disinflation of the 1980s, the debt crises of 2008, and the subsequent euro crisis.

Long-term debt offers a contrary buffer. In the simplest case of a government that just pays off long-term debt, bad news about future surpluses causes inflation on the future date only, and lowers the bond price today. Long-term debt defuses crises in government finance as it does in private finance.

7.2.3 Bond sales and interest rates

Now we consider the effect of sales or repurchases of long-term debt at time 0, $B_0^{(j)} - B_{-1}^{(j)}$, but with no subsequent purchases or sales of debt.

- **If there is no long-term debt outstanding at time 0, $B_{-1}^{(j)} = 0$ for $j > 0$, then**
 - the real revenue raised by selling debt $B_0^{(j)}$ with no change in surplus s_j is independent of the amount of debt sold. Additional debt sales lower bond prices $Q_0^{(j)}$, cause future inflation $E_t (1/P_j)$, but raise no additional revenue and have no effect on the current price level P_0.

- **The government can target long-term bond prices $Q_0^{(j)}$, by offering to freely buy or sell long term debt at fixed prices.**

However,

- **In the presence of outstanding long-term debt, $B_{-1}^{(j)} > 0$, additional debt sales with no change in surplus do raise revenue, and therefore such sales can lower the price level P_0 immediately.**

Debt sales $B_0^{(j)} - B_{-1}^{(j)}$ dilute outstanding claims $B_{-1}^{(j)}$ to time j surpluses.
Since bond sales affect prices, the government can instead target bond prices.

- Monetary policy can target long-term rates as well as short-term rates. Bond purchases can lower long-term interest rates, and they can “stimulate” additional inflation right away.

- A state-contingent debt policy, unexpectedly buying or selling long-term debt $B_{0}^{(j)} - B_{-1}^{(j)}$, can offset surplus shocks and stabilize inflation – though at the cost of future expected inflation.

Now, I modify the long-term debt setup of Section [7.2.1] by allowing the government to buy or sell some extra long term debt $B_{0}^{(j)} - B_{-1}^{(j)}$ at time 0, potentially on top of outstanding debt $B_{-1}^{(j)}$. ($B_{0}^{(j)}$ is the total amount of time-j debt outstanding at the end of period 0, so $B_{0}^{(j)} - B_{-1}^{(j)}$ is the amount of time-j debt sold at time 0.) For now, I still suppose that the government never buys or sells debt at subsequent dates. Figure 7.4 illustrates the example.

\[B_{0}^{(0)} \rightarrow B_{0}^{(2)} \rightarrow B_{0}^{(1)} \leftarrow B_{-1}^{(1)} \leftarrow B_{-1}^{(2)} \]

\[M \quad M \quad M \]

\[s_{0} \quad s_{1} \quad s_{2} \]

Figure 7.4: Long term debt example. The government may buy or sell debt at time 0, but not subsequently.

The $t = 0$ flow condition is now

\[B_{-1}^{(0)} = P_{0}s_{0} + \sum_{j=1}^{\infty} Q_{0}^{(j)} \left(B_{0}^{(j)} - B_{-1}^{(j)} \right) \] (7.8)

We need to find bond prices $Q_{0}^{(j)}$. After the time-0 bond sales, the situation is the
same as with outstanding debt, in that each subsequent period’s surplus pays for that period’s bonds. We have for \(j > 0 \)

\[
\frac{B^{(j)}_0}{P_j} = s_j
\]

(7.9)

and hence bond prices and the revenue from bond sales are

\[
Q^{(j)}_0 = \beta^j E_0 \left(\frac{P_0}{P_j} \right)
\]

(7.10)

\[
\frac{Q^{(j)}_0 B^{(j)}_0}{P_0} = \beta^j E_0 (s_j).
\]

(7.11)

Equation (7.11) tells us that if surpluses are fixed, the total end-of-period real value of date-\(j \) debt is independent of the amount sold.

Substituting bond prices from (7.10) and (7.9) into (7.8),

\[
\frac{B^{(0)}_0}{P_0} = s_0 + \sum_{j=1}^{\infty} \beta^j \left(\frac{B^{(j)}_0 - B^{(j-1)}_0}{B^{(j)}_0} \right) E_0 (s_j).
\]

(7.12)

The right-hand term in (7.12) is the real revenue raised at time 0 by selling additional date-\(j \) debt. We want to find the price-level effects of these additional bond sales \(B^{(j)}_0 - B^{(j-1)}_0 \). You can already see that additional sales matter as a proportion of the total amount of debt \(B^{(j)}_0 \) that is a claim to the surplus \(s_j \).

(Leeper and Leith (2016) interpret the debt terms in (7.12) as a discount factor. However, in this economy with constant real rates, I think a better interpretation is that they represent dilution, the fraction of the future surpluses that are devoted to repaying debts to new vs. initial bondholders.)

No outstanding debt

Start with the case that no long-term debt is outstanding, so \(B^{(j)}_{-1} = 0 \) for \(j > 0 \).

Equation (7.12) reduces to

\[
\frac{B^{(0)}_{-1}}{P_0} = s_0 + \sum_{j=1}^{\infty} \beta^j E_0 (s_j).
\]

(7.13)
(I assume $B_{0}(j) > 0$ for all $j > 0$.) With no long-term debt outstanding, P_{0} is still determined by fiscal shocks alone, independently of any sales $B_{0}(j)$. We then have a natural generalization of the one-period results:

- If there is no long-term debt outstanding, $B_{-1}(j) = 0$ for $j > 0$, then the real revenue raised by selling long-term debt $B_{0}(j)$ with no change in surplus s_{j} is independent of the amount of debt sold. Additional sales lower bond prices $Q_{0}(j)$, raise the yield of long-term bonds, and cause future inflation $E_{t}(1/P_{j})$, but they have no effect on the current price level P_{0}.

We also have in (7.13) again the familiar present value statement of the fiscal theory with one-period debt, even though the government now rolls the one-period debt over to long-maturity debt which it then leaves outstanding.

Long-term debt sales begin to resemble quantitative easing. The nominal debt market appears “segmented” across maturity. Each bond maturity is a claim to a specific surplus, and no other. The government can change, say, the 10-year bond price, with no effect on the 9-year price or the 11-year price. These results depend on the assumption that the government does not change surpluses s_{j} along with a debt sale, and does not use future debt sales to spread inflation across dates. The usual theory of bond markets makes the opposite assumption, that expected surpluses move one for one with debt sales, which is why it usually sees flat demand curves. The usual theory also concerns real, not purely nominal, interest rate variation.

Sales of maturity-j debt reduce maturity-j bond prices $Q_{0}(j)$. Conversely, then, the government can fix long-term bond prices by offering to sell any amount of debt at fixed prices, and the resulting demands will be finite:

- The government can target long-term bond prices $Q_{0}(j)$, by offering to freely buy or sell long-term debt at fixed prices. Equation (7.11) then says how much debt the government will sell.

In quantitative easing, central banks changed bond supplies $B_{0}(j)$ with the hope of changing long-term interest rates. It is a bit puzzling that they did not just announce the interest rate they wanted, and offer to freely buy and sell long-term bonds at that rate, rather than leave us with endless debate whether they moved bond prices at all. They may have worried that huge demands would ensue, or that they secretly had no power to change rates and would have been revealed as wizards of Oz. This observation extends to long-term debt the reassurance that fixed nominal bond prices can result in finite, and limited bond sales. A one percentage point bond price change, implies a one percentage point change in the nominal bond supply, so the quantities
are small and the elasticity large (unit).

However, for this this proposition to hold, people must again expect that surpluses
do not change with bond sales. Communicating unchanged surpluses when people
are used to sober debt management may be just as hard as communicating that
debts will be repaid after multiple inflations and defaults. Putting the bond sales in
the central bank’s hands helps, but inventing new institutions is not instantaneous.
Also, this proposition holds in this flexible-price world, but sticky prices may modify
it.

The Bank of Japan has recently experimented with a long-term bond price target,
offering to freely buy and sell, and the U.S. Federal Reserve targeted bond prices in
the years after WWII, so there is also some historical precedent for the viability of
long-term bond price targets by the central bank.

Outstanding debt

Now suppose there is some long-term debt is outstanding at time 0 as well, $B_{-1}^{(j)} > 0$.
The government may sell additional long-term debt at time 0, $B_0^{(j)} - B_{-1}^{(j)}$, but still
refrains from subsequent sales. We have an additional effect: Long-term bond sales,
with no change in surpluses, can raise revenue, and can affect the price level P_0.
Equation (7.12) offers this novel result:

- **In the presence of outstanding long-term debt, $B_{-1}^{(j)} > 0$, additional debt sales $B_0^{(j)} - B_{-1}^{(j)}$ with no change in surplus raise revenue, and therefore such sales lower the price level P_0 immediately, as well as raising future price levels.**

New long-term debt sales dilute existing long-term debt as a claim to future surpluses.
Selling such debt transfers value from existing bondholders to the new bondholders.
Consequently, the government raises revenue by selling additional debt, and with no
change in surplus, that revenue can lower the time-0 price level.

This debt operation adds a second important element of quantitative easing or tight-
ening. Now a long-term debt purchase at time 0 stimulates inflation at time 0 as well
as lowering long-term interest rates. Such bond purchases or sales can, for example,
implement the price-level paths of Figure 3.1 or Figure 7.1.

In the presence of outstanding long-term debt, the revenue resulting from additional
debt sales can also help to fund a deficit at time 0 and thereby avoiding immediate
inflation. The innovation version of (7.12) is

\[
\frac{B_{-1}^{(0)}}{P_{-1}} \Delta E_0 \left(\frac{P_{-1}}{P_0} \right) = \Delta E_0 s_0 + \sum_{j=1}^{\infty} \beta^j \Delta E_0 \left\{ \frac{B_t^{(t+j)} - B_{t-1}^{(t+j)}}{B_t^{(t+j)}} s_{t+j} \right\}.
\]

A shock \(\Delta E_0 s_0 \) could be balanced by a shock to bond sales without current inflation. Of course, such sales raise future inflation. These operations shift inflation around and potentially smooth it, offering a longer period of smaller inflation, but they do not eliminate inflation. They let the government choose which bonds will be inflated away and when.

- A state-contingent debt policy, unexpectedly buying or selling long-term debt \(B_0^{(j)} - B_{-1}^{(j)} \), can offset surplus shocks and reduce current inflation, at the cost of higher future expected inflation.

7.2.4 Future bond sales

Expected future bond sales, still with no change in surpluses, can affect the current price level and interest rates. The algebra is not enlightening, so I relegate it to Online Appendix Section 25.14. There I pursue a three period example, in which period 0, 1, 2, debt is outstanding at period 0, the government may sell additional period 1, 2 debt at period 0, and the government may also sell additional period 2 debt at period 1 – the expected future sale – all with no change in surplus.

With no long-term debt outstanding at time 0, expected future bond sales do not affect the price level \(P_0 \). There must be debt outstanding for any dilution effects to operate. Expected future sales add to current sales of long-term debt to drive the final price level, and thus the bond price. Thus, with no long-term debt outstanding, a QE sale that is expected to be reversed has no stimulative effect.

With long-term debt outstanding, expected future bond sales can affect the initial price level \(P_0 \) as well. They operate only through an interaction term. An expected future bond sale changes the total amount of debt coming due at a future date, that a current debt sale may dilute.
7.2.5 A general formula

I display a general formula for finding the price level P_t given paths of debt $\{B_{t+j}\}$ and surpluses $\{s_t\}$.

Again, our task is to solve the sequence of present-value relations

$$\frac{B_{t-1}^{(t)}}{P_t} = s_t + \sum_{j=1}^{\infty} \beta^j E_t \left(\frac{1}{P_{t+j}} \right) \left(B_t^{(t+j)} - B_{t-1}^{(t+j)} \right)$$

(7.14)

or flow relations

$$\sum_{j=0}^{\infty} E_t \left(\frac{1}{P_{t+j}} \right) B_{t-1}^{(t+j)} = E_t \sum_{j=0}^{\infty} \beta^j s_{t+j}.$$

(7.15)

for $\{P_t\}$ on one side and all the $\{B\}$ and $\{s\}$ on the other side.

The problem is not mathematically difficult. These are linear equations. Suppressing expectations E_t to simplify notation, we can write (7.15) as

$$\begin{bmatrix} B_0^{(1)} & B_0^{(2)} & B_0^{(3)} & B_0^{(4)} & \ldots \\ B_1^{(1)} & B_1^{(2)} & B_1^{(3)} & B_1^{(4)} & \ldots \\ B_2^{(1)} & B_2^{(2)} & B_2^{(3)} & B_2^{(4)} & \ldots \\ B_3^{(1)} & B_3^{(2)} & B_3^{(3)} & B_3^{(4)} & \ldots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} 1/P_0 \\ 1/P_1 \\ 1/P_2 \\ 1/P_3 \\ \vdots \end{bmatrix} = \begin{bmatrix} 1 & \beta & \beta^2 & \beta^3 & \ldots \\ 1 & \beta \beta^2 & \ldots & \beta \beta^3 & \ldots \\ \beta & \beta \beta^2 & \ldots & \beta \beta^3 & \ldots \\ \beta^2 & \beta^2 \beta^3 & \ldots & \beta^2 \beta^3 & \ldots \\ \beta^3 & \beta^3 \beta^3 & \ldots & \beta^3 \beta^3 & \ldots \end{bmatrix} \begin{bmatrix} s_0 \\ s_1 \\ s_2 \\ s_3 \\ s_4 \end{bmatrix}$$

We could write this equation as

$$Bp = Rs$$

(7.16)

and hence write its solution as

$$p = B^{-1}R.$$

The problem is just that the inverse B matrix doesn’t yield very pretty answers.

My best attempt at a pretty formula, from Cochrane (2001), has again the form of a weighted present value:

$$\frac{B_{t-1}^{(t)}}{P_t} = E_t \sum_{j=0}^{\infty} \beta^j W_t^{(j)} s_{t+j}.$$

(7.17)
The weights are defined recursively. Start by defining the fraction of time \(t + j \) debt sold at time \(t \),

\[
A_t^{(t+j)} = \frac{B_t^{(t+j)} - B_{t-1}^{(t+j)}}{B_{t+j-1}^{(t+j)}}.
\]

Then, the weights are

\[
W_t^{(0)} = 1
\]

\[
W_t^{(1)} = A_t^{(t+1)}
\]

\[
W_t^{(2)} = A_t^{(t+2)} W_t^{(1)} + A_t^{(t+2)}
\]

\[
W_t^{(3)} = A_t^{(t+3)} W_t^{(2)} + A_t^{(t+3)} W_t^{(1)} + A_t^{(t+3)}
\]

\[
W_t^{(j)} = \sum_{k=0}^{j-1} A_t^{(t+j)} W_t^{(k)}.
\]

These formulas likely hide additional interesting insights and special cases.

One can see just from the fact that \(B \) is a matrix and \(p \) is a vector that

- There are many debt policies that correspond to any given price-level path.

We have already seen how either expected sales of one-period debt or initial sales of long-term debt can determine any sequence of expected price levels. Many paths involving dynamic buying and selling of debt can support the same sequence of price levels. This insight leads me to focus on interest rate targets once we have reassurance that there is at least one debt policy that supports the target, and to spend less attention on the effects of given debt operations with constant surpluses. Also, in practice, debt and surpluses generally move together. The exercises of moving \(B \) fixing \(s \) and moving \(s \) fixing \(B \) are useful conceptual exercises, but likely poor guides to history, events, or policy.

7.3 Constraints on policy

The present-value condition at time 0

\[
\sum_{j=0}^{\infty} \beta^j B_{-1}^{(j)} E_0 \left(\frac{1}{P_j} \right) = E_0 \sum_{j=0}^{\infty} \beta^j s_j
\]
acts as a “budget constraint” on the price level sequences that surplus-neutral debt policy – changes in \(\{B_t^{(t+j)}\} \) – or interest rate policy – changes in \(\{Q_t^{(t+j)}\} \) – can accomplish. There is a debt policy and interest-rate policy that achieves any price level path consistent with this formula, and debt policy cannot achieve price-level paths inconsistent with this formula. Debt policy can raise or lower \(P_0 \) in particular, by accepting contrary movements in future price levels.

Fixing surpluses, the end-of-period real value of the debt

\[
\sum_{j=1}^{\infty} \frac{B_0^{(j)} Q_0^{(j)}}{P_0} = \sum_{j=1}^{\infty} \beta^j B_0^{(j)} E_0 \left(\frac{1}{P_j} \right) = E_0 \sum_{j=1}^{\infty} \beta^j s_j
\]

is still a constant, independent of the quantity of debt \(B_0^{(j)} \).

What price-level paths can debt policy – changes in debt without changes in surplus – accomplish? The present-value condition provides this general result directly:

\[
\sum_{j=0}^{\infty} \frac{Q_0^{(j)} B_0^{(j)}}{P_0} = \sum_{j=0}^{\infty} \beta^j B_0^{(j)} E_0 \left(\frac{1}{P_j} \right) = E_0 \sum_{j=0}^{\infty} \beta^j s_j.
\] (7.18)

- Fixing surpluses, there is a debt policy – a set of debt sales or purchases with no change in surpluses – that achieves any path of price levels consistent with (7.18). There is no debt policy which can achieve a price level path inconsistent with (7.18).

The maturity structure of outstanding debt \(\{B_{-1}^{(j)}\} \) acts as a “budget constraint” for the sequence of expected future price levels achievable by debt policy or interest rate policy. This is the only constraint on debt policy: There is a debt policy that can achieve any sequence of expected price levels consistent with (7.18). In fact, there are many.

The attractive part of this statement is what’s missing. It is an existence proposition. It tells you there is a debt policy that achieves a given set of expected price levels, but it does not tell you which debt policy generates the sequence of price levels. In general, there are many: one can achieve a price-level sequence consistent with (7.18) by time 0 sales of long-term debt, by expected future sales of long and short-term debt, or by combinations of those policies. Similarly, it tells you that there is an interest-rate policy that achieves the given set of price levels – a set of interest-rate or bond-price targets \(Q_t^{(t+j)} = \beta^j E_t(P_t/P_{t+j}) \), enforced by passive bond sales at those targets – without specifying just which bonds the government must offer to sell.
To prove existence of a debt policy that achieves a price-level path, we can just give
an example. To show there are multiple debt policies that support a price-level path,
we can show two examples.

We already have two examples of a debt policy that generates any sequence of price
levels for times greater than zero, \(\{ E_0(1/P_j); j > 0 \} \). First, sell long-run debt at the
end of period 0 in the quantity \(B_0^{(j)} \) given by

\[
B_0^{(j)} E_0 \left(\frac{1}{P_j} \right) = E_0 (s_j); j > 0
\] \hspace{1cm} (7.19)

and then don’t buy or sell any more. Second, sell all the outstanding long-term debt
\(B_{-1}^{(j)} \) at time 0, and roll over short-term debt in the right quantity to set \(P_1, P_2, \) etc.
as desired via

\[
\frac{B_{j-1}^{(j)}}{P_j} = E_j \sum_{k=0}^{\infty} \beta^k s_{j+k}.
\] \hspace{1cm} (7.20)

More realistic alternatives exist between these two extremes. But to prove that
multiple debt policies exist to support the price level path, two unrealistic examples
are enough.

Given this sequence of price levels \(P_1, P_2, \) etc., the present-value relation (7.18)
tells us what the price level \(P_0 \) must be. Any debt policy that generates a given
\(\{ E_0(1/P_j); j > 0 \} \) must generate this \(P_0 \). By construction, the example policies sat-
isfy the period-\(j \) flow and present-value constraints for every \(j \), so there are no other
constraints.

This statement and equation (7.18) have a number of useful implications.

If only one-period debt is outstanding at time 0, then \(B_{-1}^{(0)}/P_0 \) is the only term on the
left-hand side. The government can achieve any sequence of price levels \(E_0(1/P_j) \) it
wants in the future. But changes in future price levels have no effect on the time-0
price level \(P_0 \). Only surplus shocks can change the price level \(P_0 \).

If long-term debt \(\{ B_{-1}^{(j)} \} \) is outstanding, then (7.18) describes a binding tradeoff
between future and current price levels. I typically use it to find the implied jump
in \(P_0 \) that results from the government’s choices of \(\{ E_0(1/P_j) \} \), since the latter are
unconstrained.

The interest-rate policy and forward-guidance examples of Figures 3.1 and 7.1 involve
raising \(\{ P_j \} \) and thereby lowering \(P_0 \), and vice versa. We see in (7.18) attractive
7.3. CONSTRAINTS ON POLICY

generalizations of those results. For example, if you want to create a quantitative-
easing policy that raises the price level for some interval of time between 0 and \(T \), \((7.18) \) shows what the options are for lower price levels at other dates.

A QE policy that raises near-term price levels with no decline in future price levels is not possible. Equation \((7.18) \) generalizes [Sims] [2011] “stepping on a rake” characterization, that a lower price level today must result in higher price levels in the future, to say that lower price levels at some dates must be accompanied by higher price levels at some other dates, all weighted by the maturity structure of outstanding debt. Debt policy or interest-rate policy can only shift the price level around.

Debt policy can offset fiscal shocks as well. In response to a negative fiscal shock, debt policy can eliminate current inflation \(\Delta E_0 (1/P_0) = 0 \), at the cost of accepting larger future inflation. It can allow a short swift inflation, or a long slow inflation. Debt policy can affect the timing of fiscal inflation, but cannot eliminate it entirely.

Section \[7.2.1\] showed how long-term debt can be a passive buffer, absorbing surplus shocks into the price of bonds rather than the price level, and thereby postponing the inflationary effect of surplus shocks. Here we see a complementary “active buffer” mechanism as well. By selling long-term debt in response to shocks, the government can additionally smooth inflation forward.

The end-of-period valuation formula

\[
\sum_{j=1}^{\infty} \frac{B_0^{(j)} Q_0^{(j)}}{P_0} = \sum_{j=1}^{\infty} \beta^j B_0^{(j)} E_0 \left(\frac{1}{P_j} \right) = E_0 \sum_{j=1}^{\infty} \beta^j s_j \tag{7.21}
\]

offers additional insights. The real end-of-period value of debt is the same, no matter how much is outstanding at the end of time 0, \(\{B_0^{(j)}\} \). Here we see a simple generalization of the unit elasticity of the one-period debt model in which the value of end-of-period debt is set by the present value of subsequent surpluses, independent of how much debt is outstanding.

In the model with short-term debt it was convenient to view fiscal policy as setting unexpected inflation, and monetary policy as setting expected future inflation. I warned that generalizations would appear, and here we see one. More deeply here, fiscal policy sets the overall amount of inflation and monetary policy sets the timing of inflation.
7.4 Quantitative easing and friends

I construct a more realistic quantitative-easing example with an outstanding geometric maturity structure. The central bank modifies this maturity structure with short-term, overnight, debt sales and purchases, and quantitative-easing long-term bond sales and purchases. The resulting intervention, combining long-term bond purchases, short-term issues, and promises not to repurchase the long-term debt and on the path of interest rates, looks more like quantitative easing.

In quantitative-easing policies, central banks buy long-term debt, issuing short-term debt (interest-paying reserves) in return. They hope to lower long-term interest rates, and to stimulate current aggregate demand and inflation by so doing. Central banks offer stories for this policy firmly rooted in frictions – segmented bond markets, preferred habitats, and ISLM-style Keynesianism, augmented a bit with expectations “anchored” by sufficiently stirring central-banker speeches. Still, let us ask to what extent and under what conditions the simple frictionless model here can offer something like the hoped-for or believed effects of a quantitative easing policy, or to what extent we obtain neutrality results that negate QE and therefore guide us to models with such frictions if we think QE indeed has an effect.

Suppose the central bank wishes to follow the policies graphed in Figure 3.1 or Figure 7.1 – a period of lower price level followed by steady inflation, or a period of higher price level followed by a steady lower inflation. We know the bank can do it, and that there is a debt policy to achieve this price level path. But is there a debt policy that supports these price level paths, that features an immediate (time 0) lengthening or shortening of the maturity structure, an exchange of short-term debt for long-term debt, as in a QE or open market operation? I work out a few examples in which there is such a policy.

7.4.1 QE with a separate Treasury and Fed

Suppose the treasury keeps a geometric maturity structure $B_{t-1}^{(t+j)} = \omega^j B_{t-1}$. Suppose the central bank adjusts this structure by selling or buying long term debt $\tilde{B}_t^{(t+j)}$, and by issuing or borrowing reserves $M_t^{(t+1)}$. Reserves here are just additional one-period debt, with face value $M_t^{(t+1)}$ payable at time $t + 1$. I use the notation \tilde{B}_t and M_t to distinguish the central bank’s modifications of the debt from the treasury’s original issues. Debt in private hands is $B_t^{(t+j)} + \tilde{B}_t^{(t+j)}$ and $B_t^{(t+1)} + \tilde{B}_t^{(t+1)} + M_t^{(t+1)}$.
Quantitative Easing and Friends

Start at a steady state with $\tilde{B}_t = 0$ and $M_t = 0$ and a constant surplus s. From the present value equation (7.18), the steady state obeys

$$\sum_{j=0}^{\infty} \beta^j \omega^j B_t \frac{1}{P_t} = B \frac{1}{P} \frac{1}{1 - \beta \omega} = \frac{1}{1 - \beta s}.$$ (7.22)

Suppose that the treasury keeps this nominal debt quantity unchanged so $B_t = B_{-1} = B$, and all adjustments come from the central bank’s M_t and \tilde{B}_t modifications. Let the central bank engage in long-term bond sales or purchases once at time 0, and then let those bonds roll off,

$$\tilde{B}_t^{(j)} = \tilde{B}_{t-1}^{(j)} = \tilde{B}_0^{(j)}, \; j = 1, 2, 3...$$

This is the central bank’s quantitative-easing intervention. In addition, the central bank maintains a one-period interest-rate target by reserve supply $\{M_t\}$.

At each date the present-value relation reads

$$\frac{M_{t-1}^{(t)}}{P_t} + \sum_{j=t}^{\infty} \beta^{j-t} \omega^{j-t} B + \tilde{B}_0^{(j)} \frac{1}{P_j} = \frac{1}{1 - \beta s}.$$ (7.23)

I drop E_0 in front of $1/P_j$ as we are looking at a perfect-foresight path after a one-time shock. Now, for a desired price-level path and a choice of one of monetary $M_{t-1}^{(t)}$ or QE purchases $\tilde{B}_0^{(j)}$, (7.23) gives us the other one. We have reverse-engineered monetary or QE policies that deliver the desired price-level path.

Figure 7.5 plots two debt policies corresponding to a quantitative easing, monetary policy, or forward guidance stimulus. The “log(P_t)” line plots the price level path. The objective is to stimulate, to raise inflation in the near term. We know we can’t have a permanently higher price level with no change in surpluses, so the near-term price-level rise must be matched by longer-horizon price-level fall.

The “M” and “B” lines together offer a quantitative easing-like debt policy to produce the price-level path. Here the central bank at time 0 buys zero-coupon bonds that
CHAPTER 7. LONG-TERM DEBT DYNAMICS

Figure 7.5: Debt policies to support a stimulus with geometric long-term debt. “All M” gives the path of $M_{t-1}^{(t)}$ with no debt sales $\bar{B}_0^{(j)}$. The “B” line plots debt sales – long term debt sold at time 0, $\bar{B}_0^{(j)}$, as a function of maturity j. The negative value means a debt purchase. “M” gives the path of $M_{t-1}^{(t)}$ with debt sales as given by “B.” The “All M” or the combination of “M” and “B” policies are alternatives that produce the same price level path “log(P_t).” M and B are expressed as percentages of the steady state nominal market value of debt, $B \sum_{j=0}^{\infty} \beta^j \omega^j = B/(1 - \beta \omega)$.

mature at times 4, 5, 6, and 7, and lets the bonds mature. The “B” line graphs the face value of these bonds as a function of their maturity at time zero, $B_0^{(j)}$ as a function of j. The B line is negative, since the policy is a bond purchase. The “M” line displays the monetary policy $M_{t-1}^{(t)}$ at each date t required along with these debt purchases to produce the given price level path, by (7.23).

The central bank purchases long term debt $\{\bar{B}_0^{(j)}\}$ and it issues one-period debt $\{M_{t-1}^{(t)}\}$, as in a quantitative easing operation. The result is a stimulus, a period of higher price level despite no change in short-term interest rates from period 1 to 3. As the long-term debt rolls off, the central bank returns to standard monetary policy implemented with short-term debt M_t alone to target interest rates. This looks a lot like quantitative easing.
In these definitions, the rise in reserves M_t is not equal to the change in value of debt \tilde{B}_t, and debt B_t remains held by the public. You might hope for a model of quantitative easing or open market operations in which the central bank buys bonds and issues reserves of exactly the same value. But the point of open market operations or quantitative easing is to change prices. So a successful model of open market operations and quantitative easing must involve some element of price pressure, not just exchanges at given prices. Any difference between a central bank debt purchase and its overnight debt issue is made up by cash. People don’t want to hold that cash overnight, and the price level adjusts, as usual.

The “All M” line produces the same price-level path by short-term debt $M_{t-1}^{(j)}$ alone, i.e. (7.23) with $\tilde{B}_0^{(j)} = 0$. The central bank can announce an interest rate target and offer interest-bearing reserves as desired, or by reserves-supply target. It is initially surprising that the monetary policy does not follow the price level. But remember $M_t^{(t+1)}$ is short-term debt sold on top of the Treasury’s debt.

We can write (7.23)

$$M_{t-1}^{(j)} + \sum_{j=t}^{\infty} \left(B \omega^j - t + \tilde{B}_0^{(j)} \right) Q_t^{(j)} \frac{1}{P_t} = \frac{1}{1 - \beta \omega} B \tag{7.24}$$

and $\tilde{B}_0^{(j)} = 0$ in this case. Since the value of surpluses is constant in this exercise, changes in the total market value of debt (numerator on left-hand side) at each date must match changes in the desired price level at that date (denominator of the left-hand side). Given the price level path as plotted, and its implication for bond prices, we can choose any combination of M and \tilde{B} in the numerator of (7.24) to produce that price-level path.

That observation also explains the patterns of debt that we see in Figure 7.5. When bond prices rise at time 0, the Treasury’s long-term debt jumps up in value. The rise is large enough that the central bank must reduce the value of nominal debt with a negative M. As the day of disinflation and lower short-term rates get closer, the value of the Treasury’s debt grows larger, requiring more negative M to control the overall value of the numerator. This trend accounts for the decreasing M in periods 1-3. Once the period of lower interest rates and deflation starts, the Treasury’s debt has a constant value, so now the central bank alone changes the value of debt, which must decline to match the declining price level.
7.4.2 Quantitative easing and maturity structure

I present an argument for the irrelevance of maturity structure, and its limits. The QE approach may offer some precommitment. Long term debt matters as a buffer to future shocks. Actual QE may have had smaller effects than we see here.

In these examples, there are lots of ways to produce a given price-level path. The present-value relation states

\[\sum_{j=0}^{\infty} \frac{B^{(t+j)}_{t-1}Q^{(t+j)}_t}{P_t} = E_t \sum_{j=0}^{\infty} \beta^j s_{t+j}. \]

Fixing surpluses, the only restriction on debt to produce a price-level path \(\{P_t\} \) is that the total nominal market value of debt at each date move proportionally to the desired price level at that date. The maturity structure at each date is irrelevant. The last section provides an example: We achieve the same price-level path with a policy that modifies only short-term debt, and a different QE-like policy involving long-term debt. The maturity structure \(B^{(j)}_{t-1} \) outstanding at time 0 matters, but only to determine the price-level jump \(P_0 \).

Maturity structure can still matter for other reasons. A maturity structure rearrangement alters the timing of debt policy actions. It therefore may help the government to offer some signaling or pre-commitment, features outside this model. Contrast the first example, in which the government sells long-term bonds at time 0, with the short-term debt example, in which the government adjusts the price level at each time \(t \) with debt at \(t - 1 \). Both examples produce the same price-level path. But the short-term debt policy requires expectations of future actions. The long-term debt policy offers a “fire and forget” policy, taken at time 0 and then left alone.

Lack of commitment is a central problem with monetary policy, since so much of the effects of monetary policy depend on expectations of future actions. The central bank may say in the depths of a recession that it will keep interest rates low after the recession is over, lower than it will prefer to do ex-post once the recession is over. But will it carry out the promise ex-post? And will people believe such promises?

It’s not quite so easy, of course. The QE policies require that the government not to undo the policy later, either by selling off the long-term debt or by later short-term debt policies. But it is plausibly easier to commit not to undo an action taken today, than it is to commit to take an action tomorrow that may seem ex-post undesirable. Inaction bias is a form of precommitment.
In these examples QE operations still require forward guidance of the interest rate target, and for the central bank to state that it will let QE bonds mature, or reinvest them, rather than re-sell them if the central bank changes its mind. Both promises were prominent features of QE operations, which the model makes sense of.

Also, we are only considering the impulse-response function question, how expectations of the future adapt to a single shock. A longer maturity structure changes the response of the price level to future shocks. Resilience to future shocks is a key question for maturity structure.

With this theory in mind, we might wonder why actual quantitative easing in the U.S., Europe, and Japan seemed so ineffective. It is hard to see any lasting effect of QE on either bond prices or inflation. (See Cochrane (2018) and Greenlaw et al. (2018).) Central banks argue, naturally, that without their courageous action things would have been worse, but that is as always a weak argument.

We started with a strong QE: $B_0^{(j)} = P_j s_j$ means that a one percent decrease in bond supply gives a one percent decrease in future price level and a one percentage point decrease in bond price. But subsequent analysis gives plenty of reasons for a weaker QE. Though the Federal Reserve in its quantitative easing operations announced its plan to let long-term debt roll off the balance sheet naturally, and that it would keep interest rates low for a long time, people may have believed that QE would be reversed, that the Treasury would take a contrary action, or that central banks would raise interest rates at the customary rate ex-post. Surely if conditions improve, the hawks at the Fed will press for selling off the bond portfolio before it matures and raising rates. They did so argue, in fact, and it’s hard to tell whether all the forward-guidance promises in the early 2010s delayed the 2016-2019 interest rate liftoff at all. In hindsight, the Fed seems to think it raised rates too soon in response to declining unemployment.

Most of all, “debt policy” as analyzed in this chapter requires people to expect that changes in debt quantities do not correspond to any changes in surpluses. As I have emphasized, while changing debt with fixed surpluses and vice versa are useful conceptual exercises for understanding fiscal theory mechanics, it is dangerous to apply these partial derivatives to events. Perhaps people thought QE-induced variation in debt would, like Treasury-induced variation in debt, correspond to changes in surpluses. Greenwood et al. (2015) show that Fed purchases have a larger effect on bond prices than the same bonds issued by the Treasury, suggesting that Fed operations do lead to somewhat different expectations of future surpluses, but not necessarily zero. In addition, with sticky prices, changes in nominal interest rates move real
interest rates, so even if surplus expectations were unaffected by QE, the present values of those surpluses are affected. The whole point of QE, for the Fed, was to move real interest rates. A serious fiscal-theory analysis of QE needs to integrate both features. Finally, the Treasury was selling even more long term debt than the Fed was buying. At a minimum, its contemporary reactions to events need to be included to evaluate history.

7.4.3 Summary

In sum, fiscal theory offers a framework that can begin to describe quantitative easing and open-market operations, in the same breath as it can describe interest-rate targets and forward guidance about those targets, even in this completely frictionless environment, without price stickiness, monetary frictions, liquidity premiums for special assets, segmented bond markets, or other financial frictions. It offers insights: Promises not to quickly re-sell debt are important, combining quantitative easing with forward guidance is important, long-term nominal bond-price targets can work, and, as always it is vital to clarify the fiscal foundations of central bank actions, i.e. how surpluses react directly or endogenously.

The mechanism for quantitative easing here has nothing to do with the usual analysis. The usual motivation is that via segmented markets for real debt, central bank bond-buying lowers long-term interest rates even though future surpluses rise one for one with debt sales. Markets are just unsegmented enough, however, that those lower long-term treasury rates leak to corporate and household borrowing rates and stimulate investment, and thereby output. The mechanism here is entirely a wealth effect of government debt. And the different mechanism makes important predictions. Here, a stimulative QE requires outstanding long-term debt, for example. Last, of course, without some real/nominal interaction there is no reason to want inflation in the first place.

7.5 A look at the maturity structure

The U.S. maturity structure is quite short, with half of all debt rolled over in 3 years or less. The maturity structure has changed a good deal over time. WWII debt was considerably longer.
Figure 7.6 presents the maturity structure of U.S. Treasury debt in 2014, on a zero-coupon basis. (Data from Hall, Payne, and Sargent (2018).) The U.S. sells long-term bonds, which combine a large principal and many coupons. I break these up here to their individual components. This is the quantity $B_t(t+j)/\sum_{j=1}^{\infty} B_t(t+j)$. These are face values, not market values $Q_t(t+j)B_t(t+j)$.

The maturity structure is relatively short, with 22% of the debt due in a year or less, and half the debt due, i.e. rolled over, every three years. Reality is even shorter, as this data includes debt held by the Federal Reserve, but does not count the Fed’s liabilities, cash and reserves. Ideally, one should consolidate the Fed and Treasury balance sheets, subtracting Fed holdings and adding cash and reserves as debt held by the public. The bump on the right-side of the graph are principal payments to 30-year debt issued in the several prior years of large deficits. The graph suggests that a geometric maturity structure $B_t(t+j) = \omega^j B_t$ is not a terrible first approximation or point of linearization.

Figure 7.6: Face value of U.S. treasury debt by maturity, on a zero coupon basis, $B_t(t+j)$ in 2014.

Figure 7.7 presents the cumulative maturity structure, the fraction of debt with
maturity less than or equal to \(k \) for each \(k \), i.e. \(\sum_{j=1}^{k} B_{t}^{(t+j)} / \sum_{j=1}^{\infty} B_{t}^{(t+j)} \). This graph is a little smoother and thus easier to compare across dates. The maturity structure has varied quite a bit over time. At the end of WWII, the maturity structure was relatively long, as the U.S. financed the massive WWII debt with a lot of relatively long-term bonds. By 1955, the maturity structure had shortened, as the WWII debt got younger, to something like its current state. By 1975, as the WWII debt was largely paid off or inflated away, the maturity structure was very short. 50% of the debt was one-year or less maturity, and over 70% of three-year or less maturity. This short maturity structure is an important fact to consider in order to understand the dynamics of inflation in the 1970s. The maturity structure lengthened again however, with the beginning of structural deficits. By 1985, it was longer, again about where it is at the end of the sample in 2018.

Figure 7.7: Cumulative maturity structure of U.S. Treasury debt. Each line is the fraction of debt coming due with the given or lesser maturity, as a fraction of the total, \(\sum_{j=1}^{k} B_{t}^{(t+j)} / \sum_{j=1}^{\infty} B_{t}^{(t+j)} \) for each \(k \).

Just how bad an assumption is the convenient one-period debt model? Is it really important to carry around long-term debt? These graphs suggest that if one considers a “period” to be a few years, then one-period debt is not a terrible approximation. If a period is a day, then we really have to model long-term debt.
In absolute terms, the maturity structure of U.S. debt is quite short. The duration of the assets – present value of surpluses – is very long. The U.S. has a classic maturity mismatch, rolling over short-term debt with a very long-term asset. On a scale of a few years, then, one might well worry that U.S. inflation dynamics can display the run-like instability associated with short-term debt.

Put another way, the U.S. does not have much of the “buffers” associated with long-term debt. Expected inflation can’t wipe out debt that comes due before the inflation comes. So, for example, even a 3-year hyperinflation would leave about half of the debt, which rolls over, unscathed. For inflation to devalue one-year debt, inflation must come within one year. Only a very sharp unexpected inflation would do much to lower the value of U.S. debt.
Part II

Assets and rules
Governments face a range of options for setting up fiscal and monetary affairs, the regime, rules, institutions, or habits of fiscal and monetary policy.

I start by generalizing the theory to include default. Then I think about the choice of the forms of government debt. Should a government issue nominal debt, indexed debt, or foreign currency debt? Should it follow a gold standard? Should it issue long-term debt or roll over short-term debt?

Next, what sorts of rules, institutions or traditions should a government follow? I think about inflation targets, fiscal rules, a “spread target” suggestion to improve on nominal interest rate targets, and finally a “CPI standard” that aims to keep some of the gold standard’s advantages without its disadvantages.

Finally I think about alternative monetary arrangements, in which money and nominal debt are not a generic claim to primary surpluses but instead are backed by specific pots of assets.
Chapter 8

Assets and choices

Societies can choose a wide range of assets and institutions with which to run their fiscal and monetary affairs. In this chapter, I examine some possibilities, how the fiscal theory generalizes to include these possibilities, and some thoughts on which choices might be better than others in different circumstances.

Fiscal and monetary policy face many trade-offs. A government facing a fiscal shock may choose inflation, explicit partial default, partial defaults on different classes of debt held by different investors, distorting taxes, capital levies, or spending cuts. Each of these options has welfare and political costs. Each decision is also dynamic, as actions taken this time influence expectations of what will happen next time. Expectations can matter as much or more than current actions. Expectations of rarely-observed, or “off-equilibrium” behavior matter. Precommitment, time-consistency, reputation, moral hazard, and asymmetric information are central considerations in a monetary and fiscal regime. For this reason, fiscal and monetary policy is deeply mediated by laws, constraints, rules, and institutions, not a string of decisions.

A theme recurs throughout this part: how can the government commit to surpluses that underlie a stable price level, and communicate that commitment? The expectation on the right-hand side of the valuation equation is otherwise nebulous and potentially volatile. Most governments would like to precommit and communicate that they will manage surpluses to defend a stable price level or inflation rate – no more, and no less. That stock prices are now much more volatile than inflation suggests that our governments have been able to make such commitments, at least implicitly. Examining and improving the institutions that allow such commitment is an important task.
The government might like a more sophisticated commitment, that it will manage surpluses to defend a stable price level, but with escape clauses in war, deep recession, and so forth when it might like to implement a state-contingent default, or redistribution from savers to borrowers, via inflation.

These chapters pull together ideas from classic monetary theory, corporate finance, and dynamic public finance in a fiscal theory context. Being verbal, this analysis is obviously speculative and an invitation to follow up with formal modeling.

8.1 Indexed debt, foreign debt

I extend fiscal theory to include real debt – indexed debt, debt issued in foreign currency. Such debt acts as debt, where nominal debt acts as equity. If the government is to avoid explicit default, it must raise surpluses sufficient to pay off real debt, and the price level is not determined by its valuation equation – passive fiscal policy.

Governments often issue indexed debt or debt issued in another country’s currency. Such debt acts as debt, where nominal debt acts as equity.

Indexed debt pays P_t rather than 1 when it comes due at time t. If the price level rises from 100 to 110, an indexed bond pays 110. Denote the quantity of one-period indexed debt issued at time $t-1$ and coming due at time t by b_{t-1}. Suppose the government finances itself entirely with indexed debt. The government must then pay $b_{t-1}P_t$ dollars at time t. It collects $P_t s_t$ dollars from surpluses. Likewise, each bond sold at the end of t promises P_{t+1} dollars at time $t + 1$. With a constant real rate, risk-neutral pricing, and discount factor β, the flow condition becomes

$$b_{t-1}P_t = P_t s_t + E_t \left[\beta \frac{P_t}{P_{t+1}} \times P_{t+1} \right] b_t$$

$$b_{t-1} = s_t + \beta b_t,$$

so iterating forward we obtain

$$b_{t-1} = \sum_{j=0}^{\infty} \beta^j s_{t+j}.$$ \hspace{1cm} (8.1)

The price level has disappeared, so long as real surpluses s_t are independent of the price level. The latter is an important possibility – fiscal rules that feed from nominal
8.1. **INDEXED DEBT, FOREIGN DEBT**

... to real quantities $s(P)$ can lead to a determinate price level even with real debt. But in this model, something else must determine the price level. The fiscal theory is not an always and everywhere theory. For the fiscal theory to determine a price level, we need an equation with something nominal and something real in it.

(The timing is a bit unusual, to preserve the analogy with the B_{t-1} notation for nominal debt. The quantity b_{t-1} is the real value of debt at the beginning of time t. It is known at time $t-1$, and hence the subscript is not inaccurate. Its value at time $t-1$ is βb_{t-1}.)

If the government is to avoid default, equation (8.1) now describes a restriction on surpluses, essentially that surpluses must rise to fully pay off past deficits, with interest; $a(\rho) = 0$ in our earlier moving-average notation. With time-varying interest rates, government surpluses must also respond to real interest rate changes, or $a_s(\rho) + a_g(\rho) = a_r(\rho)$ which may unexpectedly raise its cost of funding the debt.

Cash still exists in this indexed-debt story, and indexed debt is settled with cash. Write the nominal equilibrium condition

$$ P_t b_{t-1} = P_t s_t + P_t \beta b_t. $$

The government prints up cash to pay P_t to each maturing indexed bond. It soaks up those dollars with primary surpluses, and by selling indexed debt. A higher price level raises the amount of money soaked up by selling debt, but it raises the amount of money that must be paid to maturing bondholders. If surpluses are not sufficient, one might view the outcome as instant hyperinflation.

Which kind of debt *comes due* is the key question. If real debt is outstanding, but the government issues nominal debt at the end of time t, the government raises the present value of surpluses from the nominal debt sale, and the price level is still undetermined. If nominal debt is outstanding and the government issues real debt,

$$ \frac{B_{t-1}}{P_t} = s_t + \beta b_t = s_t + \beta \sum_{j=0}^{\infty} \beta^j s_{t+1+j} $$

then the price level is determined.

Foreign-currency debt is similar. Suppose the government dollarizes, or proclaims a permanent foreign exchange peg. This case can be handled with the usual valuation equation, denoting everything in foreign currency:

$$ \frac{B_{t-1}}{P^*_t} = E_t \sum_{j=0}^{\infty} \beta^j s_{t+j}. $$

(8.2)
Now, P^*_t represents the price of goods in terms of the foreign currency, and s_t is the surplus measured in the same units. But P^* is set in the foreign country. Equation (8.2) is now again a constraint on surpluses which the government must run in order to avoid default. The government must now also adapt surpluses to changes in the real exchange rate. If price of domestic goods quoted in the foreign currency goes down, our country must raise surpluses.

The same logic applies to a country in an idealized currency union. Greece uses euros, and agrees to pay its debts in euros. Therefore, Equation (8.2) requires that Greece either run surpluses to pay its debts, or default. The European price level should not adjust in response to Greece’s debts.

The situation is the same as the private debt of a company, household, or state and local government denominated in dollars. If the dollar price level falls, these must raise additional real resources to avoid default. They issue debts they cannot repay, they default. The nominal debt B_t in the fiscal theory is only direct liabilities of the government, and the surpluses s_t only its revenues.

Many real world arrangements occupy a muddy middle space. The separation of public from private debts is not so clean, both domestically and internationally. Bailouts to people, companies, and state and local governments link public and private debts, federal and state and local debts. So apparently private or local debts can cause inflation. The IMF exists to provide international bailouts in currency crises, traditionally also helping countries to precommit to surpluses. “Do whatever it takes” in Europe must eventually mean a fiscal transfer, printing euros to bail out indebted countries. Large ECB purchases of sovereign bonds are a step in that direction. The design and imperfect operation of the Eurozone is all about this delicate question. “Contingent liabilities,” explicit and implicit bailout guarantees, may be the harbingers of inflation.

8.2 Debt and equity

Real debt – indexed or foreign – acts like corporate debt. The government must raise the required surpluses or default. Nominal debt acts like corporate equity. Its value can adjust to respond to surplus news. Default is costly ex-post, which helps to enforce a commitment to pay debts rather than inflate.

Summarizing the last section, indexed debt and foreign debt are *debt*. Like corporate
debt, the government must either adjust surpluses to pay back the debt, or default. If the price level or exchange rate declines, the government must adjust surpluses or default, just as a corporate issuer must pay more real resources to bondholders or default in these circumstances.

Government-issued nominal debt functions like corporate equity. Its price – the price level – can adjust, just as corporate equity prices can adjust when there is a decline in expected dividends. As a corporation does not have to adjust its dividends upward to match an increase in its stock price, neither does a government that has issued nominal debt have to adjust surpluses to follow changes in the price level.

Real debt is a precommitment device. The legal structure of real debt, and the actual and reputational cost of default, helps the government to commit to arrange surpluses to repay debt, even if doing so involves unpleasant taxation or spending cuts. Fully-indexed debt however commits the government to repay the debt for any price level, not just its target price level. Foreign currency debt, as in a peg or dollarization forces the government to import inflation or deflation and validate it with surpluses or deficits.

Default also has costs. If it did not, real debt would not offer any precommitment. Those costs are regretted ex-post. Greece is a good example: By joining the euro, so its bonds were supposed to default if Greece could not repay them, Greece precommitted against default. That precommitment allowed Greece to borrow a lot of euros at low interest rates, and to avoid the regular bouts of inflation and devaluation that it had suffered previously. Alas, when Greece finally did run into a rollover crisis, it discovered just how large those costs might be.

There is a wide variety of institutions on a spectrum between pure debt and pure equity, involving different degrees of precommitment to change surpluses ex-post. None is as inviolable as the “budget constraint.” And no wise government, mindful of the costs of inflation, lets surpluses be a purely exogenous process, letting the price level go where it may.

8.3 Currency pegs and gold standard

Exchange rate pegs and the gold standard are really fiscal commitments. Reserves don’t matter to first order, as no government has reserves to back all of its nominal debt. If people demand foreign currency or gold, the government must eventually raise taxes, cut spending, or promise future taxes to obtain or borrow reserves. The
peg says “We promise to manage surpluses to pay off the debt at this price level, no more and also no less.” The peg makes a nominal debt (equity) act like real debt (debt). Unlike full dollarization, a peg gives the country the right to devalue without the costs of explicit default. But the country pays the price for that lower precommitment. Likewise a gold standard offers the option of temporary suspension of convertibility and permanent devaluation or revaluation. Both gold and foreign exchange rate pegs suffer though, that the relative price of goods and gold, or foreign currency, may vary.

In an exchange rate peg or under the gold standard, the country issues its own currency, and borrows in its own currency. But the government promises to freely exchange its currency for foreign currency or for gold, at a set value.

These arrangements suggest that money gains its value from the promised conversion rate. But exchange rate pegs and gold standard are in fact fiscal commitments. The value of the currency comes ultimately from that fiscal commitment. They are instances of, not alternatives to, fiscal theory.

Analysis of the gold standard and exchange rate pegs often focuses on whether the government has enough gold or foreign currency reserves to stand behind its conversion promise. Enough has never always been enough, though, and gold promises and foreign exchange rate pegs have seen “speculative attacks” and devaluations. (And only once, that I know of, Switzerland 2015, an attack leading to an undesired rise in currency value, and challenging a country’s ability to run fiscal deficits!) A currency board takes the reserves logic to its limit: it insists that all domestic currency must be backed 100\% by foreign currency assets. 100\% gold reserves against currency issue are a similar and common idea.

But reserves are, to first order, irrelevant. It is the ability to get reserves when needed that counts. No country, even those on currency boards, has ever backed all its debts with foreign bonds or gold. If a country could do so, it wouldn’t have needed to borrow in the first place. When those debts come due, if the government cannot raise surpluses to pay them off or roll them over, the government must print unbacked money or default. When the government runs into fiscal trouble, abandoning the gold standard or currency board and seizing its reserves will always be tempting. Argentina’s currency board fell apart this way in a time of fiscal stress. (Edwards (2002) includes a good short history.) Moreover, if people see that grab coming, they will run immediately, as with an expected default, leading to inflation and devaluation.
Conversely, if the government has ample ability to tax or borrow reserves as needed, credibly promising future taxes or spending cuts, then it can maintain convertibility with few reserves. Just tax or borrow the reserves when needed. \cite{Sims1999} provides a nice historical example:

"From 1890 to 1894 in the U.S., gold reserves shrank rapidly. U.S. paper currency supposedly backed by gold was being presented at the Treasury and gold was being requested in return. Grover Cleveland, then the president, repeatedly issued bonds for the purpose of buying gold to replenish reserves. This strategy eventually succeeded."

Cleveland was able to persuade bond buyers that the U.S. would have future fiscal surpluses.

The U.S. final abandonment of gold promises in 1971 followed a similar outflow of gold to foreign central banks, presenting dollars for gold. The Nixon administration was unable or unwilling to take the fiscal steps necessary to buy or borrow gold.

Reserves may matter to second order, if financial frictions or other constraints make it difficult for the government to tax or borrow needed gold or foreign exchange quickly. But they only matter for that short window. Likewise, solvent banks do not need lots of reserves because they can always borrow reserves or issue equity if needed. Insolvent banks run out of reserves quickly.

The government debt valuation still holds,

\[\frac{B_{t-1}}{P_t} = G_t + E_t \sum_{j=0}^{\infty} \beta^j s_{t+j}. \]

Here, let \(P_t \) be the price of goods in terms of gold or foreign currency, and let \(G_t \) denote the value of gold or foreign currency reserves. Here we see explicitly how reserves per se are irrelevant. They are one source of fiscal resources to back the issue of currency and nominal debt, but they enter in parallel with the usually much larger present value of surpluses.

The foreign exchange peg or gold standard are thus primarily \textit{fiscal commitments} and a \textit{communication device}. If \(P_t \) is going to be constant, then the government must adjust surpluses \(s_t \) on the right side as needed, not too little but not too much either. The peg says, "We will manage our taxes and spending so that we can always pay back our debts in foreign currency or gold at this fixed exchange rate, no more and no less." When that promise is credible, it removes the uncertainty of a present
value of surpluses and stabilizes the price level. In the language of Section 4.2, the
gold standard is a precommitment to an active surplus process with \(a(\rho) = 0 \). In the
language of Section 5.4 it is a \(v \) vs. \(v^* \) fiscal policy that precommits to repay debts
but not to respond to unanticipated inflation or deflation of the currency relative to
gold. Free conversion helps to enforce and make visible this commitment.

This sort of fiscal commitment and communication is valuable. If the government
left the price level to the vagaries of investor’s expectations about long-run surpluses,
inflation could be as volatile as stock prices, as we analyzed in Section 4.2. But if
governments offer and communicate a commitment, that surpluses will be adjusted
to defend a given price level, and debt will be paid off at that price level; no lower
but no higher either, the price level is stabilized. Such an arrangement produces
what looks like a passive fiscal policy at a price level, but is in fact an active fiscal
policy arranged to determine that price level.

Conversely, abandoning the gold standard or revaluing an exchange rate peg offers a
fiscal commitment that can create inflation or deflation as desired. If the government
says, rather than $20 per ounce, the dollar will now be worth $32 per ounce, that
means that it will only run enough surpluses to pay off existing debt at $32 per
ounce, not $20. A devaluation is a way of credibly announcing a partial default
via inflation, and its exact amount. Like all capital levies, of course, the trick is in
convincing markets that sinning once does not lead to a life of crime; that this is a
once-and-never-again devaluation not the beginning of a bad habit.

The gold standard or pegs thus offer a fiscal commitment with escape clauses. The
government can enjoy in normal times the advantages of a fiscal precommitment,
giving a steady price level and anchored long-term expectations, while leaving open
the option of state-contingent default achieved through devaluation in emergencies,
or returning to convertibility at lower parity after a war. The government also pays
the price of an interest rate premium when people think it likely to exercise its option
to default.

A large disadvantage of the gold standard is that the relative price of goods and gold
varies. Pegging the currency in terms of gold, there was still unpleasant inflation
and deflation in the price of goods and services. Under exchange rate pegs, the real
exchange rate may vary, i.e. domestic goods and services may become more or less
expensive than the foreign goods. The foreign country may also inflate or deflate,
forcing a domestic inflation or deflation.

Define the price level now not in terms of gold, but as usual in terms of a price index
for all goods and services. If the price of gold and currency relative to goods and
8.3. CURRENCY PEGS AND GOLD STANDARD

services rises, if there is a deflation, the government must raise the present value
of surpluses (in terms of goods and services) to accommodate that deflation. If the
relative price of domestic goods relative to foreign declines— if demand for a country’s
commodity exports declines, for example—a government on an exchange rate peg
must pay off debt with surpluses that are more valuable in terms of domestic goods
and services.

An ironclad gold standard then is an active policy with respect to deviations of the
value of currency from gold, but it is a passive policy with respect to deviations of
the price level from the joint value of currency and gold. A foreign currency peg is
active with respect to deviation of the value of domestic from foreign currency, but
passive with respect to deviations of the price level from that joint value.

That is pretty much what happened to the gold standard in the 1930s. The price
level fell, i.e. the value of gold rose, and the value of the currency rose with it. If the
government was going to maintain the gold standard, it would have to run a fiscal
austerity program to pay a windfall to bondholders.

Countries either devalued or abandoned the gold standard. The result, and to us
the key mechanism, is that they thereby abandoned a fiscal commitment to repay
nominal debt at the now more valuable gold price. This step occasioned lawsuits
in the U.S., that went to the Supreme Court. The court said, in essence, yes, the
U.S. is defaulting on gold clauses; yes, this means the U.S. does not have to raise
taxes to pay bondholders in gold, and yes, the U.S. has the constitutional right to
default (Kroszner (2003), Edwards (2018)). The U.S. also abrogated gold clauses in
private contracts, to avoid a transfer from borrowers to lenders, which the court also
affirmed as constitutional. Jacobson, Leeper, and Preston (2019) describe the 1933
revaluation in this way, as a device to allow a defined fiscal devaluation when the
gold standard demanded austerity.

This episode is also important for forming the expectations underlying today’s for-
mally unbacked regime. If a 1933 deflation were to have broken out in 2008, standard
passive-fiscal analysis, explicit in standard new-Keynesian models, and implicit in
ISLM stories, states the government will dramatically raise taxes and cut spending
to pay an unexpected real windfall to bondholders, just as it would have had to do
under the gold standard. Obviously, expectations were strong that the government
would respond exactly as it did: ignore the “temporary” price level drop, and run a
large fiscal expansion under the guise of stimulus until the emergency ended. The
memory of 1933 certainly did not hurt to form that expectation. And consequently,
the deflation did not happen.
304

CHAPTER 8. ASSETS AND CHOICES

The shackles of the gold standard can be useful when loosened. When a country de-
values, it makes clear the *fiscal* loosening that attempts at unbacked fiscal expansion
during the recent zero-bound era were not able to communicate, and the size of that
expansion. Tying yourself to a mast has the advantage that it is clear when you tie
yourself to a shorter mast.

This analysis is simplistic. Actual analysis of the gold standard should take into
account its many frictions – the costs of gold shipment; the way gold coins often
traded above their metallic content value *(Sargent and Velde (2003))*; the limits
on convertibility, trade frictions, financial frictions, multiple goods, price stickiness
and so forth. Gold standard governments also ran interest rate policies, and raised
interest rates to attract gold flows. That combination is initially puzzling. Doesn’t
the promise to convert gold to money describe monetary policy completely? It merits
analysis in the same way we added interest rate targets to the fiscal theory.

A foreign exchange peg begs the question, what determines the value of the foreign
currency? Not everyone can peg. The obvious answer is, regular FTPL in the
primary country, and we have to investigate fiscal commitments that the primary
country or the institutions of the currency union make to stabilize its inflation.

The parallel question arises regarding gold: What determines the value of gold in the
first place? We often tell a story that the value of gold is determined by industrial uses
or jewelry independent of monetary policy. But this story is clearly false. Almost all
gold was used for money and is now stored underground. Based only on industrial
use, its value would be much lower.

The gold standard was built on economies that used gold coins. Gold coins are
best analyzed, in my view, as a case of \(MV = Py \), rather than a case in which
money has value because it carries its own backing as an independently valuable
commodity. Gold is in sharply limited supply, with few substitutes especially for
large-denomination coins, but few uses other than money. A transactions and precau-
tionary demand for gold, in a world in which gold coins were widely traded gave
gold its value. A gold standard piggybacks on *that* value to generate a value of
currency. Think of currency then as inside money.

The gold standard has many faults. I do not advocate its return, despite its endur-
ing popularity as a way to run a transparent rules-oriented monetary policy that
forswears inflation, at least inflation of the currency relative to gold.

Most of all, a gold or commodity standard requires an economic force that brings the
price level we *do* want to control into line with the commodity that can be pegged.
In the gold standard era, gold and gold coins continued to circulate. If the price of gold and currency relative to other goods rose, i.e. if there was deflation, then people had more money than they needed. In their effort to spend it on a wide variety of assets, goods, and services, the price level would return. The $MV = Py$ of gold coins made gold a complement to all goods and services. But if the price of gold relative to other goods rises now, this mechanism to bring their relative prices back in line is absent. Gold is just one tiny commodity. Tying down its nominal price will stabilize the overall price level about as well as if the New York Fed operated an ice-cream store on Maiden Lane and decreed that a scoop shall always be a dollar. Well, yes, a network of general equilibrium relationships ties that price to the CPI. But not very tightly. One may predict that ice cream on Maiden Lane will be 1 but the overall CPI will wander around largely unaffected by the peg.

Conventional analysis predicts that if we move back to a gold standard, the CPI would inherit the current volatility of gold prices. But if the Treasury returned to pegging the price of gold, it is instead possible that it, well, pegs the price of gold, but the CPI wanders around unaffected. The relative price of gold to CPI would lose its current high frequency volatility, but the CPI would wander off. Inflation was volatile enough under the classic gold standard. It might be even more volatile were the standard to return today.

Foreign exchange rate pegs suffer some of the same disadvantage. The economic force that pulls real exchange rates back, purchasing power parity, is weak. At a minimum, that’s why countries peg to their trading partners, and pegs are more attractive for small open economies.

There is evidence that as I hypothesized for gold, the real relative price of foreign and domestic goods depends on the regime. Mussa (1986) pointed out a fact that’s pretty clear just looking out the window: Real exchange rates are much more stable at high frequency under a peg than under floating rates. The real relative price of a loaf of bread in Windsor, Ontario vs. Detroit is more volatile under floating exchange rates than when the U.S. and Canadian dollar are pegged. This stabilization of real exchange rates is to my mind an argument in favor of exchange rate pegs and common currencies for exchange rate control. But it undermines the argument for an exchange rate peg for an individual country’s price level control. The relative price of domestic to foreign currency may stabilize, but the price level may wander away.

The gold standard features a gold price target and a gold price peg, an offer to freely trade currency for gold. The peg opens the possibility of a run, which can...
usefully discipline the government ex ante and be costly ex post. Likewise a foreign
exchange goal can be a target or a peg, offering free exchange. I examine the run-like
character of both regimes in Section 8.6 below. Note now we are not done with the
gold standard.

8.4 Central bank independence

Central bank independence is a cherished attribute of inflation control that seems
to support monetary theories of inflation. Independence consists in part politi-
cal independence of central bankers, designed to given them the authority to resist
political pressure for inflation, such as to goose the economy ahead of elections.

But a separate and independent central bank is also and perhaps primarily a fiscal
commitment, just as the gold standard is a fiscal commitment. An independent
central bank is set up to make it difficult for the government to monetize debt
and finance deficits by printing money. The bank has a separate balance sheet,
and only the central bank may issue currency and bank reserves. If the central
bank can refuse to purchase more than a certain amount of government debt, then
the government must pay back its debt with surpluses, or credibly promise future
surpluses to roll over the debt with new borrowing, or default. These are all fiscal
operations and precommitments. They have nothing to do with the central bank’s
other role, determining the composition of government debt between liquid (money)
and illiquid (bonds) flavors of debt. Thus an independent central bank is a very useful
device in a fiscal theory of the price level, even without any monetary frictions.

Independent central banks and rules against deficit finance have been important
parts of inflation control for decades if not centuries. Restoring central bank inde-
pendence has been an important element of fiscal-monetary stabilizations from the
Fed-Treasury accord of 1951, to inflation-targeting episodes, to the end of inflations
and hyperinflations (Section 14.2) and stabilizations of inflation-targeting regimes
(Section 9.1).

8.5 The corporate finance of government debt

I import concepts from corporate finance of equity vs. debt to think about when
governments should issue real (indexed or foreign currency) debt, when they should
have their own currencies and nominal debt, and when they might choose structures in between, like an exchange rate peg or gold standard which can be revalued without formal default.

Governments must issue more debt-like instruments when they cannot precommit by other means not to inflate or devalue, and when their institutions and government finances are more opaque. To issue equity, governments must offer something like control rights. In modern economies, the fact that inflation damages private contracts so much means that voters are mad about inflation, which helps to explain that stable democracies have the most successful currencies.

Should a government choose real – indexed, foreign currency – or nominal debt? Or should it construct contracts and institutions that are somewhat in between, such as the gold standard or price level target, which are like debt with a less costly default option? Corporations also fund themselves with a combination of debt, equity, and intermediate securities such as convertible debt, so we can import some of that analysis.

Governments typically issue a combination of real and nominal debt, including currency. With such a combination, the valuation equation becomes

\[b_{t-1} + \frac{B_{t-1}}{P_t} = E_t \sum_{j=0}^{\infty} \beta^j s_{t+j}. \]

(8.3)

The price level is determined by the ability to devalue the nominal debt only.

A corporation that finances itself by more debt than equity increases the volatility of its stock returns. Likewise, the more real debt a government issues, other things constant (they never are), the more volatile its inflation will be. Conversely, more nominal debt, like corporate equity, makes formal default less likely and inflation more likely.

Putting the question in public finance terms, the government faces shocks to its finances and trade-offs between three ways of addressing those shocks: formal default \((b, B)\) default via inflation \((B/P)\) and raising taxes or cutting spending \((s)\). Formal default is costly. Unexpected inflation and deflation is also destructive with sticky prices, nominal rigidities or unpleasant effects of surprise redistributions between lenders to borrowers. Distorting taxes are costly, and governments may regard “austerity” spending cuts as costly too. Each step invites moral hazard in a dynamic context. \cite{LucasStokey1983} argue for state-contingent partial defaults, to minimize tax distortions. \cite{SchmittGroheUribe2007} add price stickiness and argue
for more tax variation and less inflation variation. But clearly the optimum is an interior combination depending on these three costs.

However, given that fiscal stress is met by unexpected inflation, the more fiscal bang for the inflation buck, the better. That consideration suggest that the government issue more nominal debt and less real debt. A country such as Norway that has substantial sovereign wealth funds may wish to continue to issue extra nominal debt and buy additional real assets. On this basis, Sims (2001) argued against Mexico adopting the dollar or issuing lots of dollar-denominated debt. Full dollarization means fiscal problems must be met with distorting taxes, spending cuts, or costly explicit default. A floating Peso and Peso-denominated debt allows for subtle devaluation via inflation. More Peso debt allows Mexico to adapt to adverse fiscal shocks with less inflation, and lower still costs of explicit default or devaluation, just like a corporation that finances itself with equity rather than debt.

The same argument lies behind a fiscal-theoretic interpretation of the widespread view that countries like Greece should not be on the euro. Currency devaluations implement state-contingent defaults, perhaps less painfully than explicit default or austerity policies to raise surpluses. (The conventional arguments for local currencies involve central banks’ ability to artfully offset negative shocks with inflationary stimulus, an entirely different story.)

On the other hand, corporate finance also teaches us that debt helps to solve moral hazard, asymmetric information, and time-consistency or precommitment problems which also apply to governments. An entrepreneur may not put in the required effort; may be tempted to divert some of the cashflow due to equity investors; or may not be able to credibly report what the cashflow is. Debt leaves the risk and incentive in the entrepreneur’s hands, helping to resolve the moral hazard problem. So, despite the risk-sharing and default-cost reductions of equity financing, the theory of corporate finance predicts and recommends widespread use of debt. Equity is rare and often expensive. It only works when the issuers can certify performance, through accounting and other monitoring, and by offering shareholders control rights.

The same ideas can apply to countries. Sims’ argument, like that for the Drachma, does not consider the possibility of mismanagement, the difficulty of fiscal probity, and the need for fiscal precommitment evident in decades of deficits, crises, devaluations, and inflation. It neglects that surpluses are a choice, not just an exogenous shock. The properties of the surplus process \{s_t\} are not independent of the real vs. nominal financing choice.

Nominal debt works better when government accounts are more trustworthy and
transparent. Nominal debt works better when the country has other means to commit
to an s-shaped surplus process. Just like a firm, a country may find its financing costs
are lower when it issues real debt than nominal debt. This is exactly what happened
to Greece. That Greece blew the opportunity does not deny its presence.

Equity requires some mechanism to guarantee dividend payments in place of the
explicit promises, backed by law or collateral, offered by debt. For corporate equity,
control rights are that mechanism. If the managers don’t pay dividends or seem to be
running the company badly, the shareholders can vote them out and get new manage-
ment. What are the equivalent of control rights for government equity, i.e. nominal
debt? Most naturally in the modern world, voters. If nominal government debt gets
inflated away, a whole class of voters is really mad. Inflation is even more powerful
than explicit default in this way. If the government defaults, only bondholders lose,
and a democracy with a universal franchise may not care. Or the bondholders may
be foreigners. If the government inflates, every private contract is affected. The gov-
ernment’s debt devaluation triggers a widespread private devaluation, and everyone
on the losing end of that devaluation suffers. The chaos of inflation hurts everyone.

Why do we use government debt as our numeraire, thus exposing private contracts
to the risks of government finances? Well, the fact that we do, and we vote, means
that there is a very large group of voters who don’t like inflation.

The standard ideas of corporate finance thus suggest that countries with precommit-
ment problems, poor fiscal institutions, untrustworthy government accounts, who
tend to issue and then default or inflate, should issue real or foreign currency debt.
To borrow at all they may even have to offer collateral or other terms making ex-
plicit default additionally painful. Countries that have alternative precommitment
mechanisms, and stable democracies with a widespread class of people who prefer
less inflation, are able to issue government equity, i.e. have their own currencies and
borrow in it.

Confirming this view, dollarization, currency pegs, indexed and foreign debt are
common in the developing and undemocratic world. Nominal debt and local cur-
currencies here often come with stringent capital controls, financial repression, wage
and price controls, and frequent inflation. Successful non-inflating currencies and
large amounts of domestic currency debt seem to be the province of stable democ-
racies.

There is an additional danger in reading (8.3), holding surpluses fixed, and inferring
the properties of inflation under different financing choices. Consider smaller and
smaller amounts of nominal debt, coupled with a surplus process that steadily pays
back more debt, approaching \(a(\rho) = 0 \), so that inflation volatility remains the same. We approach a fiscal theory of the price level based on an infinitesimal amount of nominal debt, a fiscal theory version of the cashless limit last-dollar-bill puzzle. Yes, when nominal debt is down to the $10 in pennies in your sock drawer plus $20 trillion of indexed debt, and the expected surpluses decline by $1, there should be a 10% inflation. But the economic force for that inflation is clearly weak. You might just leave the pennies in your sock drawer, though their fiscal backing is 10% lower. The fiscal theory as presented so far depends on a wealth effect of nominal government bonds. That’s reasonable when nominal government bonds are a large fraction of wealth, but clearly the economic force of that mechanism declines as the size of the backed nominal debt declines. If we wish to think about a backing theory of money for very small amounts of nominal debt, an explicit redemption promise may be more important to force the value adjustment.

This discussion only touches the enormous literature on sovereign debt, and also long historical experience. The sovereign debt literature studies the extent to which reputation and other punishments can induce repayment, since governments are sovereign and difficult to sue, and sovereign debt typically does not offer collateral. This theory is useful to import to think about inflation in place of default. In the history of government finance, it took centuries for governments to borrow, and somewhat credibly promise repayment. The parallel development of paper currencies that did not quickly inflate took hundreds of years as well. Government debt is full of institutions that help to precommit to repayment and limit ex-post inflation and default. The bank of England and Parliamentary approval for borrowing, taxation, and expenditures were seventeenth century institutions that limited the sovereign’s authority to default. That limit allowed the U.K. government to borrow more ex-ante. The French absolute monarch by being more powerful could not precommit to repay, so he could not borrow as much, a deficiency long cited in France losing the wars of the 18th century and eventually the French revolution itself (Sargent and Velde 1995). Alexander Hamilton is justly famous for the insight that a democracy needs widespread ownership of government debt, by people with the political power to force repayment. The British empire was not above using force to get other sovereigns to repay, in “gunboat diplomacy.” Today, sovereign debt includes many institutions beyond reputation to try to force repayment, including third-country adjudication and the right of creditors to seize international assets, with only partial success, given the repeated foreign debt crises of the last several decades.
8.6 Long vs. short debt, promises and runs

I explore the choice between long-term and short-term debt. Long-term debt can offer a buffer against surplus shocks and real interest rate shocks. Long-term debt opens the door to policies that resemble quantitative easing. Long-term debt insulates the government, and inflation, from the run-like dynamics of short-term debt.

Should governments choose long-term or short-term financing? This choice has varied a great deal over time. The Victorian United Kingdom was largely financed by perpetuities, reflecting centuries in which perpetual debt was a common instrument. The current U.S. government has, as above, a quite short maturity structure, rolling over about half the debt every two years. Governments in fiscal trouble find themselves pushed to shorter and shorter maturities by higher and higher interest rates for longer-term debt. Markets think default or inflation more likely than the government wishes, and attempts to buy lots of insurance in the form of long-term debt just raise suspicions further.

From Section 3.5.1 and Section 7.2.1, we saw how long-term debt can offer a buffer against surplus shocks. The linearization (3.22) let us see the point compactly,

$$\sum_{j=0}^{\infty} \omega^j \Delta E_{t+1} \pi_{t+1+j} = -\sum_{j=0}^{\infty} \rho^j \Delta E_{t+1} s_{t+1+j} + \sum_{j=1}^{\infty} (\rho^j - \omega^j) \Delta E_{t+1} r_{t+j}. \quad (8.4)$$

If $\omega = 0$, short-term debt, then the entire revision in the present value of surpluses must be met by immediate inflation $\Delta E_{t+1} \pi_{t+1+j}$. The longer the maturity of debt ω, the more the revision in present value of surpluses can be spread to future inflation, though at the cost of more total inflation. In many views of price stickiness, including the new-Keynesian Phillips curve I studied above, a protracted small inflation is better than a short large inflation.

Long-term debt empowers monetary policy. Monetary policy makes the choice of current vs. future inflation, but with short-term debt choosing future inflation does nothing to lower current inflation. Long-term debt allows monetary policy to reduce current inflation when it spreads inflation forward. In Section 7.4 we also saw how the presence of long-term debt allows the central bank to rearrange the path of inflation by buying and selling long-term debt, in operations that look like quantitative easing. The more long-term debt is outstanding, the more the central bank has this power.
On a flow basis, long-term debt leaves the budget, and hence the price level, less exposed to real interest rate variability. If the government borrows short term, then a rise in the interest rate raises real interest costs in the budget and necessitates tax increases or spending decreases, or results in inflation. If the government borrows long term, then the increase in interest cost only affects the government slowly, as new debt is issued to finance new surpluses, or as long-term debt is slowly rolled over.

The tradeoff is familiar to any homeowner choosing between a fixed and floating-rate mortgage. If interest rates rise, the floating-rate borrower has to pay more immediately. The fixed-rate borrower pays the same amount no matter what happens to interest rates.

We can see this effect in identity (8.4) as well. An increase in real interest rate is an increase in the expected real bond return on the right hand side. The larger ω, the smaller the weights $\rho^j - \omega^j$. In the limit $\omega = \rho$ here, almost a perpetuity, a real rate increase has no inflationary effect. The rate rise still makes unexpected future deficits more costly to finance, but it means the government can pay off current debt with the currently planned surpluses, ignoring interest costs.

In this case, the linearization is a bit misleading. It values discount rate effects at the average surplus, and surplus effects at the average discount rate, ignoring the interaction term. But the obvious proposition, that the government is insulated from real rate shocks when the maturity of debt matches the maturity of surpluses, requires that interaction term. We can see a more accurate version of the effect with the continuous-time present value relation

$$\int_{\tau=0}^{\infty} \frac{Q_t(t+\tau) B_t(t+\tau)}{P_t} d\tau = E_t \int_{\tau=0}^{\infty} e^{-\int_{j=0}^{\tau} r_t + j d\tau} s_{t+\tau} d\tau.$$

Using the expectations hypothesis for bond prices,

$$Q_t(t+\tau) = E_t \left(e^{-\int_{j=0}^{\tau} r_t + j d\tau} \frac{P_t}{P_{t+\tau}} \right),$$

we have

$$\int_{j=0}^{\infty} E_t e^{-\int_{j=0}^{\tau} r_t + j d\tau} \frac{B_t(t+\tau)}{P_{t+\tau}} d\tau = E_t \int_{\tau=0}^{\infty} e^{-\int_{j=0}^{\tau} r_t + j d\tau} s_{t+\tau} d\tau.$$

Now, if today’s debt maturity $B_t(t+\tau) E_t (1/P_{t+\tau})$ matches the path of expected real surpluses $s_{t+\tau}$, then real interest rate changes cancel from both sides. This is the sim-
ple case of no expected future debt sales or purchases (7.6) from Section 7.2.1. Otherwise, the mismatch between the maturity of debt and the usually much longer maturity of the surplus determines how the price level reacts to real interest rates.

By stamping out the interest cost channel, long-term debt empowers conventional monetary policy. Suppose that the central bank raises interest rates, hoping to lower inflation. On top of other mechanisms to produce this result, a fiscal tightening – higher current and future surpluses – helps, and a fiscal loosening hurts. With sticky prices higher nominal rates mean higher real rates. With short-term debt, the higher real rates immediately produce higher interest costs, an inflationary force. We can see this effect in the discount rate term of the present value formula. With long-term debt, higher real rates can have no effect at all on interest costs.

Section 7.2.2 emphasized how the intertemporal linkages of the present value relation come from rolling over short-term debt. Short-term investors hold government debt because they believe other short-term investors will buy their debt. A roll-over crisis or run on nominal debt causes a sudden inflation or devaluation. Long-term debt cuts off this crisis or run-like mechanism entirely.

All of these considerations point strongly to long-term debt for its buffering properties. But again they take the surplus process as given. Corporate finance points us to short-term debt for its incentive properties, as it points us to real debt (debt) over nominal debt (equity) for its incentives. Making things worse ex-post gives an incentive for, and pre-commitment to, more careful behavior ex-ante. Since the inflationary or budget effects of shocks are more immediate and larger under short-term debt, governments that issue short-term debt will, the theory goes, be more attentive to long-run fiscal policies, to maintaining their ability to borrow, and will be ex-post forced to take painful fiscal adjustments sooner. In return, markets will offer better rates to governments who bind themselves via short-term debt in this way, unless the governments have other commitment devices. Diamond and Rajan (2012) argue that run-prone short-term debt disciplines bankers. Run-prone short-term debt can discipline governments as well.

Long-term debt offers insurance, which leads to moral hazard. The more long-term debt the easier it is for the government to put off a fiscal reckoning, letting it fall on long-term bond prices rather than current budgets, refinancing, or interest costs. In turn that expectation leads to higher interest rates for long-term debt, so that a sober government feels it pays too much. Greenwood et al. (2015), for example, advocate that the U.S. treasury borrow short to save interest costs. Like not buying insurance, if the event does not happen the premium is a waste. If markets look at
who is buying insurance and charge higher rates still, insurance is doubly expensive. And if the absence of insurance prods one to more careful behavior, insurance can be additionally expensive.

The conversion promise of a gold standard and foreign exchange peg, rather than the more elastic guidepost of a gold price or foreign exchange target to guide monetary policy, adds an additional invitation to run, and thereby another precommitment to sober fiscal policy. Offering that anyone can bring in a dollar and receive gold, or everyone can bring in a Peso and get a dollar, immediately, invites an instantaneous run when, as always, governments do not back currency 100% with reserves, or when they have additional debt or a temptation to grab the reserves. In turn, a government that offers such a right ties itself even more strongly to the mast to always maintain plenty of fiscal space.

I only offer benefits and costs on both sides, to frame the long-vs-short discussion, not to answer it. As I judge the maturity issue, a U.S., or global advanced-country sovereign-debt rollover crisis would be immense economic catastrophe. A small insurance premium seems worth it. Long-term nominal interest rates of 1.5%, slightly negative in real terms as I write, seem a very low premium for the insurance they provide. However, if 0% short rates continue for 30 years, the interest costs of short-term debt will turn out to have been lower. And I would have offered the same advice 10 years ago, and the short rates have been lower that whole time. It’s a judgement, and the probability of the event and risk aversion must matter. I note however, that terrorist attacks, housing price collapses, and a global pandemic were all thought to have lower probability ex-ante than the do now.

Whether the additional precommitment of run-inviting short term debt or pegs is useful is also debatable. I judge not, but that too is a judgement. Just how strong is the precommitment value of a deliberately run-prone financial structure? Just how strong is the fiscal precommitment value of an inflation-run or rollover-run prone government debt structure? Are there not other precommitment devices that are not so dangerous when they fail? Sam Peltzman (1975) famously argued for spikes on the dashboard to encourage safer driving. But we chose seatbelts and other incentives instead.

In this context, Diamond and Rajan (2012) is a controversial analysis of bank capital structure. In fact equity, holders can and do monitor and punish the actions of management for banks as they do for all other corporations, and short-term debt holders by and large do no fundamental analysis of cash-flows. Short-term debt is an “information-insensitive” security designed so that its holders do not do any
monitoring, in the contrary Gorton and Metrick (2012) view of banking, until all of a sudden they wake up and run.

The history of the gold standard and foreign exchange pegs is replete with crisis after crisis, as the history of banking funded by immediate-service run-prone deposits is one of crisis after crisis, in which the disciplinary forces failed. As equity-financed banking has a good point, despite the need for equity rather than short-term debt holders to monitor management, so government finance based on long-term nominal debt and targets rather than pegs, monitored by grumpy voters, may have a point as well.

The end of the Bretton Woods era in 1971 offers a good example of a peg precommitment gone awry. (Shlaes (2019) tells the history well, as do Bordo (2018) and Bordo and Levy (2020) with more economic analysis.) In the Bretton Woods era, foreign central banks could demand gold for dollars, though people and financial institutions could not do so. Exchange rates were fixed, and capital markets were not open as they are today. A persistent trade deficit could not easily result in devaluation, or be financed by a capital account surplus, foreigners using dollars to buy U.S. stocks, bonds, or even government debt. Trade deficits had to be financed by paper dollars, and gold if foreign central banks did not want those dollars. Bretton Woods was simply not designed for a world with large trade deficits and surpluses and capital flows. Instead, the persistent trade deficit, fueled by persistent fiscal deficits, resulted in foreign central banks accumulating dollars. The banks grew wary of dollars and started demanding gold. The resulting run on the dollar precipitated the U.S. abandoning Bretton Woods and the gold standard entirely, allowing the dollar to devalue, and inaugurating the inflation of the 1970s. It was a classic sovereign debt crisis, and yes it has happened here too.

The combined fiscal deficits of the Vietnam war and Great Society, and the era’s trade deficits were large by the standards of the time. By today’s standards both deficits look minuscule. Why did those deficits cause a great crisis and inflation, while today’s immense trade and fiscal deficits are resulting in nothing at all, so far? Well, the institutional framework matters. The combination of a gold promise to foreign central banks, fixed exchange rates, and largely closed capital markets shut off today’s adjustment mechanisms.

In one sense our mechanisms are much better. Our government can now borrow immense amounts of money, and our economy can run immense trade deficits, financed in capital markets not by gold flows. In another sense, our mechanisms expose us to a much bigger and more violent reckoning if and when the reckoning comes.
1971 is a much under-studied event. Just why did the Johnson and Nixon adminis-
trations not borrow, and buy gold, as Grover Cleveland did, to stem the gold flows?
Sure, they were already borrowing a lot, but it’s hard to argue that the U.S. was
unable to borrow more, and pledge higher future surpluses in so doing. Or were
the restrictions in international capital markets tight enough to turn off this sav-
ing mechanism? This discussion needs a lot more modeling and confrontation with
history and data.

The literature on sovereign debt, default, runs, and crises is large, as is the literature
on corporate finance. Fiscal theory brings one small insight to the table, that inflation
or currency devaluation enters the picture, and in a slightly more direct way. The
size of these literatures should not dissuade you – most of these important questions
remain unsettled, and integrating corporate finance, sovereign debt, and monetary
economics with fiscal theory offers many open opportunities.

Summarizing our lessons for the gold standard, it justly retains an allure. The
government freely exchanges money for gold, thereby transparently and mechanically
determining the value of money, without the need for central banker clairvoyance.
As we have seen, it is at heart a fiscal commitment, which is both good and bad. It
rules out the option to devalue via inflation, which helps the government to borrow
ex ante and resist inflationary temptation ex post. But at times inflation is a better
option than sharp tax increases, or spending cuts. It also signals that surpluses will
only be large enough to pay off debt at the promised gold peg, thus precommitting
against deflation of currency relative to gold.

But in its failures, more frequent than usually remembered, it leads to explicit default,
chaotic devaluation, speculative attack when devaluation looms, or a suspension of
convertibility with uncertain outcomes. A gold standard, as opposed to a gold price
target, introduces run-like commitments. These further bind the government to fiscal
probity to avoid runs, but make crises worse when runs do break out. And, most of
all, the gold standard allows inflation and deflation when the price of gold and cur-
rency rise or fall together relative to goods and services. The gold standard imposes
a passive fiscal commitment to tighten fiscal policy in the event of such deflation, or
to loosen fiscal policy to validate such inflation. Such volatility is more likely now
that gold is disconnected from the financial system and hence other prices.
8.7 Default

Fiscal theory can incorporate default. An unexpected partial default substitutes for inflation in adapting to a fiscal shock. A pre-announced partial default is an interesting way for governments to create moderate fiscal inflation. It is analogous to a gold parity devaluation, or devaluing currency peg.

Fiscal theory can easily incorporate default. We do not need to assume that governments always print money to devalue debt via inflation rather than default.

Suppose that the government at date \(t \) writes down its debt: It says, for each dollar of promised debt, we pay only \(D_t < 1 \) dollars. Now, we have

\[
\frac{B_{t-1}D_t}{P_t} = E_t \sum_{j=0}^{\infty} \beta^j s_{t+j}. \tag{8.5}
\]

The price level is still determined. This unexpected partial default allows the government to adapt to a negative surplus shock with less or no inflation. A greater haircut, lower \(D_t \), implies a smaller rise in \(P_t \) in response to a negative surplus shock. Ex-post a partial default is a pure substitute for inflation.

The fiscal theory does not require that governments always inflate rather than default.

With short-term debt, and no change in surpluses, a pure expected partial default has no effect on the price level, but it can influence future inflation. It works analogously to bond issues with no change in surpluses. With the possibility of future partial default, the flow condition remains

\[
\frac{B_{t-1}}{P_t} = s_t + \frac{Q_t}{P_t} = s_t + E_t \sum_{j=1}^{\infty} \beta^j s_{t+j}. \tag{8.6}
\]

However, the bond price becomes

\[
Q_t = \frac{1}{1 + \dot{r}_t} = E_t \left(\frac{P_t}{P_{t+1}} D_{t+1} \right). \tag{8.7}
\]

If at time \(t \) people expect a partial default \(D_{t+1} < 1 \), with no change in surpluses, this change has no effect on the current price level \(P_t \), by (8.6). An expected partial default just lowers bond prices, and thus lowers the revenue the government raises
from a given amount of nominal bonds. With the same surpluses, the government will sell more bonds to generate the same revenue.

The effect of a partial default on the future price level P_{t+1} and expected inflation $E_t(P_t/P_{t+1})$ depends on monetary policy – how much nominal debt B_t the government sells, or the interest rate target i_t. If the government allows the interest rate to rise, fully reflecting the default risk probability, then neither P_t nor P_{t+1} is affected by the announced partial default. The government just sells more nominal debt B_t. Selling 2 bonds when people expect a 50% haircut is exactly the same as selling 1 bond when people expect no haircut, except nominal bond prices fall by half. It generates the same revenue, and results in the same future issue of $1 to pay off the debt. However, if the government sticks to the nominal interest rate target, requiring that i_t and Q_t are unchanged, then the expected future price level P_{t+1} declines.

But an announced partial default with no surplus news is a strange and unrealistic intervention. When we think of a default, we think that the government is announcing that it is not going to raise surpluses to repay debt. Thus, a more realistic story pairs an expected future default with bad news about future surpluses.

So, suppose at time t, the government announces a 10% haircut for $t+1$, $D_{t+1} = 0.90$. People infer that surpluses from $t+1$ onwards $E_t \sum_{j=1}^{\infty} \beta^j s_{t+j}$ will be 10% lower, not, as in our last example, that surpluses are unchanged. This expected future default then raises the price level today by 10%.

• *Expected future default can trigger current inflation in the fiscal theory.*

Monetary policy determines the expected future price level. If the government allows the interest rate to rise, to follow the increased default premium, then by (8.7), the expected price level at $t+1$ is also 10% higher.

Really the point of the announced default is a commitment and communication device that the government really will lower future surpluses, and will not, as customary, repay debts without causing inflation. A pre-announced partial default, along with monetary policy that allows nominal interest rates to rise, is entirely analogous to a 10% devaluation of a government under a gold standard or foreign exchange peg. Those are likewise good devices to communicate a fiscal commitment and produce 10% cumulative inflation.

I offer this intervention is a positive suggestion. Many governments at the zero bound and with inflation stubbornly below central bank’s announced 2% targets have wanted to inflate, but to inflate only a little and in a controlled fashion. They
turned to fiscal stimulus with little effect. Evidently, bond markets did not lightly abandon government’s hard-won reputations for repaying debt. “Unbacked fiscal expansion” is easy to say, but hard to do, and hard to do in a limited way. A pre-announced partial default should raise nominal interest rates and raise current and future inflation, by reducing fiscal backing, and by a clear and precisely calibrated amount.
Chapter 9

Better rules

Leaving surpluses to expectations or implicit commitments is clearly not the best institutional structure for setting a monetary standard. If only the government could commit and communicate that the present value of surpluses shall be this much, neither more nor less, then it could produce a more stable price level, and it could quickly produce inflation or deflation when it wishes to do so. Historically, committing and communicating against inflationary finance was the main problem. In the great depression and the 2010s, committing and communicating that surpluses will not rise, to combat deflation, became more pressing questions.

This kind of commitment is the basic idea of the gold standard. The present value of future surpluses shall be just enough to pay back the current debt at the gold peg, neither less, causing inflation, nor more, causing deflation of paper currency relative to gold. Alas, the gold standard suffers the above list of problems that make it unsuitable for the modern world. I examine here alternative institutions that may analogously communicate and commit the government to a present value of surpluses.

The fiscal theory of monetary policy combines fiscal policy which determines surpluses, and monetary policy which implicitly sets the path of nominal debt. We have grown accustomed to monetary policy that consists of nominal interest rate targets, which vary up and down according to the wisdom of central bankers. I investigate alternative monetary ways of managing nominal debt.
9.1 Inflation targets

Inflation targets have been remarkably successful. I interpret the inflation target as a fiscal commitment. The target commits the legislature and treasury to pay off debt at the targeted inflation rate, and to adjust fiscal policy as needed, as much as it commits and empowers the central bank. This interpretation explains why the adoption of inflation targets led to nearly instant disinflation, and that central banks have not been tested to exercise the toughness that conventional analysis of inflation targets says is they must. An inflation target is an instance of fiscal theory because the legislature commits to pay off debt at the target inflation rate, not any actual inflation rate.

Inflation targets have been remarkably successful. Figures 9.1, 9.2, 9.3 show inflation around the introduction of inflation targets in New Zealand, Canada, and Sweden. On the announcement of the targets, inflation fell to the targets pretty much instantly, and stayed there, with no large recession, no period of high interest rates or other monetary stringency. Just how were these miracles achieved?

Figure 9.1: Inflation surrounding the introduction of a target in New Zealand. Source: McDermott and Williams (2018)

As another example, Berg and Jonung (1999) discuss Sweden’s price level target of
9.1. INFLATION TARGETS

Figure 9.2: Inflation surrounding Canada’s introduction of an inflation target. Source: Nakamura (2018), Murray (2018)

Figure 9.3: Inflation target in Sweden. The vertical line marks January 1993, when the inflation target was announced.

the 1930s. It called for systematic interest rate increases if the price level increased and vice versa, answering the question of what action the central bank was expected to take. Like the modern experience, the central bank never had to do it, and actually pegged the exchange rate against the pound during the period.

Inflation targets consist of more than just promises by central banks. Central banks make announcements and promises all the time, and people regard such statements with skepticism well-seasoned by experience. Inflation targets are an agreement
between central bank, treasury, and government. The conventional story of their
effect revolves around central banks: The inflation target agreement requires and
empowers the central bank to focus only on inflation, gives it independence and
often free rein in achieving that goal, and central bankers are evaluated by their
performance in achieving the inflation target.

But these stories are wanting. Did previous central banks just lack the guts to do
what’s right, in the face of political pressure to inflate? Did they wander away from
their clear institutional missions and need reining in? Moreover, just what does the
central bank do to produce low inflation after the inflation target is announced?
One would have thought, and pretty much everyone did think, that the point of an
inflation-targeting agreement is to insulate the bank from political pressure during a
long period of monetary stringency. To fight inflation, the central bank would have
to produce high real interest rates and a severe recession such as accompanied the
U.S. disinflation during the early 1980s. And the central bank would have to repeat
such unwelcome medicine regularly. For example, that is the diagnosis repeated by
[McDermott and Williams (2018)], the source of my New Zealand graph, of the 1970s
and 1980s.

But nothing of the sort occurred. Inflation simply fell like a stone on the announce-
ment of the target, and the central banks were never tested in their resolve to raise
interest rates, cause recessions, or otherwise squeeze out inflation. Well, “expecta-
tions became anchored,” by the target, people say, but just why? The long history
of inflation certainly did not lack for pleasant speeches from politicians and cen-
tral bankers promising future toughness on inflation. Why were these speeches so
effective now? Why anchors and not sails?

The first graph provides a hint with the annotation “GST [goods and services tax]
introduced” and “GST increased.” Each of these inflation targets emerged as a part
of a package of reforms including fiscal reforms, spending reforms, financial market
liberalizations, and pro-growth regulatory reforms. Even [McDermott and Williams
(2018)], though focusing on central bank actions, writes “A key driver of high inflation
in New Zealand over this period [before the introduction of the inflation target] was
government spending, accommodated by generally loose monetary policy.” It follows
that a key driver of non-inflation afterwards was a reversal of these policies, not just
a tough central bank.

I therefore read the inflation target as a bilateral commitment. It includes a commit-
ment by the legislature and treasury to 2% (or whatever the target is) inflation. They
commit to run fiscal and economic affairs to pay off debt at 2% inflation, no more,
and no less. People expect the legislature and treasury to back debt at the price level target, but not to respond to changes in the real value of debt due to changes in the price level away from the target. Above target inflation will lead to fiscal stringency. Fiscal authorities will ignore below target inflation or deflation.

In this way, the inflation target functions as the gold standard or exchange rate peg to commit the legislature and treasury to pay off debt at a gold or foreign currency value, no more and no less. But the inflation target targets the CPI directly, not the price of gold or exchange rate, and it includes neither the advantages nor disadvantages of the run-inducing promise to actually trade dollars for gold or foreign currency.

In this way, one can read the success of inflation targets as an instance of the Sargent (1982b) analysis of the ends of inflations. As Sargent showed, when the long-run fiscal problem is solved, credibly, inflation drops on its own almost immediately. There is no period of monetary stringency, no high real interest rates moderating aggregate demand, no recession. Interest rates fall, money supply may rise, and deficits may rise as well, with the government able to borrow.

This sort of fiscal commitment is not written in official inflation targeting agreements. But it surely seems like a reasonable expectation of what the commitments to fiscal reform in an inflation-targeting legislation mean. The inflation-ending reforms in Sargent (1982b) likewise did not have, or need, written commitments. And that reading of expectations explains what made inflation targets work so suddenly and miraculously.

More deeply, the whole point of this book is that central bank control of interest rates or money supplies is not enough to control inflation. Every regime needs fiscal-monetary coordination. An inflation target cannot just be an instruction to the central bank to pay more attention to inflation while setting an interest rate target. In my interpretation, the bilateral agreement in an inflation target fills in the fiscal coordination simply, as a promise to pay debts at the inflation target. Still, that commitment is implicit. As we think about the design of monetary institutions, some formalization of these fiscal rules would make a lot of sense.

9.1.1 A simple model of an inflation target

I construct a model of an inflation target. As in the linearized model, the surplus responds to pay off higher debts at the price level target,

\[s_t = s_{0,t} + \alpha V_t^* \]
where V_t^* accumulates deficits at the price level target P_t^*. Together with an interest rate target $Q_t = \beta E_t(P_t^*/P_{t+1}^*)$, the price level is determined and equal to $P_t = P_t^*$.

Here, the government also commits to pay back any debt incurred by deficits $s_{0,t}$, at the price level target. But the government commits not to respond to off-target inflation or deflation.

To construct a simple dynamic model of the inflation target. I use the same π^*, v^* idea as in Section 5.4 and Section 5.5, which generalize the $s_1 = B_0/P_t^*$ idea from the very first two-period model. I use a nonlinear model, specialized to one-period debt.

Define a state variable V_t^* by

$$ V_1^* = \frac{B_0}{P_1^*}, $$

(9.1)

$$ V_{t+1}^* = \frac{1}{Q_t P_{t+1}^*} (V_t^* - s_t). $$

(9.2)

Debt follows the flow condition

$$ \frac{B_{t-1}}{P_t} = s_t + Q_t \frac{P_{t+1}}{P_t} \frac{B_t}{P_{t+1}} $$

and hence

$$ \frac{B_t}{P_{t+1}} = \frac{1}{Q_t P_{t+1}} \left(\frac{B_{t-1}}{P_t} - s_t \right). $$

(9.3)

Comparing (9.2) and (9.3), the state variable V_t^* represents what the real value of debt would be if the price level were always at the target. It accumulates past deficits, but does not respond to arbitrary unexpected inflation and deflation.

Fiscal policy follows a rule that responds to the state variable V_t^*, ignoring changes in the value of the debt that come from inflation different than the target,

$$ s_t = s_{0,t} + \alpha V_t^*. $$

(9.4)

Monetary policy sets an interest rate consistent with the price-level target,

$$ Q_t = \frac{1}{1 + i_t} = \beta E_t \left(\frac{P_t^*}{P_{t+1}^*} \right). $$

(9.5)

With a time-varying real rate, the central bank has a non-trivial job to do. It must try to figure out the correct real rate, and adjust the nominal rate up and down to
mirror that real rate plus the inflation target. With sticky prices, the interest rate
must also obey the equilibrium conditions of the model given the price level target,
again a non-trivial job.

In this setup $P_t = P^*_t$ is the unique equilibrium price level. To show that, I first
establish that V^*_t is the present value of surpluses. Substituting (9.5) in (9.2) and
taking expectations,

$$\beta E_t (V^*_{t+1}) = V^*_{t} - s_t.$$ (9.6)

Using (9.4),

$$\beta E_t (V^*_{t+1}) = (1 - \alpha)V^*_t - s_{0,t}.$$

For bounded $\{s_{0,t}\}$, the V^*_t variable converges,

$$\lim_{T \to \infty} \beta^T E_t (V^*_{t+T}) = 0.$$

Thus, we can iterate (9.6) forward, and the limiting term drops out, leaving us

$$V^*_t = E_t \sum_{j=0}^{\infty} \beta^j s_{t+j}.$$

Thus we have $B_{t-1}/P_t = V^*_t$ at all dates. From (9.1) we have $P_0 = P^*_0$. With (9.2)
and (9.3) $P_t = P^*_t$ then implies $P_{t+1} = P^*_{t+1}$ so we have $P_t = P^*_t$ at all dates.

This result requires both the surplus rule (9.4) and the interest rate target (9.5),
which is the main point of this section. An inflation target must consist of a monetary
poly rule and a fiscal commitment. The interest rate target alone is insufficient. The
surplus rule is also insufficient on its own. If we just have the surplus rule (9.4), the
question remains open, how much nominal debt will be sold at the end of the period?
Even with (9.4), a decision to, say, double nominal debt without changing surpluses
will have the usual effect of doubling expected inflation. So the surplus rule needs
to be paired with some rule for setting the quantity of nominal debt, which sets
expected inflation. Here I write the more conventional interest rate target. Other
monetary policy rules could also work.

9.2 Fiscal rules

I consider fiscal rules that respond to the price level, $s_t = s_t(P_t)$. In this case the
price level can be determined even with completely indexed debt.
In a one-period model \(b_{T-1} = s(P_T) \) can determine the price level \(P_T \).

In a dynamic model with surplus rule \(s_t = s_{0,t} + \alpha (P_t - P_t^*) \) and \(s_{0,t} = a(L) \epsilon_{s,t} \) with \(a(\rho) = 0 \), the debt valuation equation is

\[
b_t - 1 = \sum_{j=0}^{\infty} \beta^j s_{0,t+j} + \alpha \sum_{j=0}^{\infty} \beta^j (P_{t+j} - P_{t+j}^*).
\]

This rule determines the weighted sum \(\sum_{j=0}^{\infty} \beta^j P_{t+j} \). A debt policy \(\beta b_t = b_{t-1} - s_{0,t} \) or an interest rate target \(1/(1 + i_t) = \beta E_t \left(P_t^*/P_{t+1}^* \right) \) can complete the regime and determine \(P_t = P_t^* \).

Following the analysis of the Roosevelt Administration in [Jacobson, Leeper, and Preston (2019)](#), I write the fiscal rule as a combination of a regular, backed budget, and an emergency or price-level-stabilization unbacked budget, which follow \(s_{r,t} = s_{0,t} + \alpha_r b_{r,t} \) and \(s_{p,t} = \alpha_p (P_t - P_t^*) \) respectively. The same price level determination results. This separation allows the government to communicate how much debt is backed and unbacked, and to deliberately inflate while also retaining its commitment to repay regular debts and thereby borrow when needed.

Finally, I introduce a model with an interest rate rule \(i_t = \theta \pi_t + u_t \) and a surplus that reacts to inflation, \(s_t = s_{0,t} + \theta s \pi_t \). Again specifying only indexed debt we have

\[
b_{t-1} = \frac{\theta_s \pi_t}{1 - \beta \theta_s \pi_t} + \frac{\beta \theta_s \pi_t u_t}{(1 - \beta \theta_s \pi_t)(1 - \beta \eta)} + E_t \sum_{j=0}^{\infty} \beta^j s_{0,t+j}
\]

so the inflation rate is determined.

Surplus rules that respond to the price level can be useful parts of a fiscal regime that also includes nominal debt.

The government could systematically raise surpluses in response to inflation, and decrease in response to disinflation, in a sort of fiscal Taylor rule. Such fiscal rules can lead to price level determination with purely indexed debt. They can also be a helpful part of a monetary-fiscal regime with nominal debt.

9.2.1 Indexed debt in a one-period model

A fiscal rule can determine the price level even with fully indexed debt.
In a one-period model, suppose indexed debt b_{T-1} is outstanding at time T, but the government follows a rule or systematic policy in which the surplus rises with the price level, $s_t(P_t)$. Then, the equilibrium condition at time T is

$$b_{T-1} = s_T(P_T).$$

This condition can determine the price level P_T, although the debt is fully indexed. Better, suppose the government commits to repay real debts, but adds a surplus rule

$$s_T(P_T) = b_{T-1} + \alpha(P_T - P_T^*).$$

Then the equilibrium price level is $P_T = P_T^*$.

Continuing the usual story, in the morning of time T, the government prints up $P_T b_{T-1}$ dollars to pay off the outstanding indexed debt. The government then commits to raising sufficient taxes to pay off this debt, and additionally that any spending at time T is also financed by taxes at time T, so there is no additional surplus or deficit. But if the price level is below P_T^*, the government commits to money-financed expenditures or tax cuts, an unbacked fiscal expansion, while if the the price level is too high the government will follow a fiscal austerity program, raising taxes and cutting spending to soak up money.

The fiscal theory only needs something real and something nominal in the same equation. The fiscal rule can be the something nominal. *Fiscal theory does not require nominal debt*, as this example shows.

I started this book with a simple example of a constant tax rate and no spending, $P_t s_t = \tau P_t y_t$, to establish that the real surplus does not naturally *have* to depend on the price level. But surpluses can and do depend on the price level. Tax brackets, capital gains, and depreciation allowances are not indexed. Government salaries, defined-benefit pensions, and medical payments are at least somewhat nominally sticky. All of these forces should result in somewhat higher surpluses with inflation $s_t'(P_t) > 0$. So this mechanism should already be part of an empirical investigation of price level determination.

More importantly, the government can *intentionally* vary surpluses with inflation or the price level to improve price level control, as central banks following a Taylor rule or inflation target intentionally vary the interest rate with inflation or the price level to improve their control. And governments do routinely tighten fiscal policy as part of inflation-fighting efforts, and loosen fiscal policy when fighting deflation.
The main issue is to convince people that such fiscal changes are really unbacked, that today’s inflation-fighting surpluses or deflation-fighting deficits will not be repaid.

9.2.2 **A dynamic fiscal rule with indexed debt**

Next, think about fiscal rules in a dynamic context. As usual, since the quantity of nominal debt must come from somewhere, we need both fiscal and monetary policy. The dynamic model stresses the difficulty of committing that surplus or deficits used to control the price level are unbacked.

Continuing our flexible price, constant real-rate model, the flow equilibrium condition with indexed debt states that old debt is paid off by surpluses or new debt,

\[b_{t-1} = s_t(P_t) + \beta b_t. \] (9.8)

Iterating forward and imposing the transversality condition that debt grows more slowly than the interest rate,

\[b_{t-1} = \sum_{j=0}^{\infty} \beta^j s_{t+j}(P_{t+j}). \]

This expression holds ex post. Real debt must be repaid or default. Any shocks to surpluses must be met by subsequent movement in the opposite direction.

Now consider the surplus rule

\[s_t = s_{0,t} + \alpha(P_t - P^*_t) \]

in this dynamic context. The debt valuation equation is

\[b_{t-1} = \sum_{j=0}^{\infty} \beta^j s_{0,t+j} + \alpha \sum_{j=0}^{\infty} \beta^j (P_{t+j} - P^*_{t+j}). \] (9.9)

The valuation equation and the surplus rule determine the value of the sum \(\sum_{j=0}^{\infty} \beta^j P_{t+j} \) but not the shape of that path.

To keep the example simple, assume that \(\{s_{0,t+j}\} \) follows a process with moving average representation \(s_{0,t} = a(L)e_{s,t} \) and \(a(\beta) = 0 \). Debt incurred to finance this component of primary deficit is paid off by following surpluses. With real debt and
9.2. FISCAL RULES

no defaults, the overall surplus must follow this restriction. Without this provision, a
deficit $s_{0,t}$ would raise the following price level to generate following surpluses. This
provision allows $P_t = P_t^*$ at every date in a stochastic model. The model still also
allows a temporary deviation, $P_t < P_t^*$, followed by $P_{t+j} > P_{t+j}^*$, consequently debt
greater than the present value of $\{s_{0,t}\}$, repaid by the surpluses induced by $P_{t+j} >$
P_{t+j}^*. But as there are no innovations to the first term, there are no innovations to
the second term as well.

Write the flow budget constraint

$$b_{t-1} = s_{0,t} + \alpha(P_t - P_t^*) + \beta b_t + \frac{M_t}{P_t}. \tag{9.10}$$

In equilibrium, $M_t = 0$. Now if the price level P_t is below to the target P_t^*, the
government sells additional debt b_t. The following path of prices has $P_{t+j} > P_{t+j}^*$,
with the same value of $\sum_{j=0}^{\infty} \beta^j P_{t+j} = \sum_{j=0}^{\infty} \beta^j P_{t+j}^*$. Future surpluses rise to pay off
the extra debt b_t issued when $P_t < P_t^*$.

We can determine the price level at each date by enlarging the regime to cut off the
latter possibility. If the government holds real debt sales fixed at the value needed
to roll over real debt and to finance the underlying real deficit,

$$\beta b_t = b_{t-1} - s_{0,t^t}, \tag{9.11}$$

then from the flow equilibrium condition [9.8], we must have $P_t = P_t^*$. In the flow
budget constraint [9.10], $P_t < P_t^*$ must result in $M_t > 0$, the familiar mechanism
that produces fiscal inflation. In words, the government commits that in the event
of a too-low price level it will embark on printed-money fiscal expansion. It will not
soak up extra money with sales of (indexed) debt.

As before, we do not have to interpret this model as precise adherence to an inflexible
target, exactly 2% per year inflation for example. We can interpret the stochastic
P_t^* target to allow inflation to rise and fall, and as what the government is willing to
put up with rather than what it aspires to. Consciously selling a little less debt b_t
is a way to allow a bit more inflation today, lowering P_t^*, while promising to restore
the price level eventually.

I have pushed the example hard, to show that a fully fiscal model of price level
determination is possible with indexed debt. Rather than select the price level path
with the fiscal rule [9.11], however, we can rely as usual on an interest rate target
to set the price level path. An interest rate target i_t requires

$$\frac{1}{1 + i_t} = \beta E_t \left(\frac{P_t}{P_{t+1}} \right). \tag{9.12}$$
Thus, if the interest rate target is set by
\[
\frac{1}{1 + i_t} = \beta E_t \left(\frac{P_t^*}{P_{t+1}^*} \right)
\]
then only the sequence \(P_t = P_t^* \) satisfies both (9.9) and (9.12).

9.2.3 A better fiscal rule

The model in the last section is a little strained. I specify an exogenous surplus process \(\{s_{0,t}\} \) with \(a(\rho) = 0 \). It is prettier and more intuitive to produce this feature with a fiscal rule rather than a direct s-shaped moving average. This section presents such a rule, which derives from an important episode.

I phrase this model in the language of Jacobson, Leeper, and Preston (2019), who describe the Roosevelt Administration’s separation of finances into a “regular” budget whose debts are repaid and an “emergency” budget which is unbacked. The Roosevelt administration was battling deflation. They first devalued the dollar relative to gold. This step already changes the backing of nominal debt, which should create inflation. But they wanted to do more – they wanted to undertake an unbacked fiscal expansion to create additional inflation. At the same time, they did not want to turn the U.S. into a hyperinflationary basket case. They wanted to maintain the U.S. reputation that if it wished to borrow in the future, when the depression was over, it could pledge surpluses to that future borrowing. That reputation would soon be needed, in large measure. How do you run a little bit of unbacked fiscal expansion, yet retain a reputation for backing your future fiscal expansions after the threat of deflation has ended?

To accomplish this feat of expectations management, the Roosevelt Administration separated the budget into a “regular” budget whose debts are repaid and an “emergency” budget which is unbacked. The Administration proposed to fund the emergency budget entirely by borrowing until the depression ended, but then to end the practice. Clearly separating the items on the regular vs. emergency budget, and tying the emergency budget to visible economic conditions then neatly unties the Gordian knot.

This brilliant idea (or this brilliant interpretation of the Roosevelt Administration’s actions!) forms the basis not just of a deflation-fighting scheme, but of a broader fiscal rule which works under indexed or gold-standard debt. Let the “regular”
budget surplus be
\[s_{r,t} = s_{0,t} + \alpha_r b_{r,t} \]
and the corresponding portion of the debt \(b_{r,t} \). Let the price-stabilization surplus be
\[s_{p,t} = \alpha_p (P_t - P_t^*) , \]
with corresponding portion of the debt \(b_{p,t} \). The total surplus and debt are
\[s_t = s_{r,t} + s_{p,t} \]
\[b_t = b_{r,t} + b_{p,t} . \]

Each debt accumulates separately
\[b_{r,t} = R (b_{r,t-1} - s_{r,t}) \]
\[b_{p,t} = R (b_{p,t-1} - s_{p,t}) . \]

One might implement this idea with distinct debt issues, as public debt is distinct from debt sold to the Social Security trust fund.

With \(\alpha_r > 0 \), the regular surplus repays its debts automatically, without needing to assume that \(s_{0,t} \) satisfies \(a(\rho) = 0 \),
\[b_{r,t-1} = \sum_{j=0}^{\infty} \beta^j s_{r,t+j} , \]
and ignoring the price level completely. The regular part of the deficit and its repayment drop completely out of price level determination. All regular deficits will be repaid.

The price-level stabilization budget separately obeys
\[b_{p,t-1} = \sum_{j=0}^{\infty} \beta^j s_{p,t+j} = \alpha_p \sum_{j=0}^{\infty} \beta^j (P_{t+j} - P_{t+j}^*) \]
The price-level control part of the surplus does not feature automatic repayment.

The whole point of this term is to threaten unbacked fiscal expansion or contraction, or money left outstanding, and to force the price level sequence to adjust.

As before, the price-level budget only sets the overall level of the price level, but not the price level path. To continue in a realistic way, as above, we can pair this
fiscal policy with a debt target, here \(b_{p,t} = 0 \), or better with a monetary policy that
controls the nominal interest rate and therefore the price level path.

This model then works too well, in a sense, in that we see \(P_t = P^*_t \) on each date
and \(b_{p,t-1} \). Strictly speaking, the Roosevelt program becomes an unobserved off-
equilibrium threat, or (better) and institution doing its job to prevent deflation from
breaking out in the first place. But it’s dangerous to be too strict about rational
expectations for just-invented institutions. One might regard the Roosevelt program
as the reason we have not seen deflation since. This model also abstracts from sticky
prices and other considerations that can move prices from the target. If we interpret
the target as an aspiration that the government moves toward gradually, one observes
more variation about it.

A rigid policy may also not be desirable. In the end, we may want to design a fiscal
policy that allows the government to flexibly commit to a long run price level, and to
slowly and credibly promise extra surpluses to ward off inflation and gently suppress
it. These examples are also still closer to a theoretical point than a policy program.
Adding fiscal rules with nominal as well as indexed debt, monetary policy and sticky
prices or other important frictions – a reason to dislike deflation – is important before
we turn this into a policy proposal or a model to contrast with data.

9.2.4 A fiscal rule with inflation and interest rates

Here I pursue a little model that once merges fiscal and monetary policy to determine
inflation, rather than the price level, with indexed debt. Monetary policy picks the
inflation path, while the fiscal policy rule now sets the level of inflation. The model
is expressed in a form that more easily invites adaptation to traditional linearized
sticky-price models.

Suppose monetary policy follows an interest rate target,
\[
\begin{align*}
\dot{i}_t &= \theta_{i\pi} \pi_t + u_t \\
u_t &= \eta u_{t-1} + \varepsilon_t
\end{align*}
\]
with \(\theta_{i\pi} < 1 \), and suppose the economy has flexible prices and a constant real rate
so
\[
i_t = E_t \pi_{t+1}.
\]
Inflation therefore follows
\[
E_t \pi_{t+1} = \theta_{i\pi} \pi_t + u_t. \tag{9.13}
\]
Suppose fiscal policy follows a rule that responds to inflation,

\[s_t = s_{0,t} + \theta_{s\pi} \pi_t, \]

but suppose only indexed debt is outstanding. Now the government debt valuation equation reads

\[b_{t-1} = E_t \sum_{j=0}^{\infty} \beta^j (s_{0,t+j} + \theta_{s\pi} \pi_{t+j}). \]

Iterating forward (9.13) and taking the sum,

\[b_{t-1} = \frac{\theta_{s\pi}}{1 - \beta \theta_i} \pi_t + \frac{\beta \theta_{s\pi}}{(1 - \beta \theta_i)} u_t + E_t \sum_{j=0}^{\infty} \beta^j s_{0,t+j}. \] (9.14)

This equation now determines inflation at each date \(\pi_t \), despite completely indexed debt. The surplus response to inflation \(\theta_{s\pi} \) is key to the result. Without this response, \(\pi_t \) drops from the equation. The monetary response to inflation \(\theta_i \) is not essential. With \(\theta_i = 0 \) we have \(i_t = u_t \) and

\[b_t = \theta_{s\pi} \pi_t + \frac{\beta \theta_{s\pi}}{1 - \beta \theta_i} i_t + E_t \sum_{j=0}^{\infty} \beta^j s_{0,t+j}. \]

The presence of an interest rate target is essential; without it the expected future inflation that drives expected future surpluses is not pinned down. (This example modifies a setup explored by Sims (2013). Section 16.10.8 summarizes Sims’ point.)

9.2.5 Fiscal rules with nominal debt

Now, consider nominal debt, or mixed real and nominal debt with a fiscal rule. As usual, the basic ideas are easiest to see in the simple one-period model. With mixed real and nominal debt, we have

\[b_t + \frac{B_{t-1}}{P_t} = s(P_t). \]

Ruling out the passive possibility, which requires \(s'(P) < 0 \), the price level is determined. With any nominal debt, a surplus rule is not strictly needed for determinacy.
CHAPTER 9. BETTER RULES

But, stepping outside the model as developed so far, we can see that $s'(P) > 0$ helps. The stronger the divergence in price-level dependence between the left and right hand sides of the valuation equation, the better, in some sense, price level determination must be. If we add sticky prices, equilibrium dynamics, near-optimal decisions, small shocks to decision rules and so forth, it’s easy to forecast that a world in which the left and right hand sides have nearly, but not exactly, the same dependence on P_t will show more volatile prices or prices less well determined or modeled.

The fiscal rule also changes the nature of price determination substantially. The stronger $s'(P)$, the more that fiscal shocks, to $s_{0,t}$, are met by a fiscal tightening and the less they are borne by inflating away outstanding nominal government debt. The ratio of nominal to real indexed debt also contributes to the split between devaluing outstanding nominal debt and unbacked fiscal expansion to create inflation.

A little bit of nominal debt, or money, also is useful to allow monetary policy to set the nominal interest rate.

Finally, the usual limiting logic applies. If there is a small amount of nominal debt, then without a fiscal rule we ask that small amount of nominal debt to bear the entire burden of price-level adjustment. A fiscal rule will be useful in that case as well.

9.3 Targeting the spread

Rather than target the level of the nominal interest rate, the central bank can target the spread between indexed and non-indexed debt. This policy determines expected inflation, while letting the level of interest rates rise and fall according to market forces. The policy can be implemented by allowing people to trade indexed for nominal debt at a fixed rate, or by offering inflation swaps at a fixed rate. A spread target, like a nominal interest rate target, only nails down expected inflation so it is not a complete inflation-determination regime. Actual inflation also depends on fiscal policy.

Rather than target the level of the nominal interest rate, suppose the central bank targets the spread between indexed and non-indexed debt. The nominal rate equals the indexed (real) rate plus expected inflation, $i_t = r_t + E_t \pi_{t+1}$. So, by targeting $i_t - r_t$, the central bank could target expected inflation directly.

This target could also be implemented as a peg, like an exchange rate peg or gold
9.3. TARGETING THE SPREAD

standard, by offering to freely trade indexed for non-indexed debt. Bring in one
one-year, zero-coupon indexed bond, which promises to pay $1 × \Pi_{t+1}$ at maturity
where \Pi_{t+1} is the gross inflation rate. You get in return \Pi^* zero-coupon nominal
bonds, each of which pays $1 at maturity, where \Pi^* is the inflation target. If inflation
comes out to \Pi_{t+1} = \Pi^*, the two bonds pay the same amount. This policy will drive
the spread between real and nominal debt to \Pi^*, so inflation expectations settle
down to \Pi^*. (We have to check the latter statement; that the economy is stable and
determinate under a spread target. That analysis follows.)

The central bank could also target rather than peg the real-nominal spread by con-
tventional instruments of monetary policy. It could adjust the level of nominal interest
rates in order to achieve its desired value for the real-nominal spread, as some cen-
tral banks adjust nominal interest rates to target the exchange rate without actually
pegging or buying and selling foreign currency.

Why target the spread? I have simplified the discussion by leaving out real interest
rate variation, and treating the real interest rate as known. To target expected
inflation by targeting nominal interest rates, the central bank just adds the real rate
\rt to its inflation target \pi^{*}_{t+1} = E_t \pi_{t+1}, and sets the nominal interest rate at that value
\it = \rt + \pi^{*}_{t+1}. But in reality, the real rate varies over time. The real rate is naturally
lower in recessions – more people want to save than want to invest; consumption
growth is low; the marginal product of capital is low. The real rate is naturally
higher in expansions, for all the opposite reasons. But there is no straightforward
way to measure the natural, correct, or proper real rate. With sticky prices, the
real rate varies as the central bank varies the nominal rate, so the bank partially
controls the thing it wants to measure. There is currently a big discussion over
lower-frequency variation in the natural real rate, whether “\r^{*}” is lower. Even with
complex models the Fed struggles to measure \r^{*}, as it struggles to define and measure
the “natural” rate of unemployment. Measuring higher, business-cycle, frequency in
the “natural” rate is an order of magnitude harder. Yet that is, essentially, what the
Fed tries to do by the seat of its pants in order to figure out what nominal interest
rate to set.

Economic planners have had a tough time setting prices, and philosophers setting
the just price, for centuries. Real interest rates are no exception. If the underlying
or natural interest rate is like all other prices, especially asset prices and exchange
rates, it moves a lot in response to myriad information that planners do not see,
befuddling even ex-post rationalization.

In this context, then, if the central bank targets the spread between indexed and
non-indexed debt, and thereby targets expected inflation directly, it can leave the
level of real and nominal interest rates entirely to market forces. This policy leaves
the central bank in charge of the nominal price level only, and can get it out of the
business of trying to set the most important real price in the economy.

The spread target can also vary over time or in response to the state of the economy
just as a nominal interest rate target can do, if one wishes to accommodate, rather
than eschew, central banks’ macroeconomic-planning tendencies. Rather than view
its “stimulus” or cooling efforts through the lens of nominal interest rates, the central
bank could stimulate by raising expected inflation directly, and vice versa. Such
efforts might also be more effective at raising or lowering expected inflation than
moving nominal rates, or making promises about such movements.

The idea can extend throughout the yield curve. The central bank can target ex-
pected inflation at any horizon, and it can implement that target by offering to
trade indexed for non-indexed debt at any maturity. Thus, the spread target also
offers a way to directly “anchor” long-run inflation expectations. The central bank
could operate a short-run interest rate target, QE, and other interventions, while
also targeting the spread between indexed and non-indexed long-term debt to better
anchor long-run expectations. Since prices are sticky and short-run inflation is hard
to control, such a separation between conventional short-run policy and long-term
expectations management may prove useful.

The practical effect on monetary policy, in equilibrium, and in response to the usual
shocks, of this change may not be great. If the central bank follows a Taylor rule,
\[i_t = (r + \pi^*) + \theta_\pi \pi_t + \theta_x x_t, \]
and if the real interest rate tracks \[r_t = r + \theta_\pi \pi_t + \theta_x x_t, \]
then the Taylor rule produces the same result as the spread target. But targeting
the spread is clearer, and helps better to set expectations. Targeting the spread may
produce a rule that performs better when the economy is hit by a different set of
shocks, so the correlation of the real rate and the Taylor rule breaks down. Rules
developed from history and experience have a certain wisdom, but that wisdom often
encapsulates correlations that change over time.

In my story-telling, I offer a year or more horizon. Why not a day, you might ask, and
let the central bank target daily expected inflation? Well, prices are sticky, of course,
so one should not expect the central bank can control daily expected inflation. A
year seems to me about the shortest horizon at which one might expect inflation to
able to move in response to the spread rather than vice versa. But this intuition
needs to be spelled out. The forward-looking model of sticky prices in the next
section does not deliver any warnings about horizon, so that intuition likely rests in
backward-looking or mechanical elements of actual price stickiness.

A spread peg can be implemented via CPI futures or swaps rather than, or in addition to, trading underlying bonds. In an inflation swap, parties agree to pay or receive the difference between realized inflation and a reference rate set at the beginning of the contract period. They pay or receive $P_{t+1}/P_t - \Pi_t^*$. No money changes hands today. The reference rate Π_t^* adjusts to clear the market, and is equal to the risk-neutral expected inflation rate. Entering an inflation swap is the same thing as buying one indexed bond that pays P_{t+1}/P_t in one period, and selling Π_t^* nominal bonds. (Dowd (1994) describes a peg to a contract similar to CPI futures.)

Indexed debt in the U.S. is currently rather illiquid, and it suffers a complex tax treatment. Simplifying the security would make it far more liquid and transparent and reflective of inflation expectations. Cochrane (2015b) contains a detailed proposal for simplified and more liquid federal debt, consisting of tax-free indexed and non-indexed perpetuities and swaps between these simple securities. Fleckenstein, Longstaff, and Lustig (2014) document arbitrage between TIPS and CPI swaps, a sure sign of an ill-functioning market. Central banks should work with Treasurys more broadly to modernize and simplify the latter’s offerings generally, and of indexed debt in particular. The absence of significant inflation up to 2021 may have removed the incentive for institutional change, but that incentive may reappear and it’s always better to build institutions ahead of their need rather than in the moment.

Central banks as well as Treasurys can also create and offer more extensive real and nominal term liabilities, which is a good idea for many reasons. Banks offer certificates of deposit, why not the central bank? Central bank liabilities are really liquid. And, at least initially, CPI swaps or futures may end up being the most liquid implementation of these ideas.

Obviously, central banks would inch their way to such a proposal. Start by paying a lot more attention to the spread. Work to get the markets more liquid and implement better securities. Start gently pushing the spread to where the central bank wants the spread to go with QE like purchases in fixed amounts. Get to a flat supply curve at the spread target slowly. And allow time and experience to produce more rational expectations. QE relies on shocking markets with something new an unexpected. A spread target is the opposite, requiring experience and understanding.

Targeting the spread is really only a small step from the analysis so far. If the government can target the nominal interest rate i_t, and then expected inflation will adjust in equilibrium to $E_t \pi_{t+1} = i_t - r_t$ with r_t the real interest rate determined...
elsewhere in a frictionless model, then the economics of a spread target are really not fundamentally different from those of an interest rate target. This statement needs to be verified, and the next two sections do so.

9.3.1 FTMP with a spread target

I write the spread target in the sticky-price fiscal theory of monetary policy model to verify that it works. A spread target determines expected inflation, while the government debt valuation equation determines unexpected inflation. The spread target works just as the interest rate target works in the sticky price model. The spread target leads to i.i.d. inflation around the target, and endogenous real interest rate variation that offsets IS shocks. We can also support a spread target with active monetary policy – the idea is not intrinsically tied to fiscal theory.

Writing $i_t - r_t = E_t \pi_{t+1}$ and concluding that if the central bank pegs the left side, the right side will adjust may seem straightforward. The condition $i_t - r_t = E_t \pi_{t+1}$ is a steady state of practically every model. But one may worry that this steady state may be unstable, that pegging the spread between real and nominal bonds may lead to spiraling inflation or deflation rather than inflation or deflation converging to the spread. Can the government even force the spread to be 2% without trading infinite quantities? The spread between indexed and nominal bonds measures inflation expectations, but silencing the canary does not make the mine safe. Which way is it? That’s what we need models for.

With flexible prices, the real interest rate is independent of inflation, so the spread target is stable and determinate when an interest rate target is stable and determinate and vice versa. In old-Keynesian adaptive expectations models, an interest rate peg leads to unstable inflation, and a spread target has the same outcome. In new-Keynesian models, an interest rate peg leads to indeterminate inflation, and one can anticipate the same result of a spread target. But in fiscal theory of monetary policy, an interest rate peg can be stable and determinate. If that is true, a spread peg is also stable and determinate.

Let us put a spread target in the standard sticky-price fiscal theory of monetary policy model, in place of a nominal interest rate target. I start with an even simpler version of the model,

$$x_t = -\sigma (i_t - E_t \pi_{t+1}) \tag{9.15}$$

$$\pi_t = E_t \pi_{t+1} + \kappa x_t. \tag{9.16}$$
9.3. TARGETING THE SPREAD

Here I have delete the $E_t x_{t+1}$ term in the first equation, so it becomes a static IS curve, in which output is lower for a higher real interest rate. This simplification turns out not to matter for the main point, which I verify by going through the same exercise with the full model. But it shows the logic with much less algebra. (A variety of recent models also lower the coefficient on $E_t x_{t+1}$, so this exercise also indicates generality of the result in that direction. Section 17.1 uses this simplified model extensively to cleanly exposit new-Keynesian and old-Keynesian vs. FTMP approaches.)

Denote the real interest rate

$$r_t = i_t - E_t \pi_{t+1}. \quad (9.17)$$

We can view the spread target as a nominal interest rate rule that reacts to the real interest rate,

$$i_t = \theta r_t + \pi^e, \quad (9.18)$$

rather than react to inflation. (I add e for expected and $*$ for target to π.) The spread target happens at $\theta = 1$, but the logic will be clearer and the connection of an interest rate peg and interest spread peg clearer if we allow $\theta \in [0, 1]$ to connect the possibilities and track the limit as $\theta \to 1$.

Eliminating all variables but inflation from (9.15)-(9.18), we obtain

$$E_t(\pi_{t+1} - \pi^e) = \frac{1 - \theta}{1 - \theta + \sigma \kappa} (\pi_t - \pi^e). \quad (9.19)$$

For an interest rate peg, $\theta = 0$, $i_t = \pi^e$, inflation is stable – the first coefficient is less than one – but indeterminate, as $\Delta E_{t+1} \pi_{t+1}$ can be anything. We complete the model with the government debt valuation equation, in linearized form

$$\Delta E_{t+1} \pi_{t+1} = -\Delta E_{t+1} \sum_{j=0}^{\infty} \rho^j s_{t+1+j} + \Delta E_{t+1} \sum_{j=1}^{\infty} \rho^j (i_{t+j} - \pi_{t+1+j}), \quad (9.20)$$

which determines unexpected inflation.

We can substitute (9.17) and (9.18) into (9.19), iterate forward, and solve (9.20) to exhibit a full solution.

$$\Delta E_{t+1} \pi_{t+1} = -\frac{(1 - \rho)(1 - \theta)}{(1 - \rho)(1 - \theta) + \sigma \kappa + \rho \bar{\varepsilon}_{s,t+1}}. \quad (9.21)$$

1 Algebra: Uniting (9.17) and (9.18),

$$r_t = \frac{1}{1 - \theta} (\pi^e - E_t \pi_{t+1}).$$
Equations (9.19) and (9.21) now completely describe the solution — expected and unexpected inflation.

Starting at the familiar $\theta = 0$, an interest rate peg, we have

$$E_t (\pi_{t+1} - \pi^e) = \frac{1}{1 + \sigma \kappa} (\pi_t - \pi^e)$$

$$\Delta E_{t+1} \pi_{t+1} = -\frac{1 - \rho + \sigma \kappa}{1 + \sigma \kappa} \varepsilon_{s,t+1}.$$

There are only fiscal shocks, which cause unexpected inflation. That inflation settles down to the inflation target with an AR(1) response driven by price stickiness.

As we raise the real-interest rate response $0 < \theta < 1$ the solution (9.19) and (9.21) remains qualitatively the same. As θ rises, the dynamics of (9.19) happen faster, and expected inflation converges more and more quickly to the target.

At $\theta = 1$, the spread target $i_t - r_t = \pi^e$ nails down expected inflation, i.e. expected inflation settles down to the target infinitely fast. Equation (9.19) becomes

$$E_t \pi_{t+1} = \pi^e.$$

Equation (9.21) becomes

$$\Delta E_{t+1} \pi_{t+1} = -\frac{\sigma \kappa}{\sigma \kappa + \rho} \varepsilon_{s,t+1},$$

so, in sum, the model obeys

$$\pi_{t+1} = \pi^e - \frac{\sigma \kappa}{\sigma \kappa + \rho} \varepsilon_{s,t+1}.$$

From (9.19)

$$\Delta E_{t+1} \pi_{t+1+j} = \left(\frac{1 - \theta}{1 - \theta + \sigma \kappa} \right)^j \Delta E_{t+1} \pi_{t+1}.$$

We can then write (9.20)

$$\Delta E_{t+1} \pi_{t+1} = -\varepsilon_{s,t+1} + \sum_{j=1}^{\infty} \rho^j \Delta E_{t+1} \left[\frac{1}{1 - \theta} (\pi^e - \pi_{t+j+1}) \right]$$

$$\Delta E_{t+1} \pi_{t+1} = -\varepsilon_{s,t+1} - \frac{1}{1 - \theta} \sum_{j=1}^{\infty} \rho^j \left(\frac{1 - \theta}{1 - \theta + \sigma \kappa} \right)^j \Delta E_{t+1} \pi_{t+1}$$

and solving, we get (9.21).
9.3. TARGETING THE SPREAD

Inflation is not equal to the target period by period. But inflation is uncorrelated over time, which is as close as we can get with an expected inflation target. Output and real and nominal rates then follow

\[x_t = \frac{1}{\kappa} (\pi_t - \pi^{\text{es}}) \]
\[r_t = -\frac{1}{\sigma \kappa} (\pi_t - \pi^{\text{es}}) \]
\[i_t = \pi^{\text{es}} - \frac{1}{\sigma \kappa} (\pi_t - \pi^{\text{es}}). \]

1 A fiscal shock leads to a one-period inflation, and thus a one-period output increase. Higher output means a lower interest rate in the IS curve, and thus a lower nominal interest rate. The real and nominal interest rate vary due to market forces, while the central bank does nothing more than target the spread.

Of course we may wish for more variable expected inflation, and central banks may wish for something to do. Many models find that it is desirable to let a long smooth inflation accommodate a shock. Both desires can be accommodated by varying the expected inflation target. The central bank could follow \(\pi^{\text{es}}_t = E_t \pi_{t+1} = \theta \pi_t \) to produce persistent inflation. Or, the central bank could follow \(\pi^{\text{es}}_t = p^* - p_t \) to implement an expected price level target \(p^* \) with one-period reversion to that target. Or the bank could follow \(\pi^{\text{es}}_t = \theta \pi_t + \theta_x x_t + u_{\pi t} \) in Taylor-rule tradition, including discretionary responses to other events in the \(u_{\pi t} \) term. The point is not to tie to a desire for a constant expected inflation peg, nor to require central bank inaction, but that a spread target is possible and will not explode in some unexpected way.

One may be a bit surprised that expected inflation is exactly equal to the spread target, even though prices are sticky. But the definition \(r_t = i_t - E_t \pi_{t+1} \) guarantees that unless the model blows up, expected inflation must instantly equal the spread target. When prices cannot move, the real interest rate moves until expected inflation satisfies the spread target. That is the outcome here.

The same behavior occurs in the full new-Keynesian model, which is also the sort of framework one would use to think about the desirability of a spread target and whether it should be constant or follow a rule as above. I simultaneously allow shocks to the equations and a time-varying spread target. The model is

\[x_t = E_t x_{t+1} - \sigma (i_t - E_t \pi_{t+1}) + u_{x,t} \]
\[\pi_t = \beta E_t \pi_{t+1} + \kappa x_t + u_{\pi,t}. \]
Write the spread target as
\[i_t - r_t = \pi^e_t. \]

With the definition
\[r_t = i_t - E_t \pi_{t+1}, \]
we simply have
\[E_t \pi_{t+1} = \pi^e_t. \]

As in the simple model, the spread target directly controls equilibrium expected inflation. Unexpected inflation is set by the same government debt valuation equation \([9.20]\). The spread target sets expected inflation, so long as the model does not blow up, and the latter is all we really need to check.

The other variables given inflation and unexpected inflation follow
\[x_t = \frac{1}{\kappa} (\pi_t - \beta \pi^e_t - u_{\pi,t}) \]
\[r_t = i_t - \pi^e_t = -\frac{1}{\sigma} (\pi_t - \pi^e_t) + \frac{\beta}{\sigma} (\pi^e_t - E_t \pi^e_{t+1}) + \frac{1}{\sigma} (u_{x,t} + u_{\pi,t} - E_t u_{\pi,t+1}) \]. \(9.24\)

Following inflation, output still has serially uncorrelated deviations from the spread target, plus Phillips curve shocks. The real rate and nominal interest rate also have only serially uncorrelated deviations from the spread target, plus both IS and Phillips curve shocks. Output is not affected by IS shocks. The endogenous real rate variation \(\sigma r_t = u_{x,t}\) offsets the IS shock’s effect on output in the IS equation \(x_t = E_t x_{t+1} - \sigma r_t + u_{x,t}\). This is an instance of desirable real rate variation that the spread target accomplishes automatically. (To obtain \(9.24\) first-difference \(9.23\) and then substitute \(x_t - E_t x_{t+1}\) from \(9.22\).)

This discussion is obviously only the beginning. We need to see the spread target at work in more complex and realistic models. The sense in which it is desirable, adapting automatically to shocks that the central bank cannot directly observe, needs to be worked out. Optimal monetary policy sets the interest rate as a function of the underlying shocks, to eliminate output fluctuations. But the central bank cannot see those shocks. How does the spread target compare to other rules in approximating the ideal response to shocks that the central bank cannot see? Clearly something about the Phillips curve makes this a sensible idea for targeting long-run inflation expectations, but not at a monthly or daily horizon. What is that something?
I phrase the spread target in the context of the fiscal theory of the price level,
choosing unexpected inflation from the government debt valuation equation (9.20),
because that is the point of this book. However, targeting the spread rather than the
level of interest rates does not hinge on active fiscal vs. active monetary policy. In
place of (9.20), one could determine unexpected inflation from an active monetary
policy rule instead. One writes a threat to let the spread diverge explosively for
all but one value of unexpected inflation, in classic new-Keynesian style. In place of
\(i_t = i_t^* + \phi(\pi_t - \pi_t^*) \), write \(i_t - r_t = \pi_t^* + \phi(\pi_t - \pi_t^*) \), where \(\pi_t^* \) is the full inflation target,
i.e. obeying \(\pi_t^{\pi*} = E_t \pi_t^{\pi*+1} \) and \(\Delta E_{t+1} \pi_t^{\pi*+1} \) the desired unexpected inflation.

Holden (2020) presents the spread target idea, showing that the rule \(i_t = r_t + \phi \pi_t \)
achieves a determinate price level. Milton Friedman mentions a spread-target regime
approvingly in Friedman (1992) (p. 229), as a way to accommodate the philosophy
of money growth rules in an interest-rate targeting environment.

9.3.2 Debt sales with a spread target

Would the offer to trade real for nominal debt at fixed prices lead to explosive
demands? The mechanics are a straightforward generalization of the effect that
selling additional nominal debt raises the future price level. If the government offers
more nominal bonds per real bonds than the market, people will take the offer,
thereby creating the change in debt that raises the expected price level. The offer
to exchange indexed for nominal debt at a fixed rate is stable, and drives expected
inflation to the target.

A second worry one might have about a spread peg, implementing a spread target
by offering to sell real for nominal bonds at a fixed rate, is that the bond demands
might explode. We need to verify that this is not the case – that the bond demands
which support a spread target are well defined.

The argument is analogous to the case of an interest rate peg. We saw that by selling
nominal bonds without changing the surplus, the government raises the expected
future price level. We then realized that by offering bonds at a fixed nominal rate,
again holding surpluses constant, people would buy just enough bonds so that the
expected future price level is consistent with that nominal rate. The mechanics of
targeting expected inflation via a real-for-nominal debt swap is a simple extension of
the same idea. In both cases, the caveat “holding surpluses constant” is key, and the
hard work of institutional implementation. If people read changes in future surpluses
to today’s nominal bond sales, when offered in exchange for real bonds, reactions
are different and an offered arbitrage opportunity could indeed explode. As in the case of nominal debt and an interest rate target, this observation offers a reason for the central bank, rather than Treasury, to operate the spread target.

Start with the government debt valuation relation with both real and nominal debt,

\[b_{t-1} + \frac{B_{t-1}}{P_t} = E_t \sum_{j=0}^{\infty} \beta^j s_{t+j}. \]

A real bond pays P_{t+1} at time $t + 1$ and is worth $\beta E_t (P_{t+1} P_t / P_{t+1}) = \beta P_t$ dollars at time t. The real interest rate is constant, which hides the usefulness of the idea, but clarifies the mechanics. Express the valuation equation in terms of end-of-period values, when bonds are sold,

\[\beta b_t + \beta B_t E_t \left(\frac{1}{P_{t+1}} \right) = \beta b_t + Q_t \frac{B_t}{P_t} = E_t \sum_{j=1}^{\infty} \beta^j s_{t+j}. \quad (9.25) \]

If the government offers to exchange each real bond for $E_t (1/P_{t+1})$ nominal bonds, or if it exchanges real for nominal bonds at market prices, the left-hand side does not change, so the real vs. nominal structure of the debt is irrelevant to the expected price level. People are indifferent at market prices.

Now let us see that selling more real and less nominal bonds with a tradeoff different from market prices affects the future price level. Suppose the government sells $b_{0,t}$ and $B_{0,t}$ real and nominal debt, and then modifies its plan, selling P^* additional nominal bonds in return for each real bond,

\[-(B_t - B_{0,t}) = (b_t - b_{0,t}) P^*. \]

Plug into \eqref{9.25},

\[\beta \left(b_{0,t} - \frac{B_t - B_{0,t}}{P^*} \right) + \beta [B_{0,t} + (B_t - B_{0,t})] E_t \left(\frac{1}{P_{t+1}} \right) = E_t \sum_{j=1}^{\infty} \beta^j s_{t+j} \]

\[\beta b_{0,t} + \beta B_{0,t} E_t \left(\frac{1}{P_{t+1}} \right) + \beta (B_t - B_{0,t}) \left[E_t \left(\frac{1}{P_{t+1}} \right) - \frac{1}{P^*} \right] = E_t \sum_{j=1}^{\infty} \beta^j s_{t+j}. \]

It’s easiest to see the effect of exchanging real for nominal debt by taking derivatives,

\[dB_t \left[E_t \left(\frac{1}{P_{t+1}} \right) - \frac{1}{P^*} \right] + B_t d \left[E_t \left(\frac{1}{P_{t+1}} \right) \right] = 0 \]
9.3. TARGETING THE SPREAD

\[
d \left[E_t \left(\frac{1}{P_{t+1}} \right) \right] = - \left[E_t \left(\frac{1}{P_{t+1}} \right) - \frac{1}{P^*} \right] \frac{dB_t}{B_t}.
\]

If \(1/P^* = E_t(1/P_{t+1})\) then the expected price level is independent of the real/nominal split. If \(1/P^* < E_t(1/P_{t+1})\) – if the government offers more nominal bonds per real bond than the market offers – then as nominal debt \(B_t\) rises, \(E_t(1/P_{t+1})\) falls, i.e. the expected future price level rises. The previous description of monetary policy was in effect \(P^* = \infty\); the government simply increased nominal debt with no decline in real debt, and that change resulted in next-period inflation. This case is a generalization. The government sells more nominal debt, but undoes some of the dilution by taking back real debt. But if it takes back less than the current market price tradeoff, then increasing \(B_t\) nominal debt still lowers \(E_t(1/P_{t+1})\), i.e. raises the future price level.

Now, what happens if the government offers people the option to trade real for nominal bonds at a fixed relative price? If \(1/P^* < E_t(1/P_{t+1})\), if the government gives more nominal bonds per real bond than offered by the market, it’s worth exchanging a real bond for a nominal bond. But as people exchange real bonds for nominal bonds, they drive down \(E_t(1/P_{t+1})\), until \(1/P^* = E_t(1/P_{t+1})\) and the opportunity disappears. Likewise if \(1/P^* > E_t(1/P_{t+1})\), then people will exchange nominal bonds for real bonds, driving up \(E_t(1/P_{t+1})\) until \(1/P^* = E_t(1/P_{t+1})\) again.

In sum,

- Offering to freely exchange real debt for nominal debt at the rate \(P^*,\) while not changing surpluses, drives the expected price level to \(E_t(1/P_{t+1}) = 1/P^*\).

This operation simply generalizes offering nominal debt with no real debt in return at a fixed nominal interest rate.

The real vs. nominal debt split, even at market prices, still matters for how future unexpected inflation reacts to future shocks. Government can retain control of the real vs. nominal split of its debt in equilibrium. Trades of real for nominal debt at the market price have no effect on the price level. In our equations, the value of \(B_{0,t}\) vs. \(b_{0,t}\) has no effect on the price level. That the Treasury conducts auctions, but the central bank offers fixed interest rates, makes additional sense.
9.4 A price level target via indexed debt

If the government targets the nominal price of indexed debt, then the price level is fully determined. This target can be accomplished by a peg: offer to freely buy and sell indexed debt at a fixed nominal price. Its operation is analogous to a gold standard, commodity standard or foreign exchange rate peg. It offers free conversion of dollars into a commodity of value, next period’s consumption. This peg fully determines the price level, but real interest rate variation induces price level volatility.

Suppose the government targets the nominal price of indexed debt. Indeed, suppose the government pegs that price, committing to trade any quantity of cash or reserves for indexed debt at a fixed time-t price. This policy can nail down the time t price level P_t. In essence, the government runs a commodity standard, with next-period consumption being the commodity.

Here, the government pegs the level of the indexed bond nominal price, rather than peg the spread between indexed and non-indexed debt. The advantage is that this peg determines the price level rather than the expected future price level, and includes the fiscal commitment that fully-determines that level. The disadvantage is that real interest rate variation now adds to price level volatility, unless the central bank artfully adjusts the peg, whereas the spread target nails down expected inflation allowing the real rate to vary according to market forces.

To be concrete, a one-period indexed bond pays P_{t+1} at time $t + 1$. Maintaining the constant real rate and flexible prices, indexed bonds have real time-t value β and nominal time-t value βP_t. Suppose the government pegs the nominal value of such bonds at βP_t^*, i.e. it says you can buy or sell indexed bonds for βP_t^* dollars at time t. Then we must have an equilibrium price level $P_t = P_t^*$. We fully determine the time t price level, not just expected inflation.

As one way to see the mechanism, note that with the peg in place buying bonds gives a real return $1/(1 + r_t) = \beta P_t^*/P_t$. If $P_t < P_t^*$, then the real interest rate is too low and the bond price is too high. At a too-low interest rate, people want to substitute from future to present consumption. More demand for consumption today is more aggregate demand which pushes the price level up.

Specifically, suppose that the government only issues real debt. The government sells bonds b_t at nominal price βP_t^*, real bond price $q_t = \beta P_t^*/P_t$, and soaking up $\beta P_t^* b_t$
9.4. A PRICE LEVEL TARGET VIA INDEXED DEBT

1 dollars. The real flow condition is

\[b_{t-1} = s_t + q_t b_t = s_t + \frac{P^*_t}{P_t} b_t \]

(9.26)

In our frictionless model with a constant endowment, with the opportunity to buy and sell indexed debt at the fixed nominal price, people’s demand for consumption and government debt follow the first order condition and budget constraint, (with \(M_t = 0 \))

\[\frac{\beta P^*_t}{P_t} u'(c_t) = \beta E_t u'(c_{t+1}) \]

(9.27)

\[y + b_{t-1} = c_t + s_t + \frac{P^*_t}{P_t} b_t. \]

Consider a one-period deviation from the equilibrium price level path, with \(P_t \neq P^*_t \) but \(P_{t+j} = P^*_{t+j} \) for all \(j > 0 \). Then the first-order condition (9.27) for all future time periods gives \(c_{t+j} = c_{t+j+1} \), so any extra or lesser wealth is spread evenly across all future consumption. As the price level \(P_t \) falls, consumption demand \(c_t \) rises, and demand to invest in bonds \(\beta (P^*_t/P_t) b_t \) and therefore bonds themselves \(b_t \) and future consumption smoothly decrease. With demand \(c_t \) greater than supply \(y_t \), the price level must rise. Price level determination comes by equilibrium, aggregate demand equals aggregate supply, not by arbitrage. With concave utility, consumption and bond demands do not explode at off-equilibrium prices.

Thus the nominal peg of a real bond is like a gold or commodity standard, or foreign exchange peg. It pegs the dollar in terms of something that is related to the general price level, but is only an imperfect substitute for general consumption: gold, foreign goods, or in this case, next period consumption. A marginal real bond gives the consumer a marginal unit of next period real consumption. By selling a real bond at nominal price \(\beta P^*_t \), the government allows the consumer to trade one unit of future real consumption for \(\beta = 1/R \) units of consumption today, at the equilibrium price \(P_t = P^*_t \). If the actual price level is lower, consumption today is more attractive.

In a commodity standard, the government allows the consumer to trade one unit of the commodities for \(P^*_t \) dollars and hence \(P^*_t/P_t \) units of consumption immediately. If the actual price level is lower, total consumption is more attractive, and the consumer substitutes away from the commodities in the standard to the other goods in the total basket. Doing so drives down the commodity price and up the price level until equilibrium is reestablished. Only if the commodity standard includes all consumption goods, or perfect substitutes, is it an arbitrage.
This is still fiscal theory. When the government issues additional real debt, it must promise additional surpluses to repay that debt. Thus by pegging the nominal value of something real, the government determines the price level. Money today, used to pay off today’s maturing indexed debt, and soaked up by today’s indexed debt issues, is backed by the present value of surpluses.

The indexed-debt peg continues to determine the price level in the presence of nominal debt. However, nominal debt functions differently in this regime than before. Since \(P_{t+1} = P_{t+1}^* \) is set, selling more nominal debt \(B_t \) cannot raise \(P_{t+1} \). And selling more nominal debt cannot change the current price level \(P_t \). Thus, as the government sells more nominal debt \(B_t \), it simply ends up selling less real debt \(b_t \). The split between real and nominal debt remains in the government’s control.

Nominal debt still functions as a buffer, and can play an important part in price level determination. Suppose the government unexpectedly devalues at time \(t \), raising the price level target \(P_t^* \) and therefore raising the price level \(P_t \). This action devalues outstanding nominal debt \(B_{t-1} \), and the present value of surpluses still declines by the amount of that devaluation. A given amount of inflation still produces more devaluation when there is more nominal debt outstanding. Thus, though the decision to sell more nominal rather than real debt does not affect the current or expected future price levels, it can deeply affect the ex-post inflation response to shocks.

The central bank need not vanish. The government may wish to devolve debt management to the central bank. The central bank can manage the indexed-debt peg, exchanging reserves for indexed debt according to the peg, as a corridor central bank pegs a nominal interest rate or as a gold-standard bank exchanges cash for gold. The bank could buy and sell nominal treasury debt \(B_t \) to accommodate maturity and liquidity demands for nominal debt vs. reserves. The central bank could be in charge of setting a time-varying bond price target. And when we introduce frictions to the model, the central bank may set interest rates or quantities of various kinds of debt, as central banks also set interest rates in the analogous gold standard era. Whether all this activity is desirable is another issue, but it is certainly possible.

As we add realism to the model, this policy will not in practice completely fix the price level, for several reasons. First, the real interest rate varies over time, in ways the government is not likely to understand. (In this frictionless model, imagine variation in the endowment \(\{y_t\} \).) This variation motivated the spread target above. With a fixed nominal bond price target \(Q^* \) we have

\[
Q^* = \frac{1}{1 + r_t} P_t^*,
\]
so real interest rate variation will result in price-level variation, unless the government
or central bank knows the correct real interest rate and artfully changes its bond
price target. Another reason for a central bank appears, the same one that holds
with a nominal interest rate target. Likewise, a gold standard, commodity standard,
or foreign exchange rate peg induces price-level variation, unless the government
artfully changes the conversion price to match the market-clearing relative price. No
government tried to do so on a regular basis, leaving devaluation and revaluation for
rare extreme circumstances, a fact that may reflect precommitment problems and
the value of a stated peg as a commitment device. Tomorrow’s consumption is likely
more closely linked to today’s consumption basket than are gold, foreign goods, or
the sorts of baskets of commodities of such proposals, so this proposal improves on
those standards. But it remains imperfect as a means for exactly targeting the price
level.

Second, prices are sticky. One might think of stabilizing the actual price level by
using this proposal at the highest possible frequency. Real interest rate variation
from today to tomorrow is next to nothing. But obviously targeting the overnight
indexed debt rate will not cause the price level today to change, because prices are
sticky for a day. Intuitively, it is clear this proposal must act on a time scale in which
prices are free to move. Like the spread target, that horizon is at least a year and
potentially more. Thus, this proposal may end up being a long-term fiscal rule and
commitment coexisting with shorter-term interest rate, spread, or other targets. But
this conclusion is speculative, and needs analysis within explicit models with sticky
prices. One may expect that just how prices are sticky will matter.

Third, the fiscal underpinnings are vital. To see this and the last point, imagine
we speed up the process to a 5 minute horizon. Suppose the CPI is 250, but the
government wishes to hit a price level target of 200. So, for $200 you can buy a
contract that pays $250 in 5 minutes. Buy! Now, to buy bonds you have to reduce
consumption. But a 5 minute reduction in consumption demand is, in our world,
not likely to reduce the price level from 250 to 200 in 5 minutes. So, the government
maintains the offer. You can use the $250 to buy more bonds, which pay $312.50 in
5 more minutes, and so on. Now something seems to be going wrong. The indexed
debt peg was supposed to be soaking up money, causing disinflation, but instead the
money supply is exploding.

What’s wrong? Well, in the first 5 minutes, the policy does soak up money in ex-
change for indexed debt, and that may even give some downward price level pressure
in the first 5 minutes. Cancel dinner reservations, we’re buying bonds. Each 5 min-
utes that one keeps holding and rolling over the indexed debt, one consumes less and
drives down the price level. This process does in the end soak up money and keep it soaked up into indexed debt.

When the government issues more indexed debt, it also promises larger subsequent surpluses to pay off that debt. Each step in this story raises expected surpluses by just as much as the additional issuance of long-term debt. Eventually, when the price level reaches 200, the merry go round stops, and government gets to work steadily paying off the astronomical accumulated debt with astronomical surpluses. People have a lot of government debt, but also a lot of taxes to pay, so the day does not end with a bonanza in which people spend the money on nonexistent goods and services. But like any promise to deliver something real in exchange for money, like any rule promising future surpluses to retire debt, the scheme works only so long as that fiscal promise remains credible. The 5 minute promise would break down long before the price level declines, as the debt issue and promised surpluses would be immense.

Thus, this story at a longer horizon may describe how an indexed debt target would work with sticky prices. The price level could be persistently above target; during that period people persistently accumulate indexed debt, forcing a fiscal contraction, and slowly drive the price level back to target.

The example also suggests why one might wish to target longer-term debt in the presence of sticky prices. At a one-year horizon, the offer to buy indexed debt at $200 when the price level is 250 is a $100 \times (250/200 - 1) = 25\%$ real interest rate. That’s a good incentive to consume less and drive down aggregate demand. At a 1 day horizon, the offer is a 25\% overnight return, i.e. a $100 \times [(250/200)^{365} - 1] = 2.3 \times 10^{37}\%$ annualized interest rate. That offer, especially if persistent, sends consumption demand essentially to zero. Well, all the better for getting the price level down to 200 in the next 5 minutes. But when prices cannot move in the next 5 minutes, there is no point to doing so, or to force a $2.3 \times 10^{37}\%$ rise in indexed debt via intermediate payments on indexed debt.

Clearly the next step is to develop this idea in the context of explicit price stickiness, as well as in the context of an inflation target rather than a price level target.

9.5 A CPI standard?

A CPI standard that mimics the gold standard by offering instant exchange of cash for some financial contract linked to the CPI is an intriguing idea. The spread target
and indexed-debt target take us half way there.

A gold standard remains attractive in many respects: It represents a mechanical rule, embodying both fiscal and monetary commitments, that determines the price level without requiring prescient central bankers. Nostalgia for the gold standard, and even advocacy for its return, remains active in many quarters. Yet, as we have seen, the actual gold standard will not work well for a modern economy. The relative price of gold and everything else varies over time, so the gold standard leaves substantial inflation volatility. More importantly, in my view, the price of gold is poorly connected to the price of goods and services. The relative price of gold is not exogenous, so the gold standard may settle down the price of gold but leave the price of goods and services unmoored. A gold price peg leads to runs and crashes, most recently to the U.S. in the abandonment of Bretton Woods.

Is there a way to have the advantages of a gold standard or currency peg, without unwanted inflation or deflation when the relative price of gold or foreign currency moves, and in a way that actually will control the price level not just the price of the commodity? How can a government peg the consumer price index?

Most of the components of the CPI are not tradeable, so the government cannot just open a huge Wal-Mart and trade the components of the CPI for money, though it is fun to think of such a scheme. We must design a commitment that trades a dollar for some cash-settled financial contract. I use the word “CPI standard” to refer to such a scheme.

Many authors have suggested commodity standards: In return for one dollar you get a basket of short-dated cash-settled commodity futures – wheat, pork bellies, oil, metals, and so on, or commodities that are physically traded. But commodity values are also volatile relative to other goods and services, and they only a bit more connected to the general price level than is the value of gold, since they are such a small part of the overall goods basket and easily substitutable. Given that loose connection, like gold and foreign exchange pegs, targeting commodity values might stabilize the prices of those commodities, but not have much effect on the overall price level.

One might consider an adaptation of the Modern Monetary Theory proposal for a federal jobs guarantee: Peg the price of unskilled labor at $15 per hour, by offering a job to anyone who wants it at $15 an hour and, on the margin, printing money to do so. But unskilled labor is also a small part of the economy, not well linked to the general level of prices and wages. And such a program presents obvious
practical difficulties. The obvious one from an inflation-control point of view is
that the government must leave the wage at $15 an hour in the event of stagflation,
having low-skilled labor lead other prices and wages down, where the government will
naturally wish the opposite, to help struggling people on the bottom end of the labor
market. Gold mining provides a similar channel: when the price level declines, the
value of time spent mining gold rises, encouraging people to trade time for creating
money. But that too is an imperfect and slow mechanism, and all that work is a
social waste, even more obviously than federal jobs programs.

But we are still targeting individual goods or a subset of goods, which means relative
price changes impinge on the price level, unless a clairvoyant central bank can divine
the correct relative price and adjust the standard as it attempts to adjust the nominal
interest rate. It also means that the peg may do more to peg the relative price of
the commodity and only slowly affect the overall price level.

One might peg the dollar to a basket of real assets, including stocks, real estate,
commodities, and so forth. But then variation in the relative price of real assets
to consumption, so-called “asset price inflation,” would show up in the price level.
When the real interest rate declines long-term real asset prices rise much more than
the price of a one-year indexed bond.

The spread peg and indexed-debt peg can be thought of as improvements in this
scheme. The spread peg ties down the expected future price level, the expected
future rate of exchange between dollars and the entire basket of goods. The indexed
debt ties down the today’s price of next-year’s basket of goods. Next year’s entire
CPI basket is a basket of commodities whose value is, hopefully, more tightly tied
to the value of today’s CPI basket than gold, commodities, foreign goods, and so
forth.

The question remains, is there a way to peg the dollar to today’s basket of goods
via a cash-settled financial contract? I don’t have the answer, but as I ponder the
question I believe it has to be answered in the context of somewhat sticky prices.
Analogously, the continuous-time version of sticky prices made much more sense of a
high-frequency fiscal theory. The CPI standard must allow actual prices to deviate
from the target and move slowly toward it, without offering arbitrage opportunities
that imply infinite fiscal commitments.

The basic structure of the fiscal theory, and its interpretation of our current insti-
tutions, already addresses much of the commodity standard desideratum. Taxes are
based on the entire bundle of goods and services, not one or a few specific goods.
Thus the essential promise of the fiscal theory, bring us a dollar and we relieve you of
a dollar’s worth of tax liability, functions as a commodity standard weighted by the whole bundle of goods, not one particular good such as gold, and without requiring delivery of that bundle of goods.

The gold standard as a peg had other features and shortcomings, in addition to short-run inflation volatility, as discussed in Section 8.3. It is a commitment to pay back debt or suffer default. In practice it led to devaluations, suspensions of convertibility, crises and defaults when those commitments could not be met, as well as long-term price stability when they could. When paired with less than 100% reserves or governments tempted to grab reserves, it leads to a run-like mechanism. That might be a precommitment, but when the runs happen they are unpleasant. Perhaps the option for occasional state-contingent default via inflation should not be so painful.

A CPI standard might inherit these features of a gold standard as well. My humorous example of a 5 minute CPI standard invited essentially a run, and no government could actually pay back the kinds of indexed debt that my example cooked up.

Still, a CPI standard would be an important addition to our understanding of theoretical possibilities. Perhaps there is a better structure than the indexed-debt peg or spread target.
Chapter 10

Pots of assets

So far we have by and large integrated the central bank balance sheet with the rest of government finances. Here we break that link. The fiscal theory is at heart a theory of backing. Money is valued as a claim to something real. So we can think about monetary systems in which money is a claim to a specific pot of real assets, somewhat if not totally isolated from general government finances.

Classic private banks issued money, notes, backed by real investments and reserves such as gold. Most central banks are still structured this way. They hold assets, primarily government debt, and issue money backed by those assets. The ECB was initially unique, in that it created money from nothing, lent it to banks, and counted the promise to repay as an asset. But it too now has substantial securities holdings.

Governments may default on the debt held by central banks, may force central banks to buy debt at over-valued prices, or may grab central bank assets. Central banks can demand recapitalization and are supposed to turn over profits to treasuries. So far, I have therefore fully integrated central bank and treasury balance sheets.

But there is a separate balance sheet, and there are rules that try to isolate the central bank’s balance sheet and prevent inflationary finance. The general government may not print non-interest-bearing currency to finance deficits. The Federal Reserve may not buy Treasury securities directly from Treasury. Treasury securities promise reserves, not more Treasury securities. The general government may not legally grab assets from the central bank balance sheet. Central bank helicopter drops are illegal. When a debt-limit default loomed in early 2009, it surprised many commentators...
that the U.S. Fed cannot actually monetize deficits arbitrarily to avoid default, as much as the mantra is repeated that a country that defines its own currency need never default. The most humorous idea was for the Treasury to issue coins worth a billion dollars, since the Treasury retains the power to issue coins.

So actual central banks lie somewhere on the spectrum between full isolation, with money backed by central bank assets, and full integration, with money backed by general government surpluses. In this way, we can also think about money issued by a supra-national institution such as the ECB, by private institutions, or backed cryptocurrencies.

Let us think, then, about the polar opposite, money backed by pots of real assets.

The design and operation of such systems is not as easy as it sounds. We have to face three related issues: non-tradeability, numeraire definition, and volatility.

Non-tradeability: As before, the most natural backed money is some sort of commodity standard, backed by a supply of the commodity. But we want to stabilize the general price level, and most components of the CPI are not tradeable. So money must be defined in terms of some cash-settled financial contract, and most likely financial assets.

Numeraire: The system must actually determine the price level. It is relatively easy to design money backed by assets when the numeraire is defined elsewhere. Banks issue notes or checking accounts, money market funds issue shares, and a backed cryptocurrency can issue tokens, each backed by portfolios or more or less liquid assets. But both the money so created and the assets which back it are claims to a numeraire, defined elsewhere.

Our task is to create a numeraire, backed by a specified pool of real assets, but without transfer of physical goods, physical assets (titles to factories) or an asset with numeraire defined elsewhere (foreign currency, government currency, gold). It has to bootstrap itself, offering only cash-settled financial contracts to define the value of cash relative to goods.

Volatility: We desire a monetary system with a steady price level or steady inflation. As we have seen the gold standard leads to excessively volatile inflation. Bitcoin will not take over for the same reason. Defining money as a claim to real assets, a share of an index fund, risks similar volatility as real asset values fluctuate relative to goods and services. We spent a lot of time on fiscal rules to stabilize the present
value of surpluses backing money. That quest continues if other dividend streams
back money.

While we’re at it, it is desirable to design systems that are automatic and rule-based,
not needing prescient discretionary management of central bankers.

10.1 Three pots of assets

I describe here three general financial structures by which a pot of real assets –
indexed government or private bonds, stocks, real estate, etc. – can form the backing
for money as numeraire. For concreteness I’ll still call the institution creating the
money a “central bank,” and we can think of the exercise as how to construct an
ideal, completely independent, or supra-national central bank. But the institution
that implements these ideas can also be a private bank, a fund, a special purpose
vehicle, or a cryptocurrency.

These examples, along with the regular vs. price-level budget Section 9.2, make a
general point: The surpluses that appear in the fiscal theory do not have to be general
government surpluses. They don’t have to be government surpluses at all.

10.1.1 Nominal debt and real assets

Suppose the central bank issues nominal debt B_t, and holds a portfolio of real assets
whose value at the beginning of period t is b_t. Then the price level is set by

$$\frac{B_{t-1}}{P_t} = b_t.$$

The bank alone determines both expected and unexpected inflation, and the price
level. We can write this relation as the usual present value formula, replacing b_t by the
discounted present value of its real income stream. The central bank sets expected
inflation as before, by varying B_t without changing the amount of real securities,
effectively by share splits, or equivalently by a nominal interest rate target. Given
the incoming B_{t-1} and the value of real assets b_t, the price level at time t is set as
well.

The B_{t-1} on the left-hand side includes only the central bank’s nominal debt issue.
The numeraire in this economy is maturing central bank nominal debt only, i.e.
central bank reserves and cash. Governments may issue nominal debt, but their debt is a promise to deliver central bank reserves, just as corporate nominal debt promises to deliver central bank reserves. The latter in fact is our institutional structure. The U.S. Treasury and European governments must repay nominal debt with central bank reserves. They may not directly create such reserves. So reality departs from this ideal primarily on the asset side of the central bank balance sheet.

The asset side of this central bank must be real, meaning that its real value does not vary with the price level, or at least it must not vary with the price level exactly as does the liability side in a way that \(\frac{P_t}{P_{t+1}} \) cancels. It is desirable that the value of real bank assets are safe in real terms as well, in order to minimize inflation volatility. The real assets may be government indexed debt, but could also be private indexed debt or real assets such as stocks and real estate, and may include contingent payments to and from the government.

This setup creates a numeraire. It determines the price level even though \(b_t \) consists of indexed debt or private real securities, which pay cash. To see this fact, write the nominal value of dividends or indexed-debt coupons on the central bank’s real assets as \(P_t s_t \) each period. Then we recover our old friend

\[
B_{t-1} = P_t s_t + Q_t B_t = P_t s_t + \beta E_t \left(\frac{P_t}{P_{t+1}} \right) B_t,
\]

with a new interpretation: Each period the central bank prints up money, creates reserves, to pay off indexed debt \(B_{t-1} \), or as before we simply use maturing debt that promises “a dollar” as numeraire. The issuers of the indexed bond \(b \) must come up with enough cash or maturing central bank debt to pay the central bank, either by selling goods or by taxation. This payment now soaks up money. The bank sells new debt \(B_t \), either fixing a quantity or offering any quantity at a nominal interest rate target \(Q^* \). Nobody wants to hold non-interest paying money at the end of the period.

The same equilibrium-formation stories hold. For example, if the price level is too low, the bank receives less cash from indexed debt holders. Real revenue from new central bank nominal debt sales \(E_t (B_t/P_{t+1}) = E_t \sum_{j=0}^{\infty} \beta^j s_{t+1+j} \) is unaffected, and independent of debt sales \(B_t \). But nominal revenue, cash soaked up by bond sales is too low. As people try to spend the extra cash, the price level is restored.

The central bank may buy and sell real assets without affecting price level determination. Let \(s_t \) now denote the dividends per share of the central bank’s asset holdings
Let
\[q_t = \beta E_t \sum_{j=0}^{\infty} \beta^j s_{t+1+j} \] (10.1)
denote the end-of-period real price per share and let \(b_t \) denote the numbers of shares, previously 1, that the central bank holds at the end of period \(t \). Then the flow equilibrium condition is
\[\frac{B_{t-1}}{P_t} = b_{t-1}s_t + \beta E_t \left(\frac{B_t}{P_{t+1}} \right) - q_t (b_t - b_{t-1}) . \] (10.2)

Money printed up to pay nominal debt is soaked up by the dividend the central bank receives, by sales of new nominal debt, and now by sales of real assets. The budget constraint adds the usual \(M_t \) on the right hand side. We still have a unique equilibrium
\[\frac{B_{t-1}}{P_t} = b_{t-1}E_t \sum_{j=0}^{\infty} \beta^j s_{t+j} = b_{t-1} (s_t + q_t) . \] (10.3)

Now, any increase in real debt holdings, the last term of (10.2) is matched exactly by an increase in the value of its nominal debt issues, the middle term of that equation, as each is now a claim to larger real assets. A bit formally, substituting (10.1) in (10.2) and rearranging,
\[\frac{B_{t-1}}{P_t} - b_{t-1}E_t \sum_{j=0}^{\infty} \beta^j s_{t+j} = \beta E_t \left(\frac{B_t}{P_{t+1}} - b_tE_{t+1} \sum_{j=0}^{\infty} \beta^j s_{t+1+j} \right) . \] (10.4)
so to avoid an explosion, violation of the transversality condition, we have zero on both sides and hence (10.3).

10.1.2 A right to buy real assets

To tighten the link between money and its backing, the bank could offer people the right to exchange money for the real asset, either at market price or at a fixed price. Control of either the real or nominal balance sheet is not necessary or desirable for price-level determination.

Such offer at market price is just a reiteration of the statement that the quantity \(b_t - b_{t-1} \) is irrelevant for price level determination, so the bank may allow this quantity...
to be determined passively, accommodating liquidity demands. A peg could be useful
to more closely tie the value of central bank liabilities, money, to the value of its
assets. The bank is essentially a closed-end fund, and closed-end fund values deviate
from asset values. A peg allows the bank to become more like an open-ended fund
or exchange-traded fund.

Suppose the bank fixes the nominal price per share of its asset portfolio,

\[Q^*_t = Q^r_t = P_t q_t, \]

(\(r \) for real to distinguish this price from the price of nominal bonds, and \(* \) for a
target) and allows people to buy and sell freely at the fixed price. This action can
change the price level because it allows the central bank to change the real value of its
asset portfolio relative to the value of its nominal liabilities. Defining \(P_t^* = Q^*_t / q_t \),
the flow equilibrium condition becomes

\[\frac{B_{t-1}}{P_t} = b_{t-1} s_t + \beta E_t \left(\frac{B_t}{P_{t+1}} \right) - \frac{P_t^*}{P_t} q_t (b_t - b_{t-1}). \]

With equilibrium from \(t + 1 \) onward,

\[\beta E_t \left(\frac{B_t}{P_{t+1}} \right) = q_t b_t, \]

we have

\[\frac{B_{t-1}}{P_t} = b_{t-1} s_t + \beta \left[b_{t-1} + \left(\frac{P_t^*}{P_t} \right) (b_t - b_{t-1}) \right] E_t \sum_{j=0}^{\infty} \beta^j s_{t+1+j}. \]

Now sales or purchases \(b_t - b_{t-1} \) at the fixed price affect the price level \(P_t \).

If \(P_t^* > P_t \), i.e. if the nominal price peg is high, then people will want to sell
assets to the bank, \(b_t - b_{t-1} < 0 \). This action lowers the present value of surpluses
on the right-hand side and pushes up the price level \(P_t \). Equilibrium happens at
\(P_t = P_t^* \).

10.1.3 Shares as money

Finally, we might eliminate nominal debt entirely. Suppose the bank simply sells
shares in its portfolio, and we use those shares as money. Money is defined as \(1/N \)
of the central bank asset portfolio. It is as if we quote prices in terms of shares of a large index fund. The shares clearly have a value, except for the numeraire and cash-settlement problem. If a company pays dividends that are just more shares of the same company, can those shares have value? The answer is yes, but it takes some analysis to see it.

To keep it simple, let us build our monetary system on a potato farm. The farm has \(N \) shares outstanding. The farm sells \(s_t \) potatoes each day, in return for its own shares. Let \(P_t \) denote the number of shares per potato in the potato (goods) market. Each day, consumers use \(P_t s_t \) shares to buy and eat the potato, leaving \(N - P_t s_t \) shares outstanding. But then the firm gives the \(P_t s_t \) shares back to the remaining shareholders as dividends, so the same number of shares are outstanding at the end of the day. This budget constraint does not determine the price level \(P_t \), but consumer optimization and equilibrium do.

The flow dividend is \(P_t s_t \) shares. A share gives the owner a right to receive \(P_{t+j} s_{t+j} / N \) shares. The real value of a share (in terms of potatoes) at the end of period \(t \) is thus

\[
E_t \sum_{j=1}^{\infty} \beta^j \left(\frac{P_{t+j} s_{t+j}}{N} \right) = \frac{1}{N} E_t \sum_{j=1}^{\infty} \beta^j s_{t+j}.
\]

Though shares just give the right to more shares, one can use shares to buy potatoes, so the real value of shares is the same as if the dividends to a share actually delivered potatoes.

The real value of a share in the goods market must be the same as the real value of a share in the asset market. Thus, we conclude that the price of potatoes in terms of shares in the goods market must also satisfy

\[
\frac{N}{P_t} = E_t \sum_{j=1}^{\infty} \beta^j s_{t+j}.
\]

In sum, yes, the price level is determined if we simply use shares of a real asset, and those shares only promise more shares.

Naturally, we replace potatoes with the dividend stream of a portfolio of assets such as stocks and bonds. Call the shares “dollars.” Companies sell goods for dollars, pay wages in dollars and make payments to their stock and bondholders in dollars. Dollars only give the right to receive more dollars, yet have a unique value in the goods market. The key: it must be a real asset, not a nominal bond, and the coupon payments must increase with \(P_{t+j} \).
The success of these three schemes depends on how stable the right hand side, the value of real assets, can be, and how well in practice they tie down the price level. That will vary in each institutional context. Clearly, a stock fund with stream of dividends representing \(\{s_t\} \) will lead to volatile inflation. For quiet inflation, we need institutions that generate a surplus stream with a small \(a(\rho) \).

10.2 A powerful central bank

Suppose the central bank issues nominal debt against a portfolio of real assets, which can include indexed treasury debt. Now the surpluses of the fiscal theory are the earnings on the portfolio of real debt held by the central bank, and the value of the surpluses is the value of the central bank’s portfolio. This arrangement separates and clarifies what resources back money and nominal debt actively, and it puts price level control entirely in the hands of the central bank. This structure is one way to think of a central bank in an ideal currency union.

We return to the institutional separation between treasury and central bank. So far, the central bank has been limited to controlling expected inflation by setting a nominal interest rate target or the supply of nominal debt, holding surpluses constant. With a fully integrated balance sheet, unexpected inflation came only from fiscal policy. Here, the central bank can completely determine the price level if it has a stock of real assets that back its nominal debt, and both assets and debt are separated from those of the general government.

Now, let central bank assets include government debt. We can think of this setup as a fiscal rule, a way of guaranteeing the stability of the stream of surpluses that back the nominal debt that determines the price level, while perhaps the remaining surpluses vary more and other debts may even default. We achieve the fiscal rule by carving out safe and visible tranche of surpluses held by the central bank.

The art of inflation control, by controlling the stream of surpluses that back nominal debt, has been with us for several chapters. We started by thinking about how the government can commit to repay all its debts, or not – how to commit to \(a(\beta) = 0 \), how to commit to a steady \(E_t \sum_{j=0}^{\infty} \beta^j s_{t+j} \), in face of large variation in \(s_t \). We set up a regular vs. a price-control budget and surplus rules that depend on the price level to this end. With a separate central bank, we can instead carve out a stream of coupon payments to central bank assets only, apart from general surpluses and debt. The government need only control and communicate a steady value of central
bank assets in order to produce a quiet price level, while the rest of the governments’ surpluses, deficits and debts may vary widely and even include defaults. We can know the value of a central bank asset portfolio. We don’t have to guess about future surpluses. (Central banks are, however, remarkably reluctant to mark their portfolios to market, a fact that bears further thought.)

In our picture of the government debt valuation equation,

\[
\frac{B_{t-1}}{P_t} + b_{t-1} = E_t \sum_{j=0}^{\infty} \beta^j s_{t+j},
\]

a typical government goes through waves of larger and smaller debt, occasioned by periods of deficits followed by periods of surpluses. The numerator \(B_{t-1}\) on the left and the present value of surpluses on the right each vary through time, hopefully in the same way to produce a stable \(P_t\). We have to cut through this large variation in debt and large variation in present value of surpluses, to see the small changes in debt that are not backed by surpluses, or the small (hopefully) unbacked deficits that result in inflation. And so do people in the economy.

This ideal central bank can, by contrast, issue a stable quantity of nominal debt backed by a stable and visible quantity of real debt, with stable real coupon payments. Even if its balance sheet and that of the general government are in the end totally integrated, this arrangement can communicate the fiscal rule and separate budgets described before. Keeping a steady $20 in your right pocket and letting debts and repayments accumulate in your left pocket can assure the recipient of a $20 IOU that it will be repaid. The large variation in total government debt goes on in the background, separately and clearly distinguished from a stable quantity of debt backing central bank nominal issues.

In this vision, we want the central bank to hold assets whose value is stable. The preference for central banks holding debt rather than equity, and short-term debt at that, makes a lot of sense in the quest for a stable asset value to back money. And such a bank is even more able to control inflation and deflation the more that central bank assets are insulated from general government surpluses and deficits.

To control inflation, it is useful to have an institutional structure in which the central bank’s holdings of government debt are special, allowing the government to haircut or partially default on non-central bank debt if it does not wish to or cannot raise taxes or cut spending. If we want general government debt to inflate out of some fiscal problems, then we wish to allow the general government to finance some deficits by unbacked expansion including the central bank’s holdings. Then one wishes for
central bank debt that is only beatified, but not quite saintly. And if we really want inflation then it is useful for the general government to be able to selectively default on central bank assets alone, or to confiscate some, or to replenish central bank assets to control inflation.

This line of thought leads to discrimination between the government debt held by the central bank and other government debt, or contingent payments to and from central banks differentially from other bond holders. Such discrimination between categories of debtholders is commonplace in defaults. \cite{Hall and Sargent (2014)} give a lovely account of defaults and inflation that discriminated between categories of debt in U.S. history. One can easily imagine that the general government defaults on debt held by the public, but not on debt held by the central bank, offering different haircuts to different investors, different forced redemption offers, via taxation, or other devices.

Central bank assets also include private assets or foreign currency debt, swaps, or debt from several governments in a currency union. Such diversification solidifies backing of nominal debt even if the general government runs into trouble – as long as it’s hard for the general government to grab them. This thought also verifies that central banks should diversify more when their general governments have greater fiscal problems, as they seem to do.

The relevance of limits is an important practical limitation to this setup. If there is only one dollar of central bank debt outstanding, and one dollar of central bank assets, it is unlikely that a 10% change in either will swiftly lead to 10% inflation or deflation. The mechanism by which the price level changes, by which the value of assets becomes equal to the value of liabilities, is weaker when we isolate a smaller set of assets backing a smaller amount of nominal debt. Viewing the options, adjustment through interest rates that spread to other parts of the economy seems the strongest mechanism, which makes sense of why central banks focus so much on interest rates.

The problem: In this vision so far, absent a peg or redemption promise, the central bank has become essentially a closed-end mutual fund. Already closed-end fund shares trade at substantial discounts or premiums to their net asset value. The situation is worse for this ideal central bank, as the price of everything else has to change, not the price of the closed-end fund shares. If the central bank’s liabilities are worth more or less than its assets, what can you do about it? Like a closed-end fund, not much. Short positions are expensive to maintain, and take a long time to converge. Sure, if you could trade the whole portfolio of central bank debt for its
whole portfolio of assets, you’d come out ahead, but you can’t do that. If the central bank lets you trade some nominal debt for some of its real debt at market prices, you do not profit. And the central bank may choose not to trade. A central bank can survive for a long time with liabilities worth less than assets or build up a large real asset buffer. The wealth effect of nominal government debt is smaller when it becomes only a wealth effect of central bank debt.

To clarify, think about forces pushing the price level to equilibrium as we did in the context of general government debt. The central bank’s budget constraint states that nominal debt outstanding is soaked up by new nominal debt, additional real debt, or non-interest bearing money,

$$\frac{B_{t-1}}{P_t} = (b_t - \beta b_{t+1}) + Q_t \frac{B_t}{P_t} + M_t.$$

(Here the value b_t includes any time-t dividends.) As before, the consumer could be off one of three equilibrium conditions in this situation: zero money demand, intertemporal substitution underlying bond prices, or the transversality condition giving a wealth effect. Start with the last: If $M_t = 0$, and $Q_t = \beta E_t (P_{t+1}/P_t)$ we have

$$\frac{B_{t-1}}{P_t} - b_t = \beta \left[E_t \left(\frac{B_t}{P_{t+1}} \right) - b_{t+1} \right].$$

The deviation between nominal debt and central bank backing is expected to grow over time. The real value of central bank nominal debt grows larger, violating the transversality condition, even if the real debt b is paid by taxpayers. (This is the same argument as in (10.4) with simplified notation.) Consumers should raise consumption at all time periods to get rid of this wealth. But central bank nominal debt is a small fraction of wealth. If the coins in your sock drawer are worth 10% more than they should be, that eventually makes you feel wealthier and spurs you to greater consumption, but not urgently. It will be a long time before that extra source of aggregate demand pushes the price of everything else up 10%.

Perhaps, as above, the too-low price level corresponds to money that will be left over, contravening money demand $= 0$. But again, the smaller the size of the central bank the weaker that economic force. If we think of pennies in your sock drawer as needless central bank nominal debt, it still takes a while to get around to spending them and for that to drive up all prices.

Bond prices offer the strongest mechanism and the most likely route to think about price level determination with a relatively small quantity of central bank debt. Imagine that the price disequilibrium occurs because the nominal bond price is off,
$Q_t \neq \beta E_t(P_{t+1}/P_t)$. Now, again all that matters is that the first order condition for central bank nominal debt is wrong, $u'(c_t) \neq Q_t^{CB} E_t[\beta u'(c_{t+1})P_{t+1}/P_t]$, not necessarily the full intertemporal allocation of consumption. If other asset prices are in line with consumption, there is little pressure on overall consumption. But since arbitrage links central bank interest rates to other interest rates in the economy, this latter divergence is less plausible. If the central bank interest rate is too low, it is likely all rates are too low, and this fact should spur consumption now at the expense of later. If the central bank interest rate bleeds to other assets, then central bank assets have force beyond their size. This line of thought offers a reason why central banks follow interest rate targets and worry a lot about their interest rates spreading to other rates that allocate consumption and investment.

The potential weakness of the economic mechanism forcing the price level to change so that central bank assets equal liabilities leads one to think of some conversion promise, a peg, to the central bank, as discussed in previous sections. Unlike closed-end funds, open-ended funds and exchange-traded funds are always priced very close to net asset value. The gold standard was a standard, working more successfully when people had the right to exchange currency for gold, and less well as a target with no such right, as increasingly was the case from 1933 to its eventual complete disappearance in 1972. Thus, the offer to buy and sell the central bank’s portfolio at a fixed nominal price is attractive for strengthening the link between its asset value and liabilities. Of course, the more the central bank holds risky, illiquid, and long-term assets, the more difficult such a target is.

There is much more to think about in how to set up a central bank that fully determines inflation from a fiscal theory perspective, and how to analyze existing banks in this framework. Central bank assets are typically longer-term debt, and may suffer from credit risk. Some central banks hold stocks. Most smaller country central banks hold large foreign reserves, which are in some sense a real asset. The liabilities are typically short term nominal debt, while the assets are typically longer-term debt and may carry credit or price risk. The divergence in maturity and risk structure needs analysis.

Since central bank liabilities are typically overnight debt, the vision of inflation that causes a price-level jump is clearly unrealistic. It is better to keep in mind the continuous-time treatment with sticky prices, in which a period of inflation leads to a period of low real returns that devalue even short-term debt without price-level jumps. I also left out the distinction between zero-rate currency and interest-paying reserves, and zero bound or negative interest rate issues.
10.2. Nominal debt, contingent transfers, and the ECB

In reality, most large country central banks hold almost entirely nominal government debt, not the real assets of the last few sections’ speculations. This fiscal theory treatment suggests that perhaps they should start to hold more indexed debt, more foreign currency debt, more real assets, or engage in CPI swaps, but they don’t.

But central banks do hold balance sheets. There is an attempt at backing, and a separation between central bank assets and general government finances. We should ask why, though surely some of the answer may in historical functions that no longer apply.

Imagine a central bank that holds only short-term risk-free non-government nominal assets. For example, it might create reserves, lend them to banks, and count the corresponding loans as assets. Interest paid on the loans pays interest on reserves, so interest payments just go around in a circle. This is, roughly, how the ECB was originally set up.

Now, one key foundation of the fiscal theory is that the price level can be determined if there are always sufficient assets to mop up unwanted money. In this system, there are. The government does not need to run surpluses to mop up all the money in this economy. Thus, one might envision a managed system that produces a determinate price level. The central bank lends more reserves if the price level is below its target and calls in lent reserves in the opposite case. It always has enough assets to soak up all the reserves if necessary.

But such a system depends on a monetary friction, some special demand for reserves related to the price level, and coming from natural demand or from regulation. In our completely frictionless model people are happily to hold arbitrary amounts of interest-paying reserves backed by interest-paying loans, and arbitrarily less of such. The managed price level vision needs some reason that soaking up money lowers the price level and issuing more boosts it. If money demand and money supply determine the price level, then having a central bank with nominal assets sufficient to mop up the money supply ensures this can be done. But as money demand vanishes, or when banks pay full interest on reserves as they now do, that story evaporates.

However, central banks also have contingent arrangements with their governments which may provide a real backing even with nominal assets. Central banks usually profit from the interest spread between assets and liabilities. Central banks rebate this profit to the Treasury, or spend it by employing economists and other staff, and increasingly use it to make subsidized loans. Both are a direct form of fiscal policy. If
interest income increases, central banks rebate more to the Treasury or spend more
directly. If interest income declines, they rebate less to the Treasury. In the other
direction, central banks are recapitalized by their Treasuries. For example, the ECB
website\footnote{https://www.ecb.europa.eu/explainers/tell-me-more/html/ecb-profits.en.html} explains that profits are used first of all to fund its operations. Assets are
then held inside the bank as a provision against future losses.

“But after that, any remaining ECB profits go to the national central
banks of the euro area countries, as the shareholders of the ECB... profits
usually go to the country’s government, thus contributing to its budget...”

In the other direction, should the ECB ever lose a lot money, it has the right to call
up member governments and demand recapitalization. This provision would also
address substantial defaults imperiling the value of ECB assets, an event that is less
and less impossible as the ECB adds shaky sovereign, corporate, and deliberately
overvalued green bonds to its portfolio. Those debts are either in the end backed by
general EU taxes, or will be inflated away.

These contingent streams are an important mechanism linking central bank and
general government balance sheets. It is in the end fiscal theory applies to the
ECB as well. We can also see these contingent transfers as a way to manage the
value of central bank assets, in a way that potentially changes nominal assets to real
assets. If the Treasury accepts lower profits or recapitalizes the central bank in times
of inflation and vice versa, then a nominal set of assets becomes real, almost like
writing a CPI swap.

\cite{Del Negro and Sims (2015)} study this situation, showing that even apparently in-
dependent central banks, with access to seigniorage and term premium profits and
ostensibly separate balance sheets, must have access to such fiscal support. \cite{Bassetto and Messer (2013)} model explicitly the situation of a central bank that issues
interest-bearing reserves as well as non-interest bearing currency, noting in extremis
“the CB faces two options: either it is recapitalised by Treasury or it increases its
monopoly profits by raising the inflation tax.” \cite{Bassetto and Sargent (2020)} have an
excellent discussion, “two government budget constraints” of a central bank with a
balance sheet that is at least in theory separate from the treasury. In their analy-
sis, summarizing also \cite{Sims (2004), Sims (2005)}, a central bank that holds nominal
government debt cannot determine the price level. “Only the Treasury can provide
a fiscal backstop.” A central bank that holds real assets, gold reserves in their case,
can determine the price level.)
The ECB was supposed to be a central bank divorced from government budgets. Part of this arrangement was supposed to be that the ECB does not monetize sovereign debts. In a currency union without fiscal union, insolvent countries are supposed to default, just as insolvent corporations default, or obtain direct fiscal support from generous neighbors, or from the IMF. This provision was always a bit in doubt. Companies are not required to have debt and deficit limits to operate in the dollar zone, because we all understand they default if in trouble. (Well, ideally. Corporate bailouts are becoming more common too.) That the Eurozone put debt and deficit limits in place was already a sign that a hard-nosed attitude toward sovereign default might not prevail, and that the ECB would rather not face the temptation. The Greek affair, “whatever it takes” and subsequent sovereign and corporate bond purchases clearly show the rule against monetizing debts in practice, or bringing them on to a general EU balance sheet, is more elastic. If so, the ECB will become a more classic fiscal theory of the price level operation, money backed by collective general government surpluses, not one with a segregated and more solid asset base; though the collective nature of the surpluses backing the euro invites many actors to race to the bottom of deficits. The U.S. should not sneer, as bailouts of student debts, pensions, housing, and state and local governments loom similarly.

Even without contingent transfers, the price level does not exactly cancel from central bank balance sheets that hold nominal assets. Central banks typically hold longer-term assets than their liabilities. Central banks, including the ECB, also hold substantial foreign assets. Swap transactions complicate the picture. Just how central bank assets and liabilities respond to inflation is a good question for deeper investigation.

We can also think of the central bank balance sheet as a set of reserves. In any backing by illiquid assets, it is useful to have liquid reserves in the event of a run. Yes, in the end currency is backed by the willingness of the government to soak up money by issuing debt, and credibly promising future surpluses to do it. But it’s handy to have a stock of pre-sold treasury debt rather than wait for a debt issue.

And to some extent, central bank balance sheets may be something of a historical relic from the gold standard and fixed exchange rate era. In that case government bonds are real assets backing the bank’s nominal liabilities.
10.3 Backing

The fiscal theory is at heart a backing theory of money. The present value of future surpluses is long duration, and can be made stable if the government is below its fiscal limit. This system has advantages over previous backing, such as bank issued money backed by real estate loans and stabilized by an equity tranche.

The fiscal theory is, at heart, a backing theory of money. It does not deny a liquidity demand and consequent liquidity premium for money or for government securities, but we build those as distortions on a basic model of backing.

Many different kinds of backing have been tried to give value to paper money and nominal government debt. Gold coins are, in a sense, money that carries with it its own backing. 19th century bank notes, and 20th century checking accounts are privately-provided money, backed by the loans and their real estate collateral that constitute bank assets, a modest amount of reserves, and less the value of bank equity that stands as a buffer before those money-like liabilities default. In these cases, the money is a promise to deliver government currency or gold coin, so the price level is set primarily by those arrangements. But the backing still serves to maintain the value of the private money in terms of that government currency, so we can consider the question of how bank notes and checking accounts keep their value relative to government currency in the same way that we study fiscal backing.

Many other backing schemes have been tried over time. Among many interesting examples, Sargent and Velde (1995) describe a number of monetary innovations in the French revolution, including Assignats: The revolutionary government had seized church property. It needed revenue, but it would take time to sell off the church property. It issued assignats, a form of paper money, backed as shares in the proceeds of church asset sales, and without explicit promises of value. Unlike many of the government’s previous monetary experiments, this one did not immediately lose value, at least until the government printed more assignats than the backing would allow. John Law’s previous effort to back paper money, by the gold that would soon be discovered in Louisiana, failed when that backing proved illusory.

Backing money by loans and mortgages is a reasonably good arrangement. There are a lot of loans and mortgages – real estate is the largest element of the capital stock, and was more so historically, so a large quantity of money and other liquid assets can be issued backed by real estate. Furthermore, two layers of equity make the value of resources promised to back money stable. Bank assets are loans, collateralized by real estate, and the bank itself has an equity claim to absorb losses. Loans and real
10.3. BACKING

estate are also very long-lived assets.

The fiscal theory of the price level describes a government money, backed by the present value of future fiscal surpluses. That backing has considerable advantages over backing by real estate loans. First, it is even longer lived – the present value of government surpluses is one of the few assets with longer duration than mortgages.

Second, mortgages are notoriously illiquid. If the time comes that people test the backing, banks have to sell mortgages or foreclosed property. Solvent banks can borrow against their assets – but it’s hard to tell illiquid from insolvent, and in any case this expedient does not increase the overall stock of assets in a systemic run. This asset illiquidity is a central ingredient in all our financial crises.

The government, by contrast, has a unique ability to raise the revenue stream that backs its money, so long as there is some fiscal space to the top of the present-value Laffer curve or some political and economic space to cut expenditures. The present value that backs FTPL government money is made stable, in the first instance, by the government’s ability to raise and lower surpluses as needed. That attribute allows the government to promise a steadier path of surpluses than any backing by private assets could do. In particular, the events in which real estate loans default, and bank equity is wiped out, so bank money loses value are more common than the events in which the government cannot raise surpluses and its money must inflate. Or so it has been in the postwar history of advanced countries.

Third, government debt is only a promise to pay more government debt. It is uniquely free of explicit default. It can be its own currency and unit of account. Bank deposits promise payment in some other currency, they don’t try to define their own currency.

Fourth, government debt is, now, in abundant supply. One might have worried in the past that there simply was not enough government debt to supply liquidity needs, that banks were necessary on top of a government currency to “transform” illiquid real estate assets into a pool of liquid liabilities. No longer. And, fast transactions technology means it is no longer necessary to hold vast quantities of fixed-value assets to make transactions, nor to hold the asset that will be used to make the transaction for a very long time before or after that transaction.

All of these are good reasons that we have evolved from money backed by loans, defined by gold, to short term government debt as numeraire, backed by fiscal surpluses – and why it likely made sense not to do so in the past.
But primary surpluses are not a perfect backing either. Governments occasionally default or inflate. Our governments may be headed in that direction. Historically, over the last 1000 years, government debt has been generally risky.

The general principle of the fiscal theory remains – a numeraire can be valued by its backing – but perhaps we can find sources of backing are better than the arrangement we seem to have evolved toward, that short-term nominal government debt is numeraire, and money is backed by a stream of fiscal surpluses via an effectively integrated central bank and government balance sheet. The euro is already an innovation relative to national currencies, and at least in its original design provided a second buffer between the assets pledged to back money and general government surpluses. Other possibilities beckon.

10.4 After government money

A private currency could also define a standard of value, backed by a portfolio of assets as government money is backed by fiscal surpluses. Current cryptocurrency proposals are not fully backed. Achieving a potential numeraire is harder than achieving a stable value cryptocurrency.

We have converged on a monetary system in which short-term nominal government debt is the numeraire, unit of account, and by and large medium of exchange. Most transactions that are not simply netted (more and more) involve the transfer of interest-paying reserves, which are government debt. Government debt is the “safe asset” and best collateral in financial transactions. I have structured most of the fiscal theory discussion around this institutional reality.

10.4.1 Government debt is not perfect

It was not always so, and it may not always remain so. Monetary systems based on government debt have failed before, and they may fail again. I doubt that our economy will transition to another system before another crisis, as it is human nature not to embark on grand adventures when the current system is working reasonably well. But in the event that happens, or in the rare event that innovation precedes a crisis, it’s worth thinking about alternative arrangements, and not just better ways for governments to manage a system built on their nominal debts as the rest of this book imagines.
A failure of our fiscal-monetary arrangements is not unimaginable. The U.S. has had inflation before. Other advanced countries have had severe inflations. Many countries, even advanced western countries, have had debt crises and exchange rate crises. The U.K. had repeated crises in the 1950s through 1970s. The U.S. arguably had a debt and currency crisis in the early 1970s when it abandoned gold and Bretton Woods. It can happen again, and it can happen here. Many advanced countries have 100% or larger debt-to-GDP ratios, persistent deficits, health care and pension promises that they cannot keep, and sclerotic growth. We all live on the $r - g$ cusp. Debt and debt service are not a problem with r as low or lower than the discouraging g, but a rise in r would leave us in dire fiscal straits.

In the aftermath of the 2008 crisis and 2020 pandemic it now seems to be that any crisis will be met by immense bailout and stimulus spending, based on newly-borrowed debt or newly-created reserves. Imagine that a new global recession, or war, leads to defaults by, say, Italy, China, and U.S. states. Now, the U.S. federal government will try to borrow additional trillions or tens of trillions of dollars to bail out banks, businesses, households, state and local governments, pension funds, retirement funds, and student debts, plus stimulus spending, plus, as usual, rolling over something like half the stock of debt per year, all in a steep recession, perhaps accompanied by another pandemic or international crisis, and while other countries are selling their treasury reserves. But this time, it all starts from 150% debt to GDP ratio, with large deficits, unreformed entitlements, even more polarized politics and even less of a clear idea how any of it will be paid back. At some point bond markets say no, even to the U.S.

If the result were only inflation, we would be lucky. Massive distribution of borrowed or printed money seems to be our only remedy, and in this event the fire house has burned down. A sharp inflation, which would sharply devalue government debt, would likely cause a profound restructuring of monetary and financial arrangements. An actual default, or a haircut or restructuring of U.S. debt is not inconceivable either. In the midst of a crisis, will our Congress really prioritize interest and principal payments to what it will surely regard as Wall Street fat-cats, “the rich,” and foreign central banks, over sending checks to needy Americans? But an actual default, even a small haircut, on U.S. Treasury debt would cause chaos in a financial system that treats such debt as safe collateral. If the government fails to bail out as expected, the credit card and ATM machines could go dark. A hint of such default in the future would cause inflation, devaluation and chaos already. The possibility that the U.S. might not be able to bail out all and sundry would likewise cause an intense panic. Such an event would indeed provoke radical change.
It’s unlikely, but it could happen. Earthquakes are unlikely and rare too. Our monetary system has evolved from its predecessors, but evolution is not perfection. Many past monetary systems seemed to work well for a while, and ended with rather spectacular failures, starting with John Law’s, and substantially different monetary arrangements in their wake.

Less darkly, perhaps a spirit of free-market reform will take over, or competition in financial arrangements will lead to the emergence of an alternative standard, as the cryptocurrency advocates suggest.

So, what are the alternatives to a monetary system based on short-term nominal debt as numeraire, backed by general government surpluses, managed by a central bank following an interest rate target?

The most obvious reforms further separate monetary backing from general government finance. Explicit government equity in the form of GDP-linked bonds, additional fiscal precommitments to ensure monetary backing, are all obvious avenues for improvement if inflation and sovereign default threaten the monetary system. Money can be backed by a pool of private assets, and the pool of assets backing money can be more segregated and more stable than generic government surpluses, as in my above vision for an “ideal” central bank. Central banks owning corporate bonds or indexed bonds or even stocks are, from this point of view, useful ideas, though government purchases of private assets raise lots of other problems, as much political as economic.

In this vision, the response to a future sovereign debt crisis or inflation will continue to be a government-provided currency, but with a more potent separation of fiscal from monetary affairs. The official Meter sits in Paris, defining the unit of length. The official euro sits in Frankfurt, defining the unit of value, well-backed, and this time insulated from government finances. Sovereigns default if they get in trouble, or offer more equity-like securities that fluctuate in real value without the legal distress of actual default. Conversely, if deflation becomes a serious threat, additional separation of monetary backing from general fiscal backing, and institutions to commit to unbacked fiscal expansion, may emerge.

Of course, this vision both eschews the corporate-finance advantage of an equity-like nominal debt, and the conventional arguments for local monetary policy to offset local shocks by inflation and devaluation. Après le déluge, perhaps devaluation and stimulus will not seem such useful tools, and price stability may reappear as a primary and difficult goal of monetary institutions, as it was for centuries. If sticky prices are a problem, perhaps governments will be encouraged to undergo
microeconomic reforms to remove the legal restrictions that make prices sticky, rather
than to encourage central banks to manipulate stickiness to our supposed benefit.
Or, countries can establish pegs to the standard of value and devalue when they
think appropriate.

10.4.2 Private currency

What other alternatives can we think of? Can a private standard of value function?
This question may be, at the moment, a bit of libertarian fantasizing. But it is
a line of thought brought to the fore by the cryptocurrency movement. And to
round out our understanding of monetary theory, we should at least ponder if a
completely private standard of value can work in a modern economy, or whether it
is an essentially government function.

The basic lesson, I think, of the fiscal theory and the last several hundred years’ expe-
rience is that only a backed money can have a long-term stable value, and especially
so in our era of rampant financial innovation.

The promoters of Bitcoin and other similar cryptocurrencies seem to be re-learning
classic monetary economics very slowly. They feature great technical innovation, but
as far as I can see not one iota of monetary or financial innovation relative to our
known list of monetary and financial possibilities. Bitcoin is entirely a fiat money,
with no backing or intrinsic value. There is some demand, similar the transactions
demand for money, though in this case fueled by the anonymity of Bitcoin trans-
actions more than by their convenience. And, crucially, Bitcoin supply is limited.

\[MV = Py. \] It’s a classic vision. But bitcoin already, visibly, suffers the first defect
of gold, that its relative value to goods and services fluctuates wildly. That might
change if sticky prices were quoted in Bitcoins, but not entirely, as the gold standard
era taught us. More deeply, though the supply of bitcoin is limited, there is no limit
on the supply of its competitors or of derivative claims. You cannot freely create
more Bitcoins, but you can create Ethereum, Ripple, Bitcoin Cash, EOS, Stellar,
Litecoin, Basecoin and so forth. And you can create Bitcoin derivatives, promises
to pay Bitcoin. Such bitcoin checking accounts or similar claims, can be every as
liquid as Bitcoin itself, and likely more so given how slow Bitcoin transactions are.
(Central ledgers are more computationally efficient than decentralized ledgers.) So,
with a flat supply curve at marginal cost of zero for substitutes, the long history of
unbacked money suggests the long term value of any unbacked cryptocurrency must
be zero. \[(M^b + M^i + M^f) V = Py, \] with \(M^b \) = base, \(M^i \) = inside, and \(M^f \) = foreign
or substitute moneys, no control over the latter two, is likewise a classic story.

Cryptocurrency innovators are beginning to understand this reality, and to offer cryptocurrencies that are backed or partially backed. They are reinventing the 19th century bank, which issued fixed-value notes backed by loans and other investments, with an equity cushion to stabilize the value of resources backing the notes. But many are only partially backed. Others, like the initial description of Libra, offer backing but no conversion promise to that backing, like a closed-end fund. If I print up a bunch of money and swear I have a pot of gold in my basement, but money holders have no individual right to the pot of gold, that value can fluctuate wildly too.

As that long history teaches us, the safest and most stable value backing today is government bonds, with 100% reserves, a narrow bank, and offering individual conversion to the backing. Other sources of backing eventually run out and runs develop.

Reinventing the bank or the Federal money market or exchange traded fund (funds that hold only treasury securities and offer free conversion), or reinventing the Federal Reserve itself, which is really no more than an immense Federal money market fund with a fast electronic share-trading system, remains an interesting innovation, if the cryptocurrency can offer better transactions facilitation than their current versions can do. Cryptocurrency startups by and large have not completely faced that hard realization, as the profits from printing unbacked or partially money are so much larger than the profits from offering 1% deposits backed by 1.01% treasurys or reserves, or the small fees that transactions facilitators might earn.

But a backed stable-value cryptocurrency stops being a potential separate unit of account. Like 19th century banks, they can expand the inside money supply, or create useful new transactions media (bank notes on top of coins, cryptocurrency on top of reserves and dollars). But a cryptocurrency that promises to deliver one U.S. dollar per share cannot replace U.S. dollars as numeraire.

10.4.3 A private numeraire

How could we set up a private standard of value that includes a numeraire? The most obvious solution is to mirror my suggestion in Section 10.2 of a central bank endowed with a set of real assets. The private bank could mirror a central bank, with nominal debt and a real set of assets. Or the private bank could simply offer
shares in the real assets. As we saw, shares have value even if they only promise
more shares. By offering claims to the shares directly we skip the vexing question
that the value of nominal debt can drift away from the value of backing.

Clearly, this structure will be best if the value of assets on the right hand side is stable.
Like government debt we wish stability in the present value, \(\Delta E_t \sum_{j=0}^{\infty} \beta^j s_{t+1} \) small.
This stability is most easily arranged if the assets are an indexed debt claim already.
Alternatively, the assets of this institution can be divided into a levered equity claim
and this indexed debt claim, the indexed debt claim being the asset of the bank that
issues the currency. Even that much accounting may be unnecessary. If the equity
claim is large compared to the nominal liabilities of the bank, the promise alone
that the larger institution will fund steady payments \(s_t \) in priority to other claims is
enough. Like a fiscal rule, the payments can be conditional on the price level, and
reflect a price level target. Amazon could easily create a currency.

The fiscal theory does not specify that the government is special. Private institutions
do not have the ability to tax, which has been central in our story so far. But a private
stream of profits or the returns to an investment portfolio, as here, can take the place
of fiscal surpluses to back a currency and nominal debt.

10.4.4 How much money do we need, really?

It is tempting to add size to the list of requirements, that a numeraire provider must
be able to provide a large amount of liquid short-term debt with fixed nominal value.
This is not, however, an essential requirement.

U.S. government debt is passing $25 trillion as I write. Such immense government
debts suggest it is quite possible for the entire demand for nominally risk free liquid
assets to be direct 100% backed claims to government debt – narrow deposit-taking
and equity-financed banking. Or the government could issue the debt entirely as
fixed-value floating rate overnight debt directly, using swap contracts to manage
maturity risks to the budget. Such a structure would end financial crises completely.
Yet some people still think this quantity, plus the amount of short-term debt provided
by the financial system, leaves us in a “shortage” of risk-free debt. (In quotes because
economists are not supposed to use the word “shortage” absent a price control.)

In our increasingly electronic financial system, however, we can easily imagine that
the numeraire provider is actually quite small. Either a relatively small private or
semi-private institution, as above, could define the numeraire, or a small government
–Switzerland, say – could offer a very stable money, backed by a managed pot of assets, and committing its fiscal resources to stabilizing that pot. As we only need one official meter or kilogram housed in Paris, the rest of an electronic economy could manage quite well with a relatively small standard of value.

The easiest temptation would be to leverage a small standard of value with inside claims. We have bank accounts that promise a backed cryptocurrency or Swiss Francs, and the banks back these claims with a small amount of reserves and a larger amount of liquid assets that can quickly be converted to reserves. However, as in the banking crises of the 19th century through the financial crisis of 2008, when everyone wants to run from those derivative claims to the real thing, there isn’t enough to go around and a crisis happens.

Electronic technology offers a possibility to avoid this conundrum. There is no longer any fundamental economic reason why our transactions and financial system requires such a large stock of nominally risk-free assets. The velocity of the underlying numeraire could, with today’s technology, explode. You could pay for a cappuccino by swiping a cellphone, which sells an S&P500 index fund, and transfers the resulting cryptodollars, basecoin, Swiss Francs, or even U.S. treasury debt, to the seller’s mortgage-backed security fund, all in milliseconds. Even the last milliseconds of holding the actual numeraire are really not necessary, as financial institutions can net most transactions without transferring anything. The S&P index fund and mortgage backed security fund have floating values. They do not promise a fixed value, payment in numeraire, and first come first serve, so they are immune to runs. Yet, today, they can be instantly liquid.

There is no technological need to hold a large pool of low-return, fixed-value, run-prone assets to make transactions. We needed fixed value claims to provide liquidity in the 1930s, and in the 1960s. If you offered shares of stock to pay for coffee, nobody at the coffee shop knows what they’re worth right now. But we do not need fixed value today. Communications, computational, and financial technology – the exchange traded fund – open up this possibility.

Obstacles remain. Regulation and accounting demand fixed-value assets, which accounts for much of their continued demand and paradoxically fills the financial system with toxic run-prone assets. Securities markets still take a day or more to settle, not the milliseconds that are technically possible. But on a technical and economic basis, the economy could easily leverage a very small provision of actual numeraire assets without vastly increasing run-prone inside debt claims. (For more on this vision, see Cochrane (2014c).)
Part III

Monetary doctrines, institutions and some histories
Monetary theory is often characterized by doctrines, statements about the effects of policy interventions or the operation of monetary and fiscal arrangements and institutions. Examples include “interest rate pegs are unstable,” “the central bank must control the money supply to control inflation.” These propositions are not tied to particular models, though many models embody standard doctrines. The doctrines pass on in a largely verbal tradition, much like military or foreign policy “doctrines,” more durably than the models that embody them.

Reconsidering classic doctrines helps us to understand how fiscal theory works and matters, how fiscal theory is different from other theories, and which might be the right theory. Fiscal and conventional theories can each give an account of events. But fiscal theory suggests different results of policy interventions, different sets of preconditions for different outcomes, different results of changed institutional arrangements, different views of fiscal-monetary institutions, different “doctrines.” So the fiscal theory is not boring, obvious, empty, or useless. And as we see the results of different policy institutions, as we organize experience on the doctrines, we can also learn which theory is right despite the observational equivalence theorems.

Experience is ripping out the underpinnings of classic doctrines, and thereby putting them to the test. The distinction between “money” and “bonds” is vanishing, undermined by rampant financial innovation. Money, both reserves and checking accounts, pays interest. Central banks target interest rates, not monetary aggregates. Interest rates were stuck near zero for most of a decade in the U.S., more than a decade in the EU, and nearly a quarter century in Japan, violating the Taylor principle, presenting a liquidity trap, yet inflation remained quiet. Under QE, central banks undertook open market operations thousands of times larger than ever contemplated before, with no effect on inflation. The clash of doctrines in such events can provide nearly experimental, or cross-regime, evidence on fiscal vs. classic theories of inflation that time-series tests within a regime cannot easily distinguish.

This part contrasts core doctrines under the fiscal theory with their nature under classic monetary theory, in which the price level is determined by money demand \(MV = Py \) and control of the money supply, and under interest-rate targeting theory, in which the price level is determined by an active interest rate policy. I develop those alternative theories in detail in later chapters. However, since the point now is to understand what the fiscal theory says rather than to understand those alternative theories in detail, since these doctrines are likely familiar to most readers and stand apart from specific models, we can proceed now to discuss classic doctrines and later fill in details of models that capture alternative theories.
Chapter 11

Monetary policies

I start with doctrines surrounding monetary policies – operations the central bank undertakes that affect the supply of money.

11.1 The split vs. the level of government debt

Monetarism states that $MV = Py$ and control of money M sets the price level. Surpluses must then adjust to satisfy the government debt valuation equation. The split of government liabilities between debt B and money M determines the price level, and must be controlled. Fiscal theory states that the overall quantity of government liabilities relative to surpluses sets the price level, and the split between M and B is irrelevant to a first approximation. The split must passively accommodate money demand. Fiscal theory rehabilitates a wide swath of passive money policies and institutions, which we observe along with stable inflation.

The monetarist tradition states that $MV = Py$ sets the price level P. The split of government liabilities M vs. B determines the price level, because only the M part causes inflation. This theory requires a money demand – an inventory demand for special liquid assets, a reason M is different from B – and also a restricted supply of money. Monetarist tradition emphasizes that this split must not be passive, responding to the price level, or the price level becomes unmoored. (I discuss inside money, including checking accounts in Section 13.1. For now, imagine a fixed multiplier from reserves and cash to the M that matters in $MV = Py$.)
In this view, fiscal policy must be passive, adjusting surpluses to pay off unexpected inflation- or deflation-induced changes in the value of government debt, and adapting to seigniorage revenue gained or lost by changes in money growth. “Passive” fiscal policy is not always easy. Many inflations occur when governments cannot raise surpluses and instead print money or are expected to print money to finance deficits. Monetarist thought recognizes that monetary-fiscal coordination is important, and that monetary authorities must have the fiscal space to abstain from financing deficits by printing money. The “passive” word comes from the fiscal theory tradition; monetarists use words like monetary-fiscal coordination, fiscal support for monetary policy, and so forth.

In the fiscal theory, the total quantity of government liabilities $M + B$ matters for the price level. The split of government liabilities between M and B, to first order, is irrelevant. If people have a demand for money as distinct from bonds due to liquidity, transactions or other reasons, supply of that money must be passive. Fiscal policy must be active, refusing to adjust surpluses to changes in the value of government debt that flow from any arbitrary change in the price level.

So, fiscal theory rehabilitates passive money policies. Passive money comes in many guises. The following sections illustrate a wide variety of passive-money policies and institutions that have been followed in the past, or are followed or considered now, and that monetarists have critiqued as undermining price-level stability. The fact of stable inflation under passive monetary policies and institutions is a point in favor of fiscal theory.

A few equations help to make this discussion concrete. One can envision the simple fiscal theory with one period debt, interest-paying money and a constant discount rate from Section 3.4,

\[
\frac{B_{t-1} + M_{t-1}}{P_t} = E_t \sum_{j=0}^{\infty} \beta^j \left[s_{t+j} + \frac{i_{t+j} - i_{t+j}^m}{(1 + i_{t+j})(1 + i_{t+j}^m)} M_{t+j} \right]
\] (11.1)

together with a money demand function,

\[
M_t V(i_t - i_t^m, \cdot) = P_t y_t.
\] (11.2)

To first order, ignore seigniorage, with $i - i^m$ small, or imagine a fiscal policy that changes surpluses to account for seigniorage. In monetarist thought, control of M and $MV = Py$ determines P in (11.2), and then surpluses s must adjust to validate any changes in the price level in (11.1). In fiscal theory, the government debt valuation equation (11.1) sets the price level, and then monetary policy must “passively” accommodate the money demand requirement in (11.2).
11.2 Open market operations

- Classic doctrine: Open market purchases lower interest rates and then raise inflation. The composition, not quantity, of government debt matters for inflation.

- FTPL: Open market operations have no first-order effect on the price level or interest rates. The composition of government debt (B vs. M) is irrelevant. Differences in liquidity for interest-paying money and specific debt issues just lead to interest rate spreads between various kinds of debt.

Seigniorage and liquidity demands for different kinds of government debt, and the effects of changing the maturity structure of debt, add usually second-order effects to the FTPL doctrine. An open market operation with no other change in policy is not a well-posed question, leading us back to observational equivalence.

The open market operation is the primary and textbook instrument of classical monetary policy. The central bank buys government bonds, issuing new money in return, or vice versa. It is a change in the composition of government debt, that does not change the overall quantity of government debt. By increasing the supply of money M, an open market operation is inflationary in standard monetarist thought.

Since $M + B$ appears on the left-hand side of the government debt valuation equation, to first order, an open market operation swapping M for B has no effect in fiscal theory. Think of money as green m&ms, and debt as red m&ms. If the Fed takes some red m&ms and gives you green m&ms in return, this has no effect on your diet. To monetarists, only the green m&ms make you fat, so exchanging your red m&ms for green m&ms will threaten that vow to slim down.

In the monetarist view, any effect of monetary policy comes entirely from the quantity of money. The fact that the bond supply B decreases in an open market operation is irrelevant. In particular, if an open-market sale (less M, more B) raises interest rates, that rise comes from an interest-elastic money demand $MV(i) = Py$, not because greater bond supply lowers prices and raises interest rates. A helicopter drop of more M with no decline in B has the same effect as an open market operation. Only the M matters.

Bond supply ideas are often used to analyze quantitative easing. But that view is centered on frictions such as segmented bond markets, which are not part of the traditional monetarist view. The bond-supply channel turns monetarism on its head, viewing the increase in interest-paying reserves as irrelevant. The bond-supply view
also requires purchases that are a non-negligible fraction of the bond supply. Open
market operations were traditionally very small. Before 2008, total reserves were
on the order of $10 billion dollars, the size of open-market purchases an order of
magnitude smaller, and all of this a tiny drop in the bucket of bond supply. The QE
operations were thousands of times larger.

By contrast, the simple fiscal theory of monetary that I have outlined relies on
bond supply. The central bank and treasury together sell bonds with no change
in surpluses, to raise expected inflation. The interest rate target offers bonds for
sale at fixed price with no change in surpluses. This is a frictionless model with no
segmentation, like a share split changing nominal interest rates but only changing
real rates if there is some stickiness to prices.

I hedge these statements with “first-order” to acknowledge several second-order pos-
sibilities and other caveats.

These statements are clearest when money pays full interest $i - i^m$, or interest rates are
zero. When there is an interest spread, an open market operation creates seigniorage
on the right-hand side of the valuation equation (11.1), which can affect the price
level. I argued that seigniorage is tiny for advanced economies in normal times, and
fiscal policy may adapt to seigniorage to wipe out any changes, without becoming
passive. Moreover, seigniorage effects go the wrong way. If the interest-elasticity
of money demand is low, as in the monetarist tradition, raising M adds seigniorage
revenue, which like any other source of revenue lowers the price level. But seigniorage
is not small when governments are financing large deficits by printing non-interest-
bearing money, and we should include this channel when thinking about large fiscal
inflations.

An open-market operation also changes the maturity structure of government debt.
All the analysis of maturity structure rearrangements from Chapter 7 applies. This
consideration was minor with the small open market operations of the small reserves
regime, but the trillions of dollars of quantitative easing asset purchases substantially
shorten the maturity structure government debt. The Treasury could offset these
changes by issuing longer debt, or engaging in swap contracts. The Treasury and
central bank need to come to an accord about who is in charge of the maturity
structure and hence interest-rate-risk exposure of the debt.

Today, almost all “money” pays interest. With $MV(i - i^m) =Py$, an exchange of
B for M can result simply in a change in the interest rate paid to money i^m, with
little effect on anything else. Then velocity takes up the slack of an open market
operation. In the old days with $i^m = 0$, the interest rate on everything else had to
11.2. OPEN MARKET OPERATIONS

change to satisfy money demand. Now the interest rate on money can change.

More generally, variation in the composition of government debt of varying liquidity,
including reserves as well as on-the-run vs. off-the-run, treasury vs. agency, high or
low coupon issues, etc. can just result in a change in interest rate spreads, reflecting
liquidity and convenience yields, between the various flavors of government debt, with
no effect on the underlying interest rate i that governs intertemporal substitution
and is connected to inflation.

Interest-paying money becomes just another flavor of government debt. The central
bank can control the relative quantities of money, liquid, and illiquid bonds, if it
wishes to do so, and doing so will only affect interest spreads on those bonds. Such
changes affect the price level only thorough small seigniorage terms, i.e. changing
the interest costs of government debt.

Short-run endogenous velocity, and a fuzziness to the money demand function is a
more general possibility. Even a die-hard monetarist would not predict from $M_t V =
$\

$P_t y_t$ that if the money supply increases at 12:00 PM Monday morning that nominal
GDP must rise proportionally on Monday afternoon. There are “long and variable
lags.” Velocity is only “stable” in a “long run.” Short-run elasticities are different
than long-run elasticities. It takes a while for people to adjust their cash management
habits in response to changes in the interest costs of holding money. If the Fed buys
bonds, even in a fiscal theory world, it’s sensible that people just hold the extra money
for a while, and velocity (a residual) moves. The pressures from money supply greater
than money demand can take months or even years to appear. This endogenous
velocity result is even more likely when the interest cost of holding money is tiny,
and when money and bonds become nearly perfect substitutes. (These thoughts are
formalized in Akerlof and Milbourne (1980) and Cochrane (1989)).

Settling which theory holds by estimating the effect of open market operations will
not work however. Observational equivalence tells us that must be the case in the
abstract. How, concretely? If a rigid money-demand relation $M_t V = P_t y_t$ applies,
an open-market exchange of M_t for B_t that changes nothing else – neither surpluses
nor overall quantity of debt – is not a well-posed policy. In the monetarist view, pay
attention to the footnote about passive fiscal policy or fiscal coordination. An open
market operation that reduces inflation must come with a fiscal contraction to pay
off the larger value of debt. If that monetary-fiscal coordination does not happen, we
have uncoordinated or overdetermined policy, equations that contradict each other.
In a fiscal theory view, the government must adopt a passive monetary policy to
ensure $MV = Py$ is satisfied, so changing M vs. B without changing anything else
likewise makes no sense. To accomplish the open market operation, the government
must tighten fiscal policy. Then the “passive” monetary policy exchanges some M
for B. Both theories describe an identical fall in money M, rise in debt B, and a
rise in surpluses s.

With interest-elastic demand, $MV(i) = Py$ an open market operation requires a
change in interest rate, which, with unchanged surpluses, requires a change in the
overall quantity of nominal debt as well as an exchange of debt for money. We can
thus imagine a fiscal theory experiment that looks a lot like an open market operation.
The central bank trades M for B, lowering the money supply and thereby requiring
a higher interest rate. The bank simultaneously raises the total quantity of B, which
produces the higher interest rate. Add any of the ingredients which produce a lower
inflation rate coincident with a higher interest rate, and we have a picture that looks
a lot like a monetarist expansion. But the interest rate rise via debt sale could have
come first, and the decline in money from a passive money policy. Observational
equivalence makes it hard to tell whether the open market operation was the chicken
or the egg.

In sum, while the first-order “doctrine” view of open market operations remains
starkly different under monetarist and fiscal theory viewpoints, both doctrines come
with caveats when we want to analyze data or write a complete model that we can
take to data. The former requires fiscal-monetary coordination, that “passive” fiscal
policy really happens. The latter still allows for a non-trivial and as yet under-
explored effects of policy combinations that include open market operations. Observ-
ational equivalence always looms, so a finding that observed open market operations
are correlated with interest rate rises, changes in inflation or output, are not defini-
tive.

11.3 An elastic currency

- Classic doctrine: Elastic money supply leaves an indeterminate price level, so
it leads to unstable inflation or deflation.

- FTPL doctrine: Elastic money supply is consistent with and indeed necessary
for a determinate price level.

Suppose monetary policy offers the split between bonds and money passively: The
central bank assesses Py, and issues the appropriate M in response. It responds
11.3. AN ELASTIC CURRENCY

1. to perceived tightness in money markets, or perception of how much money people
2. and businesses demand. It provides an “elastic currency” to “meet the needs of
3. trade.”

4. From a monetarist perspective, you can see the flaw. If the price level starts to
5. rise, the central bank issues more money, the price level keeps rising, and so forth.
6. Any \(P \) is consistent with this policy. The central bank must control the quantity of
7. monetary aggregates.

8. Yet even the title of the 1913 Federal Reserve Act states that the Fed’s first purpose
9. is to “furnish an elastic currency.” Passive money supply is explicitly what Congress
10. had in mind. The price level was, at the time, considered to be determined at least
11. in the long run by the gold standard, not by the Fed. The Act does not task the
12. Fed with controlling inflation or the price level at all. But it was viewed that banks,
13. private debt markets, and the Treasury’s currency issues did not sufficiently increase
14. money supply to match demand. There were strong seasonal fluctuations in interest
15. rates [Mankiw and Miron (1991)], such as around harvest time, and a perceived
16. periodic and regional scarcity of money. Financial crises smelled of a lack of money
17. then as now. The Fed was founded largely in response to the 1907 financial crisis.
18. So, the Fed’s main directive was to supply money as needed.

19. Monetarists acknowledge that money supply should accommodate supply-based changes
20. in real income \(y \), so that higher output need not cause deflation. Money supply should
21. to accommodate shifts in money demand – shifts in velocity \(V \) – rather than force
22. those to cause inflation, deflation or output fluctuation. The central bank should
23. and does accommodate seasonal variation in money demand around Christmas and
24. April 15. The trouble is as always to distinguish just where a rise in money demand
25. comes from, for the Fed to react to the “right” shifts deriving from real income,
26. seasonals, and panics, but not to the “wrong” shifts in money demand that result
27. from higher inflation or expected inflation, or, in the conventional view, “excess”
28. aggregate demand, “inflationary pressures,” and so forth. Milton Friedman argued
29. for a 4% money growth rule not because it is full-information optimal, but because
30. he thought the Fed could not distinguish shocks in this way.

31. Fiscal theory frees us from this conundrum. The price level is fixed by fiscal surpluses
32. and the overall supply of government debt, the latter either directly or via an interest
33. rate target. A passive policy regarding the split of the composition of government
34. debt between reserves and treasurys does not lead to inflation.
11.4 Balance sheet control

Should central banks control the size of their balance sheets? Or should they allow banks and other financial institutions to sell or borrow against treasury securities at will in order to obtain reserves, and buy or reverse repo treasury securities at will if they don’t want reserves?

- Conventional doctrine: The central bank must control the size of its balance sheet, or it will lose control of the price level.

- FTPL doctrine: The central bank may offer a flat supply of reserves, buying and selling or lending and borrowing against treasury collateral, and consequently any size balance sheet, with no danger of inflation. Such a policy is desirable, as it implements the required passive money without conscious intervention.

- Contemporary doctrine: The Fed thinks balance sheet size matters, though not through traditional monetary channels. The Fed controls that size, and nature of assets, as well as target interest rates.

The Federal Reserve balance sheet contains treasury and other securities (mostly mortgage-backed securities) as assets, and the monetary base equal to reserves plus cash, as liabilities. An open-market operation increases the size of the balance sheet, and the “size of the balance sheet” is often used as a synonym for the stimulative stance of monetary policy. The word choice is interesting for focusing attention on the asset side of the balance sheet, how many assets the central bank holds, rather than just the liability side, i.e. monetary base, or the broader money supply.

Should central banks control the size of their balance sheets, offering a vertical supply of reserves and holding a fixed quantity of assets for long periods of time, and using the size of the balance sheet as a policy instrument, distinct from the level of the nominal rate? Or should central banks offer a horizontal supply of reserves, letting people freely trade treasury debt for reserves that pay a fixed interest rate, borrow reserves against treasury collateral at a fixed rate, or lend to the central banks, holding reserves, at the policy rate?

The conventional monetarist answer is that the central bank must control the size of its balance sheet, or risk inflation. If anyone can bring a Treasury security in and get money, then the money supply – the split between M and B – is not controlled.

In fiscal theory, the central bank can open its balance sheet completely. The split of government liabilities between reserves and treasurys in private hands has no effect
11.4. BALANCE SHEET CONTROL

on the price level. Indeed a flat reserve supply achieves the passive money that a
fiscal regime requires.

A flat reserve supply and a passive balance sheet solves the primary practical problem
with my description of elastic currency: How does the central bank know it should
supply more or less money? By allowing people (financial institutions) to get money
any time they need it, in exchange for Treasury debt, the central bank accomplishes
mechanically the passive money that must accompany the fiscal theory: It “provides
an elastic currency,” to “meet the needs of trade,” without itself having to measure
the sources of velocity, the split of nominal income between real and inflation, or to
decide on open market operations, and without endangering the price level in either
direction.

Control of the size of the balance sheet has been a central part of Federal Reserve
policy for a long time. Before the 2008 move to interest on reserves, the Fed tried to
forecast each day how many reserves were needed to hit the interest rate target for
that day, supplied those via open-market operations, and then closed up shop for the
day. There were often interest rate spikes later in the day if banks turned out to need
more reserves than had been supplied (Hamilton (1996)). During the day, at least,
the supply curve was vertical. Over longer horizons, hitting an interest rate target
required adjusting the size of the balance sheet, but reserves were so small relative
to cash that the resulting changes in the size of the balance sheet were very small.
Other central banks followed a corridor, lending and borrowing throughout the day
at fixed rates and thus leaving the size of the balance sheet open. I see no evidence
that the corridor system led to less control over interest rates or the economy, though
it gives the trading desk a lot less to do.

In 2008 the Fed started paying interest on reserves, and using interest on reserves
as its main tool for setting interest rates. The Fed soon exploded reserves from $10
billion to trillions of dollars in quantitative easing operations. Yet, though the size
of the balance sheet no longer has anything to do with controlling interest rates,
the Fed has also maintained strict control over the total size of the balance sheet[^1]
and raises and lowers it by trillions of dollars as it wishes to stimulate or cool the
economy.

[^1]: See a plot of Federal Reserve total assets held outright,
https://fred.stlouisfed.org/series/TREAST which is rock steady for long periods, and grows or
declines linearly in others.
large balance sheet is permanently stimulative by itself, even if reserves are held in super-abundance compared to reserve requirements and other regulations, and even if reserves pay more interest than short-term treasury, as they frequently did. “Stimulus” seems to combine the short rate or interest on reserves, some direct effect of the quantity and the nature (maturity, treasury vs. mortgage vs. commercial paper etc.) of assets on the balance sheet, and speeches about future intentions with regard to all of the above. From 2018 to 2020, the Fed deliberately reduced the size of the balance sheet and reserves, eventually provoking a resurgence of spikes in overnight rates, a characteristic of the earlier daily fixed-supply regime (Hamilton (1996)), as new liquidity regulations started to bite. (Copeland, Duffie, and Yang (2020), Gagnon and Sack (2019)). Opening up the discount window, or a standing repo facility that would allow banks to immediately get reserves, would quiet those spikes. Fiscal theory says this sort of policy poses no danger for price level control.

11.5 Real bills

The real bills doctrine states that central banks should lend freely against high quality private credit.

- Classic doctrine: A real bills policy leads to an uncontrolled price level.
- FTPL doctrine: A real bills policy is consistent with a determinate price level.

The real bills doctrine states that central banks should lend money freely against high-quality private credit, as well as government debt. Bring in a “real bill,” private short-term debt, either as collateral or to sell to the central bank, and the central bank will give you a new dollar in return, expanding the money supply. The Federal Reserve Act’s second clause says “to afford means of rediscounting commercial paper,” essentially commanding a real bills policy, though the Fed does not now follow such a policy.

A real bills doctrine endogenizes the money supply as well, so in classic monetarist thought it therefore destabilizes the price level. As \(P \) rises, people need more \(M \). They bring in more real bills to get it, and \(M \) chases \(Py \).

Under the fiscal theory, the price level is determined with a real bills doctrine. If the central bank accepts private “real bills” in return for new \(M \), that action expands total government liabilities on the left side of the valuation equation, but it equally
expands assets on the right-hand side of the valuation equation, either directly or in
the stream of dividends such assets provide.

Real bills’ force for price stability strong, because the real bills are saleable assets.
If people don’t want the money any more, they can have the real bills back. The
government need not tax or borrow against future surpluses to soak up extra money.
“Real” bills are not typically indexed, so this is not a “pot of money” regime. But
real bills insulate the backing of money from government finances. The real bills
mechanism is usually thought of as a way to trade something less liquid, the real
bill, for something more liquid, government money. But it is also a way to trade
a government liability, backed by the government’s willingness and ability to tax
or abstain from spending, for a private liability, backed by real assets, a stream of
private cashflows, and legal contract enforcement.

In the fiscal theory view, a real bills doctrine is a desirable policy, as it is one way
to automatically provide the passive money that fiscal price determination requires.
It is especially useful in a situation that there is little treasury debt outstanding, so
that providing needed monetary base is difficult by a similar promise to exchange
treasury debt for money. That is not our current situation, but it loomed in the late
1990s and could do so again if our governments regain fiscal sobriety.

The real bills doctrine raises issues beyond inflation control that I will briefly high-
light, but not investigate deeply as they are beyond the scope of this book. Private
debt has credit risk, and whether bought elastically under a real bills doctrine or in
fixed quantities as central banks do now, it raises financial stability, political, and
economic questions.

Whether the central bank or treasury take the credit risk is unimportant for the rest
of the economy but important for the political independence of the central bank.
The Fed typically buys or lends against private securities in a special purpose vehicle
in which the Treasury takes the first losses.

Much motivation for real bills purchases or direct central bank lending to private
institutions and people concerns the supply of credit, not just the liquidity of private
vs. public debt, and avoiding financial panics. Financial panics are flights from risky
securities to government debt. Since 2008, the Federal Reserve and other central
banks have already expanded their assets beyond treasurys, to include agency se-
curities, mortgage-backed securities, state and local government debt in the U.S.,
member state debt in Europe, private securities including commercial paper, corpo-
rate bonds, stocks, “toxic assets,” and “green” bonds. Central bank purchases are
aimed to prop up the prices of those assets, and to encourage borrowers to issue such
assets so those borrowers can continue to make real investments. The point is not monetary, to increase the supply of reserves, which could easily be done by buying or lending against some of the immense supply of treasurys. Such central bank purchases of private and non-federal government securities can also easily cross the line to bailouts, price guarantees, and subsidized central bank financing of low-value and politically-favored investments. This only risks inflation if the central bank overpays, but the practice has obvious risks and benefits from other points of view. A central bank may well wish to insulate itself against moral hazard and malfeasance by announcing a fixed quantity of such operations rather than a flat supply curve at a fixed price.
Chapter 12

Interest rate targets

Central banks today do not stimulate or cool the economy by increasing or decreasing the monetary base or monetary aggregates. Central banks follow interest rate targets or exchange rate targets. Interest rate pegs or interest rate targets that vary less than one for one with inflation are criticized by traditional doctrine, as letting inflation get out of control. The fiscal theory allows pegs or sluggish targets. That fact opens the door to analyzing many periods in which we observe poorly reactive interest rate targets, including zero-bound periods.

12.1 Interest rate pegs

- Classical doctrine: An interest rate peg is either unstable, leading to spiraling inflation or deflation, or indeterminate, leading to multiple equilibria and excessively volatile inflation.
- Fiscal theory: An interest rate peg can be stable, determinate, and quiet (the opposite of volatile).

An interest rate peg is another form of passive money supply, that standard monetary theory has long held leads to a loss of price level control.

First, as crystallized by Friedman (1968), an interest rate peg is thought to lead to unstable inflation. In a section titled “What Monetary Policy Cannot do,” the first item on Friedman’s list is “It cannot peg interest rates for more than very limited periods.”
CHAPTER 12. INTEREST RATE TARGETS

Friedman starts from the Fisher relationship $i_t = r_t + \pi_t^e$ where π_t^e represents expected inflation. One of the two great neutrality propositions of his paper is that the real interest rate is independent of inflation in the long run. (The other proposition is that the unemployment rate is also independent of inflation in the long run.) Thus higher nominal interest rates must eventually correspond to higher inflation.

But to Friedman, this Fisher equation describes an unstable steady state. The central bank cannot fix the nominal interest rate i_t and expect expected and actual inflation to follow. Instead, if, say, the interest rate peg i_t is a bit too low, the central bank will need to expand the money supply to keep the interest rate at the peg. More money will lead to more inflation, and more expected inflation. Now the peg will demand an even lower real interest rate. The central bank will need to print even more money to keep down the nominal rate. In Friedman’s description, this chain does not spiral out of control only because the central bank is not that pig-headed. Eventually the central bank gives up and raise the interest rate peg, bringing back the Fisher equation at a higher level of interest rate and inflation. Yes, inflation and interest rates move together in the long run, but like holding a broom upside down, the central bank cannot just move interest rates and count on inflation to follow.

Friedman’s prediction comes clearly from adaptive expectations: (p. 5-6):

> “Let the higher rate of monetary growth produce rising prices, and let the public come to expect that prices will continue to rise. Borrowers will then be willing to pay and lenders will then demand higher interest rates—as Irving Fisher pointed out decades ago. This price expectation effect is slow to develop and also slow to disappear.”

Standard ISLM thinking with adaptive expectations gives the same result, though through a different mechanism that de-emphasizes the money supply. In that view, the real interest rate directly affects aggregate demand. So a too low nominal rate implies a too low real rate. This low rate spurs aggregate demand, which produces more inflation. When expectations catch up, the real rate is lower still, and off we go. Section 17.3.2 models these views with simple equations and a graph.

These views predict an uncontrollable deflation spiral when interest rates are effectively pegged by the zero bound. Such a spiral was widely predicted and widely feared in 2008 and following years, correctly following the logic of these views. The spiral did not happen.

When rational expectations came along, a different problem with interest rate pegs
emerged as crystallized by Sargent and Wallace (1975). An interest rate peg leads to indeterminate inflation. Under rational expectations, expected inflation is $\pi^e_t = E_t \pi_{t+1}$. The Fisher equation $i_t = E_t \pi_{t+1}$ is stable: If the central bank pegs the interest rate i, then $E_t \pi_{t+1}$ settles down to $i - r$ all on its own. With sticky prices the real interest rate r may move for a while, but the real interest rate eventually reverts, and inflation follows the nominal interest rate. However, unexpected inflation $\Delta E_{t+1} \pi_{t+1}$ can be anything. Now, technically, indeterminacy means the model really has nothing to say about unexpected inflation.

Though indeterminacy means that the model has nothing to say about unexpected inflation, most authors writing about such policies such as Clarida, Galí, and Gertler (2000) and Benhabib, Schmitt-Grohé, and Uribe (2002) equate indeterminacy with excess inflation volatility, as unexpected inflation jumps around following sunspots or some other economically irrelevant coordination mechanism. The difference between stability, volatility and determinacy is subtle, and not all users of the words appreciate this difference. Indeterminacy counts as a “doctrine” as it is a robust characterization of many models. But most central bankers and commenters continue to think in old-Keynesian or monetarist adaptive-expectations terms, so indeterminacy can only be said to be a doctrine among modelers who really understand rational expectations.

The fiscal theory of monetary policy contradicts these doctrines. An interest rate peg can leave the price level and inflation stable, determinate, and quiet (the opposite of volatile). Even a peg at zero interest rate can work. If the economy demands a positive real rate of interest, a slight deflation would emerge to produce it.

The classic doctrines explicitly or implicitly assume passive fiscal policy, that the government will adapt surpluses to unexpected re-valuations of nominal debt due to inflation or deflation. Active fiscal policy cuts off this possibility. In particular, a deflationary spiral or a sunspot deflation requires the government to raise taxes or cut spending to pay off an inflation-induced windfall to bondholders. If people do not expect the government to do this, the spiral or sunspot deflation cannot break out.

That inflation has been quiet despite long periods of constant near-zero interest rates in the U.S., Europe and Japan is a feather in the fiscal cap, and the sort of observation that helps us to surmount observational equivalence questions.

I emphasize “can” here, because a stable, determinate, and quiet peg requires fiscal policy as well as the interest rate peg. Countries with unsustainable deficits cannot just lower interest rates and expect inflation to follow! Countries with volatile fiscal
policies, or who suffer volatile discount rates, will see volatile unexpected inflation under a peg.

Also, though a peg is possible, a peg is not necessarily optimal. Under a peg, variation in the real rate of interest r_t, due to variation in the marginal product of capital for example, must express itself in varying expected inflation. When prices are sticky, such variation in expected and therefore actual inflation will produce unnecessary output and employment volatility. A central bank that could assess variation in the natural rate r_t, and raise and lower the nominal interest rate in response to such real interest rate variation could produce quieter inflation and by consequence quieter output. We have also seen that varying the nominal interest rate in response to output and inflation can help to smooth fiscal and other shocks. Of course, a central bank that is not very good at measuring variation in the natural rate may induce extra volatility by mis-timed stabilization efforts. So the case for a peg is something like Milton Friedman’s case for a four percent money growth rule – not full-information optimal, but a robust strategy for a controller with limited information or decision-making ability. My previous suggestion to peg the spread rather than the level of nominal rates addresses some of these concerns.

12.2 Taylor rules

The Taylor principle states that interest rates should vary more than one for one with inflation.

- Conventional doctrine: Interest rates must follow the Taylor principle, or inflation will become unstable or indeterminate, and therefore volatile.

- Fiscal theory: Inflation can be stable and determinate when interest rates violate the Taylor principle, as they are under a peg.

Starting in the 1980s, academics started to take seriously the fact that central banks control interest rates, not money supplies, and theories about desirable interest rate targets emerged. The Taylor principle is the most central doctrine to emerge from the experience of the early 1980s and this investigation: Interest rates should vary more than one-for-one with inflation. An interest rate rule that follows the Taylor principle cures instability in adaptive expectation, ISLM, old-Keynesian models and it is thought to cure indeterminacy in rational-expectation new-Keynesian models. (I write “thought to” because I take issue with that claim below.)
So, standard doctrine now states that interest rate targets should vary more than one for one with inflation. If it does not do so, instability (adaptive expectations) or indeterminacy (rational expectations) will result, and inflation will be volatile.

Fiscal theory contradicts this doctrine. Insufficiently reactive interest rates, like a peg, can leave stable and determinate, hence quiet, inflation.

The fiscal theory doctrine is helpful for us to address the many times in which interest rate targets evidently did not move more than one for one with inflation, including the recent zero bound period, the 1970s, the postwar interest rate pegs, and interest rate pegs under the gold standard. The spiral prediction for such periods is bad enough, but “indeterminacy” really makes no prediction at all.

Still, an interest rate target that follows something like a Taylor rule, raising interest rates when inflation or output rise, can be a good policy even in an active-fiscal passive-money regime. A Taylor type rule can implement the suggestion of the last section, raising the nominal rate when the “natural rate” is higher. As the natural interest rate, output, and inflation all move together, we are likely to see nominal interest rates that rise with output and inflation. It is possible that observed interest rates rise more than one-for-one with inflation, even in a well-run active-fiscal passive-money regime, and greater than one-for-one response of the Taylor principle is not visible in new-Keynesian models as it represents an off-equilibrium threat. As we have seen, Taylor-like responses to output and inflation powerfully smooth shocks, leading to smaller output and inflation variance than we would otherwise see.

Finally, one of Taylor’s central points is the advantage of rules – any rules – over the shoot-from-the-hip discretion that characterizes too much monetary policy. Rules help to stabilize expectations, reducing economic volatility.
Chapter 13

Monetary institutions

If the price level is determined ultimately by the intersection of money supply and demand, the government must engage in a certain amount of financial repression: It must ensure a substantial demand for base money, it must control the creation of inside money, it must regulate the use of substitutes including foreign currency or cryptocurrency, it must restrict financial innovation that would otherwise reduce or destabilize the demand for money, it must maintain an artificial illiquidity of bonds and other financial assets lest they become money, it must forbid the payment of interest on money and stay away from zero interest rates. None of these restrictions are necessary with fiscal price determination. Fiscal theory relies however on a complementary set of fiscal, or fiscal-monetary institutions.

13.1 Inside money

- Classic doctrine: The government must control the quantity of inside money or the price level becomes indeterminate.

- Fiscal theory doctrine: The price level can remain determinate with arbitrary creation of inside moneys. Reserve requirement and limitations on the creation of liquid inside assets are not needed for price-level determination.

Reserve requirements and restrictions on the issue of liquid short-term debt remain useful for the separate question of financial stability, preventing runs. Fiscal theory is not inconsistent with a view that the government should ban all inside money as it
bans banknotes, for financial stability rather than price-level stability reasons.

Government-provided base money, the sum of currency and reserves, are not the only assets that people can use for transactions and other money-related activities. Checking accounts are the easiest example of inside money. When a bank makes a loan, it flips a switch and creates money in a checking account.

More generally, short-term debt can circulate as money. If I write an IOU, say “I’ll pay you back $5 next Friday,” you might be able to trade that IOU for a beer this afternoon, and your friend collects from me. In the 19th century banks issued notes, which functioned much like today’s currency. Commercial paper and other short-term debts have long been used in this way, essentially writing a tradeable IOU. Money-market funds offer money-like assets, backed by portfolios of securities. Inside money creation can help to satisfy the transactions, precautionary, liquidity, etc. demands that make “money” a special asset. The use of inside money grows when money demand exceeds base supply, so the same cautions against passive money destabilizing the price level apply to inside money.

Recognizing this fact, we should write money demand as

$$(Mb + Mi) V = Py,$$

distinguishing between the monetary base Mb and inside money Mi. More sophisticated treatments recognize that liquid assets are imperfect substitutes for money rather than simply add them together.

Again, the monetarist view determines the price level from the intersection of such a money demand with a limited supply. To that end, it is not enough to limit the supply of the monetary base Mb. The government must also limit the supply of inside money Mi. Reserve requirements are a classic supply-limiting device. To create a dollar in a checking account, the bank must have a certain amount of base money. If the reserve requirement is 10%, then checking account supply is limited to be 10 times the amount of reserves. Other kinds of inside money are regulated, illegal, or regulated to limit their liquidity. Bank notes are now illegal.

In sum,

- Classic doctrine: The government must control the quantity of inside money.

In the fiscal theory, the price level is fundamentally determined by the value of government liabilities. Hence there is no need, on price level determinacy grounds, to limit inside money at all.
• Fiscal theory doctrine: The price level can remain determinate with arbitrary creation of inside moneys. Reserve requirements and limitations on the creation of liquid inside assets are not needed for price-level determination.

This doctrine is fortunate. Inside moneys have exploded. Reserve requirements are already tiny, and don’t realistically control inside money creation. Before 2008, reserves were on the order of $10 billion. After 2008, reserves exploded to $3 trillion. Reserve requirements are slack, so that the inside money supply can vary arbitrarily without changing the quantity of reserves. Commercial paper, repurchase agreements, money market funds, and other highly liquid financial instruments dominate the “cash” holdings of financial institutions.

My point here is narrow, about price level determination. There are excellent financial-stability reasons to limit inside moneys. A financial institution that issues short-run liquid debt against illiquid assets is prone to a run. Inside money is the heart of all financial crises. In the financial stability context I argue for much stronger regulation against inside money than we have now (Cochrane (2014c)), and that the government should indeed take over entirely the business of providing fixed-value run-prone electronic money, as it took over the business of note issue in the 19th century. Reserve requirements were instituted to forestall runs, and retain that role in fiscal theory. They were only repurposed to have a money supply and inflation control function much later.

The inside money question illuminates a key distinction between the fiscal theory, or any theory based on backing, and a fiat money theory based on transactions demand. One might look at \(MV = Py \) and \(B = P \times EPV(s) \), where \(PV(s) \) means present value of \(s \), and conclude they are basically the same. In place of money we have all government debt, and in place of a transactions demand related to the level of output, we have the present value of surpluses. But here we see a big difference: Only direct government liabilities appear on the left-hand side of the fiscal theory, while private liabilities also appear in \(M \). Indeed, we can imagine an economy in which only private liabilities constitute the money stock.

By analogy, consider the question, does opening futures and options markets affect the value of a stock? By uniting a put and call option, you can buy or sell a synthetic share of the stock. These are “inside shares” in that they net to zero. For every synthetic purchaser there is a synthetic issuer. They impose no liability on the corporation. Do these “inside stock shares” compete with “real stock shares” to drive down the value of stocks? Well, in the baseline frictionless theory of finance, no. The company splits its earnings among its real owners only, and doesn’t owe
CHAPTER 13. MONETARY INSTITUTIONS

anything to the owners of inside shares. Therefore, we begin the theory of valuation with price times company-issued shares = present value of company-paid dividends, ignoring inside shares.

Likewise, primary surpluses are repay only holders of actual government debt, not those who have bought private claims denominated in shares of government debt, such as checking accounts. So, to first order, the value of government debt is not affected by arbitrary inside claims. For every private buyer of inside money, there is a private issuer, so the number of such claims, or their valuation, has no net wealth effect.

There can be secondary effects. In finance, scarcity of share supply can affect asset prices, and the rise of inside shares due to short-selling, futures, or options can satisfy a demand for shares (Lamont and Thaler (2003), Cochrane (2003)). In monetary affairs, liquidity demands can potentially affect the price level. Gold and silver coins often circulated at values above their metallic content (Sargent and Velde (2003)). So too can government debt, or equivalently the discount rate in the valuation formula can be low when money supply is low. In such a situation, the provision of inside money substitutes can reduce that valuation difference, and affect the price level. But in a theory of backing plus liquidity, such effects are smaller, than in a theory that relies only on liquidity. My statement that only government liabilities appear on the left hand side also is not so crisp in a world of deposit insurance, regular bailouts, and implicit and explicit credit guarantees. Private debt does compete a bit for government surpluses.

Money substitutes that are not strictly inside money – promises to pay government money – function in much the same way. Money substitutes, most importantly foreign currency, help to facilitate transactions and compete with government money. Financial repression is often used to reduce that competing demand. In times of monetary shortages, including shortages of small change, stamps, bus tokens, cigarettes and other commodities have started to circulate as money, though usually in small enough quantities not to trouble inflation.

13.2 Financial innovation

- Classic doctrine: Regulation must limit financial innovation and transactions technologies to maintain control of the price level.
- Fiscal theory doctrine: The price level is determined with arbitrary financial
innovation, and even if no transactions are accomplished using the exchange of
government liabilities.

For monetary price-level determination to work, it must remain costly to hold money. Money must pay less interest than other assets. But the cost of holding money gives an incentive to innovation that economizes on money holding. For \((M_b + M_i)V = P_y\) to determine the price level, the government must keep \(V\) from exploding, as well as limit \(M_b\) and \(M_i\). Even when money needs to be used for transactions, the key to money demand and \(MV = P_y\) is that one must hold that money for a discrete amount of time before making transactions. If one could obtain money a few milliseconds before buying, and the seller could redeposit that money in a few additional milliseconds, money demand would vanish – velocity explodes.

Thus monetary price level determination needs constraints on financial innovation. Yet our economy is evolving with rampant financial innovation, much of which reduces the need for money to make transactions, as well as creating new substitutes for money. Inside money such as interest-bearing checking accounts can be seen as such a money-saving, transactions-facilitating innovation rather than a competing form of private money. If we write \(M_b \times V = P_y\), checking accounts raise the velocity of base money and allow us to use less of it.

We already live in a surprisingly money-free system. If I write you a $100 check, and we use the same bank, the bank just raises your account by $100 and lowers mine by the same. No actual money ever changes hands. If we have different banks, our banks are most likely to also net our $100 payment against someone else’s $100 payment going the other way. The banks transfer the remainder by asking the Fed to increase one bank’s reserve account by $100 and decrease the others’. That operation still requires banks to hold some reserves. But banks were able to accomplish the transactions in the (then) $10 trillion economy, including the massive volume of financial transactions, with only $10 billion or so of non-interest paying reserves, an impressive velocity indeed.

Credit cards, debit cards and electronic funds transfers allow us to accomplish the same transactions, as well as to enjoy the other features of “money,” without holding government money, and potentially without suffering the lost interest that an inventory of money represents. Electronic payments systems in many countries are ahead of those in the U.S., and avoid the exchange of government money. Cryptocurrency enthusiasts think they will provide payments systems that leave the government out altogether.
As a first abstraction, our economy looks a lot more like an electronic accounting system, an electronic barter economy, than it looks like an economy with transactions media consisting of cash and checking accounts, suffering an important interest cost, provided in limited supply, rigidly distinguished from illiquid savings assets such as bonds and savings accounts.

But, to a serious monetarist, all this must be stopped. If V goes through the roof, then $MV = Py$ can no longer determine P. If V becomes unstable, so does Py. Chicago monetarists were pretty free-market, and in favor of an efficient and innovative financial system as in other parts of the economy. This circumstance posed a conundrum. The fiscal theory liberates us to consider financial innovation on its merits, without worrying about price level control.

Sure, one might think that as V increases, M can decrease, from 10 billion to 1 billion, and finally to an economy of quickly circulating electronic claims to the last 1 bill, the puzzle that started for me this whole quest. But as velocity explodes, the power of money to control the price level must surely also disappear. If you hold still the last hair on the end of the dog’s tail, it is unlikely that the dog will wag. When suboptimal behavior has trivial costs, don’t expect quick adjustments.

Surely, velocity becomes endogenous instead. When the whole economy is operating at the 1 cent interest cost of holding one dollar bill, it will happily just pay 2 cents if the Fed wishes the economy to hold two dollars, at least for quite some time.

Such endogenous velocity likely holds for more realistic points on the way to this limit. At a velocity of 10, typical of the pre-zero-bound era, and at a 2% nominal interest rate, the cost of holding money is 0.2% of income. If money increases 10%, which ought to lead to a substantial 10% inflation, the interest cost of not maximizing is 0.02% of income. And since money has benefits too, the overall cost of not maximizing is an order of magnitude lower. (Current interest costs involve multiplying huge quantities by tiny spreads, sometimes even negative.) Akerlof and Milbourne (1980) makes a sophisticated version of this point. Cochrane (1989) generalizes to argue that the region of tiny utility costs define economic standard errors for any model.

As a result, a theory that works at the limit point, zero money demand, not just in the limit, one last dollar of money demand and supply, is better adapted to an economy that is moving toward that limit.

The money demand story, Baumol-Tobin story still repeated to undergraduates, in which you go to the bank once a week to get cash, and then use cash for all
transactions, may reasonably describe the 1960s or 1930s. But it must sound like ancient history to those undergraduates. If they have no cash, let them use a credit card or Apple pay, the undergraduate might say. If you ask an economist from Mars to choose a simple model to describe today’s financial system, and the choice is Baumol-Tobin vs. Apple pay, linked to a cashless electronic netting system based on short-term government debt, I bet on Apple pay.

The money supply / demand story falls apart if people can use assets they hold entirely for savings or portfolio reasons, without suffering any loss of rate of return, to accomplish transactions, precautionary, and other motivations for money demand. Suppose today, for example, you hold $100,000 of stocks and bonds in your retirement portfolio, and you hold $1,000 in a checking account to make transactions. If you could costlessly wire around claims to the stocks in your retirement portfolio, or if you could sell stocks and refill your checking account one second before using it to wire out a transaction, you wouldn’t need to hold money at all. Monetary price level determination falls apart.

We are rapidly approaching that world too. Advances in communication, transactions, computation, and financial technology are destroying the need for us to hold any asset with fixed nominal value, offering less than market rate of return, and whose supply is controllable by the government. In the 1930s, if you wished to buy a cup of coffee with a share of stock, that was impossible: at the coffee shop you couldn’t know the current price of stock (communications), you couldn’t quickly calculate how many shares to transfer (calculation), and selling stock took delivery of physical certificates after a few days. Moreover individual stocks suffer from large bid-ask spreads due to adverse selection – why are you offering RCA, not GM, for your coffee? Only a claim promising a fixed value could be liquid. Today, instant communications, the possibility of millisecond transactions, and the creation of asymmetric-information free index funds all mean that we could, if we wished to do so, have a financial system in which you pay for coffee by Apple-pay linked to a stock index, or, even more undercutting traditional banking, linked to a long-only exchange-traded fund containing mortgage-backed securities.

I argued against inside money on financial stability grounds, though inside money does not undermine the price level. But the instant exchange of floating-value securities can give us the best of both worlds – immense liquidity, and no more financial crises, ever.

Yes, a great deal of cash remains. But more than 70% of U.S. cash is in the form of $100 bills, and most is held abroad. Cash supports the illegal economy, tax evasion,
undocumented workers, illegal drugs, sanctions evasion by people and governments, and U.S. financing of various groups abroad. Cash, and U.S. cash especially, is a store of value around the world where governments tax rapaciously and limit capital movement. One could, I suppose, found a theory of the price level on the illegal demand for non-interest bearing cash, but I doubt this approach would go far. Federal Reserve writings and testimony arguing for continued illegal activity to bolster money demand and allow inflation control are a humorous idea to contemplate. Last, and perhaps most importantly, monetary price level control requires limited supply as well as a demand. But the U.S. Fed and other central banks freely exchange of cash for reserves. So if we base a theory of the price level on illegal cash demand, we are instantly faced with the fact of a flat supply curve.

In sum,

- Classic doctrine: For the price level to be determined, regulation must stop the introduction of new transactions technologies, which threaten to explode V.

- Fiscal theory doctrine: The price level is determined with arbitrary transactions technologies, and even if no transactions are accomplished using the exchange of government liabilities.

13.3 Interest-paying money and the Friedman rule

- Classic doctrine: Money must not pay interest, or at least it must pay substantially less interest than risk-free short-term bonds. If the interest rate is zero, or if money pays the same interest as bonds, the price level becomes undetermined. We cannot live the Friedman-optimal quantity of money. Money and competing liquid assets must be artificially scarce to obtain price level control.

- Fiscal theory doctrine: The price level is determined even if money pays exactly the same interest as bonds, and if the central bank offers to freely exchange money for bonds at that equal rate. That interest rate can be zero, or money may pay the same interest as bonds. We can live the Friedman-optimal quantity of money, satiated in liquidity, using assets held and valued only for savings purposes to make transactions and fulfill other liquidity demands.

The possibility of zero interest rates, or that money pays the same interest as bonds, undermines \(MV = Py \) price level determination. When there is no interest cost to holding money, money and bonds become perfect substitutes. Now \(V \) is \(Py \) divided
by whatever M happens to be. A switch of M for B really has no effect at all. The red and green m&ms even have the same color. As a function of interest rates, when money pays the same interest as other assets, money demand ceases to be a function, but is instead a correspondence, crawling up the vertical axis. With no interest costs, money becomes an asset held only as part of an investment portfolio. One gets the liquidity services of an asset held for other reasons, for free. Monetary price determination fails.

The fiscal theory offers the opposite conclusion. If money M_t pays the same interest as B_t, if M_t and B_t are perfect substitutes, and we’re simply back to $(B_t + M_t) / P_t = E_t \sum_{j=0}^{\infty} \beta^j s_{t+j}$ with no money, no seigniorage, and no other change. The price level is easily determined.

The famous Friedman (1969) optimal quantity of money states that zero nominal interest rates, so money and bonds have the same rate of return, is optimal. Slight deflation gives a positive real rate of interest. Since printing more money costs society nothing, we should have as much of it as we want. At a minimum, we save on needless trips to the cash machine. Zero also means no hurry to collect on bills or other contracts that do not include interest clauses, and no need to write interest clauses into such contracts. All of the cash management we do to use less money, and thereby save on interest costs, is a social waste. Money is like oil in the car. We don’t slow down a car by deliberately starving it of oil, especially if we can print oil for free. Liquidity is free, so we should be fully satiated in liquidity.

As money becomes interest-bearing checking accounts, money-market funds, and transactions become electronic using such funds, we can generalize the Friedman optimum to say that the supply of money-like liquid, transactions-facilitating, assets should be so large that they pay the same return as illiquid assets. They should also be allowed to pay such rates contra decades of regulation forbidding interest payments on checking accounts.

But Friedman did not argue for an interest rate peg at zero nor interest-paying money. He never took the optimal quantity of money seriously as a policy proposal. He argued for 4% money growth, not an interest rate peg at zero. Why not? I hazard, the answer is that it is because, if the price level comes from money supply and money demand, it would become unmoored by interest-paying money or a peg at zero. Society must endure the costs of an artificial scarcity of liquid assets, in order to keep inflation under control. If the gas pedal is stuck to the floor, and the brakes don’t work, you have to slow the car down by draining oil.

The fiscal theory denies this doctrine.
Summing up,

- Classic doctrine: Money must not pay interest, or at least it must pay substantially less interest than riskfree short-term bond. We must stay away from the zero-interest liquidity trap. We cannot have the Friedman-optimal quantity of money.

- Fiscal theory doctrine: The price level is determined even if money pays exactly the same interest as bonds. That interest rate can be zero, or money may pay the same interest as bonds. We can live the Friedman-optimal quantity of money, satiated in liquidity, using assets held and valued only for savings purposes to make transactions and fulfill other liquidity demands.

Again, this is a fortunate prediction because our world looks less and less like one that meets the classical requirements. Reserves pay interest, at times larger than short-term treasurys, and are thousands of times larger than required. Checking accounts can pay interest, and only the oligopolistic nature of banking keeps that rate low. Money market funds, repos, and other interest paying money abounds. Treasurys themselves are liquid and a money-like store of value for financial institutions.

The monetarist position is more nuanced than I have made it out to be. Zero nominal rates, as observed in the great depression, sparked a central and classic controversy. Keynesians view the situation as a “liquidity trap” in which monetary policy loses its power. Money and bonds are perfect substitutes, so trading M for B does nothing, and interest rates cannot be lowered below zero. Monetarists counter with a view that more money M can still stimulate nominal income P_y at the zero bound.

In monetarist language, the issue comes down to the behavior of velocity V. If money and bonds are truly perfect substitutes, then V adapts to whatever split of M vs. B that the government chooses, with no effect on P_y. Velocity V is green m&ms divided by total calories, so switching red for green m&ms raises velocity, but does not slim you down. But monetarist argue that velocity V is not so infinitely adaptable, even at the zero bound. Velocity is “stable” or stable in some “long run,” so more money and less bonds will still encourage more spending.

However, this view that more M for less B does any good requires some upper limit on money demand, not a lower limit or some residual transactions value. It requires some reason people would want to get rid of “too much money” in favor of bonds that pay exactly the same amount. It neglects that zero interest rates are a consequence of satiation with the liquidity value of money. If, unlike car oil, arbitrarily large money holdings still provide marginal liquidity services, then it would have taken an
infinite amount of money to drive the nominal interest rate to zero. That we observe
equal rates between money and bonds, or even lower rates on bonds (treasurys paid
less than reserves in the U.S., bonds pay negative rates in Europe) means directly
that, like car oil, the economy can be satiated with liquidity.

The intuition remains strong that “helicopter drops” of money can stimulate inflation
at the zero bound. But fiscal theory accords with that intuition. That intuition
considers an expansion of M as a pure transfer, without a corresponding reduction
in B. Fiscal theory agrees: more M with no change in B and no change in future
s creates inflation. But that fact and intuition does not tell us that open market
operations, more M and less B do any good. I return to helicopter drops in Section
14.1.

13.4 The separation of debt from money

- Classic doctrine: Bonds must be kept deliberately illiquid, and separate from
money, or the price level will not be determined. They may not be issued in
small denomination, discount, bearer, fixed-value, or cheaply transferable form.

- Fiscal theory doctrine: An artificial separation between “bonds” and “money”
is not necessary for price level determination. The Treasury can issue fixed-
value, floating-rate, electronically transferable debt. Savings vehicles may be
allowed to be as liquid as technology can make them.

In $MV = Py$, we need to have a definite separation between “liquid,” or transactions-
facilitating assets M and “illiquid” savings vehicles B. Control of the former gives
control over the price level. This is the reason for banning interest-paying money, so
that money does not become a savings vehicle like bonds. Here, I discuss the comple-
mentary doctrine: Bonds should not become money. It is important to deliberately
limit the liquidity of public and private debt issues.

Bank notes are illegal, though they are just zero-maturity, zero-interest, small de-
nomination bearer bonds issued by banks. (They are illegal for financial stability
reasons, but the doctrine states that they must remain illegal, or supply limited for
price control reasons.) Corporations and states and local governments must not is-
ssue small-denomination or bearer bonds that might circulate. (Bearer bond principal
and coupons are paid to whoever shows up with them, and are not registered. They
gradually fell out of favor and are now illegal for a host of reasons.) Even the U.S.
Treasury must deliberately hobble the liquidity of its securities, the doctrine says, despite the lower interest rates that doing so could produce. It must sell illiquid securities and let the Fed buy them to issue a limited quantity of liquid debt – cash and reserves – in its place.

Indeed, the U.S. Treasury does not issue bonds in denomination less than $1,000 – only recently reduced from $10,000 – and not in anonymous (bearer) form. The shortest Treasury maturity is a month, and the Treasury does not issue fixed-value floating-rate debt. Treasury sells securities via its website but does not buy them. All treasury securities fluctuate in value. Treasury sells hundreds of distinct securities rather than bundle its debt into two or three issues that would be vastly more liquid.

I do not claim that this illiquidity results from a conscious policy with price level control in mind. But this deliberate illiquidity, keeping “bonds” separate from “money,” is crucial in the $MV = Py$ world.

- Classic doctrine: Bonds must be deliberately illiquid, and separate from money, or the price level will not be determined. Bonds may not be issued in small denomination, discount, bearer, fixed-value or cheaply transferable form that might be used for transactions demand.

This doctrine is really just an expression of the general proposition that the government must control the supply of inside moneys. Here I emphasize that control through legal restrictions on the form of financial contracts, rather than restrictions on the amounts of financial contracts that are money substitutes, like checking accounts. In particular Treasury debt must not start to look too much like money, or the Fed’s control of the split between monetary base and Treasury debt will lose its power to do anything.

The fiscal theory denies this proposition. The maturity, denomination, transaction cost, bearer form or other liquidity characteristics of private or government debt makes no difference to price level determination. To the extent that such features lower the interest rate markets require of Treasury debt overall, so much the better for government finances and liquidity provision to the economy.

- Fiscal theory doctrine: An artificial separation between “bonds” and “money” is not necessary for price level determination.

In a more detailed proposal, [Cochrane (2015b)], I argue that the Treasury should offer to all of us the same security the Fed offers to banks: fixed-value, floating-rate, electronically transferable debt, in arbitrary denominations. This is the same
security that the Fed offers to banks as reserves, but available to everyone. Treasury
electronic money might be a good name for it. I also argue that the Treasury should
supply as much of this security as people demand, leaving the split between this
debt and longer term debt to the public. The Treasury can manage its duration
and interest rate risk exposure with longer maturities or swaps. I also argue that
the Treasury and Fed should allow narrow banks and private non-bank payment
processing companies to operate, using this security as 100% reserves, since private
institutions are likely better at operating low-cost transactions and intermediation
services, interacting with retail customers, and applying the Fed and Treasury’s
complex regulations for doing so.

The Federal money market fund – a mutual fund that offers fixed-value floating-rate
electronically-transferable investments, backed by a portfolio of treasurys – should
be an immense threat to price level control. After all, the Federal Reserve itself is
no more than exactly such a fund. Such funds are already widespread. Such funds
don’t yet have immediate electronic transfers and link to a credit card, in large part
not to be regulated as “banks.” But that is a legal not technological limitation. Add
that feature and we have already completely circumvented the Federal Reserve’s
intermediation of treasury debt to electronic money.

Such a proposal is anathema in a monetarist view, as the price level would be un-
moored. The relative quantity of B and M would become endogenous, and the
character of B and M (reserves) would become identical.

13.5 A frictionless benchmark

- Classic doctrine: We must have monetary frictions to determine the price level.
- Fiscal theory doctrine: The price level is well-defined in an economy devoid of
 monetary or pricing frictions, and in which no dollars exist. The dollar can be
 a unit of account even if it is not the medium of exchange or store of value. The
 right to be relieved of a dollar’s taxes is valuable even if there are no dollars.

The fiscal theory does not stop with frictionless models. The frictionless model
is a benchmark on which we build models with frictions as necessary. But unlike
standard monetary economics, frictions are not necessary to describe an economy
with a determinate price level. And the very simple frictionless model can provide a
first approximation to reality.
In classical monetary theory, some monetary friction is necessary to determine the price level. In a completely frictionless economy, with no money demand, money can have no value.

As we have seen, the fiscal theory can determine the price level even in a completely frictionless economy. We do not need liquidity demands, transactions demands, speculative demands, precautionary demands, incomplete markets, dynamic inefficiency (OLG models), price stickiness, wage stickiness, irrational expectations, and so forth. Such ingredients make macroeconomics fun, and realistic. We can and do add them to better match dynamics, as I added price stickiness in previous chapters. But the fiscal theory does not need these ingredients to determine the price level.

We can even get rid of the “money” in the stories I told above. Nothing changes if people make transactions with maturing government bonds, in Bitcoin, with foreign currency, by transferring shares of stock, or by an accounting and netting system. The “dollar” can be a pure unit of account, and government debt can promise to pay a “dollar,” even if nobody ever holds any dollars at all. The right to be relieved of one dollar’s worth of tax liability establishes its value as numeraire and unit of account.

This frictionless view describes the frictionless limit point, not just a frictionless limit. As I have argued in other contexts, a theory that holds at the limit point is more reliable to describe economies that are near the limit, avoiding the tail-wags-the-dog problem.

Frictionless valuation is a property of a backing theory of money. If dollars promised to pay gold coins, and were 100% backed by gold coins, then we could establish the value of a dollar equal to one gold coin, also even if nobody used dollars in transactions. In a backing theory, money may gain an additional value if it is specially liquid and limited in supply, or it may pay a lower rate of return. In a backing theory, a fundamental value remains when the liquidity value or limited supply disappear. Entirely fiat money loses all value in that circumstance.

To summarize, continuing my list of doctrines,

- Classic (fiat-money) doctrine: We must have some monetary frictions to determine the price level.

- Fiscal theory doctrine: We can have a well-defined price level in an economy devoid of monetary or pricing frictions, and in which no dollars exist. The dollar can be a unit of account even if it not medium of exchange or store of
value. The right to be relieved of a dollar’s taxes is valuable even if there are no dollars.

This observation really sums up previous ones – interest-paying money, abundant inside money not constrained by reserve requirements, debt that can function as money, and financial innovations that allow us to make transactions and satisfy other demands for money without holding money are all different aspects of the march to a frictionless financial system.
Chapter 14

Stories and histories

A few simple stories and conceptual experiments quickly come up when we think of any monetary theory. It’s important to see how fiscal theory in fact is consistent with monetary stories.

14.1 Helicopters

Dropping money from helicopters surely raises inflation. Does not this mean that $MV = Py$? The fiscal theory also predicts that prices rise under a helicopter drop – an expansion of nominal debt with no change in surpluses. It does not follow that more M with less B creates inflation. A helicopter drop is a brilliant device for communicating a fiscal commitment, that surpluses will not be raised to pay off the new debt.

Milton Friedman famously proposed that if the government wished inflation, it should drop money from helicopters. That proposal seems like it would surely work. People will run out and spend the money, driving prices up. Doesn’t this, the most famous gedanken experiment in economics, prove that in the end that money causes inflation?

No. Remember, the government debt valuation has money and bonds $M + B$ on the left hand side. Dropping money M from helicopters with no change in surpluses s and no change in debt B raises the price level P in the fiscal theory too. The sign of the response to this conceptual experiment does nothing to distinguish monetary
from fiscal theories of inflation.

The helicopter drop remains a key conceptual experiment. But first of all, recognize this is not what central banks do. Central banks do not print money (create reserves) and hand it out. They always exchange money for something else, or lend money, booking the promise to repay as an asset. The Federal Reserve is forbidden by law from distributing money without buying something of equal value. A helicopter drop is fiscal policy, or at least a joint fiscal-monetary policy operation. To accomplish a helicopter drop in our economy, the Treasury must borrow money, hand it out, and the central bank must buy the Treasury debt. Even when the Fed simply prints money and hands it out, it must make a loan not a gift, and book a promise to repay.

Yes, the central bank, charged with controlling inflation, is forbidden this one most obvious tool for creating inflation. It is even more forbidden the single most obvious tool for stopping inflation – helicopter vacuums, i.e. confiscating money. There are excellent reasons for this institutional limitation. An independent agency in a democracy should not print money and give it to voters, or to specific industries and asset holders, and it certainly should not confiscate or tax wealth. Those are the jobs of the politically accountable Treasury, with politically accountable authority from Congress. Even in the extreme measures of the financial crisis and covid-19 recession, the U.S. Fed carefully structured its massive interventions as plausibly risk-free lending, with the Treasury taking credit risk.

If you want to think about monetary policy, you should suppose that while the Fed helicopter drops $1,000 of cash in your backyard, the Fed burglars also come and take $1,000 of treasury bills from your safe. How much would that combined operation make you spend? The answer is not so obvious, and “nothing” is a reasonable answer.

The helicopter drop story artfully leads you to jump from intuition about a wealth effect, increasing the overall amount of government liabilities with no promise of future surpluses, to a composition effect – more money relative to bonds. This conflation is not dishonest. In monetarist thinking, only \(MV = Py \) matters to the price level. Whether the money supply increases because the Fed buys bonds, buys stocks, lends it to banks, or simply drops it from helicopters makes no difference at all to inflation. The wealth effect is tiny or irrelevant in monetarist thinking. But your intuition may be guided by the wealth effect, not by the monetarist model. If so, you’re thinking in fiscal theory terms. Likewise, many monetary models specify money “injections” or “transfers” in which the central bank just hands out or confiscates money, and
then draw implications for open market operations.

Reversing the conceptual experiment, imagine that the Treasury drops newly printed one-month Treasury bills from the sky. Would that have much different effect on spending, stimulus, and eventual inflation than dropping the corresponding cash? The monetarist interpretation says that this operation would have no effect on inflation. The frictionless fiscal theory would say, the treasury bill drop could well have the same effect as the money drop – if people think the debt, like the money, will not be repaid.

Imagine that the government drops cash from the sky, with a note. “Good news: We have dropped $1 trillion dollars from the sky. Bad news: Next week taxes go up $1 trillion dollars. See you in a week!” Now how much will people spend? In the fiscal theory, this is a parallel rise in M_t and s_{t+1}, which has no impact on the price level.

Now we see why the parable is so potent. Dropping cash from helicopters is a brilliant way to communicate a fiscal expectation – we’re dropping this government debt on you, and we will not raise surpluses to pay it off. You will not have to pay more taxes. Go spend it. If the government drops bonds, or writes stimulus checks after a coordinated debt issue and Fed purchase, people might infer that this operation is like typical bond issues, and comes with an implicit commitment to raise future taxes. That observation helps to explain why supposed “helicopter drops” of the many zero-bound fiscal stimulus packages did not do much to inflate. They used legal Treasury-Fed financing, not actual helicopters! We have struggled with institutions to communicate such fiscal expectations. Alas, literal helicopters are not a practical idea.

Magnitudes may distinguish the monetarist and fiscal theory answers to this experiment. Suppose each person has $100,000 savings in treasury bonds, and earns $100,000 a year. They hold an additional $1,000 in cash to make transactions. The Fed (or treasury) drops $1,000 per capita in cash. How much does the price level rise? A fiscal theory answer is, 1%. You don’t really care about cash vs. treasurys. So overall treasury debt just got diluted 1%. The monetarist answer is 100%. The money supply doubles, so the price level must double. You may spend your extra $1,000, but then someone else has $2,000. People only want 1% of their income in cash. People collectively keep trying to spend their extra cash until they have doubled the price level, doubled income, and the $2,000 in cash per person is 1% of the now $200,000 nominal GDP. The fact that this doubling of the price level wipes out half of the real value of $100,000 of treasury savings has no effect on the price
level.

14.2 Hyperinflations and currency crashes

Governments print a lot of money in hyperinflations, but this fact does not prove that money causes inflation. Hyperinflations all involve intractable fiscal problems. A central bank that refused to print money would not likely stop a fiscal hyperinflation.

Governments print huge amounts of money in hyperinflations. Doesn’t that prove that money causes inflation?

No. Every hyperinflation has indeed occurred when governments print money. But the governments printed money to finance intractable deficits, expanding the amount of total government debt, and with no surpluses in sight. No hyperinflation has occurred from central bank policy in a government with healthy finances.

Imagine that a central bank of a hyperinflation-ridden country refuses to print more money, and the government funds its deficits by issuing one-month bonds instead, paying suppliers with such bonds, and rolling over old bonds with new bonds directly. Would that stop the inflation? Likely not. People would still try to unload government debt by buying real assets, foreign assets, and goods and services. The higher and higher interest the government would have to offer to get people to hold debt would have to be financed by issuing ever more debt. People would see the end coming and run. If the central bank creates a means-of-payment shortage in this situation, people will use foreign currency, barter, credit, government bonds, put in more effort to hold money for the least possible time, and so forth.

At best, the central bank can try to force a fiscal reform by its refusal to print more money. This refusal can be effective. If the central bank can stick to it, refusing to print the M that redeems debt and is left outstanding at the end of the period in my simple models, then it can force the government to mend fiscal policy, either current or future. As we shall see in the next section, several historical stabilizations came with more central bank independence, or a commitment to the gold standard. But if the fiscal problem is not cured, the bank can at best force a massive default. Thus stronger central bank commitments seem to be most useful with explicit fiscal reform, and seldom successful on their own. Without fiscal reform, changing the composition of government debt will have little effect.
A similar situation occurs when the currencies of countries having fiscal and balance of payments crises start to collapse. The central bank may try to fight the crisis by soaking up domestic currency in return for nominal bonds. But nobody wants the nominal bonds either, and high interest costs worsen the deficit. Open-market operations cannot stop the exchange rate collapse. Governments in both cases try financial repression and capital controls to force people to hold their debt. That too eventually fails.

Monetarist analyses have long recognized that there are fiscal limits, and that successful control of the money supply requires a solvent fiscal policy, monetary-fiscal coordination. But the fact that hyperinflating countries do typically print up a lot of money does not tell us that money printing alone causes inflation, that inflation could be stopped by more spine at central banks, or that an exchange of money for bonds has the same effect as printing money to finance deficits.

14.3 Ends of inflations

The end of inflations have been produced by solving the underlying long-run fiscal problem, and by changing the fiscal and monetary regime. They have included printing more money, lower interest rates, continued deficits and little or no output loss. I review Tom Sargent’s classic studies and their place in history.

Hyperinflations end when the underlying fiscal problem is solved. Reforms in monetary arrangements are often involved, so we should call them joint fiscal-monetary reforms. The ends of large inflations typically involve printing more money. Real money demand expands when the interest costs of holding money decline – people start holding money for weeks, not hours, so the economy needs more of it. The nominal interest rate declines when the fiscal problem is solved. There is no period of monetary stringency. Near-term fiscal deficits may stay the same or increase. Fixing the long-run problems allows the government to borrow more. Many inflations have ended with no rise in unemployment or decline in output, or indeed quickly improving economies.

[Sargent (1982b)] “The ends of four big inflations” is the pathbreaking study of the ends of hyperinflations and their fiscal roots. It set the sails of fiscal theory. It also shows by example how historical analysis of regime changes lets us surmount observational equivalence and Lucas critique concerns. It insists that good economics should describe the big events first and foundationally, not as outliers or different
regimes to be treated as different economics from more sedate times.

Sargent studied the immense hyperinflations of Austria, Germany, Poland, and Hungary in the early 1920s, and their abrupt ends, along with the placebo test of Czechoslovakia which avoided inflation despite being surrounded by inflation.

![Graph of Wholesale Prices in Austria](image)

Fig. 14.1 Wholesale prices in Austria.

Figure 14.1: Source: [Sargent (1982b)]

Start with Austria, displayed in Figure 14.1. The inflation is dramatic and its end instantaneous. What happened? I quote from Sargent, in part to document the role of this foundational work in developing fiscal theory:

The hyperinflations were each ended by restoring or virtually restoring convertibility to the dollar or equivalently to gold.
This sounds like a monetary policy change, but it is not. Sargent states as I have that the gold standard is primarily a fiscal commitment:

... since usually a government did not hold 100% reserves of gold, a government’s notes and debts were backed by the commitment of the government to levy taxes in sufficient amounts, given its expenditures, to make good on its debt. [Note debt, not just money.] In effect, the notes were backed by the government’s pursuit of an appropriate budget policy. ...what mattered was not the current government deficit but the present value of current and prospective future government deficits. The government was like a firm whose prospective receipts were its future tax collections. The value of the government’s debt was, to a first approximation, equal to the present value of current and future government surpluses. ... In order to assign a value to the government’s debt, it was necessary to have a view about the fiscal policy regime in effect, that is, the rule determining the government deficit as a function of the state of the economy now and in the future. The public’s perception of the fiscal regime influenced the value of government debt through private agents’ expectations about the present value of the revenue streams backing that debt. (p. 46)

Sargent emphasizes the importance of a change in regime. To believe that the present value of surpluses has changed, people need to see that fiscal and monetary affairs have changed in a durable way. I have used the word “institutions” that guide expectations in much the same spirit.

The new fiscal regime allowed the countries to restore convertibility:

The depreciation of the Austrian crown was suddenly stopped by the intervention of the Council of the League of Nations and the resulting binding commitment of the government of Austria to reorder Austrian fiscal and monetary strategies dramatically.

Much of this event was a classic internal fiscal reform,

Expenditures were reduced by discharging thousands of government employees... Deficits in government enterprises were reduced by raising prices of government-sold goods and services. New taxes and more efficient means of collecting tax and custom revenues were instituted....Within two years the government was able to balance the budget.

As a further commitment,
the government of Austria agreed to accept in Austria a commissioner
general, appointed by the Council of the League, who was to be respons-
able for monitoring the fulfillment of Austria’s commitments.

But a larger issue was hanging over Austria: whether it would continue as a nation,
and repay its debts, and how much reparations the Allies would demand.

The first protocol was a declaration signed by Great Britain, France,
Italy, Czechoslovakia, and Austria that reaffirmed the political indepen-
dence and sovereignty of Austria.

At the same time, it was understood that the Reparation Commission
would give up or modify its claim on the resources of the government of
Austria.

This did the trick, and instantly stopped the inflation. Indeed,

...even before the precise details of the protocols were publicly an-
nounced, the fact of the serious deliberations of the Council brought
relief to the situation.

Monetary policy alone did little. Yes,

The Austrian government promised to establish a new independent
central bank, to cease running large deficits, and to bind itself not to
finance deficits with advances of notes from the central bank.

But such promises have been made hundreds of times in failed stabilizations. Unless
you solve the structural problem, change the regime, swearing not to finance deficits
is a pie-crust promise. On the other hand, we should recognize that such central
bank reforms as part of a joint monetary-fiscal stabilization help to prevent future
inflationary finance, and help the reform to stick.

Money supply expanded dramatically, and money-financed deficits continued. Nei-
ther monetary stringency nor an immediate end to deficit spending mattered. Curing
the expectation of future deficits mattered.

The Austrian crown abruptly stabilized in August 1922, ... prices
abruptly stabilized a month later. This occurred despite the fact that
the central bank’s note circulation continued to increase rapidly...

from August 1922, when the exchange rate suddenly stabilized, to De-

 from August 1922, when the exchange rate suddenly stabilized, to De-
cember 1924, the circulating notes of the Austrian central bank increased
by a factor of over 6.
14.3. ENDS OF INFLATIONS

The key difference:

Before the protocols, the liabilities of the central bank were backed mainly by government treasury bills; that is, they were not backed at all, since treasury bills signified no commitment to raise revenues through future tax collections. After the execution of the protocols, the liabilities of the central bank became backed by gold, foreign assets, and commercial paper, and ultimately by the power of the government to collect taxes. ... The value of the crown was backed by the commitment of the government to run a fiscal policy compatible with maintaining the convertibility of its liabilities into dollars. Given such a fiscal regime, to a first approximation, the intermediating activities of the central bank did not affect the value of the crown...

Austria also got a bridge loan from the League, but its reforms assured repayment.

Overall, this looks a lot like a classic IMF stabilization package, at least until recently when the IMF moved on to other ideas, or the fiscal and microeconomic reforms accompanying inflation targets. Note the “pot of money” real assets in the central bank.

Germany presents an even starker case.

Figure 14.2 presents the price level in Germany during its post WWI hyperinflation. Notice the exponents on the vertical axis.

After World War I, Germany owed staggering reparations to the Allied countries. This fact dominated Germany’s public finance from 1919 until 1923 and was a most important force for hyperinflation. ...except for 1923, the budget would not have been badly out of balance except for the massive reparations payments made.

For one thing, considerably larger sums were initially expected of Germany than it ever was eventually able to pay. For another thing, the extent of Germany’s total obligation and the required schedule of payments was for a long time uncertain and under negotiation. From the viewpoint that the value of a state’s currency and other debt depends intimately on the fiscal policy it intends to run, the uncertainty about the reparations owed by the German government necessarily cast a long shadow over its prospects for a stable currency.
Germany’s hyperinflation stopped just as suddenly, when the long-term fiscal problem was solved.

Simultaneously and abruptly three things happened: additional government borrowing from the central bank stopped, the government budget swung into balance, and inflation stopped.

The fiscal trouble was not all reparations:

The government moved to balance the budget by taking a series of deliberate, permanent actions to raise taxes and eliminate expenditure...

... the number of government employees was cut by 25 percent; all temporary employees were to be discharged; all above the age of 65 years
were to be retired. The railways, overstaffed as a result of post-war demobilization, discharged 120,000 men during 1923 and 60,000 more during 1924. The postal administration reduced its staff by 65,000 men; the Reichsbank itself which had increased the number of its employees from 13,316 at the close of 1922 to 22,909 at the close of 1923, began the discharge of its superfluous force in December...

But reparations were a central component:

Substantially aiding the fiscal situation, Germany also obtained relief from her reparation obligations. Reparations payments were temporarily suspended, and the Dawes plan assigned Germany a much more manageable schedule of payments.

Again, the stabilization did not involve monetary stringency. The opposite occurred. While the inflation was going on, the usual substitution away from real money holdings took hold,

In response to the inflationary public finance and despite the efforts of the government to impose exchange controls, there occurred a “flight from the German mark” in which the [total] real value of Reichsmark notes decreased dramatically. The fact that prices increased proportionately many times more than did the Reichsbank note circulation is symptomatic of the efforts of Germans to economize on their holdings of rapidly depreciating German marks. Toward the end of the hyperinflation, Germans made every effort to avoid holding marks and held large quantities of foreign exchange for purposes of conducting transactions.

When the inflation stopped, Germany printed more money.

... a pattern that we have seen in the three other hyperinflations: the substantial growth of central bank note and demand deposit liabilities in the months after the currency was stabilized. ..

There was also no Phillips curve:

By all available measures, the stabilization of the German mark was accompanied by increases in output and employment and decreases in unemployment.

The story by which Czechoslovakia avoided these inflations is also good to read.

“Stopping moderate inflations: The methods of Poincaré and Thatcher,” Ch. 4 in
Sargent (2013) covers the end of the much smaller French inflation of the 1920s, and shows the same principles apply. This is important: fiscal theory and fiscal-monetary interactions are often grudgingly acknowledged for hyperinflations and crashes, but said to be unimportant in less extreme events.

France had borrowed a huge amount to fight WWI, and was hoping to repay that debt from German reparations. When it became clear that Germany would not pay, in 1924, the Franc started depreciating quickly. The period was volatile. Sargent’s data includes years of surprising deflation as well. The period was characterized by a massive flight of French capital abroad, partly an anxiety reaction to some of the tax proposals under discussion, such as a capital levy.

Again, when inflation ended France was able to increase its money issue.

The dénouement:

Poincaré was a fiscal conservative,...As soon as he assumed control of the government... the Franc recovered and inflation stopped.

How? Sargent details the subsequent tax changes (both increases and decreases), a return to the gold standard at a low and thus more easily sustainable value, implying an 80% default on wartime nominal debt, and limits on central bank finance. Sargent emphasizes again the gold standard as a fiscal commitment. Most importantly, people believed that the change was permanent.

“...there had been broad consensus both about the principal economic factors that had caused the depreciation of the Franc – persistent government deficits and the consequent pressure to monetize government debt – and the general features required to stabilize the Franc – increased taxes and reduced government expenditures sufficient to balance the budget, together with firm limits on the amount of government debt monetized by the Bank of France... a political struggle had been wages over whose taxes would be raised.

Moreover,

all political parties except the socialists and communists gathered behind Poincaré. Five former premiers joined his government.

Sargent’s point in this work was only half about the fiscal foundations of inflation. Much of his point is about the Phillips curve. Sargent wrote in the early 1980s, in
the context of the U.S. and U.K. inflation stabilization, which at the time had only
begun. At the time, the conventional Keynesian consensus held that expectations are
mechanically and slowly adaptive, prices and wages are very and mechanically sticky,
so it would take an prolonged and costly depression to get rid of inflation. Sargent
cites contemporary estimates that a 1 percentage point reduction in inflation would
cost 8% of GNP. And U.S. inflation peaked above 14%. Conventional wisdom argued
it was better to live with inflation, or pursue (again) price controls and jawboning
rather than suffer such a fate.

In this context, Sargent argued for the possibility of rational expectations, that if
people could see a new fiscal and monetary regime in place, expectations of inflation
and hence actual inflation can decline quickly. In the context of the Phillips curve
we have written down, $\pi_t = E_t \pi_{t+1} + \kappa x_t$, getting $E_t \pi_{t+1}$ to fall is the key to a
recession-free inflation reduction.

Most of Sargent’s point is about how hard this outcome is to achieve and how perilous the U.S. and U.K. stabilizations actually were. As today, economists tend to
write down such models and breezily assert that central banks just need to give
pleasant forward-guidance speeches to drive down expected inflation. Driving down
expected inflation is not nearly so easy as it sounds, especially with three failed at-
ttempts in the rear-view mirror as was the case in 1980, each of those studded with
many fine speeches. Sargent’s point is that a swift and relatively painless end of
inflation, a credible stick-to-it reform, a change in Phillips-curve expectations, will
only happen with a credible change of regime. “Rational expectations” economics is
really intertemporal economics, and the central lesson is that we cannot think about
policy actions in isolation, as standard Keynesian economics does. Instead, we must
think of regimes, policy rules and traditions, institutions, and through them expec-
tations of future policy. Speeches, promises, and one-time policies do not reliably
change expectations. In turn such a change in regime often needs a political realign-
ment, a change in institutions and commitments they embody, or change of external
circumstance. Per Sargent,

“the change in the rule ...[must be] widely understood, uncontroversial
and unlikely to be reversed.”

Sargent took a skeptical view of the U.S. and U.K. stabilization attempts, as of the
time he wrote. Both U.S. and U.K. had large deficits. The early part of the U.S.
monetary tightening in particular did not come with an immediate change in fiscal
policy. Though we now understand that primary deficits that are neither large by
later standards, nor unusual given the size of the recession, the “Reagan deficits”
were big and contentious items in economic discussion at the time.

The central point of Sargent and Wallace (1981) “Unpleasant Monetarist Arithmetic” (covered in detail in Section 19.5.6) as well as these historical writings was to point out the fiscal underpinnings of inflation, and to argue that the U.S. and U.K. needed to quickly undertake fiscal reforms, or the stabilizations would fail. Being expected to fail, or at least with great uncertainty about whether the governments would or could stick with it, expectations in the Phillips curve would not shift, and the attempt would be unnecessarily costly in terms of output and employment.

Sargent’s “methods of Poincaré and Thatcher” was even harsher on likely success in the U.K. He wrote

Mrs. Thatcher comes to power against the background of over twenty years of ‘stop-go’ or reversible government policy actions. Her economic policy actions are vigorously opposed both by members of the Labour party and by a strong new party, the Social Democrats. ... Mrs. Thatcher’s party now runs third in the political opinion polls.... speculation has waxed and waned about whether Mrs. Thatcher herself would be driven to implement a “U-turn”... there is widespread dissent from Thatcher’s actions among British macroeconomic scholars [an understatement, and equally true of President Reagan.] ... for all these reasons it is difficult to interpret Thatcher’s policy actions in terms of the kind of once-and-for-all, widely believed, uncontroversial and irreversible regime change that rational expectations equilibrium theories assert can cure inflation at little or no cost in terms of real output... and employment.

Sargent writes at greater depth about the “gradualism” of U.K. policy. Gradualism is always an invitation to renegotiation.

The U.S. and U.K. stabilizations did not fail. The Reagan administration did not choose fiscal austerity, raising taxes and cutting spending in the middle of the 1982 recession, as Sargent and Wallace wished them to do. But in 1982 and especially 1986, the U.S. passed a profound fiscal reform, lowering marginal rates and broadening the base. The U.S. and U.K. left behind the malaise of the 1970s, at least in part due to less distorting taxes and microeconomic deregulation, and embarked on two decades of strong growth. By the late 1990s the U.S. was running large primary surpluses, and economists were debating what to do when the federal government had paid down all the debt. The present value of surpluses did rise. They did so with greater delay and a different mechanism – more growth and wider base – than Sargent and Wallace had imagined. Sargent did not clairvoyantly foresee just what an Iron Lady
Mrs. Thatcher turned out to be, persisting through the disinflation despite political and economic storms, or that Reagan and Volcker would similarly persist. Indeed, one might view the election of Reagan, or his acceptance of the remarkable [Schultz et al. (1980)] stick-to-it memorandum, as an event like the election of Poincaré. It made the outcome clear if not the path by which the country would get there.

Sargent was right that the 1980s disinflations were not painless, however. The recessions of 1980 and 1982 were severe. The U.S. and U.K. experienced high ex-post real interest rates for a further decade, arguably in part reflecting continued doubt that the countries would once again give up and return to inflation. But Sargent was also right that the disinflations were nothing like the dire predictions offered by contemporary Keynesians. From 14.4% in May 1980, inflation fell to 2.35% in July 1983. Inflation and its expectation did drop, in the end quite suddenly, without decades of pain. Unemployment was severe, but recovered with remarkable speed, especially relative to the subsequent “jobless recoveries.” The disinflations could well have been swifter still, less costly, had they come with a clear, contemporaneous and permanent change in fiscal, monetary and (importantly) microeconomic and regulatory regime. However, profound reforms like that of 1986 do not happen overnight, as evidenced by the United States’ inability to do anything like it in the following 35 years. Later inflation stabilizations involving inflation targets and explicit coordination between fiscal and monetary policies, covered in Section 9.1, did achieve nearly painless disinflation.

The lesson that only policy regimes durably change expectations remains foreign to most central bankers and many economists. The lesson that only by constraining one’s freedom to act ex-post can one offer reliable forward guidance ex ante is just as foreign. Central bankers seem to think expectations are “anchored” by their speeches, not by repeated, credible actions and precommitments. Indeed, “forward guidance” in which the central bank promises today to take actions it will not want to follow next year, for example keeping interest rates low despite a resurgence of inflation and strong output, is now considered by the Federal Reserve to be one of its most important “tools.” Many economists advocate that central bankers announce new policies such as a higher inflation target, and expect people to immediately believe such promises. We shall see if this faith endures after a few more episodes in which central banks completely contravene ex-post such promises. Indeed, the whole notion of rules as precommitments or regimes, not as descriptions of discretion, is foreign to the operation of most central banks, who simply wake up each day and make decisions. (Readers at the Fed may bristle at this characterization. Read the Federal Reserve’s [Federal Reserve Board of Governors (2020)] statement however. Is
there any decision the Fed could make that it could not justify as following this elastic description of its strategy?) We who must form expectations somehow are left with guessing the reputations and habits of central bankers.

14.4 Episodes of war and parity

Countries at war under the gold standard typically suspended convertibility and borrowed and printed money to finance the war. They promised to restore convertibility after the war, though whether they would do so remained uncertain and dependent on the outcome of the war. Fiscal backing is the obvious way to think about inflation and deflation in these episodes.

Countries under the gold standard financed war by suspending convertibility, issuing currency and nominal debt. There was an implicit promise that sometime after the war was over, the country would restore convertibility at the prewar level. Doing so is a promise to pay back rather than inflate away the debt. Whether that would happen, or what conversion rate would hold, was uncertain, and naturally depended on the outcome of the war, so there was often inflation and a fall in bond prices during the war, requiring deflation if parity were to be restored afterwards. But the reputation for returning to parity, for repaying currency as well as debt, generates a reputation which allows the government to borrow and issue currency next time. The United Kingdom through the wars with France ending with victory over Napoleon is perhaps the paradigmatic example. Bordo and Levy (2020) give a good capsule finance of inflation and war finance including the Swedish 7 years war, the U.S. revolution, Civil War, and WWI, WWII.

Rather obviously, inflation in such episodes reflects expected fiscal backing of nominal government debt, not supply vs. demand of the medium of exchange or central bank steadfastness in printing currency.

The U.S., though it famously followed Alexander Hamilton’s advice to repay much interest-bearing debt from the revolutionary war, left the Continental dollars inflated and ultimately redeemed them at one cent on the dollar. Hall and Sargent (2014) analyze this episode as a clever combination of a one-time capital levy on money but a successful reputation-buying investment for the interest-bearing debt. It offers a similar lesson to the Jacobson, Leeper, and Preston (2019) story of the Roosevelt administration, which also inflated while preserving a reputation for future borrowing.
In the civil war, the U.S. issued paper greenbacks, which inflated and lost value relative to gold coin dollars, perhaps in part from the example of continental dollars. But the U.S. after the civil war eventually returned to par repaying both greenback dollars and civil war debt in full, though after a long debate only settled by President Grant. The “one-time” capital levy always beckons, especially ex-post. Understanding the inflation and deflation of greenbacks clearly starts with money and bond holder’s evaluation of the U.S. fiscal commitment to repay civil war debts.

Fiscal backing is even clearer in the correlation of currency value with battlefield outcomes. Hall and Sargent Figure 11 plot the discount of greenbacks vs. gold in the civil war. They write “after a string of Union defeats in the Spring of 1863, 60 gold dollars bought $100 in greenbacks. The price rebounded to 80 after victories at Gettysburg and Vicksburg but fell again reaching its nadir in June 1864 at a price below 40 gold dollars.”

McCandless (1996) provides background and detail. McCandless quotes Mitchell (1903),

“While the war continued there could be no thought of redeeming the government’s notes. Hence every victory that made the end of the hostilities seem nearer raised the value of the currency, and every defeat depressed it. The failures and successes of the Union armies were recorded by the indicator in the gold room more rapidly than by the daily press,”

A nice comment on efficient markets. Mitchell continues, perfectly stating my main point:

“...fluctuations in the premium on gold were so much more rapid and violent than the changes in the volume of the circulating medium that not even academic economists could regard the quantity theory as an adequate explanation of all the phenomena.” (p. 188)

He opined that these fluctuations

“followed the varying estimates which the community was all the time making of the government’s present and prospective ability to meet its obligations.” (p. 199).

Mitchell describes the fiscal theory in a nutshell, whose essence has indeed been with us a long time.
McCandless adds by investigating the value of Confederate currency. If greenbacks rise after union victories, Confederate currency should decline, and it does. The chance of that currency being repaid after losing the civil war was pretty clearly zero. Money supply vs. transactions demand does not change the day after a lost battle.

The post-WWI history is more famous. The conventional view credits France, which went back on gold at 20 percent of the prewar parity, with wisdom for avoiding the deflation and recession suffered by the U.K., which went back fully to the prewar parity. Fiscal affairs are complicated by the status of large international loans, especially from the U.S., prospective reparations from Germany, and the British gold exchange system. Still, to our point, we would not begin to understand the price level in this era based on transactions demand and money supplies, or interest rate manipulations and a Phillips curve, rather than the gold standard, its clearly fiscal backing, and a nation’s ability and will to establish one or another parity to gold.

When deflation or disinflation matters to output is another interesting question of these and other episodes. The post civil war U.S. had a steady deflation, especially of greenback values, with no obvious aggregate consequences. (The “cross of gold” consequences were distributional, borrowers vs. lenders, not a Phillips curve of low aggregate output.) Hall and Sargent (2019) contrast the price level and output history of post civil war and post WWI episodes. We add to our list of times when the Phillips curve seems to operate, and times including currency reforms, the ends of hyperinflations, and the introduction of inflation targets with fiscal reforms, when it seems completely absent.

Perhaps the fact that gold currency circulated in the post civil war U.S. helped people to adjust quickly to the much larger greenback deflation. The numeraire matters. In the other direction, Velde (2009) gives a fascinating account of 17th century France, when there were two currencies, a numeraire and unit of account (Livres) in which prices were quoted and a distinct medium of exchange (Ecus) that one used for all transactions. A revaluation of the unseen unit of account, needing a decline in quoted prices led to a severe recession. Velde’s article is also a testament that unit of account and medium of exchange may be completely separate, as in my stories of economies in which a “dollar” is valued, though people never hold any dollars.

Was the U.K. really unwise to restore parity, as Keynes so famously argued? Was there a way to do so and avoid a Phillips-curve recession as so many other stabilizations have done? Why was the post WWI Phillips curve so severe in the U.K? By restoring parity, the U.K. purchased a lot of debt-repayment reputation. That
hard-won reputation would have been valuable to finance the second war with debt rather than taxes, had the U.K. not abandoned the gold standard in the 1930s. France might have needed such reputation had it not lost the second war so quickly. Keynes might have been wrong. Perhaps “don’t buy a reputation you don’t mean to keep,” is the lesson, and “don’t waffle about whether you are going to buy that reputation.”
Chapter 15

Esthetics, philosophy and frictions

Keynesianism, new-Keynesianism and monetarism were each useful theories, to then-current political debates or to the concerns of central bankers. Fiscal theory is currently less useful to those concerns but that may change. The fiscal theory, by allowing free financial innovation, may replace some of the usefulness of monetarism, or by fixing its foundations rescue the useful properties of new-Keynesianism.

One should not discount elegance.

The frictionless version of the fiscal theory is only a foundation, on which to build realistic descriptions of events and policies. In this way fiscal theory is like many of the classic neutrality results of modern macroeconomics.

The opportunity to base a theory of the price level on a perfectly frictionless supply and demand model, on which we build frictions as necessary, is also esthetically pleasing. Everywhere else in economics, we start with simple supply and demand, and then add frictions as needed. Monetary economics has not been able to do so. Now it can.

In this way, the fiscal theory fills a philosophical hole. It is initially puzzling that Chicago championed both monetarism and free markets. The Chicago philosophy generally pushes hard towards a simple, supply-and-demand explanation of economic phenomena, and generally tries to arrive at solutions to social problems based on private exchange and property rights. Yet Chicago starts its macroeconomics with one big inescapable friction separating money from bonds. It is then forced to recog-
nize and grudgingly advocate a powerful Federal Reserve, and restrictions on free
exchange and financial innovation to sustain that power.

That philosophy makes sense in historical context. The Chicago view was a lot less
interventionist than the Keynesian view of the time. And there was no alternative
for macroeconomic affairs. Fiscal theory as presented here did not exist. Fiscal
time theory needs intertemporal tools that had not been developed. The quantity theory
tradition from Irving Fisher was well developed and ready to be put to use.

But now there is an alternative. The fiscal theory can offer a monetary theory that is
more Chicago than Chicago. A monetary theory that allows a free-market financial
system and all of us to live the Friedman rule might have been additionally attractive
to the Chicago monetarists.

Theories prosper when they are logically coherent and describe data. But, em-
pirically, theories also prosper when they are useful to a larger debate or political
cause. Keynesianism in the 1930s has been praised for saving capitalism. Against
the common view at that time that only Soviet central planning, fascist great-leader
direction, or Rooseveltian NRA micromanagement could save the economy, Keyne-
sians said no: If we just fix a single fault, “aggregate demand,” with a single elixir,
fiscal stimulus, the economy will recover, without requiring a government takeover of
microeconomics, abolishment of private property and markets. Even if one regards
that Keynesian economics as a fairy tale, embodying in one place dozens of classic
economic fallacies, it was an immensely useful fairy tale as it emboldened resistance
to total nationalization in the 1930s.

The tables flipped in the postwar era. Now Keynesianism continued to be useful on
the remaining left of the U.S. political spectrum. Communist central planning was no
longer on the table in the U.S., but Keynesianism was a part of a softer paternalistic
technocratic dirigisme epitomized by “salt-water” economics. Its vision of continual
aggregate demand management fit perfectly with the and the still strong impulse to
microeconomic government management in the postwar era.

In this context, monetarism was likewise useful to the free-market resurgence in the
1960s. In the face of the then-dominant static Keynesian paradigm, Friedman and
the Chicago school could not hope to prevail by asserting that even postwar recessions
are the normal work of a frictionless market. The possibility of this view embodied in
Kydland and Prescott (1982) were a long way away. Nobody had the technical skills
to build that model, and the verbal general-equilibrium assertions of the 1920s were
generally dismissed with derision. Something, seemingly, obviously went very wrong
in the great depression. Views of the 1930s driven by financial frictions following
bank runs (see the immense literature starting with [Bernanke (1983a)](https://www.federalreserve.gov/publications/economicresearch/1983a.pdf) and continuing to this day); views emphasizing the microeconomic distortions of misbegotten policies (see for example [Cole and Ohanian (2004)](https://www.jstor.org/stable/20435792)) were simply not yet available by theory, historical analysis, or empirical work. The intellectual and political climate demanded that the government do something about recessions, that government should have done something about the great depression, and demanded a simple, understandable, uni-causal theory without the subtleties of modern intertemporal economics, microeconomics and law-and-economics. Intertemporal general equilibrium thinking is hard, and has little impact on policy to this day, which remains guided by the embers of hydraulic Keynesianism. When in trouble, reach for stimulus. Monetarism was perfect to the purpose.

But as the set of facts we must confront has changed dramatically since the 1960s, the policy and intellectual environment has changed too. We don’t need monetarism any more. So, I hope that even Friedman, a practical and empirical economist if there ever was one, might change his mind if he were around today. The fiscal theory fits much of his philosophical, intellectual, as well as empirical purposes in today’s environment, even if it turns many monetarist propositions on their heads.

I’m beating a dead horse. Monetarism is not a current force, though money supply = demand lives on at the bottom of many models and shows a surprising resilience in economic theory articles and occasional opinion pieces. Adaptive-expectations ISLM thinking dominates policy, untied from the quantitative models that gave it some rigor in the 1970s. New-Keynesian models featuring dynamic general equilibrium, explicit frictions, and explicit if not rational expectations, dominate in academia, combined with a Taylor-rule description of interest rate setting. These are the current theories of monetary policy, and thus the ones I spend most of this book discussing. These theories too grew out of empirical and practical necessity. Inflation exploded under interest rate targets in the 1970s and was conquered under the same targets in the 1980s. We have to talk about interest rate targets. These are useful theories.

Moreover, they connect with the concerns of central bankers. If a central banker asks, “Should we raise or lower the interest rate?,” and you answer, “You should control the money supply,” you won’t be invited back. If you answer, “Recessions are dominated by supply, credit, and other shocks with interesting dynamics, and monetary policy doesn’t have that much to do with them,” you won’t be invited back. If you answer “let’s talk about the interest rate rule and regime,” you won’t be invited back. If you answer “The price level is dominated by fiscal policy,” you won’t be invited back. Central banks follow interest rate targets, and central banks
are the central consumers of macroeconomic advice. A useful theory of monetary
policy, that any central banker will pay any attention to, must model interest rate
targets, even if, as here, it ends up suggesting there are better ways to run monetary
policy.

The economic conceptual framework used by people in policy positions is often fun-
damentally wrong, of course. And one should say that. But if we want to understand
why theories around us prosper, usefulness as well as pure scientific merit has strong
explanatory power. And where possible without sacrificing scientific merit, trying
to find common ground or speak to issues of the day is not a totally undesirable
characteristic of an economic theory. Moreover, listening isn’t a bad habit either.
Sometimes the practical knowledge of people in the thick of things reveals facts and
economic logic we have not considered.

This book takes its long tour of interest rate targets and central bank actions to offer
supply to that demand as well. I have worked to show how fiscal theory can fill the
gaping holes of new-Keynesian models, allowing at least continuity of methodology
if not necessarily of results, and thereby to make fiscal theory usefel to researchers
who want to improve new-Keynesian style models of monetary policy. There are
many other ways we might use fiscal theory to describe data and policy, for example
taking on the critique that central banks are irrelevant. There are many other ways
fiscal theory suggests that we might set up a monetary system in the future. But
these considerations are not terribly useful right now, so I have spent less time on
them in this book. If a true revolution follows, that caution may seem unwise.

New-Keynesian economists are explicit in an intellectual goal, equally esthetic, philo-
sophical and useful to the larger debate: to revive the verbal analysis of ISLM under
an umbrella that survives the devastating [Lucas (1976)] critique and associated de-
struction of ISLM theory in the 1970s and 1980s. Despite many theoretical and
empirical difficulties new-Keynesian economics is designed as a usefel theory. Fiscal
theory of monetary policy is not likely to offer justification for ISLM thinking, but
it turns out the actual equations of new-Keynesian models don’t do so either.

Sadly for potential book sales, fiscal theory is not immediately useful to one side or
another of today’s economic, ideological, or political debates. Yes, it gives a coherent
account of the stability of inflation despite other theories’ contrary predictions of
deflation spirals, indeterminacy, and hyperinflation. But sins of omission that are
easier to ignore than the failures to predict inflation and its conquest that so publicly
destroyed ISLM models. As long as inflation is quiet and transitory, current models’
inability to account for inflation will not be a huge issue. Fiscal theory offers many
novelties, such as the suggestion that one can raise inflation from the effective lower bound by a policy of preannounced steady slow and permanent interest rate increases. It gives quite different analysis of many policies and suggestions for institutions. But it offers neither a general theory nor a monetary history bombshell to current political debates.

In my framing, fiscal theory takes on some of the mantle of monetarism. Fiscal theory offers a theory of inflation based on simple explainable supply and demand foundations. It allows a vision of a much less interventionist, rule-based, politically independent, and narrowly focused central bank. It stresses the underlying importance of stable monetary and fiscal institutions. Nothing is more forward-looking than a present value formula. I stress proposals and possibilities for a pure inflation target, a gold-standard-like interest-spread operating rule, and the possibility of private institutions taking over.

Moreover, fiscal theory is uniquely consonant with financial and economic innovation. Monetarist theory falls apart with too much financial innovation. It ceases to apply with the innovation we have, including interest on reserves and flat supply of liquid interest paying assets, and it encourages one to advocate against otherwise praise-worthy financial innovation in the name of maintaining the central bank’s ability to control the price level. New-Keynesian theory does much the same. Price stickiness and local monopoly are the central social problems of recessions. Rather than devise clever policies for the central bank to exploit these frictions, why do economists never suggest microeconomic policies and policy reforms to reduce the frictions? Prices are sticky for all sorts of legal and regulatory reasons. The current fashions of central banking lean even more on financial frictions. For example, quantitative easing is said to “work” because debt markets are “segmented.” Then, clearly, financial innovation to un-segment the markets, which should be profitable and socially beneficial, would undermine QE and the central bank’s power.

Fiscal theory, and its frictionless foundations, is uniquely suited to embrace the vast economic possibilities that current communication, computation, and financial technology we have before us today, rather than to wallow in yesterday’s frictions. Viewing these advances as inevitable, fiscal theory can continue to work when the frictions underlying other theories have washed away. And financial and economic liberalization are also desirable from a free-market, limited-institutions point of view. So perhaps I can win the approval of Friedman’s ghost on that basis.

But this is not an ironclad connection. One could take a standard new-Keynesian view of inflation in much the same direction, only needing to tolerate the logical...
problems in its foundations. Contrariwise, one can use fiscal theory to patch up
new-Keynesian theoretical holes and proceed in the current interventionist direction,
ignoring its invitations to follow Friedman’s (and Lucas’, Sargent’s, and Taylor’s)
footsteps.

The central debate about what central banks should do has moved far past interest
rates, inflation, and employment. Today’s macroeconomic debate is really over cen-
tral bank’s actions in running the financial system. The policy consensus has moved
to a deeply interventionist stance, with detailed regulation of financial institutions,
capital controls, exchange rate controls, “macro-prudential” policy to manage credit
and asset price “bubbles” and “imbalances,” and asset market interventions and
bailouts in every downturn now common currency. Broad direction of the financial
system via regulatory tools is firmly part of central bank’s integrated remit. Central
banks’ objectives are growing, now including climate change, inequality, equity and
social issues. The expansion of activity, tools, and goals since 2008 has been breath-
taking. Doubters such as myself advocate equity-financing, narrow deposit-taking
and other financial alternatives, and much more limited policy and – it must be
said – much more limited political role, necessary to preserve central bank’s valuable
independence. But we are a minority, and seem as few and iconoclastic as those
who doubted old-Keynesian fine-tuning fiscal policy in Friedman’s day. Friedman is
surely rolling over in his grave. And visions of a less interventionist central bank
are not likely to win much short run demand for one’s services by current central
bankers.

All this may change. Fiscal theory sounds obvious warnings about our large debts,
continued primary deficits, unresolved entitlement promises, and short-run financing.
The run-like picture of inflation that comes with little warning, and about which
central banks can do little is sobering. If the crisis happens, demand for fiscal theory
may increase. I hope the fiscal theory can be a quieter part of avoiding such a
catastrophic outcome ahead of time, both via fiscal reform, a growth-oriented focus
of microeconomic policy, and by urging treasurys to borrow long term. That hope
takes a lot of optimism about our political system’s ability to implement simple but
somewhat painful reform ahead of a clearly looming crisis, be that pandemic, war,
or climate as much as a global sovereign debt crisis.

Esthetic and philosophical considerations, usefulness to institutional desires or con-
temporary political debates don’t make a theory right. Usually we pretend such
concerns don’t exist and so do not write about them. But they shouldn’t be ignored.
A theory that is philosophically consistent with much else that is right is more likely
to be right. Though economics is often criticized for playing with pretty theories
rather than the “real world,” the most successful theories of the past have been simple and elegant in economics as in the rest of science. Epicycles seldom survive, even if, as in Copernicus’ case, they do temporarily fit the data better than the simpler and eventually victorious theory (Kuhn (1962)). Supply and demand, comparative advantage, the burden of taxation, the great neutrality results, each have a decisive simplicity about them.

At least in the eyes of this beholder, the fiscal theory is truly beautiful. I hope by now to have infected you with that view as well. Fiscal theory can be expressed in a very simple model, with a simple story. Nothing like the simplicity and clarity of the first chapter of this book underlies new (!) or ISLM Keynesian models, or even monetarism.

The fiscal theory does not stop at frictionless models, however. The frictionless fiscal theory is a useful benchmark on to which we add pricing, monetary, financial, institutional, or behavioral frictions as well as the more realistic dynamics of detailed macroeconomic models without frictions, to understand the world and policy.

In this sense, the fiscal theory is related to the great neutrality propositions of economics. These include the Modigliani-Miller theorem, that firm value is independent of the firm’s financing via debt vs. equity; the Ricardian equivalence theorem, that deficit financing has no effect on the economy because people save in order to pay subsequent taxes; the Modigliani-Miller theorem for open market operations (Wallace (1981)) that the composition of government debt is irrelevant; rational expectations and efficient markets, in which demand curves for securities are flat and asset prices incorporate all available information about value; and the neutrality of money propositions that real interest rates, unemployment rates, real output and other real quantities are eventually independent of inflation.

All of these neutrality theorems are false as literal descriptions of the world. They make “frictionless” assumptions, and our world has frictions. But they’re not as false as they seem. In each case, they upended contrary economic consensus: Of course firm value depends exquisitely on debt vs. equity financing. Of course deficits “stimulate.” Of course open market operations matter. Of course stock prices are nuts, demand curves slope down, and it’s easy to make money on markets. In each case, the contrary theorems came as an intellectual surprise. Moreover, in each case, the neutrality proposition turns out to be much closer to true than false, and the unexpected theoretical proposition is now our baseline starting point. Sure, debt vs. equity financing matters, but less than you thought, and just which Modigliani-Miller assumption fails provides the entire intellectual framework for corporate fi-
The fiscal theory of the price level is another such neutrality proposition. It starts with the unexpected theoretical proposition that the price level in terms of dollars can be well defined in an economy with no dollars at all, no frictions at all, just like the other neutrality theorems, and that the split of government financing is irrelevant as with the Modigliani-Miller theorem. Sure, the final description of the world will include monetary and financial frictions, and a role for policy in mitigating those frictions, and the potential to exploit those frictions, on top of fiscal backing and its irrelevance results. I sell the fiscal theory in large part as a way to rescue new-Keynesian models from shaky foundations, not to overturn new-Keynesian models and insist that we do something completely different.

Still, the foundations matter, as the above list of doctrines reveal. The importance of fiscal backing means that when we think about large or structural changes we get quite different answers than for small changes or correlations within a structure. Moreover, just which monetary, financial, and pricing frictions apply changes over time and across countries. A theory with a common core that requires no frictions can much more easily adapt as frictions come and go.
Part IV

Money, interest rates, and regimes
Having described the fiscal theory of the price level, I turn to the alternatives. As always, the case for a new theory is bolstered by flaws in old theories, in their internal logic as well as their ability to describe events.

The two most important alternative theories of inflation are fiat money with a controlled supply, and interest rate targets that move more than one-for-one with inflation. Each of these theories specifies an “active” monetary policy together with a “passive” fiscal regime, while the fiscal theory specifies some important “passivity” of these monetary arrangements, with its “active” fiscal regime. We have met both theories already, as well as the “regime” question. I return to these issues in a more comprehensive way.

I address three questions.

1) Can these alternative theories determine the price level or at least the inflation rate in an economy like ours? I conclude that they can’t. The fiscal theory is the only viable theory we have, that is broadly consistent with present institutions.

Since these theories wipe out one equilibrium condition, the valuation equation for government debt, they leave one object undetermined, the price level or the inflation rate, and thus they leave multiple equilibria. Therefore, they must add some new assumption to make up for the missing equilibrium condition. Broadly speaking, these assumptions amount to equilibrium-selection threats by the government. The government threatens actions it would take in multiple equilibria, to rule out all but one. These actions include hyperinflating the economy, simultaneously following an inconsistent money supply and interest rate target, introducing an arbitrage opportunity, or some other device so that equilibrium cannot form – essentially, blowing up the economy. I review and argue that these threats are not even vaguely plausible, especially as descriptions of how people today expect government to behave. Nobody expects the government to react to off-target inflation by blowing up the economy. Central banks also do not restrict the quantity of money as specified by MV=PY. Our financial arrangements have thoroughly blurred the distinction between money and debt.

2) Can we tell theories apart? The two broadly related questions are observational equivalence and identification. One cannot measure off-equilibrium behavior, or in other realizations of multiple equilibria, from data in one equilibrium. The crucial parameters, which specify reactions away from the observable equilibrium, are not identified. Thus, there is no time-series test we can use to distinguish one from the other class of theory based on time-series drawn from an economic equilibrium. At this level of generality, the new-Keynesian, monetarist, and fiscal theory approaches
are observationally equivalent.

Non-identification and observational equivalence are not as damning as they sound. Economics is full of non-identification and observational equivalence theorems. They just mean we have to think about what we’re doing, judge the plausibility of alternative stories, make identification assumptions and judge their plausibility. We have to examine monetary institutions, precommitments, and even authorities’ statements about how they would behave in different circumstances. Non-identification and observational equivalence theorems are simply an important guide to our logic, as elsewhere in economics. They also save us wasted effort in trying to boil everything down to a single authoritative F-test, or easy armchair refutation – something that has never happened in any field of economics.

3) How do the alternative theories account for events? Here I focus on the lessons of the zero-bound decade, and quarter century in Japan. Extant monetary and interest rate theories made definite and radical predictions for this episode – hyperinflation or deflation spirals, indeterminacy and volatility. They required elaborate ex-post epicycles to patch them up to be consistent with the amazing stability of inflation in this period. They make dramatic policy prescriptions, such as arbitrarily large multipliers, or effects of forward guidance that are larger as the promise is made for dates further in the future, that are either appetizing or nonsense, depending on your view. The fiscal theory offers a clean simple account of the episode, and normal analysis of policy options. These observations don’t contravene observational equivalence – each theory can be stretched to fit the facts. But the plausibility of such stretching is hard to digest for monetary and interest-rate theories.

I conclude that the currently available alternatives don’t work. The fiscal theory is all we have, at least for now. There are indeed many challenges in applying fiscal theory to the world, but until another theory comes along, the task at hand is to figure out how the fiscal theory works, not to test it against a viable alternative.

As usual, I survey the issues quickly in some very stripped down models, and then circle back for a fuller treatment.
Chapter 16

The new-Keynesian model

In the next few chapters I examine the currently most popular approach to monetary policy, based entirely on interest rate targets. The new-Keynesian DSGE approach summarized by [Woodford (2003)] “Interest and Prices” describes the academic theory. The theory features passive fiscal policy, optimization, rational expectations and market clearing, and an interest rate target that varies more than one for one with inflation. We’ll also look at old-Keynesian ISLM models, which pervade policy analysis. They turn out to be quite different from new-Keynesian models. Though more popular in the policy world, they are not really economic models, and have been absent from academic work for a generation.

I start with the simplest case of the new-Keynesian model, featuring constant real interest rates and flexible prices. It turns out that one can see all the important issues in this case, as we found with the fiscal theory. I then add price stickiness, which generates varying real interest rates and output, is more realistic, and is the form studied by most of the literature. Its study verifies that indeed the simple model does capture the important ideas.

We have used the model extensively in previous chapters. What’s different here is not the model – the IS and Phillips curves, and an interest rate target – but a quite different approach to equilibrium selection.
16.1 The simplest model

I present the simplest new-Keynesian model,

\[i_t = E_t \pi_{t+1} \]
\[i_t = \phi \pi_t + u_{i,t} \]

The model specifies \(\phi > 1 \), adds a rule against nominal explosions, and so determines unexpected inflation by solving the inflation equilibrium condition forward.

\[\pi_t = -\sum_{j=0}^{\infty} \frac{1}{\phi^{j+1}} E_t (u_{t+j}) \cdot \]

With an AR(1) process for \(u_t \), the model produces AR(1) responses,

\[\pi_t = -\frac{1}{\phi - \eta} u_t; \quad i_t = -\frac{\eta}{\phi - \eta} u_t. \]

Figure 2.2 plots these responses.

The simplest form of the standard new-Keynesian model, as set forth for example in Woodford (2003), consists of exactly the same set of equations as the simplest fiscal theory of monetary policy model from Section 2.5 and Section 2.6; equations (2.16), (2.17), and (2.22):

\[i_t = E_t \pi_{t+1} \]
\[i_t = \phi \pi_t + u_t \]
\[\Delta E_{t+1} \pi_{t+1} = -\varepsilon_{s,t+1}. \]

New-Keynesian modelers solve these same equations differently than we have. New-Keynesian modelers specify a passive fiscal policy, that (16.3) determines surpluses \(\{\varepsilon_{s,t+1}\} \) for any unexpected inflation. As (16.3) then does not visibly influence the rest of the model, they often relegate it to footnotes, or drop it entirely. It is also typically absent from empirical evaluation of the models.

Having wiped out (16.3), we then eliminate \(i_t \) from (16.1)-(16.2). We have a single equilibrium condition

\[E_t \pi_{t+1} = \phi \pi_t + u_t. \]

Thus, we can write the equilibria of this model as

\[\pi_{t+1} = \phi \pi_t + u_t + \delta_{t+1}; \quad E_t (\delta_{t+1}) = 0, \]
where δ_{t+1} is any conditionally mean-zero random variable. Multiple equilibria are indexed by arbitrary initial inflation π_0, and by the arbitrary random variables or “sunspots” δ_{t+1}.

If $\|\phi\| < 1$, this economy is stable. Expected inflation $E_t\pi_{t+j}$ converges going forward for any initial value. But it remains indeterminate. “Sunspot” shocks δ_{t+1} can erupt at any time, and fade away. By the passive assumption, fiscal policy adapts to validate changes in the real value of nominal debt, $\varepsilon_{s,t+1} = -\delta_{t+1}$.

If $\|\phi\| > 1$, all of these equilibria except one are expected eventually to explode, i.e. $\|E_t(\pi_{t+j})\|$ grows without bound. If we disallow explosive solutions, we can find the “unique locally-bounded equilibrium” by solving the difference equation (16.4) forward,

$$\pi_t = -\sum_{j=0}^{\infty} \frac{1}{\phi^{j+1}} E_t(u_{t+j}).$$

(16.6)

For example, with an AR(1) disturbance

$$u_t = \eta u_{t-1} + \varepsilon_t,$$

(16.6) gives

$$\pi_t = -\frac{u_t}{\phi - \eta}.$$

Equivalently, by this criterion we select the variables π_0, $\{\delta_{t+1}\}$ which index multiple equilibria, as

$$\pi_0 = -\frac{u_0}{\phi - \eta}; \; \delta_{t+1} = -\frac{\varepsilon_{t+1}}{\phi - \eta}.$$ (16.7)

If one wishes to determine the price level rather than the inflation rate, let the interest rate policy rule be

$$i_t = \phi_p (p_t - p^*) + u_t.$$ (16.8)

Now, substituting into the Fisher equation (16.1),

$$E_t(p_{t+1} - p^*) - (p_t - p^*) = \phi_p (p_t - p^*) + u_t$$

$$E_t(p_{t+1} - p^*) = (1 + \phi_p) (p_t - p^*) + u_t$$

Again, we have multiple equilibria. But if $\phi_p > 0$ and if we rule out explosive equilibria, then we have a unique locally-bounded equilibrium price level,

$$p_t = p^* - \sum_{j=0}^{\infty} \frac{1}{(1 + \phi)^{j+1}} E_t(u_{t+j}).$$
Woodford calls this a “Wicksellian” regime, in honor of Wicksell (1898).

Thus we have it: if the central bank’s interest rate target reacts sufficiently and if we rule out explosive equilibria, then it seems that a pure interest rate target can determine the inflation rate or price level, with no fiscal backing.

Before criticizing, let us admire the edifice. Interest rate targets alone can, in this theory, determine the inflation rate or the price level, with no need to control money supplies, no visible connection to deficits, no gold standard, commodity backing or other redemption process. This is a truly novel theory of the price level. The list is short: commodity money, \(MV = Py \), and fiscal theory.

![Figure 16.1: response of the new-Keynesian model to a monetary policy shock \(\varepsilon_{i,t} \). Dashed lines give inflation in alternative equilibria.](image)

Using an AR(1) model for the monetary policy disturbance,

\[
 u_{t+1} = \eta u_t + \varepsilon_{i,t+1},
\]

we can write from (16.6) that equilibrium inflation is proportional to the disturbance,

\[
 \pi_t = -\frac{1}{\phi - \eta} u_t. \tag{16.9}
\]
On its own, equilibrium inflation follows the same AR(1) process as the shock u_t,

$$\pi_{t+1} = \eta \pi_t - \frac{1}{\phi - \eta} \varepsilon_{i,t+1}. \quad (16.10)$$

The interest rate follows

$$i_t = -\frac{\eta}{\phi - \eta} u_t. \quad (16.11)$$

Figure 16.1 graphs the response of inflation and interest rates to a monetary shock, with parameters $\phi = 1.25; \eta = 0.8$.

In response to a positive shock to the disturbance u_t, inflation π_t declines immediately, and then reverts slowly. That response looks surprisingly reasonable, for a model with no monetary or pricing frictions at all.

16.2 Problems - an overview

The model adds a rule against hyperinflations, but what’s wrong with hyperinflations? The model produces a response by equilibrium selection. The model specifies that the Fed selects equilibria by threatening hyperinflation in response to inflation, not by stabilizing inflation. This threat is contrary to everything central banks say and any credible set of beliefs about central bank behavior. The new-Keynesian response to a monetary policy shock is the same as the FTMP response to a fiscal shock, so the models are observationally equivalent using time-series data from an equilibrium. The parameter ϕ and the monetary policy disturbance are not identified.

With this simple model before us, we can see quickly the central problems of the new-Keynesian approach. I outline the problems in this section, and then return to each one in depth.

16.2.1 What’s wrong with hyperinflations?

The model produces a unique equilibrium by ruling out hyperinflationary paths, or more generally by ruling out equilibria that are not “locally bounded.” But what’s wrong with inflationary, or non-locally-bounded paths? Transversality conditions can rule out real explosions, but not nominal explosions – there is no violation of the
The consumer’s transversality condition in a path $\pi_t = \phi^t \pi_0$. Hyperinflations are historic realities.

The restriction to non-explosive or locally bounded equilibria does not come from standard economics of the model. It’s a new and additional restriction. Without it, this model does not eliminate multiple equilibria and hence does not determine inflation or the price level.

One might object that the fiscal theory also describes an equilibrium in which a variable, the price level, is a forward-looking expectation, and jumps to avoid an explosive root. Recall the evolution of government debt in the simplest example

$$
\frac{B_t}{P_{t+1}} = (1 + r) \left(\frac{B_{t-1}}{P_t} - s_t \right).
$$

Again, we have an unstable root and a jump. If P_t generates a real value of debt less than the present value of primary surpluses, then the real value of government debt explodes. There is a fundamental difference. The transversality condition rules out real explosions, explosions of B_{t-1}/P_t or the real value of assets. There is no corresponding condition forcing anyone to avoid nominal explosions, explosions of P_t itself.

Correspondingly, there is an economic mechanism by which the price level adjusts to set the value of debt to the present value of surpluses. If the price level is too low, nominal government bonds appear as net wealth to consumers. They try to increase consumption. Aggregate demand pushes prices back up. There is no corresponding economic mechanism to push inflation to the new-Keynesian value (16.6). In the new-Keynesian model we are choosing among equilibria; we’re finding the unique locally bounded equilibrium, not the unique equilibrium itself.

16.2.2 Equilibrium selection

In Figure [16.1] inflation jumps down immediately, contemporaneously with the policy disturbance, not afterward. Why? Because the central bank threatens hyperinflation or hyperdeflation for any other value, and we have ruled out such equilibria.

To visualize this point, the dashed lines in Figure [16.1] graph what would happen if inflation π_1 jumped to different values, slightly higher or lower. Any of these jumps are consistent with private sector behavior, which only ties down expected inflation $E_0 \pi_1 = \hat{i}_0 = 0$. But following dynamics $E_1 \pi_{t+1} = \phi E_1 \pi_t + E_1 u_t$ induced by the
central bank’s policy rule ϕ, these alternative equilibria spiral away. We rule out such spirals, to declare the solid line the unique equilibrium.

Mechanically, the responses in this case are the solutions of $E_{t+1}\pi_{t+1} = \phi E_{t} \pi_{t} + E_{t} u_{t}$, namely

$$E_{t+1} \pi_{t+1} = -\frac{1}{\phi - \eta} u_{t+1} + \left(\frac{1}{\phi - \eta} u_{1} + \frac{1}{\phi - \eta} u_{1} \right) \phi^{t}$$

You can see how inflation explodes in any equilibrium but one.

16.2.3 Incredible off-equilibrium threats

The central bank causes these explosions. In the central equilibrium condition $E_{t} \pi_{t+1} = \phi \pi_{t} + u_{t}$, with $\phi < 1m$, this economy is stable on its own, including $\phi = 0$, an interest rate peg. The central bank deliberately makes the economy unstable by following $\phi > 1$. When inflation breaks out, the bank raises interest rates more than one for one via $i_{t} = \phi \pi_{t}$. Via $i_{t} = E_{t} \pi_{t+1}$ the bank’s rate rise raises subsequent inflation.

Do we believe that central banks would respond to inflation by inducing hyperinflation? It is contrary to everything central banks say they do. Central banks say that in response to inflation they will raise rates, yes, but that by raising interest rates they will bring inflation back down. Central banks say that any rise in inflation will lead them to lower subsequent inflation, by any tools at their disposal, and vice versa. Beyond what banks say, what matters to the model is what people believe. Do people expect central banks to respond to inflation with more inflation, and that central banks will destabilize and hyperinflate or hyperdeflate the economy for all but one value of inflation? Even if banks said it, would banks really do it? Central banks like low inflation. Would they ex-post really deliberately create their anathema just to punish people for the wrong equilibrium? Do people believe that they would do so? None of this is remotely plausible. As we generalize the model, we will find that the response of interest rates to inflation, which seems plausible, is not central. What matters here is that central banks do what it takes to raise expected inflation more than one for one with current inflation. That’s the central, and incredible, assumption.
16.2.4 Observational equivalence

The inflation response to a monetary policy shock of Figure 16.1 should look familiar. It is exactly the same as the fiscal theory of monetary policy model response to a fiscal shock $\varepsilon_{s,t+1}$, graphed in Figure 2.2.

Specifically, the fiscal theory equilibrium from Section 2.6 is (2.25),

$$\pi_{t+1} = \theta \pi_t + u_t - \varepsilon_{s,t+1},$$

where here the new-Keynesian model (16.10) gives

$$\pi_{t+1} = \eta \pi_t - \frac{1}{\phi - \eta} \varepsilon_{i,t+1}.$$

If we use an interest rate rule parameter θ equal to the disturbance correlation parameter η from the new-Keynesian model, and if we specify a fiscal shock $\varepsilon_{s,t+1}$ equal to $\varepsilon_{i,t+1}/(\phi - \eta)$ from the new-Keynesian model, the fiscal theory model produces exactly the same time series as the new-Keynesian model. There is no way, based on time-series of the observables π_t, i_t, s_t to tell the difference between the two models.

This equivalence is economic, and not just formal. The fiscal equation (16.3) is still part of the new-Keynesian model. After the central bank engineers a monetary contraction, fiscal policy “passively” raises surpluses by $\varepsilon_{s,t+1} = -\Delta E_{t+1} \pi_{t+1} = \varepsilon_{i,t+1}/(\phi - \eta)$ – exactly the same as the fiscal theory model’s “active” fiscal shock.

The new-Keynesian says the monetary equilibrium-selection threat caused inflation to jump and fiscal policy followed. The fiscal theorist looks at the same data and says, no, it is this fiscal shock that caused the disinflation jump, and the observed interest rate followed inflation via a different policy rule. The observables are the same in each interpretation. The equilibrium conditions of the new-Keynesian model and those of the fiscal theory of monetary policy model consist of exactly the same equations. That fact underlies observational equivalence.

16.2.5 Identification

You may object, we can tell the models apart because they rely on different parameters ϕ and η. Just measure ϕ; measure whether there is a monetary policy disturbance $\varepsilon_{i,t+1}$ or not. This approach does not work because the parameter ϕ is not identified in the new-Keynesian model.
16.2. PROBLEMS - AN OVERVIEW

What about running a regression \(i_t = \phi \pi_t + u_t \), you may ask? That regression does not measure the parameter \(\phi \) of the model, because the new-Keynesian model predicts that \(u_t \) and \(\pi_t \) are correlated—perfectly negatively correlated in this case. Using (16.6) and either (16.1) or (16.2), the equilibrium relation between interest rates and inflation in this simple new-Keynesian model is

\[
i_t = \eta \pi_t
\]

(16.13)

with no error term. A regression of \(i_t \) on \(\pi_t \) in data from this model produces \(\eta \) not \(\phi \).

From (16.10), all we observe of the new-Keynesian model is

\[
\pi_{t+1} = \eta \pi_t + \varepsilon_{\pi,t+1} \\
i_t = \eta \pi_t \\
\varepsilon_{\pi,t+1} = -\varepsilon_{s,t+1}
\]

(16.14) (16.15) (16.16)

where \(\varepsilon_{\pi,t+1} \) is unexpected inflation. The observable \(\{i_t, \pi_t, s_t\} \) dynamics are the same for any value of \(\phi \). We cannot tell that the dynamics (16.14)-(16.16) do not come from a different value of \(\phi \) and a different shock \(v \) in the new-Keynesian model, or that they do not come from \(\theta = \eta \) and \(\varepsilon_{\pi,t+1} = -\varepsilon_{s,t+1} \) in a fiscal theory model. No instrument can help. The likelihood function does not involve \(\phi \). There is simply no way to measure \(\phi \) from time-series data on the observables \(\{i_t, \pi_t, s_t\} \).

The monetary policy disturbances \(u_t \) are also not identified and thus not measurable from time series. We infer monetary policy disturbances from a regression residual. If you could observe the parameter \(\phi \), you could calculate \(u_t = i_t - \phi \pi_t \). If you could observe monetary policy disturbances \(u_t \) directly, you could infer \(\phi \) from \(i_t = \phi \pi_t + u_t \) despite the correlation of \(u_t \) and \(\pi_t \). Formulas such as (16.10) include parameters \(\phi \) and shocks \(\varepsilon_{i,t} \), so it seems that those parameters affect dynamics. But these coefficients always appear together, so there are different combinations of \(\phi, u, \varepsilon \) which give the same results.

Plots of the inflation, output and interest rate response to monetary policy disturbances \(u_t \) such as Figure 2.2 are plots of responses to an un-measurable quantity. This is one reason I emphasize plotting and thinking about responses to interest rates, rather than responses to monetary policy disturbances.

The AR(1) is not central to non-identification and observational equivalence. Choose any process \(\{\pi_t\} \). An equilibrium must have \(i_t = E_t \pi_{t+1} \). Choose any \(\phi \). Construct \(u_t = i_t - \phi \pi_t \). These reverse-engineered assumptions about \(\phi \) and \(u_t \) produce the
chosen \(\{ \pi_t \} \) and its resultant \(\{ i_t \} \) as an equilibrium. Thus, observation of \(\pi_t \) and \(i_t \) cannot tell us \(\phi \) and \(u_t \), no matter what is the time series process of inflation.

16.3 Inflation targets and equilibrium selection

Writing the policy rule \(i_t = i^*_t + \phi(\pi_t - \pi^*_t) \) with \(i^*_t = E_t \pi^*_{t+1} \) clarifies how the model works. The central bank can achieve any path for inflation. Monetary policy has two distinct parts: interest rate policy \(i^*_t \), which determines expected inflation, and equilibrium-selection policy \(\phi(\pi_t - \pi^*_t) \) which selects unexpected inflation.

The equilibrium selection and observational equivalence points are clearer if we write the policy rule in an equivalent form introduced by King (2000),

\[
 i_t = i^*_t + \phi(\pi_t - \pi^*_t). \tag{16.17}
\]

Here, the interest rate target \(\{ i^*_t \} \) and the inflation target \(\{ \pi^*_t \} \) are the equilibrium interest rate and inflation rate the central bank wishes to produce. The targets must respect private sector equilibrium conditions, \(\pi^*_{t+1} = E_t \pi^*_{t+1} \).

This form of the policy rule is equivalent to \(i_t = \phi \pi_t + u_t \). One can translate between the two representations by

\[
 u_t = i^*_t - \phi \pi^*_t = E_t \pi^*_{t+1} - \phi \pi^*_t \tag{16.18}
\]

and

\[
 \pi^*_t = -\sum_{j=0}^{\infty} \frac{1}{\phi^{j+1}} E_t u_{t+j}. \tag{16.19}
\]

Again eliminate \(i_t \) from the rule \(16.17 \) and \(16.1 \), \(i_t = E_t \pi_{t+1} \). The equilibrium condition becomes

\[
 E_t (\pi_{t+1} - \pi^*_{t+1}) = \phi(\pi_t - \pi^*_t). \tag{16.19}
\]

If the central bank follows \(\phi > 1 \), the only nonexplosive equilibrium is \(\pi_t = \pi^*_t \). We reach this conclusion quickly via this \(* \) notation, for any process of the monetary policy disturbance, not just an AR(1).

With the parameterization \(16.17 \), we can see clearly that the central bank can achieve any value of inflation it wishes in this model. The central bank announces...
its inflation target \(\{ \pi^*_t \} \), announces its threat to hyperinflate or deflate for any other value of inflation \(\phi(\pi_t - \pi^*_t) \). The bank sets the interest rate to \(i^*_t = E_t \pi_{t+1}^* \), and the private sector jumps to the equilibrium \(\pi^*_t \) represented by the central bank’s inflation target. That conclusion is also true of the conventional parameterization, but reverse-engineering a \(\{ u_t \} \) to produce a given inflation path is more cumbersome.

The parameterization (16.17) separates monetary policy into what I shall call interest rate policy \(i^*_t \), and a distinct equilibrium-selection policy \(\phi(\pi_t - \pi^*_t) \). It thereby lets us see clearly which aspect of policy drives which result. Interest rate policy sets the path of interest rates which we observe in equilibrium \(i_t = i^*_t \), and sets expected inflation in this model. Equilibrium-selection policy \(\phi(\pi_t - \pi^*_t) \) describes how the central bank would react to the emergence of a different equilibrium, and sets unexpected inflation in this model. These two aspects of the interest rate rule are tied together in the parameterization \(i_t = \phi \pi_t + u_t \), and hard to distinguish. Indeed, it’s not immediately clear from that representation that there is such a counterintuitive thing as “equilibrium selection policy,” unknown in ISLM thinking, underlying the model.

Interest rate policy \(i^*_t \) need not be a time-varying peg. Interest rate policy can include rules, such as \(i^*_t = \theta \pi^*_t + u_{i,t} \). Then the full monetary policy rule is

\[
i_t = \theta \pi^*_t + u_{i,t} + \phi(\pi_t - \pi^*_t).
\]

Just why did inflation drop in Figure 2.2? From (16.18), the \(u_1 = 1 \) shock is the same thing as a \(\pi^*_1 = -1/\phi \) shock. Inflation jumped down because the inflation target jumped down, the equilibrium-selection point jumped down, and the central bank threatened hyperinflation for any other value. The decline in inflation is entirely a result of equilibrium-selection policy, not interest-rate policy. Passively, fiscal policy accommodated the shock \(\varepsilon_{s,1} = -\Delta E_{t+1} \pi_{t+1} = -\Delta E_{t+1} \pi^*_{t+1} \).

16.4 Identification and observational equivalence

Writing the policy rules \(i_t = i^*_t + \phi(\pi_t - \pi^*_t) \) and \(s_t = \alpha v^*_t + \gamma (v_t - v^*_t) + u_{s,t} \), we see a parallel and observational equivalence. Active money/passive fiscal is \(\phi > 1, \gamma > 0 \). Active fiscal/passive money is \(\phi < 1, \gamma = 0 \). The regimes are characterized by behavior away from equilibrium not visible in equilibrium. Neither \(\gamma \) nor \(\phi \) is identified. These are sufficient, not necessary characterizations of each regime.
Expression (16.17) also clarifies the non-identification of ϕ. The parameter ϕ only multiplies deviations from equilibrium $\pi_t - \pi_t^*$. In equilibrium $\pi_t = \pi_t^*$, so there is no variation on the right-hand side of

$$i_t = i_t^* + \phi(\pi_t - \pi_t^*).$$ \hspace{1cm} (16.20)

There is no way to measure how the Fed would respond to an unobserved out-of-equilibrium inflation. Equilibrium dynamics do not reference ϕ. If a threat to inflate drives the economy to π_t^*, because we rule out explosive paths, just how fast the explosion comes – larger vs. smaller ϕ – is irrelevant. If, to get the kids to eat spinach, you threaten no ice cream, and if the threat is effective, the data (spinach, ice cream; spinach, ice cream) do not reveal the threat. You cannot tell whether the threat was no ice cream for a day, a week, or a month (different values of ϕ), or whether the threat was no cookies ($\phi < 1$ and fiscal theory), not involving ice cream at all.

We see better in this representation how new-Keynesian and fiscal theory of monetary policy relate. In both cases, interest rate policy, setting i_t^*, controls expected inflation in this simple model. So the theories differ only in how to pick unexpected inflation. In new-Keynesian models, an equilibrium selection policy $\phi(\pi_t - \pi_t^*)$ and a rule against nominal explosions does it, and fiscal policy follows with $\varepsilon_{s,t+1} = -\Delta E_{t+1} \pi_{t+1}$. In fiscal theory, fiscal policy chooses unexpected inflation with $\Delta E_{t+1} \pi_{t+1} = -\varepsilon_{s,t+1}$.

A particular form of fiscal policy makes the parallel even clearer. In Section 5.4.1 and 5.5 we wrote fiscal policy in the parallel form to (16.20),

$$s_t = \alpha \left(\frac{B_{t-1}}{P_t^*} \right) + \gamma \left(\frac{B_{t-1}}{P_t} - \frac{B_{t-1}}{P_t^*} \right) + u_{s,t},$$ \hspace{1cm} (16.21)

or in the linearized notation,

$$s_t = \alpha v_t^* + \gamma (v_t - v_t^*) + u_{s,t}$$ \hspace{1cm} (16.22)

with

$$\rho v_{t+1} = v_t + r_{t+1} - \pi_{t+1} - s_{t+1}.$$ \hspace{1cm}

As we saw in Section 5.4.1, $\gamma > 0$ generates passive fiscal policy, and $\gamma = 0$ generates active fiscal policy, as $\phi < 1$ and $\phi > 1$ in (16.20) generates passive and active monetary policy. These (ϕ, γ) are not the only ways either active fiscal or active monetary policy can select equilibria, as we have seen a variety of each and we will see more. But these are common parameterizations that fit nicely in the VAR(1) structure of standard models.
Thus, we can unite monetary policy (16.20), fiscal policy (16.22) and a model, such as here $i_t = E_t \pi_{t+1}$. We can generate an active-fiscal passive-monetary policy regime with $\phi < 1$, $\gamma = 0$. Active-monetary passive-fiscal policy is $\phi > 1$, $\gamma > 0$. If we write the models without the * notation, we are tempted to try to estimate and test these “regimes.” But the * notation makes clear that the regimes are observationally equivalent. We see $i_t = i_t^*$ and $\pi_t = \pi_t^*$ or $P_t = P_t^*$. Since $P_t = P_t^*$ in equilibrium, γ is just as unidentified as ϕ by time-series drawn from equilibrium. The equilibrium conditions of the model are the same in active fiscal or active money regimes.

16.5 Responses

The inflation response of the Figure 16.1 embody equilibrium-selection policy, not the conventional view that higher interest rates push inflation down. Interest rates decline throughout the episode. Interest rates and inflation move in the same direction throughout. The model can produce a super-Fisherian response: in response to a permanent shock, interest rates and inflation move together, instantly, and permanently. It can produce an open-mouth operation, in which inflation moves with no movement in interest rates at all.

What is the economic force that pushes inflation up or down in the new-Keynesian model? It is not ISLM aggregate demand. The standard equilibrium-selection story states that unexpected inflation is just one of many equilibria, and the Fed coordinates expectations. The required “passive” fiscal adjustment provides an aggregate demand story. Equilibrium-selection policy causes a fiscal adjustment, and the fiscal adjustment causes unexpected inflation. In this sense there is only fiscal theory, and the new-Keynesian story, even if one does believe the equilibrium-selection threat, is just a way to produce the desired fiscal policy.

Superficially, the Figure 16.1 responses look promising relative to priors that tighter monetary policy should lower inflation. But on second glance, the responses do not embody that intuition. A closer look points out puzzling behavior that emphasizes the importance of equilibrium-selection policy.

The actual, observable, interest rate declines throughout the episode. This model does not produce lower inflation in response to higher interest rates. The model is Fisherian $i_t = E_t \pi_{t+1}$ throughout. You can draw a horizontal line from each interest rate to the subsequent inflation, except for the shock at time 1. Interest rates fall on impact i_1 along with inflation π_1 as well. Mechanically, though the disturbance u_t
is positive, inflation π_t declines and the endogenous part of the policy rule $i_t = \phi \pi_t$
with $\phi > 1$ overwhelms the disturbance u_t to produce lower interest rates. Don't
confuse a negative response to a monetary policy disturbance to a negative response
to interest rates themselves. Someone observing data from this economy would see
interest rates and inflation always moving in the same direction.

This is a strange monetary policy “tightening.” If actual observed interest rates
decline, suddenly and unexpectedly, on the date that the Fed takes action, I doubt
the financial press would call it a tightening! To say monetary policy has tightened,
you have to say that interest rates are higher than they would be given very low
inflation and the Fed’s policy to move interest rates more than one for one with
inflation. But you have to know the policy and its parameter ϕ to say that.

In retrospect, of course the model is Fisherian. The model has no monetary or pricing
frictions and a constant real rate. It should be neutral. It would be a miracle if it
were not neutral. You may quickly object that price stickiness will fix all this. It
does not. Perhaps that is the real surprise, which comes in later sections.

All of the decline in inflation comes from the instant unexpected downward jump
$\Delta E_1 \pi_1$ that happens at the same time as the policy shock $\varepsilon_{i,1}$ and interest rate decline
i_1. This model does not embody the idea that tighter monetary policy slowly squeezes
out inflation. That fact reinforces the view that equilibrium selection rather than
monetary stringency is the central intuition of the response. Again, that this same
result occurs when we make prices sticky is perhaps the more surprising part.

The inflation response can be perfectly super-Fisherian. To generate a super-Fisherian
response, we want $\pi_1 = \pi_2 = \ldots = 1$. So set $i_1^* = i_2^* = \ldots = 1$, interest rate pol-
cy, which sets $\pi_2 = \pi_3 = \ldots = 1$, and set $\pi_1^* = 1$, equilibrium selection policy, so
that $\pi_1 = 1$ immediately. Interest rates and inflation fall, together, immediately and
permanently, in lockstep. This result also occurs with sticky prices.

We can describe this policy with a conventional rule, $i_t = \phi \pi_t + u_t$. From (16.18)
it follows that $u_t = i_t^* - \phi \pi_t^* = -(\phi - 1)$ to produce this result. Thus, we specify
persistence $\eta = 1$, and a shock $\varepsilon_1 = u_1 = -(\phi - 1)$, and the response formulas (16.9)
and (16.11) generate the super-Fisherian response.

The inflation response can be an open-mouth operation. Inflation moves on the
announcement of policy, with no change in interest rates at all. The price level takes
a permanent jump. We wish $\pi_1 = 1$, $\pi_2 = \pi_3 = \ldots = 0$. So set $\pi_1^* = 1$, and $i_t^* = 0$ for
all time. The central bank just announces a one-period change in its inflation target,
without ever touching interest rates, and lo and behold, inflation moves.
We can describe an open-mouth operation with a conventional policy rule $i_t = \phi \pi_t + u_t$ as well. We generate the disturbance following (16.18) by

$$u_1 = -\phi \pi_1^* = -\phi_1; \quad u_2 = u_3 = \ldots = 0.$$

In time-series language, we specify $\eta = 0$ and $\varepsilon_1 = -\phi$.

Here too, the $*$ formulation of policy clarifies what’s going on. The $i_t = \phi \pi_t + u_t$ formulation gives the same result, but the different results seem like strange consequences of the serial correlation of the monetary policy shock. That is indeed how this sort of result is usually interpreted. The $*$ notation makes it clear that equilibrium-selection policy is behind the instant rise in inflation in either case, and the serial correlation of disturbances really has little to do with it. The open mouth operation is particularly beautiful as an example of pure equilibrium-selection policy.

The central bank has an awesome power to command prices to rise and fall at will, without taking any action. It is that awesome power that sends interest rates down in the more conventional response of Figure 2.2.

New Zealand Reserve Bank Governor Donald Brash coined the term “open-mouth operation” in Brash (2002), referring to his apparent ability to move interest rates by making announcements, but without open market operations or any other concrete action. In this model, the central bank can move the price level by just announcing its wish that it should be so – and with the underlying threat of hyperinflation if the price level does not jump.

As the $\eta = 0$ or open-mouth case dramatizes, the pretty dynamics in this model for $\eta > 0$ shown in Figure 2.2 come from the exogenous dynamics of the forcing process u_t, not from a delayed response of the economy to the monetary policy shock. In this model, anticipated interest rate changes move expected inflation with a one-period lag: $i_t = E_t \pi_{t+1}$ so $E_t i_{t+j} = E_t \pi_{t+j+1}$. That’s it for the economic dynamics of the model. The long inflation response is entirely a one-period response to a long-lasting interest rate impulse, not a delayed response to the period 1 shock. When expected interest rates can move expected inflation, it is a mistake to read the impulse response function as response of the economy to the initial shock, invariant to subsequent policy.

So why does inflation decline in response to the monetary policy disturbance u_t? What is the role of $\phi > 1$? Let’s do better than “equilibrium selection threats” to understand the economics.

One’s first instinct is classic old-Keynesian ISLM intuition. By raising nominal rates, the central bank raises real rates, which lowers aggregate demand and subsequent
inflation. That’s not this model. By using flexible prices and constant real interest rates, this model makes that fact clearer than in the general case with price stickiness. A neutral model cannot possibly embody ISLM intuition. The monetary policy rule in this model does not say to raise real interest rates when inflation rises. The real rate is \(i_t - E_t \pi_{t+1} \) not \(i_t - \pi_t \). Such a rule, \(i_t = \phi E_t \pi_{t+1} \) with \(\phi > 1 \) in this model would lead to an equilibrium condition \(\phi E_t \pi_{t+1} = E_t \pi_{t+1} \) which has no solution.

A second intuition, which I passed along above, views the unexpected inflation entirely as an equilibrium-selection story. How did we perform the magic of getting lower inflation in response to a monetary contraction, in a model with constant real rates, constant output, completely flexible prices, and whose private-sector equilibrium condition is only the neutral and Fisherian \(i_t = E_t \pi_{t+1} \)? Only by forcing the economy to jump to another equilibrium at time 1. Any value of unexpected inflation is possible. The equilibrium-selection policy \(\phi(\pi_t - \pi^*_t) \) is said to coordinate expectations, as a sunspot can coordinate equilibria in a multiple-equilibrium economy. We could all drive on the right side of the street or the left side of the street. The Fed just says “everyone go to the right side” and it happens.

One might leave that interpretation as it stands, and add it to the charges of unreality at the feet of the new-Keynesian model, or at least dramatic change from old-Keynesian intuition. The Fed is no longer in charge of “aggregate demand” and “stimulus” but is merely our multiple-equilibrium traffic cop. But there is a more charitable and useful way to regard the new-Keynesian model, that brings aggregate demand back to the underlying story for inflation, and that offers a unifying view.

The pure multiple-equilibrium view follows by erasing the government debt valuation equation from the analysis. But the government debt valuation equation is still there. The jump in inflation \(\pi_1 \) must give rise to a jump in the present value of surpluses, \(\Delta E_{t+1} \pi_{t+1} = -\varepsilon_{s,t+1} \). The monetary policy disturbance – a decline in the inflation target \(\pi^*_t \), really – must occasion a fiscal contraction, to repay the higher value of government debt. The fiscal contraction does lead to a decrease in aggregate demand. Contrariwise, if this “passive” fiscal contraction does not or cannot happen, the unexpected inflation cannot happen.

Thus, one can interpret the new-Keynesian model response more simply: The central bank lowers its inflation target \(\pi^*_t \). The fiscal authorities “passively” raise taxes to validate the lower inflation target, to pay off nominal bonds at the lower inflation. The lower aggregate demand resulting from the fiscal contraction pushes prices down. Monetary policy is a carrot in front of the fiscal horse, and the fiscal horse pulls the...
price level cart. Indeed, it does not matter if the private sector believes that the central will hyperinflate the economy for \(\pi_t \neq \pi^\ast \). All that matters is that the fiscal authorities believe the central bank will do something dreadful unless they tighten.

This story gives, I think, a much more coherent description of the new-Keynesian model mechanism. Inflation *is* too much money chasing too many goods, aggregate demand caused by a flight from government debt. It is not just a jump between equally plausible equilibria, followed by a fiscal mopping up operation.

This view also helps to overcome observational equivalence, and the consequent realization that we really cannot construct distinct models and fights over regimes are relatively pointless. In this view, there really is nothing *but* fiscal theory. New-Keynesian equilibrium-selection policy works, if and only if it can force the Treasury to the needed fiscal expansion or contraction. Ultimately, the fiscal expansion or contraction is the economic engine behind inflation or disinflation.

However, the hyperinflation threat \(\phi(\pi_t - \pi^\ast_t) \) remains unbelievable as a mechanism for the central bank to convince the treasury to take fiscal action. Viewing the inflation target as a joint fiscal-monetary policy, as I did above, seems much more sensible.

16.6 Observational equivalence preview

Observational equivalence goes both ways. It opens the door to understanding any sample equally via fiscal theory as via new-Keynesian models. It guides us to look closely to find the identifying assumptions of any supposed test, as those assumptions are the whole content of the test. Most of all, it guides us to look beyond time-series tests on equilibrium variables: to institutions, regimes, commitments, statements by fiscal and monetary authorities about how they operate, commentary on how people expect them to operate, narrative approaches to historical events, and times of regime change or construction.

On first glance, observational equivalence seems like a show-stopper. Though logically it goes both ways, in common rhetoric the fact that new-Keynesian models got there first makes the case for fiscal theory to unseat new-Keynesian models much weaker.

Considered carefully, however, this is not the case. Observational equivalence the-
orems litter economics. Supply vs. demand shifts, behavioral vs. rational finance, money causes income vs. income causes money all present observational equivalence theorems. As just about everywhere else in economics and finance, observational equivalence is a powerful theorem that guides one’s thinking, not a death sentence.

First, it does go both ways. Observational equivalence means that there is no set of armchair observations, or formal tests, that one can use to prove fiscal theory wrong. If Japan is a puzzle for fiscal theory, it is exactly the same puzzle for new-Keynesian theory, because the two theories have exactly the same equilibrium conditions. Observational equivalence thus opens the door to fiscal theory as the integrating basis for a full sample, not limited to periods of fiscal vs. monetary dominance.

Second, when people do wish to test one or another class of theory, observational equivalence theorems point one to pay particular attention to identifying assumptions. They are not technical details, they are the whole game. I review the many identifying assumptions that have been used to try to make such tests. I come to a rather negative assessment of progress so far, and not much hope for the productivity of future effort. But logically it is one way to proceed, it is natural that so much effort went in to trying, and perhaps a reader will find a really clever and compelling identification assumption that has escaped the rest of us for the last few decades.

Third, and more productively in my mind, observational equivalence directs our attention to more productive arenas than formal time-series tests. The theorem says is no more nor less than it says. It says that observable equilibrium time series, \(\{i_t, \pi_t, s_t, v_t\} \) here, can come from either regime. But we may use all sorts of other information.

We can, and I think should, look deeply at the historical, institutional, and economic plausibility of equilibrium-selection stories, in general and in the context of specific episodes. That is why this section, and book, are so long.

I have already appealed to the argument that no central bank on the planet says it operates as the \(\phi > 1 \) equilibrium-selection policy describes. How does this argument fit observational equivalence? Well, I am using information beyond the time-series of equilibrium variables. We can go on: read the Federal Reserve Board of Governors (2020) official description of its strategy, the minutes of Federal reserve meetings, the commentary of the financial press describing how people expect the Fed to behave if inflation should rise or fall. Narrative evidence in the tradition following Romer and Romer (1989) can help us to see shocks and disturbance \(\varepsilon_{i,t} \) and \(u_{i,t} \), from which one
16.7 CENTRAL BANK DESTABILIZATION?

This is a short preview. Section 21 considers the implications of observational equivalence in detail, once we have the sticky-price New-Keynesian model and monetarist model in full view. But, while we tick through observational equivalence in treating these models more fully, it will be useful to see that it is a useful and powerful theorem to be embraced and to guide thought and research, not a quick dismissal that the whole effort is pointless. Right away, observational equivalence is why I spend the next few sections looking hard at the plausibility of model foundations, rather than just get on with it and describe the test statistic for one vs. another class of model.

16.7 Central bank destabilization?

No central bank says that it deliberately destabilizes the economy, or worries centrally about selecting from multiple equilibria. The $\phi > 1$ threat is disastrous ex-post for the central bank, so people are not likely to believe the bank will do it. Since the response ϕ is not identified, there is no way for people to learn it even if it is secretly true.

Let us grant for the moment a rule against nominally explosive equilibria. Here I focus on the second big problem of the new-Keynesian model. To select a unique equilibrium, the central bank commits that if inflation gets going, the bank will increase interest rates more than one for one, $i_t = \phi(\pi_t - \pi^*_t)$ with $\phi > 1$, and by doing so it will increase subsequent inflation, $E_t(\pi_{t+1} - \pi^*_{t+1}) = \phi (\pi_t - \pi^*_t)$, and vice versa.

This reaction of increasing inflation in response to current inflation is the key point, as that is what leads to equilibrium selection. The interest rate reaction to inflation is only a means to that end. If by raising interest rates the bank lowered expected inflation, then the path would not be ruled out as an equilibrium. In more general models with sticky prices, the greater than one-for-one reaction of interest rates to inflation is neither necessary nor sufficient to the essential condition, which is one additional explosive eigenvalue in system dynamics.

Again, no central bank on the planet describes its inflation-control efforts in these terms. Central banks uniformly explain the opposite. Should inflation get going, the bank will increase interest rates, or take other actions including asset purchases and credit controls, in order to reduce subsequent inflation. Central bankers do not
even whisper thoughts about multiple equilibria, or that they deliberately destabilize the economy to coordinate multiple equilibria. If you describe “equilibrium-selection policy” as the essential task of a central bank, you will be met with blank stares.

Of course, people discount all sorts of central-bank pronouncements. What matters in the model is what people believe about central banks. But that the central bank will react to inflation by pushing the economy to hyperinflation seems an even more tenuous statement about people’s beliefs, today and in any sample period we might study, than it is about actual central bank behavior. Financial press commentary accords entirely with central bank commentary.

We economists also generally discount statements by central bankers, and instead think that people learn the structural parameters of rational-expectations models including typical central bank behavior from experience. But the fact that ϕ is not identified means that agents in the model have no way of learning ϕ from experience any more than we econometricians looking at data can do. The underlying question, behavior away from equilibrium, cannot be learned from time series drawn from equilibrium.

The threat to explode inflation is, ex-post, disastrous for the central bank’s objectives. The threat is not subgame perfect, or time consistent. Imagine a Fed chair reporting to an angry Congress that the Fed is deliberately inducing a large inflation or deflation, because it committed to do that in order to try to tame multiple equilibria a few years ago, and back then inflation came out one percent above its target. That thought is ever more reason for people not to believe that this is how central banks behave, even if the bank were to announce such a threat.

In this model $\phi < -1$ is as good as $\phi > 1$ to produce local determinacy. The central bank may threaten oscillating explosive hyperinflation and deflation. Well, if the economy abhors growing inflation, and will not choose such equilibria, oscillating inflation and deflation are even ghastlier. (King (2000), p. 78.) This example though should drive home that the central bank is not stabilizing inflation, raising interest rates to tamp down future inflation, but destabilizing inflation in order to make all but one equilibrium unpleasant.

The fiscal theory responses, or better lack of responses, to off-equilibrium price levels are similarly not identified from time-series data in equilibrium. That observation provokes my long analysis of rules, institutions, traditions, commitments, and responses to crisis events by which governments commit to and communicate fiscal support for the price level. There is no parallel evidence for a view that central banks respond to off-equilibrium inflation with ever higher inflation.
16.8 A full model and the lower bound

I derive and consider a full nonlinear model. Figure 16.2 plots the set of equilibria. The previous linearized analysis bears out near the active equilibrium Π^*_\star. The zero bound forces us to consider another equilibrium Π_L. This equilibrium must violate the Taylor principle, and hence has multiple locally bounded equilibria even with an active rule around Π^*_\star. In turn, the multiple equilibria to the left of Π^*_\star, though not locally bounded, do not explode, reducing further any reason to rule them out. Consideration of the full nonlinear model only made multiplicity worse.

One may worry that my simple example (16.1)-(16.3) is linearized and not fully spelled out. Let’s write down a full model, and make sure there is not some left-out ingredient. (Here I simplify standard sources, in part to emphasize agreement on these points: Benhabib, Schmitt-Grohé, and Uribe (2001), Benhabib, Schmitt-Grohé, and Uribe (2002) and Woodford (2003) Ch. 2.4, starting p. 123, and Ch. 4.4 starting on p. 311. This discussion is based on Cochrane (2011a).)

The setup is the same as the complete frictionless fiscal theory model of Section 2. The government issues one-period nominal debt, B_{t-1}, and levies lump-sum real primary surpluses s_t. Consumers maximize a utility function

$$\max E_t \sum_{j=0}^{\infty} \beta^j u(c_{t+j}).$$

Consumers receive a constant nonstorable endowment $y_t = y$. Markets clear when $c_t = y$. Consumers trade in complete financial markets described by real contingent claims prices Λ_t. Consumers face a present-value budget constraint,

$$\frac{B_{t-1}}{P_t} = E_t \sum_{j=0}^{\infty} \frac{\Lambda_{t+j}}{\Lambda_t} (s_{t+j} + c_{t+j} - y_{t+j}). \quad (16.23)$$

This constraint derives from the flow constraint plus a transversality condition. I skip a step by imposing optimal constrained money holdings $M_t = 0$.

The consumer’s first-order conditions state that marginal rates of substitution equal contingent claims price ratios, and equilibrium $c_t = y$ implies a constant real discount factor,

$$\beta \frac{u_c(c_{t+1})}{u_c(c_t)} = \frac{\Lambda_{t+1}}{\Lambda_t} = \beta \frac{u_c(y)}{u_c(y)} = \beta. \quad (16.24)$$
Therefore, the real interest rate is constant,
\[\frac{1}{1 + r} = E_t \left(\frac{\Lambda_{t+1}}{\Lambda_t} \right) = \beta. \]

The interest rate and inflation then conform to the nonlinear Fisher relation,
\[\frac{1}{1 + i_t} = \beta E_t \left(\frac{P_t}{P_{t+1}} \right) = \frac{1}{1 + r} E_t \left(\frac{1}{\Pi_{t+1}} \right). \] (16.25)

From the consumer’s present value budget constraint (16.23), and using contingent claim prices from (16.24), equilibrium \(c_t = y \) also requires our friend,
\[\frac{B_{t-1}}{P_t} = \sum_{j=0}^{\infty} \beta^j E_t (s_{t+j}). \] (16.26)

The Fisher equation (16.25) and the government debt valuation equation (16.26) are the only two conditions that need to be satisfied for the price sequence \(\{P_t\} \) to represent an equilibrium. If they hold, then the allocation \(c_t = y \) and the resulting contingent claims prices (16.24) imply that markets clear and the consumer has maximized subject to his or her budget constraint. The equilibrium is not yet unique, in that many different price or inflation paths will work. Unsurprisingly, we need some specification of monetary and fiscal policy to determine the price level.

The new-Keynesian analysis maintains a passive fiscal regime. Government surpluses \(s_{t+j} \) adjust so that the government debt valuation equation (16.26) holds given any price level. (See Woodford (2003), p. 124.) Yes, solutions of the simple model consisting of a Fisher equation and a Taylor rule (16.1)-(16.2), as I studied above, do in fact represent the full set of linearized equilibrium conditions of this explicit model. My simple example didn’t leave anything out.

To keep the equations as simple as possible, simplify further to perfect foresight equilibria. In the linearized model, \(E_t \pi_{t+1} = \phi \pi_t \) led to two kinds of indeterminacy, \(\delta_{t+1} = \Delta E_{t+1} \pi_{t+1} \) and \(\pi_0 \), which is really \(\delta_0 = \pi_0 - E_{-1} \pi_0 \). There was no extrinsic uncertainty. But each date could still see shocks, based on random variables like sunspots having nothing to do with the economy. By looking at perfect foresight equilibria, we consider only the determination of \(\pi_0 \) and we ignore sunspot equilibria at other dates \(\Delta E_{t+1} \). But \(\pi_0 \) and subsequent perfect foresight teaches us how \(\delta_{t+1} \) and \(\{\Delta E_{t+1} \pi_{t+j}\} \) behave at each date after that. Adding uncertainty (sunspots) can only increase the number of equilibria.
Write the interest rate rule

\[1 + i_t = (1 + r)\Phi(\Pi_t); \quad \Pi_t \equiv P_t/P_{t-1}. \]

(16.27)

\(\Phi(\cdot) \) is a function allowing nonlinear policy rules. With perfect foresight, the consumer’s first order condition (16.25) reduces to

\[\Pi_{t+1} = \beta(1 + i_t). \]

(16.28)

We are looking for solutions to the pair (16.27) and (16.28). As before, we substitute out the interest rate and study inflation dynamics,

\[\Pi_{t+1} = \Phi(\Pi_t). \]

(16.29)

This is the nonlinear, global (i.e., not local), perfect-foresight version of the \(E_t\pi_{t+1} = \phi\pi_t \) equilibrium condition of the last section. Figure 16.2 plots dynamics (16.29).

Figure 16.2: Dynamics in a perfect foresight Taylor-rule model.

The steady state \(\Pi^* \) has \(\Phi'(\Pi^*) > 1 \). This is a region of local instability. The equilibrium \(\Pi^* \) is a unique “locally bounded” equilibrium because any \(\Pi_t \) that is \(\varepsilon \) above or below \(\Pi^* \) leads away from \(\Pi^* \).
Nonlinearity and global solutions make one big difference: We must respect the zero bound on nominal interest rates. Consumers can hold money, and negative nominal interest rates offer arbitrage between bonds and cash. From (16.28), the bound \(i \geq 0 \) means we cannot have \(\Pi_{t+1} < \beta \). Thus, the function \(\Phi(\Pi) \) must also have another stationary point, labeled \(\Pi_L \). This stationary point must be stable, with \(\Phi'(\Pi_L) < 1 \). Many paths lead to \(\Pi_L \) and there are “multiple local equilibria” near this point.

Yes, the unstable \(\Pi^* \) is the “good” equilibrium and the stable \(\Pi_L \) is the “bad” equilibrium, which authors try to remove. “Stability” near \(\Pi_L \), which you might think a good thing, comes with “indeterminacy,” multiple equilibria.

All of the paths graphed in Figure 16.2 are perfect-foresight equilibria. Since these paths satisfy the policy rule and the consumer’s first-order conditions by construction, all that remains is to check that they satisfy the government debt valuation formula (16.26), i.e. that there is a set of ex-post lump-sum taxes that can validate them and hence ensure the consumer’s transversality condition is satisfied. There are lots of ways the government can implement such a policy. We only need to exhibit one: If the government simply sets net taxes in response to the price level as

\[
s_t = \frac{r}{1+r} \frac{B_{t-1}}{P_t}
\]

then the real value of government debt is constant, and the valuation formula holds.

To see why this is true, start with the flow condition that proceeds of new debt sales + taxes = old debt redemption,

\[
\frac{B_t}{1 + i_t} + P_t s_t = B_{t-1}.
\]

With \(1 + i_t = (1 + r)P_{t+1}/P_t \), this expression can be rearranged to track the real value of the debt,

\[
\frac{B_t}{P_{t+1}} = (1 + r) \left(\frac{B_{t-1}}{P_t} - S_t \right) .
\]

(16.30)

Substituting the rule (2.22) we obtain

\[
\frac{B_t}{P_{t+1}} = \frac{B_{t-1}}{P_t} .
\]

We’re done. With constant real debt and the flow condition (16.30) the transversality condition holds, and (16.30) implies (16.26). All the inflationary equilibria of the last section are valid.
Overall, you can see that this explicit, complete, and exact model verifies the conclusions we drew from the simple linearized version in the vicinity of Π^*. The nonlinear model and a global view makes the equilibrium selection problems worse, however, because now we have the second, stable, steady state Π_L. Deflationary equilibria that start anywhere below Π^* and approach Π_L are also valid equilibria, as is Π_L itself. These equilibria are “globally bounded,” though not “locally bounded around Π^*.” If we want Π^* to be the only equilibrium, we must change the equilibrium-selection rule to rule out “non-locally bounded near Π^*” equilibria, not just to rule out explosive equilibria.

If $\Pi^* = 2\%$, for example, and the real interest rate is $r = 1\%$, then we have to rule out paths that start at $\Pi_t = 1.99\%$ and drift down to $\Pi_t = -1\%, i_t = 0\%$, and stay there. Well, these equilibria are “non-local” to $\Pi^* = 2\%$, since -1% is outside an ε ball of $\Pi = 2\%$. But that seems like a poor reason to rule out the possibility, especially given the experience of the 2010s of a long period at the effective zero bound with steadily declining inflation. And if negative real interest rates endure, Π_L may occur at, say, 1% inflation, only one percentage point below the 2% target, corresponding to a -1% real rate. Why declare that these equilibria can’t happen?

The criticism that no central bank deliberately follows $\Phi(\Pi)$ down from Π^* to Π_L, using deflation to the zero bound as an equilibrium-selection threat to enforce Π^*, remains. Central banks have seemed rather desperate to increase inflation in the 2010s with inflation running below target.

But even if central banks were to threaten such paths, and people were to believe them, the argument that something is wrong with the path and needs to be ruled out as an equilibrium is much weaker than the argument that something is wrong with an explosively deflationary equilibrium.

In recent years, many economists have advocated eliminating cash, so that central banks can impose arbitrarily negative overnight interest rates. (For example, [Kimball](2020), Rogoff (2017).) This move would allow a rule with global instability $\Phi'(\Pi)$. However, none of those advocating negative rates have made this argument. The negative 50%, or even less than negative 100% interest rates that a globally unstable rule would require are beyond anyone’s ideas of practical. Their argument is entirely for the stimulative possibilities of observed, equilibrium negative interest rates.
16.9 Identification patches

I survey attempts to overcome the non-identification of the equilibrium selection rule. Each must tie equilibrium selection threats to some observable behavior. On examination, the assumptions don’t make much sense.

Observational equivalence and non-identification do not mean the theories are empty. They just mean that we should look carefully at identifying assumptions of attempts to test one category of theory vs. another.

Non-identification of the Taylor-principle ϕ in new-Keynesian models has important empirical consequences. For example, Clarida, Galí, and Gertler (2000) is perhaps the most important piece of evidence for the new-Keynesian model. They estimate policy rules by regression. They find that the inflation response ϕ was below one in the 1970s, and rose to greater than one in the 1980s. They interpret this finding via a new-Keynesian model and conclude that the economy shifted from indeterminate to determinate; that the volatile inflation of the 1970s came from variation around sunspot equilibria and this volatility was eliminated in the 1980s. But since they measure a regression between observable equilibrium quantities i^* and π^*, whatever their regression delivers it is not the central stability parameter ϕ of their model. The parameter ϕ is not identified in their model. The coefficient ϕ represents an off-equilibrium threat not seen in equilibrium. This most classic estimate, though it establishes an interesting correlation in the data, does not, in fact, measure the structural parameter ϕ and thereby provide evidence in favor of the new-Keynesian model. (The underlying correlation is not that simple either, as their estimate includes lags and instruments.)

Now, identification is a property of a model, not of data. Clarida, Gali, and Gertler’s regressions measure something. The question is, what parameter of which model do they measure? In my simple example, a regression of interest rate on inflation measures η, the persistence parameter of the monetary policy shock. Such a regression can identify the parameter ϕ in old-Keynesian models, where $\phi > 1$ brings stability. One may interpret the Clarida, Galí, and Gertler (2000) estimate in the light of the old-Keynesian model, to say that Fed brought inflation stability from instability, thereby conquering inflation in the 1980s. Add a different introduction and model, and all is well. But the regressions do not identify the ϕ of the new-Keynesian model, and we cannot take them as evidence for a new-Keynesian parameter $\phi > 1$ in the later period, or a victory of determinacy over indeterminacy, which was their objective.
This lack of identification pervades new-Keynesian empirical work. For example, the influential Smets and Wouters (2007) new-Keynesian model restricts the estimate of φ a-priori to be greater than one. The prior and posterior for the inflation response of monetary policy φ_π are nearly identical (Figure 1C p. 1147). The estimate is φ = 1.68 relative to a prior mean of φ = 1.70, suggesting that the policy rule parameters are at best weakly identified, even in a local sense (φ > 1), and with strong identifying restrictions.

One can of course identify anything by sufficient assumptions. For example, Giannoni and Woodford (2005) identify the policy rule parameters by assuming 1) The monetary policy disturbance ε_{i,t} is i.i.d. and not predictable by any variables at time t = 1, nor correlated with other shocks to the model; 2) The Fed does not react to expected future output, or wage, price inflation, or other state variables; 3) Wages, prices, and output are fixed a period in advance. These are all unrealistic assumptions. Disturbances are persistent. Central banks deviate from rules for years at a time. The Fed reacts to expectations about the future, and wages and prices move within a quarter.

More deeply, the logic of the new-Keynesian model is that some state variable must jump coincidently with any shock, jumping the economy to the unique equilibrium that now (after the shock) does not explode, just as π_t jumps coincident with u_{i,t} in the simple model. If inflation π_t cannot jump, say if it is fixed one quarter in advance, then some other state variable must jump. Giannoni and Woodford (2005) assume that the central bank does not respond to that state variable.

More generally, one must achieve identification by tying the un-measurable, unobserved behavior \(i_t - i^*_t = \phi(\pi_t - \pi^*_t) \) to something observable. We could assume that if our parent has a glass of wine with dinner, then no spinach will be followed by no dessert. We measure a glass of wine, kids eating spinach, and conclude the dessert threat did the trick. But there is no way to verify the assumption, especially with no confirming narrative evidence, i.e. the parent never threatens no dessert, nor ties it to wine drinking. And since the economic function of the correlation between interest rate and inflation in equilibrium, to stabilize dynamics and smooth shocks, is utterly different from the response of interest rates to inflation used to induce an explosive equilibrium and thereby select among multiple equilibria, it is hard to think of a reason to tie the two correlations together.

The parameter φ is identified if there is no disturbance in the policy rule \(i_t = \phi \pi_t \), and if there are shocks to other equations leading to some volatility in the right-hand variable π_t. This assumption ties unobservable behavior to observable behavior, by
assuming that the off-equilibrium reaction \((i_t - i_t^*) = \phi (\pi_t - \pi_t^*)\) is the same as the on-equilibrium relation \(i_t^* = \phi \pi_t^*\) as well as by assuming no shock. But there really is no reason to make either assumption. There are always disturbances – no policy rule fits with 100% \(R^2\).

We might try to assume that monetary policy disturbances \(u_{i,t}\) are orthogonal to disturbances to the other equations of the model, and those disturbances move inflation. \cite{Giannoni2005} is a case of this general idea. In \(i_t = \phi \pi_t + u_{i,t}\), that assumption could give us an instrument, a movement in \(\pi_t\) orthogonal to the shock \(u_{i,t}\). But why should the central bank not respond by deviating from the rule in response to other shocks, or to inflation resulting from such shocks? Optimal monetary policy (minimizing output and inflation variance) directs the central bank to respond to all shocks, to set \(u_{i,t}\) in response to other shocks in the economy. Written in the equivalent form \(i_t = i_t^* + \phi (\pi_t - \pi_t^*)\), the “stochastic intercept” of the policy rule should respond to other shocks. Real central banks clearly describe all of their actions, especially deviations from policy rules, as responses to other shocks. Moreover, why should the central bank’s rule respond to inflation that results from other shocks in the same way that it responds to inflation that results from multiple equilibria? Writing \(i_t = i_t^* + \theta \pi_t^* + \phi (\pi_t - \pi_t^*)\), why should \(\theta = \phi\)? The economic function of the two responses is entirely different.

One may respond that “well, all identification involves assumptions,” which is true. But most of the time in economics we are trying to identify things that are in principle measurable. Identifying a supply curve, and how firms would behave away from equilibrium prices, is hard because the data are driven by both supply and demand shocks. If the supply shocks would be quiet for a minute, or if we could isolate demand shocks that do not move the supply curve, we could measure the supply curve. It is sensible to assume that suppliers respond the same way to “off-equilibrium” prices, for example provoked by price controls, the same way that they do to “equilibrium” prices, for example provoked by a shift in the demand curve. Here we are trying to measure something that is inherently unmeasurable. In equilibrium there are no movements away from equilibrium. The identifying assumptions must tie off-equilibrium behavior to something that is measurable, which is a tall order. And most of the time, identification assumptions and the behavior they isolate are somewhat plausible, which they are not here. The first lesson of a good econometrics class is that you may not simply write down “We assume that \(\varepsilon\) is orthogonal to \(x\),” you must state what are the economic forces that drive variation in \(x\) and \(\varepsilon\) and why it is sensible to believe them orthogonal.
16.10 Equilibrium-selection patches

That the new-Keynesian model suffers multiple equilibria, that $\phi > 1$ with a rule against non-local equilibria is not a completely satisfactory answer, is now a well-known problem. It has attracted an enormous number of attempts to fix it, while retaining the passive fiscal policy assumption that wipes out the government debt valuation equation.

Broadly, authors add restrictions to the definition of equilibrium or they add to policy specification. It turns out to be harder to rule out equilibria than it appears. The government must basically threaten to blow up the economy in alternative equilibria, by means other than hyperinflation. But as with inflation, the government does not threaten to blow up the economy, people do not expect the governments to do so, the government will not choose to do so ex-post, there are no institutions committing the government do so, and in the conventional writing of policy the government cannot exercise these threats. (This section draws on the broader discussion in Cochrane (2011a).)

16.10.1 Reasonable expectations and minimum state variables

Woodford argues that it is unreasonable for people to expect hyperinflation or deflationary, so multiple equilibria should not break out. But what is unreasonable in our world is not so unreasonable in the model. McCallum argues for a “minimum state variable” criterion, which rules out multiple equilibria generically.

Why should we rule out inflationary or deflationary equilibria? Woodford (2003) (p.128) argues that expectations should “coordinate” on the locally-unique equilibrium, Π^* in Figure 16.2:

“The equilibrium [Π^*]... is nonetheless locally unique, which may be enough to allow expectations to coordinate upon that equilibrium rather than on one of the others.”

Moreover,

“The equilibria that involve initial inflation rates near (but not equal to) Π^* can only occur as a result of expectations of future inflation rates (at least in some states) that are even further from the target inflation...
rate. Thus the economy can only move to one of these alternative paths if expectations about the future change significantly, something that one may suppose would not easily occur.”

Similarly, King (2000) (p. 58-59) writes:

“By specifying $|\phi > 1|$ then, the monetary authority would be saying, ‘if inflation deviates from the neutral level, then the nominal interest rate will be increased relative to the level which it would be at under a neutral monetary policy.’ If this statement is believed, then it may be enough to convince the private sector that the inflation and output will actually take on its neutral level.

These paragraphs echo the fundamental role of equilibrium-selection policy in the new-Keynesian model. The threat to raise inflation in response to current inflation is a coordinating device among multiple equilibria, not the conventional story by which higher interest rates lower aggregate demand.

But this logic seems a rather weak foundation for the basic economic question, what determines the price level? Is economics on its own really incapable of answering that question? Is there no simple supply and demand underlying the price level on which models can build?

Woodford has a point. It does seem unlikely that people wake up one morning and believe, with no other news, that a hyperinflation is coming in 10 years, so they should raise prices just a little today. It’s a good deal more plausible that they wake up and decide that another slide to the zero bound is coming so they should lower prices just a little today, but even that case requires a bigger shift in expectations about the future than the instantaneous move.

But if we are to appeal to common intuition about reasonable beliefs, we have to separate reasonable beliefs of people who live in this model from reasonable beliefs of people who live in our world, the world from which intuition springs. In this model, the central bank is committed to react to inflation by driving the economy to hyperinflation, introducing instability. In this model, expected increases in interest rates raise expected inflation. If people lived in the world of this model, a belief that hyperinflation could suddenly arise seems pretty reasonable.

Our world and our central banks are populated by people who think that the central bank will respond to unexpectedly higher inflation by lowering subsequent inflation, through largely old-Keynesian logic – higher nominal rates mean higher real rates which lower aggregate demand. If that is our world, people are indeed unlikely to
wake up and think hyperinflation is coming. If fiscal theory underlies price level
determination then people are also unlikely to wake up believing there will be a
hyperinflation or deflation with no fiscal or discount rate news. But these are not
the worlds of this model, so one cannot appeal to intuition formed in these worlds to
say that such a belief is unreasonable in the world of the new-Keynesian model.

In a series of papers, summarized in McCallum (2003), McCallum argues for a related
minimum state variable (MSV) criterion to pick from multiple equilibria. Endoge-
nous variables in an economic model should only depend on the fundamental state
variables of that model.

This criterion is a good technique for finding solutions to complex models, especially
when state variables are Markovian, i.e. state variables today capture all one needs
to know about their expected future values. Look for $x_t = f(v_t)$ where v_t is a list of
the state variables. This “method of undetermined coefficients” is often much easier
than the matrix solution method, as I exposited in Section 25.9.

The minimum state variable criterion rules out the explosive and sunspot solutions
of this model. In the simple linearized model of Section 16.1, the only exogenous
variable is the monetary policy disturbance u_t, and it contains all information about
future exogenous states of the economy. Hence, the minimum state variable criterion
says to pick $\pi_t = f(u_t)$. The only such solution is the “locally bounded” choice
$\pi_t = -u_t/(\phi - \eta)$.

The minimum state variable and coordinate-expectations ideas are related. The min-
imum state variable criterion argues that reasonable expectations of future inflation
should be related to real state variables, thus ruling out sunspot equilibria and a
models that study such equilibria. However, McCallum (2003) (p. 1154) states that
his proposal does not apply to selecting among nominal indeterminacies, and only
apply to models with multiple real paths. Therefore, it appears, he would not ap-
ply them to the frictionless models on which I have focused, but would apply once
nominal multiple equilibria spill over to real variables via price stickiness.

Both of these approaches add something else to economics, to the definition of equi-
librium, which if accepted should logically be applied to all models, not just as a
patch for these pathologies. They add essentially philosophical considerations to the
definition of equilibrium. Such a program has far-reaching implications. For exam-
ple, goodbye multiple-equilibrium models of bank runs such as Diamond and Dybvig
(1983). One should be wary of far-reaching fixes for narrow problems. Do we really
have to modify economics so fundamentally in order to determine the price level? Are
we, and these authors, really willing to undertake that surgery systemically rather
than use it just here?

To be clear, my point is not to defend as reasonable the multiple explosive equilibria generated by the simple model with $\phi > 1$. My point is that if the simple model were true, and if central banks acted this way, then we should take seriously these multiple explosive equilibria. Since, we agree, the multiple explosive equilibria don’t make a lot of sense, I conclude that the simple new-Keynesian model with $\phi > 1$ is wrong.

16.10.2 Stabilizations and threats

I survey attempts to cut off multiple equilibria by adapting proposals to stop hyperinflations or deflations, by switching to a money growth target, commodity standards, or similar means. But if an inflation breaks out, and the government stops it, that path remains an equilibrium. In fact, it is now more plausible since inflation does not increase to infinity.

These proposals in fact stop equilibria by specifying a period of inconsistent policy, in which equilibrium can’t form, because the policy settings force a violation of private first order or equilibrium conditions. They are “blow up the world” threats. But it is not plausible that governments would do such a thing, or even that they can do such a thing.

Why not just blow up the world directly, rather than as part of an otherwise sensible stabilization? That these proposals modify sensible proposals to stop or stabilize inflations reveals a source of confusion about new-Keynesian models.

The next set of suggestions add something else beyond $i = \phi (\pi - \pi^*)$ to the policy regime in order to try to prune multiple equilibria, while maintaining passive fiscal policy and the conventional set of equilibrium selection rules.

These approaches adapt common ideas for stopping hyperinflations, deflations or liquidity traps. If an inflation or disinflation breaks out, governments switch to another policy regime, including a money growth target, a commodity standard or foreign exchange peg, or an active fiscal regime in order to stop the inflation or deflation. Examples include, [Woodford (2003) Section 4.3, Atkeson, Chari, and Kehoe (2010), Minford and Srinivasan (2011), and Christiano and Takahashi (2018)]. Hyperinflations do typically end with a joint monetary-fiscal reform, and zero bound episodes seem to involve a lot of fiscal expansion.
It's a natural idea: Speculative inflations and deflations are the problem. If we add an off-the-shelf policy prescriptions to stop inflations and deflations, we should solve the problem, no?

No. If a multiple-equilibrium inflation or deflation breaks out, and if the government successfully stops the inflation or deflation by these means, and is expected to do so, then the inflation or deflation and its end remain an equilibrium path. If anything, such proposals make multiple-equilibrium matters worse. To the extent that the prospect of never-ending hyperinflation or perpetual liquidity trap made expectations of such events “unreasonable,” or “coordinated” expectations against them, expectations that the government would likely stop the inflation or deflation make the paths more reasonable for people to expect in the first place.

For our goal, to stop a multiple-equilibrium inflation or disinflation from breaking out in the first place, one must change the policy configuration so that the equilibrium cannot form. Policy must be such that private-sector first order conditions, budget constraints, or market clearing conditions must be violated.

That is exactly what these proposals do, if you read very carefully and with this logic in mind. There is at least one period \(T \) of overlap between inflation and its stabilization, in which the central bank commits both to an interest rate rule \(i_T = \phi \pi_T \) with still high \(\pi_T \), requiring a high nominal interest rate, and to a low money growth target, a commodity standard, or active fiscal policy, to lower \(\pi_{T+1} \), that requires a low nominal interest rate \(i_T \) or low money growth. Since the interest rate and money growth cannot be simultaneously high and low, since an interest rate target and an inconsistent money growth target or commodity standard cannot coexist, “equilibrium cannot form” in such periods. In a rational-expectations dynamic economy, the equilibrium path leading to this event cannot then form either.

It is these periods of inconsistent policy that rule out the equilibrium, not the underlying idea of stopping an inflation or deflation on which the proposals build. Stopping inflation does not need inconsistent policy. If the government separates by one period the inflation and its stabilization, then the inflation is stopped, and equilibrium can form each period on the way. That’s how inflations are stopped, with no period in which equilibrium “doesn’t form” along the way.

Conversely, to rule out an equilibrium, there is no need to appeal to the memory of policies that stop and stabilize inflations and deflations. Just set an inconsistent policy somewhere along the undesired equilibrium path, whether that path is explosive or not.
Atkeson, Chari, and Kehoe (2010) recognize this fact, and offer a range of “sophisticated” policies to trim multiple equilibria without the smokescreen of induced inflations and inflation-stabilization policy changes. Their point is more general. The active policy $\phi > 1$ itself is designed to select equilibria, not to stabilize the economy in old-Keynesian fashion. The swifter and more severe the threat, the more likely it is to succeed. Rather than respond to an undesired equilibrium by gently leading the economy by $\phi > 1$ to an inflationary region, promise a cure by a money growth rule or other reform, but then blow up the economy at a roadside stop along the way, the government can simply threaten the economy with an immediate explosion should the wrong equilibrium appear.

The objections are natural.

What does it mean for a government to set policy so that “equilibrium cannot form?” Presumably it means that all economic activity stops? Even reversion to barter is an equilibrium of sorts. This sort of policy is a threat to blow up the world, or crash the economy, a la Dr. Strangelove.¹

But what government on earth would ex-post embark on a policy so draconian that “no equilibrium can form,” whatever that means? Carrying out such a threat is disastrous for the government’s objectives. Technically, these are not a subgame-perfect or time-consistent threats, even more so than deliberately leading the economy to hyperinflation. Therefore, ex-ante, there is no reason for people to believe such threats. And our central banks and governments emphatically do not make such threats. They promise to stop and stabilize inflations, always to rescue the economy, not to set policy so “no equilibrium can form.”

Is it even possible for the central bank or government to follow a policy that forces agents to violate first order conditions, or markets not to clear; for equilibrium not to form? What would actually happen if the central bank were to announce simultaneously an interest rate target requiring high money growth and a money growth target demanding low money growth, or an interest rate target together with an inconsistent commodity standard requiring free exchange of money for the commodity? One instrument cannot achieve two targets, especially when the targets are far apart.

We usually think of governments acting in markets, just like everyone else. Governments may have monopoly powers, but even monopolies must respect demand

¹In the movie, the Soviets, unable to keep up with U.S. military, devised a bomb that would destroy the world, including themselves, in the event of attack.
curves and budget constraints. In the Ramsey tradition, most public finance studies
government policy settings, taking private first order conditions and market clearing
as constraints on the government’s policies. If the central bank wants to raise inter-
est rates, it must respect the money demand curve. It is simply impossible for the
central bank, with one instrument, to simultaneously target interest rates and money
growth in a way that violates the money demand curve. It is simply impossible for a
Ramsey government to set policy in a way that violates private optimization condi-
tions, budget constraints, or market-clearing conditions; to set policy so “equilibrium
cannot form,” just as it is impossible for you, I or even a great monopoly to act in
such a way. If it’s impossible for the central bank to set policy so no equilibrium
can form, as well as disastrous for its objectives, it seems even more dubious that
people would expect such a thing, and hence rule the inflationary path out of their
expectations.

Moreover, these are at best proposals for how some future central bank might act, not
proposals for how we model our central banks, our governments, expectations people
have now, or any sample period we may study. So proposals involving setting policy
so “equilibrium cannot form” are not useful for studying history, data or current
policy choices.

In retrospect, the approach is puzzling. If the government, to rule out equilibria,
makes some blow-up-the-world threat, why do authors write models in which such
threats are buried in the timing of perfectly sensible policies to stop hyperinflations?
Why talk about stopping hyperinflations at all? Well, the objective was not so clear
back then. The difference between curing a hyperinflation and ruling out a hy-
perinflationary equilibrium is subtle, as the distinction between indeterminacy and
instability is subtle. Again, the equations are simple but understanding what they
say is hard. But with the clear understanding of hindsight, we can say the effort
fails.

Here are some specific examples. Woodford (2003) Section 4.3 p. 138 studies pro-
posals to cut off inflationary equilibria to the right of Π^* in Figure 16.2.

...self-fulfilling inflations may be excluded through the addition of pol-
icy provisions that apply only in the case of hyperinflation. For example,
Obstfeld and Rogoff (1986) propose that the central bank commit itself
to peg the value of the monetary unit in terms of some real commodity
by standing ready to exchange the commodity for money in event that
the real value of the total money supply ever shrinks to a certain very low
level. If it is assumed that this level of real balances is one that would
never be reached except in the case of a self-fulfilling inflation, the com-
mitment has no effect except to exclude such paths as possible equilibria.
...[This proposal could] well be added as a hyperinflation provision in a
regime that otherwise follows a Taylor rule.

Obstfeld and Rogoff study models with a money growth target, not an interest rate
target, so I defer a description of their proposal to the next chapter. Here, let’s think
about whether reversion to commodity standard can trim equilibria under interest rate rules.

A backup commodity standard could certainly stop a large inflation. But again,
stopping the inflation does not rule out the inflationary equilibrium path and its
end. That commitment alone would not “exclude such paths as possible equilibria.”
The key in Woodford’s quote must therefore be “otherwise follows a Taylor rule.” If
a government continues to follow the Taylor rule (Taylor principle, really) requiring
high nominal interest rates, even after it has switched to a commodity standard that
requires low nominal interest rates, then, yes, no equilibrium can form. But all of the
above problems apply. How could a government both “stand ready to exchange the
commodity for money,” at a fixed rate, while also following an interest rate target by
providing whatever money people want at the target rate? And our central banks
do not make such a commitment. Reversion to a gold standard in the event of
hyperinflation, with 100% reserves capable of soaking up the entire money stock, is
not on the agenda, and is not widely expected. So it too is at best a proposal for
future central banks, not a proposal one can appeal to in the analysis of current data
or policies.

Atkeson, Chari, and Kehoe (2010), Minford and Srinivasan (2011), and Christiano
and Takahashi (2018) give more explicit examples. In these papers, the central bank
follows an active interest rate target, $i_t = \phi \pi_t$ until inflation exceeds bounds $[\pi_L, \pi_U]$. When inflation exceeds those bounds, the government reverts to a money growth rule. They model an economy with constant velocity and hence money demand $M_t V = P_t y$. The central bank operates by setting the money supply in both interest-rate target and money-growth regimes.

Now, how does that policy configuration rule out multiple equilibria, rather than
just stop, and thus solve, their inflations? Let period T be the first period in which
inflation exceeds the upper bound π_U. During this period, the central bank follows an
active interest rate target $i_T = \phi \pi_T$, $\phi > 1$, that requires a high nominal interest rate,
at the same time as it implements the money growth rule $M_{T+1}/M_T = \mu = \Pi_{T+1}$
which lowers inflation Π_{T+1} and thus implies a low nominal interest rate i_T.
16.10. EQUILIBRIUM-SELECTION PATCHES

Well, that is indeed a policy configuration for which no equilibrium can form. One may say “agents cannot satisfy their intertemporal optimization condition,” since a very high interest rate $i_T = \phi \pi_T$ is inconsistent with a low inflation $\mu = \pi_{T+1}$ and the Fisher relation $i_T = r + \pi_{T+1}$, or its generalization in a stochastic economy $u'(c_T) = E_t [\beta u'(c_{T+1}) (1 + i_T) P_T / P_{T+1}]$. One might equally say that agents satisfy intertemporal optimization, but agents cannot satisfy their money demand equation, or one might say that the economy cannot satisfy market clearing conditions. In any case, an equilibrium cannot form at period T, and therefore the inflationary path leading to T is not an equilibrium.

But just how could the central bank do it? How could a central bank, with one instrument, the money supply $\{M_T, M_{T+1}\}$, simultaneously set i_T to a large level and π_{T+1} to a low level? Perhaps the right view is that this path is impossible, not because the private sector is off a market-clearing condition, but because it is impossible for the government to execute the specified policy path. That view does not make it a particularly effective threat!

In addition to the usual complaints, our central banks do not follow money growth rules, arguably cannot do so in the face of rampant financial innovation and abundant liquid assets, and velocity is interest-elastic. With interest-elastic money demand, a constant money growth rule leaves just as many indeterminacies as the interest rate rule, covered in Section 19.2 and following. So this solution doubly does not and cannot apply to the actual economies we study.

16.10.3 Fiscal equilibrium trimming

A second group of proposals tries to trim equilibria by fiscal means: helicopter drops of money, deliberately unbacked fiscal expansions, or a contingent switch to fiscal theory. Again, if an inflation or deflation breaks out, and is stopped by fiscal means, then the inflation and its aftermath remain valid equilibrium paths. Again, the equilibria are ruled out by a period of inconsistent blow-up-the-economy policy, simultaneously following a high interest rate target and the fiscal policy.

Benhabib, Schmitt-Grohé, and Uribe (2002), mirrored in Woodford (2003) Section 4.2, try to trim equilibria by adding fiscal commitments to the Taylor rule. Their ideas are aimed at trimming deflationary liquidity trap equilibria, that converge to Π_L in Figure 16.2, but the same ideas could apply to inflations as well, since hyperinflations are also stopped by fiscal reforms.
These proposals are inspired by many policy proposals to exit liquidity traps: helicopter drops of money, and unbacked fiscal expansions. But here too, proposals that fix a liquidity trap do not rule out the trap or the equilibria leading to and out of the trap. If the government successfully exits a liquidity trap, that trap, and the inflation path leading to it, remain a valid equilibrium. The fix makes matters worse, because now there is less reason to disregard equilibria that lead to the trap.

To rule out the trap, and equilibria leading to it, one must specify an inconsistent policy; a policy regime so that no equilibrium can form somewhere along the path. It is the inconsistent policy, not the trap-exit policy, that does the work.

Benhabib, Schmitt-Grohé, and Uribe (2002) specify that in low-inflation states, near \(\Pi_L \) of Figure 16.2, the government switches to active fiscal policy. The government lowers taxes, real debt grows explosively, the consumer’s transversality condition is violated, and the government debt valuation equation no longer holds at the original low price level. Specifically, [their equations (18)–(20)] in a neighborhood of \(\Pi_L \), the government commits to surpluses \(s_t = \theta(\Pi_t)(B_{t-1}/P_t) \) with \(\theta(\Pi_L) < 0 \) in place of a passive rule such as \(s_t = r/(1 + r)B_{t-1}/P_t \). They also suggest a target for the growth rate of nominal liabilities, a “4% rule” for nominal debt. If deflation breaks out with such a commitment, real debt explodes, violating the consumer’s transversality condition. Woodford suggests this implementation as well (p. 132): “let total nominal government liabilities \(D_t \) be specified to grow at a constant rate \(\bar{\mu} > 1 \) while monetary policy is described by the Taylor rule ...” “Thus, in the case of an appropriate fiscal policy rule, a deflationary trap is not a possible rational expectations equilibrium.”

These proposals are inspired by sensible and time-honored prescriptions to inflate the economy out of a liquidity trap. Benhabib, Schmitt-Grohé, and Uribe (2002) describe them this way (p. 548):

... this type of policy prescription is what the U.S. Treasury and a large number of academic and professional economists are advocating as a way for Japan to lift itself out of its current deflationary trap...A decline in taxes increases the household’s after-tax wealth, which induces an aggregate excess demand for goods. With aggregate supply fixed, price level must increase in order to reestablish equilibrium in the goods market.

Zero interest rates and $1.5 trillion deficits soon followed in the 2008 recession, and larger and apparently more unbacked deficits in 2020-2021. This quote is, indeed, how a coordinated active-fiscal regime works, it is good intuition for operation of the
fiscal theory of the price level, and a good reading of what real-world proponents of
these policies have in mind.

But that’s not their, or Woodford’s, equilibrium-selection proposal. The point of
their proposal is not to “lift the economy out of a deflationary trap” back to Π^*. The
point of their proposal is for the economy to sit Π_L with an uncoordinated policy and
to let government debt explode, violating a consumer optimization condition, so the
economy cannot drift down to the liquidity trap Π_L in the first place. If their proposal
did successfully steer the economy back to Π^* then the whole path to Π_L and back
would be an equilibrium. Benhabib, Schmitt-Grohé and Uribe change tax policy
while also maintaining the Taylor rule $\Phi(\Pi)$ and the dynamics of Figure 16.2. The
government switches to an active-fiscal regime, which demands higher inflation, while
simultaneously keeping the interest rate rule in place, which demands continued low
inflation. This impossible, inconsistent policy is what rules out the equilibrium.

16.10.4 Threaten negative nominal rates

Why not just threaten substantially negative nominal rates – remove the lower equi-
librium Π_L, keep the Taylor rule going throughout the negative interest rate range?
No equilibrium can form with an arbitrage opportunity. In its cleanliness, this is a
logically revealing possibility – why insist that the government respect the first order
condition of money vs. bonds, but then add specifications that violate first-order
conditions in other dimensions? But it is no more possible or credible.

Once we see that central point, that the government or central bank eliminates mul-
tiple equilibria by threatening policies for which “no equilibrium can form,” we can
think of many monetary-fiscal policies that preclude multiple equilibria equivalently
and more transparently. If inflation gets to an undesired level, tax everything. Burn
the money stock. Introduce an arbitrage opportunity.

Cleanest of them all, specify a $\Phi(\Pi)$ function that includes negative nominal inter-
est rates, while still allowing cash. Just eliminate the Π_L equilibrium in the first
place by straightening out the policy rule in Figure 16.2. Bassetto (2004) suggests
this insightful option. Since negative nominal rates introduce an arbitrage opportu-
nity between debt and money, such a $\Phi(\Pi)$ function cleanly rules out deflationary
equilibria. The minute we pass the zero bound, no equilibrium can form, and thus
paths leading to that point are not equilibria. Negative nominal rates are no more or
less possible than letting debt explode, or running a commodity standard or money
growth rule with an inconsistent interest rate target.
In retrospect, why demand a Ramsey approach in setting up the problem – the policy rule must not prescribe negative nominal rates, because that would violate consumer optimality conditions – and then patch it up with policy prescriptions that deliberately do violate optimality conditions, budget constraints, or market clearing? Why not just commit to negative nominal rates that violate first order conditions in the first place?

That would be too clear. We can see that the central bank cannot threaten large negative nominal rates, because the central bank must take private sector optimization as a constraint. But it is no harder to implement steeply negative nominal interest rates than it is to implement the other uncoordinated no-equilibrium-can-form policies. Negative nominal rates are just too obvious about it, rather than sneak in on the coattails of a sensible stabilization policy. And again, our central banks clearly do not follow this policy, so it does not help us to analyze our economies.

16.10.5 Weird Taylor rules

The Fed could threaten to blow up the economy by setting inflation to infinity above some value.

Woodford (2003) suggests (p.136) a policy rule with a stronger threat. He suggests that the graph in Figure 16.2 becomes vertical at some finite inflation Π_U above Π^*, that the central bank will set an infinite interest rate target, promising infinite inflation, in response to a finite inflation, and therefore in finite time. Similarly, Alstadheim and Henderson (2006) remove the Π_L equilibrium by introducing discontinuous policy rules, or V-shaped rules that only touch the 45° line at the Π^* point. The suggestion in Bassetto (2004) that the policy rule ignore the $i \geq 0$ bound and promise unboundedly negative nominal rates in a deflation, also fits in this category.

These proposals blow up the economy directly, and in finite time. If one grants the idea that the central bank follows $\phi > 1$ and promises ever increasing inflation or deflation as a selection device, they make sense. If $\phi > 1$ isn’t quite enough to eliminate equilibria, then turn up the volume. Hyperinflating away the entire monetary system ($\Phi(\Pi)$ becoming vertical), introducing an arbitrage opportunity (allowing $i < 0$ in the policy rule), and so forth remove equilibria more effectively than an inflation that slowly gains steam.

But all the problems remain. Just how can a central bank set policy so equilibrium
can form? Would it do so ex-post? Does anyone believe our central banks do anything like this? Throughout this tour I am struck by the confusion between suggestions our banks might make in the future to rule out equilibria, and the question at hand, what threats are they making right now, that people believe right now, and that we can use to analyze policy and history in our current economies?

16.10.6 Residual money demand

In monetary economies, the central bank could threaten infinite inflation indirectly, with finite interest rate targets. Schmitt-Grohé and Uribe (2000) and Benhabib, Schmitt-Grohé, and Uribe (2001) add money, in such a way that the economy explodes to infinite inflation, despite finite interest rates. Thus, we do not have to appeal to a central bank setting infinite interest rates to generate an economic explosion. This idea is also reviewed by Woodford (2003) (p. 137), and has roots in the literature on hyperinflations with fixed money supply and interest-elastic demand.

The idea is easiest to express with money in the utility function, $u(c_t)$ becomes $u(c_t, M_t/P_t)$. In equilibrium with a constant endowment $c_t = y$, the intertemporal first-order condition becomes

$$1 + i_t = \Pi_{t+1} \frac{u_c(y, M_t/P_t)}{\beta u_c(y, M_{t+1}/P_{t+1})} = \Pi_{t+1}(1 + r_t), \tag{16.31}$$

where r_t denotes the real interest rate. This is a perfect-foresight model, so the expectation is missing. Suppose the policy rule is

$$1 + i_t = \frac{1}{\beta} \Phi(\Pi_t).$$

Substituting i_t from this policy rule into (16.31), and expressing the money u_m vs. consumption u_c first order condition as $M_t/P_t = L(y, i_t)$, inflation dynamics follow

$$\Pi_{t+1} = \Phi(\Pi_t) \frac{u_c[y, L(y, \Phi(\Pi_{t+1}))]}{u_c[y, L(y, \Phi(\Pi_t))]} \tag{16.32}$$

instead of (16.29),

$$\Pi_{t+1} = \Phi(\Pi_t).$$

The difference equation (16.32) may rise to require $\Pi_{t+1} = \infty$ above some bound Π_U, even if the policy rule for nominal interest rates $1 + i_t = \Phi(\Pi_t)/\beta$ remains bounded.
for all \(\Pi_t \). Woodford and Schmitt-Grohé and Uribe give examples of specifications of \(u(c, M/P) \) for which this situation can happen.

Is this the answer? First, if we do not regard it reasonable that the central bank will directly hyperinflate the economy (\(i_t \) rises to \(\infty \)), it is just as unreasonable that the central bank will take the economy to a state in which the economy blows up all on its own – or, most importantly, that people believe such a thing could happen. Infinite inflation and finite nominal interest rates mean infinitely negative real rates; a huge monetary distortion. Surely people believe the central bank would notice that real interest rates are approaching negative infinity and change its policy rule! This proposal is no different than a rule in which \(\Pi_{t+1} = \Phi(\Pi_t) \) blows up the economy in finite time, as the central bank understands the money demand function. Indeed, if we change the definition of \(\Phi \) to represent the mapping from inflation to future inflation rather than from inflation to interest rates, it is exactly the same. The central bank does what it takes to raise future inflation given current inflation. We just change a bit the action the central bank takes to generate the explosion.

Second, the proposal is delicate. This approach relies on particular behavior of the utility function or the cash-credit goods specification at very low real money balances. Are monetary frictions really important enough to rule out inflation above a certain limit, sending real rates to negative infinity, or to rule out deflation below another limit? We have seen some astounding hyperinflations such as post WWI Germany or more recently in Zimbabwe. Real rates did not move with anything like the ten to the big power movements of inflation. At higher and higher inflations, the economy starts to look more and more neutral.

Sims (1994) pursues a similar idea. Perhaps there is a lower limit on nominal money demand. Everyone keeps one last penny in the sock drawer, no matter how low the price level and hence how valuable that penny. Then real money demand explodes in a deflation violating the transversality condition, and ruling out a perpetual deflation as an equilibrium.

But perhaps not. Perhaps the government can print any number it wants on bills, or the government runs periodic currency reforms, adding or subtracting zeros, and no longer honoring old currency. Perhaps real money demand is finite for any price level. Perhaps once a penny becomes worth a billion of today’s dollars, people will look through their sock drawers and under their couch cushions, and try to spend that one last penny.

Overall, these proposals require two things: First, they require expectations that the government will follow a rule to explosive hyperinflations and deflations. Second,
they require belief in a deep-seated monetary non-neutrality sufficient to send real
rates to negative infinity or real money demand to infinity, though such events has
never been observed, and that the central bank deliberately calibrates its interest
rate rule to let this happen, as an equilibrium-selection policy.

16.10.7 Learning and other selection devices

I briefly discuss “learnability” and other equilibrium-selection principles. Since we
do not see \(\pi \neq \pi^* \) and \(\phi \) is not identified, I argue that the new-Keynesian equilibrium
selection rule is not learnable.

Adding some concept of “learnability” on top of the standard Walrasian rules has
been advocated to prune multiple equilibria. A long tradition in rational expectations
theorizing studies whether people can learn what they need to know in order to
sustain, or converge to, rational expectations.

McCallum (2009a) and McCallum (2009b), McCallum and Nelson (2005) and Chris-
tiano (2018), claim that applying the e-stability concept in Evans and Honkapohja
(2001) to our situation, the active, \(\Pi^* \) equilibrium of Figure 16.2 is learnable, while
the passive \(\Pi_L \) equilibrium and the multiple equilibria leading to it are not.

In Cochrane (2009), I argue that learnability leads exactly to the opposite conclusion.
As we have seen, the parameter \(\phi \) and monetary policy shock \(u_t \) are not identified
from time-series data in the active monetary policy \(\phi > 1 \) equilibrium. The policy
rule represents an off-equilibrium threat not measurable from data in an equilibrium.
People in the economy cannot learn it any more than econometricians can learn
it.

On-equilibrium parts of the interest rate rule are identified and learnable. In the
passive-money active-fiscal equilibrium, \(\theta < 1 \) of \(i_t = \theta \pi_t + u_t \) is identified, and hence
measurable by econometricians and learnable to agents. Cochrane (2011b) p. 2-6 and
Cochrane (2018) p. 199-201 have an extended discussion of additional learnability
concepts and their ability or not to prune equilibria.

The argument admittedly cuts both ways. Fiscal as well as monetary off-equilibrium
behavior is not observable to agents in the economy as it is not observable to econo-
metricians, if each views only time-series from an equilibrium. But I don’t advocate
learnability as an equilibrium-selection criterion, and I have emphasized other ways
of forming expectations of fiscal policy.
There are dozens of other principles one can add to models to select among multiple rational-expectations equilibria. There are also many different definitions of learnability. Different definitions can lead to different results. One would hope that equilibrium selection will be robust to which principle one uses. Yet here my debate with McCallum is instructive. When researchers with different priors approach this question, they come to diametrically opposed answers.

16.10.8 A tiny bit of fiscal theory

Sims (2013) suggests a way to rule out multiple explosive equilibria in a new-Keynesian model, by putting a very slight fiscal response to high inflation or deflation. The model becomes fiscal theory of monetary policy, with very small fiscal roots in normal times. However, the proposal still depends on the central bank to follow a deliberately explosive monetary policy.

Sims (2013) suggests a way to solve the multiplicity of equilibria with a light touch of an inflation-dependent surplus rule, of the sort analyzed in Section 9.2, also summarized in Cochrane (2015c). In essence, an inflation-dependent surplus rule turns active monetary policy into active fiscal policy, thus giving firm economic foundations to active monetary policy.

Sims writes in continuous time. I present the argument in discrete time as in the rest of this section. Use the simple environment

\[i_t = E_t \pi_{t+1} \]
\[i_t = \phi \pi_t. \]

Let there be real or indexed debt \(b_t \). Let surpluses respond to inflation and debt,

\[s_t = \gamma b_t + \theta \pi_t. \quad (16.33) \]

Debt accumulates by

\[b_{t+1} = R b_t - s_t = (R - \gamma) b_t - \theta \pi_t = (R - \gamma) b_t - \theta \phi^t \pi_0. \quad (16.34) \]

(I leave out a constant or time varying surplus, \(s_0 \), in \(s_t = s_0 - \gamma b_t + \theta \pi_t \), for simplicity as it does not affect the point here.) Specialize to \(\gamma > R - 1 \), which makes the argument harder since debts, including those induced by inflation, are always...
16.10. EQUILIBRIUM-SELECTION PATCHES

repaid, and $\phi > 1$, which is the point here, and look at perfect foresight solutions, so the problem is the initial inflation π_0. The solution to (16.34) is

$$b_t = (R - \gamma)^t b_0 - \theta \frac{1 - (R - \gamma)^t \phi^{-t}}{1 - (R - \gamma) \phi^{-1}} \phi^{t-1} \pi_0.$$

For any $\pi_0 \neq 0$, debt explodes, violating the transversality condition. The result that $\gamma > R - 1$ leads to passive policy needs a bounded external component of the surplus. The geometrically growing inflation term in (16.33) violates that restriction, so fiscal policy is active despite $R - \gamma < 1$.

We now have a real reason to rule out the nominally explosive equilibria, and an aggregate demand mechanism for establishing initial inflation.

This result holds for any, arbitrarily small $\theta > 0$. Sims argues that such small reactions of the surplus to inflation might not be detectable in normal data. And we can imagine a nonlinear model in which the inflation reaction only shows up nonlinearly, an austerity response to serious inflation or a fiscal expansion to serious deflation. Such a response, fiscal theory to the rescue in disasters but absent in normal times, is a common view of the whole enterprise. As Sims writes, "... its presence would have no effect on the first two equations of the system or on the equilibrium time path of prices and interest rates, except for its elimination of the unstable solutions as equilibria of the economy."

Is this the answer? Back to new-Keynesian models with a little bit of fiscal theory so that the hyperinflationary threat really does rule out multiple equilibria? I think not. Most of all, this approach still requires us to believe that central banks deliberately destabilize the economy, that they will respond to undesired inflation with hyperinflation, that they turn stable eigenvalues into unstable eigenvalues, until fiscal policy comes to the rescue. It requires us to believe that 1982 was about forcing a jump to a different equilibrium by starting a hyperinflation. Central banks just don’t take actions that raise expected inflation in response to current inflation. They do not deliberately destabilize the economy, in the interest of determinacy.

This example does not revive the proposition that an active Taylor rule alone can determine the price level – it cleverly ties an active Taylor principle to active fiscal policy to determine equilibria, so this is a full-on case of fiscal theory of monetary policy. This example revives the spirit of new-Keynesian models, in which one does not need any serious analysis of fiscal policy to understand monetary affairs, except as a footnote about unverifiable ("hard to detect") assumptions that a theorist can
add to trim multiple equilibria. But inflation determination is pure fiscal theory of
monetary policy.

It seems a curious example, in the context of Sims’ American Economic Association
Presidential Address, which otherwise is all about how serious analysis of monetary
policy must understand, measure, consider, and design appropriate fiscal backing. It
seems that the fiscal-monetary coordination of this example is exactly the sort that
Sims must argue is implausible, if the rest of his address and the research program
that it advocates matters at all. Why give an AEA presidential speech about how
new-Keynesians might adopt a better footnote about unobservable fiscal backing to
justifying locally unique equilibria as globally unique?
Chapter 17

Keynesian models with sticky prices

Sticky prices make the analysis more interesting, and more realistic. It may seem hard to believe that the previous discussion does justice to new-Keynesian models, whose whole point was to introduce non-neutralities via price stickiness. In the end sticky prices just smooth out dynamics, and the fundamental ideas are represented by the frictionless equilibrium-selection story I told above. We also refine how the models work, and understand the points more clearly in the sticky price context. We also see how much confusion comes from mixing new-Keynesian models with old-Keynesian intuition.

17.1 New vs. old Keynesian models

I analyze a simple model that includes sticky prices along with adaptive vs. rational expectations.

\[x_t = -\sigma \left(i_t - \pi_t^e \right) \]
\[\pi_t = \pi_t^e + \kappa x_t. \]

The model’s equilibrium condition is

\[\pi_t = -\sigma \kappa i_t + \left(1 + \sigma \kappa \right) \pi_t^e. \]
With adaptive expectations $\pi^e_t = \pi_{t-1}$ characteristic of old-Keynesian, ISLM modeling, the equilibrium condition is

$$\pi_t = (1 + \sigma \kappa)\pi_{t-1} - \sigma \kappa i_t.$$

An interest rate peg produces unstable, determinate inflation.

With rational expectations $\pi^e_t = E_t\pi_{t+1}$, the equilibrium condition is

$$E_t\pi_{t+1} = \frac{1}{1 + \sigma \kappa} \pi_t + \frac{\sigma \kappa}{1 + \sigma \kappa} i_t.$$

Now, an interest rate peg produces stable, indeterminate (multiple equilibrium) inflation.

The models have diametrically opposite dynamics. Much confusion results from mixing them up, and mixing up stability vs. determinacy.

Write the standard new-Keynesian economic model from Section 5.1 as

$$x_t = E_t x_{t+1} - \sigma (i_t - \pi^e_t)$$

$$\pi_t = \pi^e_t + \kappa x_t.$$

The symbol π^e stands for expected inflation. Letting $\pi^e_t = E_t\pi_{t+1}$, we have a new-Keynesian rational expectations model. Letting $\pi^e_t = \pi_{t-1}$, we have an old-Keynesian adaptive expectations model, and we can quickly contrast the two approaches.

To keep the algebra simple here, I delete the $E_t x_{t+1}$ term in (17.1), so our model becomes

$$x_t = -\sigma (i_t - \pi^e_t)$$

$$\pi_t = \pi^e_t + \kappa x_t.$$

Equation (17.3) is now a static Keynesian IS curve, in which output is lower when the real interest rate is higher. This simplification allows us to see the important points without the considerable algebra that clouds the full model, presented later.

We can eliminate x_t from (17.3)-(17.4) to describe equilibria by a single equation,

$$\pi_t = -\sigma \kappa i_t + (1 + \sigma \kappa)\pi^e_t.$$

As before, start by characterizing the response of inflation and output to interest rates, or more precisely the paths of equilibrium inflation and output that occur for
17.2. RESPONSES TO INTEREST RATE CHANGES

a given path of equilibrium interest rates. This calculation gives us intuition about
how the economic part of the model behaves, before we add dynamics that flow from
the policy rules.

The adaptive expectations model gives

\[\pi_t = (1 + \sigma \kappa) \pi_{t-1} - \sigma \kappa i_t. \] (17.6)

Inflation is *unstable* but *determinate* under an interest rate peg. The coefficient

\((1 + \sigma \kappa) > 1\). There is only one equilibrium. Higher real interest rates bring down
subsequent inflation,

\[\pi_t - \pi_{t-1} = -\sigma \kappa (i_t - \pi_{t-1}), \]

which is the standard intuition.

The rational expectations model gives

\[E_t \pi_{t+1} = \frac{1}{1 + \sigma \kappa} \pi_t + \frac{\sigma \kappa}{1 + \sigma \kappa} i_t. \] (17.7)

From (17.7), with rational expectations, inflation is *stable* but *indeterminate*. The
coefficient \(1/(1 + \sigma \kappa) < 1\), but any value of unexpected inflation \(\Delta E_{t+1} \pi_{t+1}\) is possible.

Higher real interest rates *raise* subsequent expected inflation.

\[E_t(\pi_{t+1} - \pi_t) = \sigma \kappa (i_t - E_t \pi_{t+1}). \]

An interest rate equal to inflation \(i = \pi\) remains a steady state in both cases. But
the dynamics around this steady state are exactly opposite.

17.2 Responses to interest rate changes

In response to a permanent interest rate change, inflation in the adaptive expecta-
tions model spirals away. The rational expectations model is Fisherian; inflation is
slowly drawn to the new interest rate. However, any value of unexpected inflation,
the period one shock, can accompany the rise in expected inflation.

Figure 17.1 presents the response to a permanent interest rate rise in the adaptive-
expectations model, using (17.6). Though the dynamics are unstable, we do not
solve this model forward, since there is no expectational error, and no variable that
can jump to offset explosions.
The model captures traditional old-Keynesian and policy-world beliefs about monetary policy. Higher interest rates lower inflation. They do not do so immediately. They push inflation down over time. An interest rate peg invites an inflation or deflation spiral. There are no multiple equilibria or jumps. Of course, those beliefs are as much or more formed by decades of playing with this model as they are from experience, so conformity with traditional beliefs is not much independent confirmation.

The model captures a traditional mechanism. With adaptive expectations, a higher nominal interest rate means a higher real rate \(i_t - \pi^e_t = i_t - \pi_{t-1} \). The higher real rate means lower output via the IS curve, \(x_t = -\sigma (i_t - \pi^e_t) \). Lower output \(x_t \) means declining inflation via the Phillips curve \(\pi_t = \pi_{t-1} + \kappa x_t \). Persistently low nominal interest rates drive accelerating inflation, and persistently high interest rates drive inflation down, generating conventional stories about the 1970s and 1980s.

Turning to rational expectations, \(\pi^e_t = E_t \pi_{t+1} \), the bounded solutions (17.7) express inflation as a backwards-looking moving average of the interest rate and inflation.

Figure 17.1: Inflation response to a permanent interest rate rise in the simple old-Keynesian or adaptive-expectations sticky-price model.
shocks $\delta_{t+1} = \Delta E_{t+1}\pi_{t+1}$,

$$\pi_{t+1} = \frac{\sigma \kappa}{1 + \sigma \kappa} \sum_{j=0}^{\infty} \left(\frac{1}{1 + \sigma \kappa} \right)^j \delta_{t-j} + \sum_{j=0}^{\infty} \left(\frac{1}{1 + \sigma \kappa} \right)^j \delta_{t+1-j}. \quad (17.8)$$

This expression simplifies the solution of the full model, equation (5.5) of Section 5.1.1, which has a two-sided moving average. It is a smoothed version of the frictionless solution $\pi_{t+1} = i_t + \delta_{t+1}$.

Figure 17.2: Inflation response to a permanent unanticipated interest rate rise in the simple rational-expectations or new-Keynesian sticky-price model. Parameters $\sigma = 1$ and $\kappa = 0.5$; the “less sticky” line uses $\kappa = 1$.

Figure 17.2 presents the response function of this rational expectations sticky price model, (17.7), to an unexpected permanent interest rate shock. The dynamics are stable – the rise in interest rates eventually brings inflation up to meet it. Yes, the model remains Fisherian even with sticky prices, smoothing out the response we saw in the frictionless model $i_t = E_t \pi_{t+1}$. Higher interest rates mean higher expected inflation, even with sticky prices. As we turn down price stickiness, raising the parameter κ, the dynamics happen faster, as graphed by the “less sticky” line. The model smoothly approaches the frictionless result, in which $\pi_1 = 1$ and stays there forever.
The equilibrium dynamics so far don’t pin down the initial impact, i.e. unexpected inflation π_1. Figure [17.2] presents several possibilities for unexpected inflation. As before, we can select equilibria by either active monetary or active fiscal policy to choose one of these paths. If we rule out nominal explosions and add a policy rule of the form

$$i_t = i_t^* + \phi (\pi_t - \pi_t^*),$$

and if fiscal policy passively adapts fiscal policy $\Delta E_{t+1} \pi_{t+1} = -\varepsilon_{s,t+1}$, the central bank can achieve any value of unexpected inflation, i.e. any one of these paths can be equilibrium inflation $\{\pi_t^*\}$. If fiscal policy moves coincident with the rise in interest rate target, it too can also choose any one of these equilibria, $\Delta E_{t+1} \pi_{t+1} = -\varepsilon_{s,t+1}$.

As in the frictionless case, expected monetary policy matters, and now for output as well. The response to an expected interest rate rise at time 0 is the same, only that there can be no jump at time 0, as represented by the solid lines. Any unexpected movements must come on the day of the announcement.

17.3 Responses with policy rules

With a policy rule,

$$i_t = \phi \pi_t + u_{i,t},$$

the model’s equilibrium condition is

$$\pi_t = \frac{1 + \sigma \kappa}{1 + \sigma \kappa \phi} \pi_t^e - \frac{\sigma \kappa}{1 + \sigma \kappa \phi} u_{i,t}. $$

With adaptive expectations

$$\pi_t = \frac{1 + \sigma \kappa}{1 + \sigma \kappa \phi} \pi_{t-1} - \frac{\sigma \kappa}{1 + \sigma \kappa \phi} u_{i,t}. $$

Passive policy $\phi < 1$ produces unstable, determinate inflation. A central bank following the Taylor rule $\phi > 1$ stabilizes an otherwise unstable economy.

With rational expectations

$$E_t \pi_{t+1} = \frac{1 + \sigma \kappa \phi}{1 + \sigma \kappa} \pi_t + \frac{\sigma \kappa}{1 + \sigma \kappa} u_{i,t}. $$
Passive policy $\phi < 1$ produces stable, indeterminate inflation. A central bank following the Taylor principle $\phi > 1$ destabilizes the economy, to render it locally determinate.

Now, add an interest rate policy rule

$$i_t = \phi \pi_t + u_{i,t}$$

to the model (17.1)-(17.2). Eliminating i_t, the equilibrium condition becomes

$$\pi_t = \frac{1 + \sigma \kappa}{1 + \sigma \kappa \phi} \pi_t^e - \frac{\sigma \kappa}{1 + \sigma \kappa \phi} u_{i,t}. \quad (17.9)$$

With adaptive expectations $\pi_t^e = \pi_{t-1}$, this equilibrium condition is

$$\pi_t = \frac{1 + \sigma \kappa}{1 + \sigma \kappa \phi} \pi_{t-1} - \frac{\sigma \kappa}{1 + \sigma \kappa \phi} u_{i,t}. \quad (17.10)$$

Now not just an interest rate peg $\phi = 0$, but any “passive” monetary policy $\phi < 1$ produces unstable, determinate inflation. The coefficient on lagged inflation is above one. Inflation or deflation generically spiral away. But there is only one equilibrium.

In this case, the Taylor rule $\phi > 1$ stabilizes an otherwise unstable but determinate economy. Raising ϕ to a value greater than one, the coefficient on lagged inflation in (17.10) becomes less than one. Any shocks, such as induced by $u_{i,t}$, eventually die out. Spirals such as Figure 17.1 don’t happen, because the central bank moves the interest rate down more than one for one, to push inflation back up. There is still only one equilibrium.

This model captures in its simplest form the way Taylor introduced the Taylor rule, and how Taylor rules are thought to operate in central banks and policy circles. If inflation gets too big, then the central bank raises the nominal interest rate more than one for one with inflation. Via (17.3) that action lowers aggregate demand and output x_t, which via the Phillips curve (17.4) lowers inflation. Indeterminacy just isn’t an issue.

Under rational expectations $\pi_t^e = E_t \pi_{t+1}$, the equilibrium condition (17.9) becomes

$$E_t \pi_{t+1} = \frac{1 + \sigma \kappa \phi}{1 + \sigma \kappa} \pi_t + \frac{\sigma \kappa}{1 + \sigma \kappa} u_{i,t}. \quad (17.11)$$
The frictionless case \((16.4)\), \(E_t \pi_{t+1} = \phi \pi_t + u_{t,t}\), is the \(k \to \infty\) limit. Now, passive policy \(\phi < 1\), like a time-varying peg \(\phi = 0\) or produces stable, indeterminate inflation. The coefficient on lagged inflation in \((17.11)\) is below one. Any inflation or deflation is expected to melt away on its own. But the model is indeterminate, as we saw in the frictionless model. Unexpected inflation \(\delta_{t+1} = \Delta E_{t+1} \pi_{t+1}\) can be anything.

In this case a central bank following the Taylor principle \(\phi > 1\) takes an economy that is already stable, and deliberately makes it unstable, in order to try to make it determinate. For all but one value of \(\delta_{t+1} = \Delta E_{t+1} \pi_{t+1}\), the central bank deliberately leads the economy to hyperinflation. If we add a rule against hyperinflations as equilibria, then there is only one equilibrium.

The words sound repetitious. That’s the point. We see that the frictionless model did in fact capture the issues in this sticky-price model. Sticky prices add realistic dynamics, but can hide the central issues.

Rational expectations is associated with stability, and adaptive expectations with instability. If you drive a car looking in the rear-view mirror – adaptive expectations for where the road is – you will veer off course. If you drive looking through the front windshield – forward-looking, rational expectations – your car will be stable.

The nature and dynamic properties of the adaptive, old-Keynesian and rational expectations new-Keynesian models are exactly opposite. The equations look tantalizingly similar, but moving a subscript from \(\pi_{t-1}\) to \(E_t \pi_{t+1}\) changes the sign of stability and determinacy properties.

Much of the confusion surrounding new-Keynesian models comes, I think, from trying to shoehorn new-Keynesian equations into old-Keynesian intuition. Though rescuing ISLM provided much motivation for developing new-Keynesian models, the equations give utterly different models.

I generally avoid calling \(\phi > 1\) the “Taylor rule” in a rational expectations context. I try to call it a “policy rule” following the “Taylor principle” instead. The Fed in Taylor’s writings, \(\text{Taylor } (1999)\) for example, stabilizes inflation by raising interest rates more than one for one, in an adaptive expectations context. It does not deliberately introduce instability to ward off indeterminacy.

I use the word “spiral” to refer to instability as in Figure \(17.1\). The word is also used sometimes to talk about models with multiple equilibrium volatility, which may reflect confusion about the difference between instability and indeterminacy.
The words “stability” and “instability” are used in many different ways. My use is neither universal nor perfect, though I hope it is consistent. The observed equilibrium of the new-Keynesian model is “stable” in that inflation does not veer away from the shocks. The full model includes one “stable” and one “unstable” root. There is no standard terminology, so when in doubt refer to the equations.

17.3.1 New-Keynesian responses with sticky prices and policy rules

I calculate responses to an AR(1) monetary policy shock. A permanent shock $\eta = 1$ gives rise to a super-neutral response, even with price stickiness. Inflation rises immediately and permanently. The open-mouth operation, inflation changes with no change in interest rates, occurs for an intermediate value of persistence η. Now a sufficiently small η finally delivers a negative response of inflation to interest rates. However, once we generalize past the AR(1) there is no connection between the persistence of shocks and the sign of the immediate response. The long-run response is always positive. This model cannot generate the standard story for 1970s inflation resulting from persistently low interest rates or 1980s disinflation delivered by persistently high interest rates.

To calculate the new-Keynesian, rational-expectations response to monetary policy shocks, we can solve the equilibrium condition \(17.11\) forward just as in the frictionless case. Applying the rule against nominal explosions,

\[
\pi_t = -\frac{\sigma \kappa}{1 + \sigma \kappa \phi} \sum_{j=0}^{\infty} \left(\frac{1 + \sigma \kappa}{1 + \sigma \kappa \phi} \right)^j E_t u_{i,t+j}.
\]

In the AR(1) case, inflation then follows

\[
\pi_t = -\frac{\sigma \kappa}{1 + \sigma \kappa \phi} \frac{1}{1 - \eta \frac{1 + \kappa}{1 + \kappa \phi}} u_{i,t}
\]

\[
\pi_t = -\frac{1}{\phi - \eta + \frac{1 - \eta}{\sigma \kappa}} u_{i,t}.
\]

(17.12)

The interest rate follows

\[
i_t = \left(1 - \frac{\phi}{\phi - \eta + \frac{1 - \eta}{\sigma \kappa}} \right) u_{i,t} = -\left(\frac{\eta - \frac{1 - \eta}{\sigma \kappa}}{\phi - \eta + \frac{1 - \eta}{\sigma \kappa}} \right) u_{i,t}.
\]

(17.13)
The frictionless limit $\kappa \to \infty$ reduces to the frictionless AR(1) responses, (16.6) and (16.11). Inflation and the interest rate still are still proportional to the disturbance, but with different coefficients. The basic picture of simple frictionless model does apply with price stickiness.

As in the frictionless case, $\eta = 1$ produces

$$\pi_t = -\frac{1}{\phi - 1} u_{i,t}$$
$$i_t = -\frac{1}{\phi - 1} u_{i,t}$$

or,

$$\pi_t = i_t.$$

The standard new-Keynesian sticky price model produces a super-Fisherian result. Inflation rises immediately, the very moment interest rates rise, even with sticky prices.

In standard monetary theory, the “neutrality” of money refers to the proposition that doubling the quantity of money doubles the price level, eventually. “Super-neutrality” is the proposition that doubling the quantity of money instantly doubles the price level. That is usually thought not to happen when prices are sticky. However, all prices move instantly when there is a currency reform or currency change (Lira to euros). This observation ought to discipline our view of sticky prices. The Fisherian property, that nominal interest rates rise one-for-one with inflation in the long run, is the corresponding neutrality result for interest rate targeting policies. The new-Keynesian model is super-Fisherian or super-neutral to permanent monetary policy shocks, despite sticky prices. In continuous time, the price level cannot jump, but the inflation rate can, and it does so in the analogous model.

The top left panel of Figure 17.3 presents this case, labeled $\eta = 1$. Inflation π_t and interest rates i_t move exactly one for one, in the opposite direction as the shock $u_{i,t}$.

The top right panel reduces persistence η somewhat. You can see that this model still produces the Fisherian result.

The bottom-left panel produces an open-mouth policy. For

$$\eta = \frac{1}{1 + \sigma \kappa},$$
17.3. RESPONSES WITH POLICY RULES

Figure 17.3: Response to a monetary shock in the simple sticky-price new-Keynesian model.

\[\rho = 1 \]

\[\rho = 0.9 \]

\[\rho = 1/(1+\sigma \kappa) = 2/3 \]

\[\rho = 0.3 \]

\[\pi_t = -\frac{1}{\phi} u_{i,t}, i_t = 0. \]

Equations (17.12) and (17.13) produce

Inflation moves on the announcement of the shock, and interest rates never move.

We saw that behavior in the frictionless model for \(\eta = 0 \). Here it appears for positive \(\eta \). Open-mouth policy is not a particularity of the frictionless model, though the parameter values at which it occurs change.

In the bottom right panel of Figure 17.3, we see the standard result at \(\eta = 0.3 \).

Finally, the actual interest rate goes in the direction of the disturbance, and inflation goes in the opposite direction. This result captures the usual wisdom: the standard new-Keynesian sticky price model can produce a negative response of inflation to
interest rate shocks, but it only does so for sufficiently transitory shocks.

Even this result is not correct as stated, however, as it is tied to the AR(1) process for the shock. The possibility of a negative response has nothing fundamentally to do with the persistence of shocks. This fact is easiest to see by writing the policy rule in the form
\[i_t = i^*_t + \phi(\pi_t - \pi^*_t). \]

The central bank can, by its equilibrium-selection policy, produce positive or negative responses \(\pi^*_t \) to an announcement at time 1, for any persistence of the interest rate policy \(i^*_t \). Figure 17.2 offers one example: a permanent \(i^*_t \) shock can come with a negative \(\pi^*_t \) response, shown in the lowest line. Contrary examples, with transitory interest rates \(i^*_t \) or disturbances \(u_{\pi,t} \) and positive inflation responses are just as straightforward. They just won’t be AR(1)s.

The inflation target \(\pi^*_t \) and the interest rate target \(i^*_t \) are again constrained by the equilibrium conditions of the model. In the frictionless case, we had \(i^*_t = E_t \pi^*_t+1 \).

Here we have from (17.7) a natural generalization,
\[i^*_t = \left(1 + \frac{1}{\sigma \kappa}\right) E_t \pi^*_t+1 - \frac{1}{\sigma \kappa} \pi^*_t \]

or
\[E_t \pi^*_t+1 = \frac{\sigma \kappa}{1 + \sigma \kappa} \sum_{j=0}^{\infty} \frac{1}{(1 + \sigma \kappa)^j} i^*_{t-j}. \]

But even within this constraint, as with \(i^*_t = E_t \pi^*_t+1 \), the persistence of movements in \(i^*_t \) does not constrain the sign of \(\Delta E_t \pi^*_t \) on the date 1 of a shock. Any value of unexpected inflation is consistent with any persistence of the interest rate target.

The long-run response of inflation to interest rates in this model is always positive. This model does not produce the old-Keynesian (or monetarist) story for the conquest of inflation in the 1980s – that persistently high interest rates, or persistently tight money growth, slowly drove inflation down. A persistently high interest rate still drives inflation up eventually in all equilibria of this model, as Figure 17.2 emphasizes. Expected higher interest rates uniformly produce higher inflation. Only an unexpected shock, and the fiscal shock it “passively” engenders, can reduce inflation. To fit the 1980s, one has to imagine a sequence of unexpected shocks, all with the same negative sign.

This positive response is key to the operation of the Taylor principle. Since expected interest rates raise expected inflation, a more than one-for-one interest rate response
17.3. RESPONSES WITH POLICY RULES

raises subsequent inflation, inducing instability. If this model produced the conven-
tional dynamics, that higher expected interest rates lower expected inflation, the
Taylor principle would not induce instability or allow equilibrium selection.

17.3.2 Adaptive expectations responses with sticky prices
and policy rules

In response to a positive Taylor-rule disturbance $u_{i,t}$, interest rates rise, and inflation
declines. But interest rates then decline to catch and stabilize inflation, as graphed
in Figure 17.4. This graph captures the standard view of monetary policy. If interest
rates hit the zero bound or cannot move, the model predicts a deflation spiral.

To see conventional Taylor-rule behavior, let us put an explicit Taylor rule $i_t = $
$\phi \pi_t + u_{i,t}$, with an AR(1) monetary policy shock, in the adaptive expectations model.
From (17.10), inflation follows an AR(2),

\[
\left(1 - \frac{1 + \sigma \kappa}{1 + \phi \sigma \kappa} \right) \pi_t = -\frac{\sigma \kappa}{1 + \phi \sigma \kappa} u_{i,t}
\]

\[
\left(1 - \frac{1 + \sigma \kappa}{1 + \phi \sigma \kappa} \right) (1 - \eta L) \pi_t = -\frac{\sigma \kappa}{1 + \phi \sigma \kappa} \varepsilon_t.
\]

Figure 17.4 plots the response to a permanent monetary policy shock, i.e. the case $\eta = 1$. Again, the rise in interest rates sets off a disinflation. But now the endogenous
response $\phi \pi_t$ means that the actual interest rate quickly reverses course and keeps
the disinflation from spiraling away.

The economy is unstable, like a seal balancing a ball on its nose. The secret to
stabilizing the economy is for the seal (the central bank) to move its nose more than
one for one with movements of the ball.

This graph captures Milton Friedman’s (Friedman (1968)) description of an attempt
to peg interest rates, without Friedman’s monetary mechanism. Friedman described
the opposite sign, a too-low peg. Inflation begins to spiral upward. But then ever-
increasing inflation forces the central bank to give up the peg and increase interest
rates quickly, so that the attempt to lower interest rates would in the end result in
higher rates and more inflation.

Friedman’s prediction is pretty much the conventional wisdom to account for the
emergence of U.S. inflation in the 1970s and the Volcker disinflation of the early
In the 1970s, the Fed kept interest rates too low, or followed \(\phi < 1 \), so an inflation spiral began. By a switch to \(\phi > 1 \) and a very long-lasting monetary policy tightening, the Fed sharply raised nominal and real rates. As inflation declined, the Fed was able to lower nominal rates, though keeping real rates persistently high, and slowly squeezed inflation out of the economy.

17.4 Full model responses

The models of the last few sections are deliberately over-simplified. Here we look at new-Keynesian solutions to the full prototype new-Keynesian model. We verify that its qualitative behavior is described by the toy models of the last few sections, but also learn some subtleties of its behavior. Slightly repetitious prose can help us to overcome more forbidding equations and see that their basic message is the same as with the much simpler models.
The economic model, which we first met in Section 5.1 is

\[x_t = E_t x_{t+1} - \sigma r_t + u_{x,t} \tag{17.15} \]

\[i_t = r_t + E_t \pi_{t+1} \tag{17.16} \]

\[\pi_t = \beta E_t \pi_{t+1} + \kappa x_t + u_{\pi,t} \tag{17.17} \]

We can write \(u_{x,t} = -\sigma u_{r,t} \) to interpret the IS disturbance in units of an interest rate distortion.

17.4.1 Interest rates and inflation

Inflation is a two-sided moving average of interest rates in this model. Figure 17.5 plots the response of inflation to a permanent interest rate rise. Now inflation moves ahead of the interest rate rise as well as following it. As usual, in addition to this plot, there can be an inflation jump on announcement, selected by the central bank’s equilibrium-selection policy. Each equilibrium has a fiscal consequence, in the new-Keynesian interpretation, or can be selected by fiscal policy, in the FTMP interpretation. I calculate the fiscal policy change needed for several equilibria. Since real interest rates vary, there is now a discount rate effect, and the equilibrium with no change in fiscal policy has a small jump in inflation.

As with previous models, start by characterizing the relationship between equilibrium inflation and equilibrium interest rates, which unlike shocks are what we actually observe. Eliminating \(x_t \) from (17.15)-(17.17), we can write

\[i_t = \frac{1}{\sigma \kappa} \left[-\beta E_t \pi_{t+2} + (1 + \beta + \sigma \kappa) E_t \pi_{t+1} - \pi_t \right] . \tag{17.18} \]

Here we see that sticky prices add dynamics to the Fisher equation \(i_t = E_t \pi_{t+1} \) of the frictionless model. Inverting the lag polynomial, equation (5.5) of Section 5.1.1 expresses inflation as a two-sided moving average of interest rates, plus a moving average of past unexpected inflation shocks, generalizing the frictionless model’s \(\pi_{t+1} = i_t + \delta_{t+1} \) and the one-sided moving average in (17.8).

Figure 17.5 presents the inflation response to a permanent increase in interest rates as given by the two-sided moving average (17.5). I plot the case with no additional unexpected shocks \(\delta_t = 0 \).

The solid inflation line gives the response to a fully expected interest rate rise. Since the solution is a two-sided moving average, inflation now rises before the interest
Figure 17.5: Response of the new-Keynesian economic model to a permanent interest rate rise. Solid: anticipated. Dashed: unanticipated.

1 rates rise. Expected future interest rate increases increase inflation today. This is a lovely open-mouth result, not usually plotted, but revealing of how the model works.

The dashed line that joins the solid inflation curve from 0 to 1 gives the inflation response to an unexpected interest rate rise, in the case of no unexpected inflation on the day of the shock. The forward-looking terms are all zero until the day of the announcement. Then inflation joins the path given for the expected interest rate rise.

4 Inflation is thoroughly Fisherian so far – expected interest rate rises raise, not lower, inflation. As before, to get a negative response we will have to engineer a jump to a different equilibrium on the announcement date.

The “output gap” line gives the response of output. In this model, output is low if inflation is low relative to expected future inflation, i.e. if inflation is increasing. We see that pattern.

12 Fully expected interest rate rises do lower output, contrary to the classic rational expectations information based models such as Lucas (1972). The conventional in-
tuition that interest rate rises lower output and that there is little difference between
announced and surprise interest rate rises is correct in this model.

Figure 17.6: Response of the new-Keynesian economic model to a permanent un-
expected interest rise, with multiple equilibria. A, B, etc. identify equilibria in the
text. \(\Delta s \) gives the percent increase in fiscal surpluses necessary to validate each
equilibrium.

What about multiple equilibria \(\delta \)? Figure 17.6 graphs the response of inflation to
the unexpected permanent interest rate rise, this time adding several possibilities for
\(\delta_0 \) which indexes multiple equilibria. If the rise were announced in advance, these
jumps would take place on the announcement date, not the date of the interest rate
rise. The graph plots some interesting cases.

The original \(\delta_0 = 0 \) equilibrium already had a little jump in inflation, resulting from
the rise in future interest rates.

Equilibrium A has a positive additional inflation shock, \(\delta_0 = 1\% \).

Equilibrium B chooses \(\delta_0 \) to produce 1\% inflation at time 0, \(\pi_0 = 1\% \). It shows once
again that a super-neutral response is possible by selecting the right equilibrium,
even though prices are sticky.
Equilibrium D chooses δ_0 to produce no inflation at time 0, $\pi_0 = 0$, to show that is possible.

Equilibrium E chooses $\delta_0 = -1\%$. By mixing a negative inflation jump δ with the interest rate rise, we obtain a negative response of interest rates to inflation, at least in the short run. As in the simplified model of the last section, there is no logical connection between the persistence of the interest rate shock and the sign of the inflation movement. Here, a persistent interest rate shock gives rise to a negative inflation movement.

Next, we add active fiscal or active monetary policy, to select one of these equilibria. If we write an active-money policy rule in the form

$$i_t = i_t^* + \phi(\pi_t - \pi_t^*),$$

then by choosing π_t^* as one of the plotted paths, and choosing i_t^* by (17.18), the central bank can, following new-Keynesian rules, choose any of these equilibria. Still, each equilibrium choice requires a fiscal policy reaction. We should check what the assumed “passive” fiscal policy is, and verify that it is at all reasonable. Alternatively, we can use the fiscal theory to select from these equilibria directly, specifying $\phi < 1$.

The Δs numbers in Figure [17.6] tell us by what percentage steady state surpluses must change to produce each equilibrium, whether actively or passively accomplished. For example, to produce equilibrium C, which produces a sudden 1% inflation, the government must reduce the value of the debt by 1%, so $\Delta s = 1.00\%$.

The $\Delta s = 0$ equilibrium is not the equilibrium with $\delta = 0$ or with $\Delta E_0 \pi_0 = 0$. In making the surplus calculation, I allow the discount rate in the government debt valuation equation to vary, as it should. In the $\pi_0 = 0$ equilibrium D, for example, real interest rates rise. That force lowers the right-hand side of the government debt valuation formula, which on its own produces inflation. In order to keep inflation from breaking out, the fiscal authorities must raise $\Delta s = 1.66\%$. Equilibrium C with $\Delta s = 0$ has inflation for the same reason: real interest rates rise, that lowers the present value of government debt, so there is a surprise inflation. The Δs calculation is described in more detail in Cochrane (2017b).

Expected vs. unexpected interest rate movements have different effects, especially when we consider multiple equilibria. Any negative effect of interest rates on inflation must happen on the date of the announcement ($-\infty.$ in the figure), not the day that interest rates rise. This is a profound statement about the model. It reveals the
17.4. FULL MODEL RESPONSES

model’s deeply Fisherian property. If we only plot responses to unexpected shocks, where the announcement and interest rate change happen at the same time, we never see it.

A preannounced interest rate rise raises inflation. Indeed, inflation rises ahead of the interest rate rise. That prediction is either an exciting piece of novel economics, advice how central banks can lift themselves out of the zero bound “trap,” or it is a disturbing characterization of the model, depending on your view. In either case, it is novel. Thirty years of playing with this model has not loudly announced this Fisherian property, because everyone is in the habit of only plotting responses to unexpected shocks.

Overall, price stickiness just smears out the frictionless model’s description of a rise with a one-period delay $\pi_{t+1} = i_t + \delta_{t+1}$ gave for the frictionless model, and the one-sided smooth response of the simplified sticky-price model. It verifies that those models did indeed capture the essential economics.

17.4.2 The fiscal underpinnings of new-Keynesian models

I present a related example, entirely within the new-Keynesian way of thinking. New-Keynesian models have fiscal implications. For higher interest rates to lower inflation, there must be a fiscal contraction. That it is passively achieved does not invalidate that it must happen. Fiscal policy must tighten to repay a higher real value of nominal debt, and to pay higher real interest costs of financing the debt. Both requirements are more stringent in our current era of large debts and deficits.

If fiscal authorities refuse the implied fiscal contraction, the central bank cannot lower inflation by raising interest rates. Writing the policy rule in standard for $i_t = \phi \pi_t + u_t$, multiple disturbance paths u_t produce the same interest rate path, but they produce different inflation paths and require different fiscal support. In a new-Keynesian way of thinking about things, the Fed will be forced to choose a u_t path underlying its interest rate path that produces less or no disinflation, and thereby requires less fiscal support.

Even in the completely stock new-Keynesian model, considered and solved by new-Keynesian methods, fiscal constraints may make it impossible for the central bank to lower inflation by raising interest rates.

I present the example of the last section evenhandedly, which may obscure a main point. The calculation can be construed entirely as a calculation of the standard new-
CHAPTER 17. KEYNESIAN MODELS WITH STICKY PRICES

Keynesian model, ignoring all this fiscal theory business. However, the standard new-Keynesian model does have a government debt valuation equation. The “passive” fiscal policy must happen. If higher interest rates are to provoke a disinflation, they must be accompanied with a fiscal contraction. If the fiscal contraction does not happen, the lower inflation will not follow. This is a particularly important policy issue as I write in 2021. If inflation does break out and our central banks wish to contain inflation by raising interest rates, that policy must induce a fiscal contraction. This proposition is just as true in new-Keynesian as in fiscal theory thinking. Remember, the equilibrium conditions are the same. If the fiscal contraction does not happen, disinflation fails.

Write the unexpected inflation identity

$$\Delta E_{t+1} \pi_{t+1} = -\Delta E_{t+1} \sum_{j=0}^{\infty} \rho^j \tilde{s}_{t+1+j} + \Delta E_{t+1} \sum_{j=0}^{\infty} \rho^j r_{t+1+j}. \quad (17.19)$$

In this new-Keynesian model, we only see an inflation decline if the present value of surpluses rises. Surpluses must rise, whether “passively” or “actively” produced. Since \(\tilde{s} \) is surplus divided by the value of debt, a 100% debt to GDP ratio requires surpluses to rise one percentage point of GDP for every percentage point of unexpected inflation decline – $200 billion dollars in 2021. In 1980, the last great interest rate rise, debt to GDP was only 25%. Evidence from that era may not apply.

Sticky prices make the fiscal side of disinflation harder. As I described in the last section, a higher nominal interest rate with sticky prices gives a higher real interest rate, and the higher real interest rate is a higher discount rate, which raises unexpected inflation. To counteract this effect, surpluses must rise even more. Again, since \(\tilde{s} \) divides by the value of debt, a given rise in real interest rates requires four times greater surpluses to pay for interest costs at 100% debt to GDP than it did at 25% debt to GDP.

One may recast this “discount rate effect” of the present value calculation as an interest cost effect in flow terms, which gives it greater salience. When the central bank raises nominal interest rates, and that event raises real interest rates, it raises the interest expense of the budget. Surpluses must rise to cover that interest expense, either immediately or in the future if the government issues more debt to finance the interest expense. A 1% rise in real interest rate is a 1% of GDP or $200 billion rise.
in real interest costs. Nominal interest costs, ignored here, are politically salient as well.

Imagine, if it has not happened by the time you read this, that the Federal Reserve wishes to raise interest rates 5 percentage points in order to fight inflation. (The federal funds rate rose 15 percentage points from 1977 to 1981, so this is not an extreme example.) Will our Congress and Administration really “passively” go along with a $1 trillion, 5% of GDP fiscal austerity to pay a windfall to bondholders, and follow it with similar or larger austerity to pay interests costs of the debt? If “passive” fiscal policy runs in to a brick wall, the Fed’s attempt to lower inflation by raising interest rates must fail.

The following example makes the point more concrete. Unlike the last section, I cast the example entirely in new-Keynesian language, for rhetorical reasons. Even if you are a die-hard new-Keynesian (and somehow you made it this far in this book!), monetary policy needs fiscal backing. The “passive” fiscal backing may not materialize, and if so a monetary tightening will fail to lower inflation. A die-hard new-Keynesian can at least take from this book an invitation to look at the “passive” fiscal policies of their models, and recognize that those fiscal requirements pose important constraints on monetary policy, constraints which may be much more important now than in the past given large debts and no surpluses in sight.

The model is the standard new-Keynesian model

\[
\begin{align*}
 x_t &= E_t x_{t+1} - \sigma (i_t - E_t \pi_{t+1}) \\
 \pi_t &= \beta E_t \pi_{t+1} + \kappa x_t \\
 i_t &= \phi \pi_t + u_t
\end{align*}
\]

and (17.19), where \(r_{t+1} = i_t - \pi_{t+1} \). I write the monetary policy rule in standard new-Keynesian form, not \(i^* \) and \(\pi^* \) form, to emphasize, this is the new-Keynesian model.

Now, suppose the Fed raises interest rates persistently, by a positive and serially correlated disturbance \(u_t \).

Figure [17.7] presents the result. Start in the top left panel. Interest rates follow an AR(1) with serial correlation \(\eta = 0.6 \), a standard transitory monetary policy experiment. This panel gives the standard new-Keynesian result: A higher interest rate lowers inflation, here by exactly 1%. The disturbance \(u_t \) follows an AR(1)-like process. It moves more than the interest rate, since \(\phi \pi \) and negative inflation drag the actual interest rate down below the disturbance \(u_t \).
Fiscal policy is passive, but the fiscal response has to happen. Let’s rescue it of footnotes and take a look at it. In this case, as reported in the figure title, to lower inflation 1%, cumulative surpluses have to rise 3.55 percentage points of GDP. (I use \(\rho = 1 \) and 100% deb to GDP.) Surpluses have to rise more than 1 percentage point, because of the long period of high real interest rates, which you can see from a higher \(i_t \) line than \(\pi_t \) line. Viewed as a discount rate effect causing initial inflation, or as a higher real interest cost of the debt, higher real interest rates require additional fiscal austerity. (At a 100% debt to GDP ratio \(s \) and \(\tilde{s} \) are the same.)

Multiplying by 5, in my example of a 5 percentage point interest rate rise and 5...
percentage point disinflation, we need a 18% of GDP austerity program, $4 trillion. Will the Administration and Congress passively accede to this request? If they do not, the attempt must fail. If they do not, the path is not an equilibrium.

(This example is only a temporary inflation reduction, not the sort of permanent stabilization that the Fed will actually wish to do. The rhetorical experiment here asks only what are the fiscal foundations of the most textbook new-Keynesian result. The fiscal and monetary policy are required for a permanent stabilization, as occurred in 1980, is a different and important question.)

What can the Fed do differently? In this model, multiple disturbance paths u_t produce the same interest rate path i_t, but they produce different inflation paths and different needed fiscal responses. In the the top right panel I reverse-engineer a disturbance u_t that produces the same interest rate path, but only -0.5% disinflation. The disturbance is smaller, and has different dynamics. Since this disturbance produces less disinflation, it also requires less fiscal austerity, 2.23 percentage points of GDP rather than 3.55 percentage points of GDP. So, the Fed could underpin the same interest rate path with a different path of disturbances u_t. It has fewer fiscal requirements, but as a result produces less disinflation. Viewed another way, the same observed interest rate path produces less inflation if it must require less austerity. But this one still requires Congress and the Administration to cut back by $5 \times 2.23 = 11.5$ percent of GDP or 2.2 trillion dollars.

In the lower left hand panel, I reverse-engineer a disturbance u_t that produces no disinflation at all. Though interest rates follow the usual AR(1), inflation starts at zero and then slightly rises. But this path still requires passive fiscal policy to turn to austerity, by 0.91 percentage points of GDP. Higher real interest rates still provoke a discount rate effect, or higher real interest costs, which surpluses must overcome.

In the bottom right panel, I reverse-engineer a disturbance process u_t that produces +0.5% inflation, along with the same interest rate path. This time passive fiscal policy includes a slight fiscal loosening. Congress and Administration cheer, but we clearly have done nothing to fight inflation.

The lesson of this example is that in the stock new-Keynesian model, thought of and solved in completely new-Keynesian ways, the same interest rate path can occur with multiple disturbance paths. By changing the dynamic path of the disturbance the central bank can fully choose the amount of unexpected inflation that accompanies an interest rate rise, from positive to negative. But each choice of inflation path has fiscal consequences. For a higher interest rate to disinflate, it must be accompanied
by fiscal austerity. If that austerity does not or cannot happen, the Fed cannot lower
inflation by raising interest rates. It must choose a different disturbance path \(u_t \).
This is not active fiscal policy. FTPL is not setting the price level. It is passive fiscal
policy, up to a constraint. But the available passive fiscal response does limit what
the Fed can do. And in the current fiscal situation, one may well wonder just how
much fiscal austerity is available.

My calculation is only slightly unusual in that I specify the path of interest rates
and keep it the same across experiments rather than specify directly the path of
disturbances \(u_t \). It is not a widely appreciated fact that different \(u_t \) processes can
generate the same path of interest rates. But interest rates are what we observe, and
what we want to know is, what are the effects of an observed interest rate tightening.
The reverse-engineered \(u_t \) processes are not AR(1), but AR(1) disturbances are not
written in stone.

How do I reverse-engineer a \(u_t \) process that gives a given interest rate path but
different choice of initial inflation? I start by choosing \(i_t^* \) and \(\pi_t^* \) in the representation
\[
i_t = i_t^* + \phi(\pi_t - \pi_t^*) = \phi\pi_t + u_t.
\]
I pick \(i_t^* \) to follow the assumed AR(1). The inflation
path \(\pi_t^* \) is then determined by the solution (5.5) up to an initial value. When I pick
\(\pi_1^* \), then, I pick a full path for inflation. Now, I pick an arbitrary \(\phi = 1.2 \), and I
simply reverse-engineer at each date \(u_t = i_t^* - \phi\pi_t^* \). I used \(\phi = 1.2 \) rather than the
traditional \(\phi = 1.5 \) simply to keep the disturbance \(u_t \) somewhat on the vertical scale
of the graphs. Then I simply present the \(u_t \) disturbances as possibilities we might
have examined in a search. Doing so makes clear that this really is the standard
new-Keynesian model and I’m not hiding something with the \(i_t^* \) and \(\pi_t^* \) business.
You can reverse-engineer by search and not breathe a word about stars.

Monetary and fiscal coordination do not go away in new-Keynesian models. They
are brushed under the rug to footnotes, but they will reappear if called on. A 100%
debt to GDP ratio, and a fiscal policy deep in perpetual primary deficits makes that
event more likely. Whether the central bank can lower inflation by interest rate hikes,
even though it could do so in fiscally happier times, is an important issue.

17.4.3 Responses to AR(1) monetary policy disturbances

Figure [17.8](#) presents responses, including the open-mouth case, and shows that the
qualitative features of the simple sticky-price model continue to hold.

I present calculations of the inflation and output responses of the standard new-
17.4. FULL MODEL RESPONSES

Keynesian model [17.15]-(17.17), using the standard new-Keynesian expression of the policy rule and AR(1) disturbances,

\[i_t = \phi \pi_t + u_{i,t}, \] \hspace{1cm} (17.20)

\[u_{i,t} = \eta u_{i,t-1} + \varepsilon_{i,t}. \] \hspace{1cm} (17.21)

This traditional approach ties monetary policy to equilibrium-selection policy and imposes AR(1) disturbances, which as we have seen can hide important lessons. Even here, however, how the results vary with shock persistence reveals the same unsettling behavior that we saw in simple models. Online Appendix section 25.13.1 explains the solution methodology in more detail.

Figure 17.8: Response of the new-Keynesian model to monetary policy disturbances of varying persistence.

Figure 17.8 presents responses to monetary policy shocks in this model, for a variety of persistence parameters \(\eta \). Contrast to Figure 17.2 of the simplified new-Keynesian
model, or Figure [16.1] of the frictionless model, and you can see the behavior is qualitatively the same.

Again, \(\eta = 1 \) gives a super-Fisherian or super-neutral response, even though prices are sticky:

\[
\begin{align*}
\pi_t &= -\frac{1}{\phi - 1} u_{i,t} \\
x_t &= -\frac{1 - \beta}{\kappa} \frac{1}{\phi - 1} u_{i,t} \\
i_t &= -\frac{1}{\phi - 1} u_{i,t}.
\end{align*}
\]

The inflation rate moves immediately and matches the interest rate one for one.

Output, not shown in the graph, rises by a small \((1 - \beta)\) amount and stays there. This model features a small permanent inflation-output tradeoff. That vanishes with \(\beta = 1 \) and is not considered a serious prediction of the model. As before, negative shocks give rise to positive interest rates, because the \(\phi \pi_t \) term in \(i_t = \phi \pi_t + u_{i,t} \) wins.

Again, there is an “open-mouth” value of \(\eta \), for which output and inflation move with no actual movement of interest rates, where \(\phi \pi_t \) and \(u_{i,t} \) exactly balance. From (25.62), this situation occurs for \(\eta \) that solves

\[
\eta - \frac{(1 - \beta \eta)(1 - \eta)}{\sigma \kappa} = 0.
\]

The solution of this equation is

\[
\eta = \frac{1}{2\beta} \left(1 + \beta + \kappa \sigma - \sqrt{(1 + \beta + \kappa \sigma)^2 - 4\beta} \right).
\]

This is the stable eigenvalue (25.57) in the \(\phi = 0 \) case, and the speed at which multiple-equilibrium shocks dissipate in the two-sided moving-average representation.

For more transitory \(\eta \), we obtain the standard result – a negative \(u_{i,t} \) shock lowers interest rates \(i_t \) and raises inflation. The standard interpretation of this result is that the new-Keynesian model delivers a negative response for transitory shocks. Since we observe transitory responses to monetary policy shocks in VARs, this result is comforting, though the model’s clear prediction that more permanent shocks – such
as we seemed to observe in the decade after 1980 and the decade after 2008 are immediately Fisherian is less well popularized.

But even this interpretation is false, as we have seen. Once we get past the AR(1), there is no connection between the persistence of shocks and the sign of the short-term inflation response to monetary policy shocks. The sign of the inflation jump on announcement is a pure equilibrium-selection policy, which can be paired with any persistence of the interest rate policy.

17.5 Optimal policy, determinacy and selection

Writing policy as an interest rate policy plus equilibrium selection policy, $i_t = i_t^* + \phi(\pi_t - \pi_t^*)$, we find again that the central bank can achieve any inflation process $\{\pi_t^*\}$ or output process $\{x_t^*\}$ it wants, including zero inflation or output gap, ex-post. To achieve these results, the central bank must follow a “stochastic intercept” i_t^* policy, or equivalent choose disturbances $u_{i,t}$ that respond to and thus systematically offset shocks to the economy. Whether the central bank can or should do this in practice is open to debate. For theory, though, these policies highlight that the ϕ equilibrium selection part of the rule is irrelevant to stabilization policy. The parameter ϕ appears to matter when a stochastic intercept is ruled out, and one ties the reaction of off-equilibrium i and π to the equilibrium relation between i^* and π^*. Again, ϕ disappears from equilibrium dynamics, so it is not identified; fiscal and new-Keynesian models are observationally equivalent.

As before, we gain a lot of intuition by expressing the policy rule as King (2000) suggests,

$$i_t = i_t^* + \phi(\pi_t - \pi_t^*)$$

where i_t^* and π_t^* represent the equilibrium the central bank wishes to implement. As before $\phi > 1$ threatens explosions to ensure that i_t^* and π_t^* are the unique locally bounded solutions. We only observe $i_t = i_t^*$ and $\pi_t = \pi_t^*$ so ϕ disappears from equilibrium dynamics.

17.5.1 Optimal policy

As before, the central bank can achieve any $\{\pi_t^*\}$ or $\{x_t^*\}$ it wishes. We can then calculate the required interest rate policy i_t^* in (17.22). We can as usual re-express
the answer as \[i_t = \phi \pi_t + u_{i,t}. \]

Two examples are interesting and instructive. Write \((17.15)-(17.17)\) as

\[
\begin{align*}
x_t^* &= E_t x_{t+1}^* - \sigma (i_t^* - E_t \pi_{t+1}^*) + u_{x,t} \\
\pi_t^* &= \beta E_t \pi_{t+1}^* \kappa x_t^* + u_{\pi,t}.
\end{align*}
\]

Now, to achieve no inflation, to set \(\pi_t^* = 0\), we need

\[
x_t^* = -\frac{1}{\kappa} u_{\pi,t}
\]

and hence

\[
i_t^* = \frac{1}{\sigma \kappa} (-E_t u_{\pi,t+1} + u_{\pi,t}) + \frac{1}{\sigma} u_{x,t}.
\]

To achieve no output gap, to set \(x_t^* = 0\), we need:

\[
\pi_t^* = E_t \sum_{j=0}^{\infty} \beta^j u_{\pi,t+j}
\]

and hence

\[
i_t^* = E_t \sum_{j=0}^{\infty} \beta^j u_{\pi,t+1+j} + \frac{1}{\sigma} u_{x,t}.
\]

In simpler models, we found that the central bank could hit whatever inflation it wished. Despite more equations and more shocks, monetary policy in this model can still attain either any given inflation path or any given output path exactly. In particular, it can make inflation or output constant.

One often asks optimal policy questions of new-Keynesian models (Woodford (2003), Ch. 6 for example). In Woodford’s setup, maximizing welfare is equivalent to minimizing a weighted sum of output and inflation variation

\[
\min \lambda \text{var}(x_t^*) + (1 - \lambda) \text{var}(\pi_t^*).
\]

The choices \(x_t^* = 0\) and \(\pi_t^* = 0\) are simple examples of such policies.

We can compute the interest rate policy \(i_t^*\) that generates any desired inflation path \(\{\pi_t^*\}\). From \((17.23)-(17.24)\)

\[
i_t^* = \frac{1}{\sigma \kappa} \left[-\beta E_t \pi_{t+2}^* + (1 + \beta + \sigma \kappa) E_t \pi_{t+1}^* - \pi_t^* \right] + \frac{1}{\sigma \kappa} \left[-E_t u_{\pi,t+1} + u_{\pi,t} \right] + \frac{1}{\sigma} u_{x,t}.
\]

(17.27)
You can see here the generalization of \(i_t^\ast = E_t \pi_{t+1}^\ast \), smeared out by dynamics and with the addition of shocks. To achieve a given inflation path, including zero, the interest rate target \(i_t^\ast \) generically reacts to shocks.

We can write the policy rules following from equations (17.25) (17.26) and (17.27) in the more familiar forms as

\[
i_t = i_t^\ast + \phi (\pi_t - \pi_t^\ast) = (i_t^\ast - \phi \pi_t^\ast) + \phi \pi_t + (i_t^\ast - \phi \pi_t^\ast) = \phi \pi_t + u_{\pi,t}.
\]

The first form reminds you of the \(i^\ast, \pi^\ast \) setup. The central bank sets interest rates to \(i_t^\ast \) and threatens explosions to enforce \(\pi_t^\ast \). The second form thinks about \((i_t^\ast - \phi \pi_t^\ast) \) as a stochastic intercept to the rule. The third form thinks about \((i_t^\ast - \phi \pi_t^\ast) \) as a monetary policy disturbance that reacts to other shocks.

Now we can state the general optimal policy point:

\textbf{The stochastic intercept, monetary policy disturbance, or interest rate target and inflation target should react to, and to offset, the other shocks in the economy.}

In the \(\pi_t^\ast = 0 \) case (17.25) gives the disturbance/intercept \((i_t^\ast - \phi \pi_t^\ast) \) directly. In the \(x_t^\ast = 0 \) case,

\[
i_t^\ast - \phi \pi_t^\ast = (1 - \phi) E_t \sum_{j=0}^{\infty} \beta^j u_{\pi,t+1+j} + \frac{1}{\sigma} u_{x,t}.
\]

Optimal policy, in this model, does not just follow a rule \(i_t = i + \phi \pi_t \), it includes a stochastic intercept or persistent disturbance.

This result makes sense of the presence of monetary policy disturbances at all, and central bank’s statements that they are deviating from rules to address various shocks. If that is why we have monetary policy disturbances, however, the resulting disturbances are ipso facto correlated with other shocks of the model, so there is no instrument or independent monetary policy shock for VAR modelers and policy-rule rule estimators to measure.

Offsetting shocks isn’t as easy as it sounds, however. The \(u_{\pi} \) and \(u_{x} \) shocks are not directly measurable, by us or by central banks. The right hand variables of those equations are correlated with the shocks too. The art of central banking consists of distinguishing “supply” from “demand” and other shocks (financial, international) and reacting accordingly, stimulating in response to deficient demand, abstaining from stimulus when it’s deficient supply. Or at least that’s how it should be. Most central banks seem only to recognize a demand side of the economy.
The ensuing debate whether central banks should fine tune has gone on, rightly, for decades if not centuries. Milton Friedman argued for a fixed money growth rule, not because he denied that optimal control of a perfectly understood model results in a time-varying and shock-dependent rule, but because his study of history persuaded him that central bankers, in real time, are not capable of measuring shocks and reacting appropriately, and they are therefore more likely to do harm than good. Reacting to shocks that require central bank divination looks a lot like discretion, and raises the whole time-consistency and rules vs. discretion debate. I read in John Taylor’s advocacy of an interest rate rule today much the same mistrust, along with a desire to stabilize expectations. Markets can’t tell easily shock-response deviations from deviations that are discretionary and unpredictable.

Current discussions of central bank policy might be phrased in terms of a rule

\[i_t = r_t^* + \pi_t^* + \phi(\pi_t - \pi_t^*) + \theta_\pi \pi_t + \theta_x x_t + u_{t,t}. \] (17.28)

\(\pi_t^* \) is the central bank’s long-run inflation target, 2%. \(r_t^* \) is a very long-run slow movement in the “natural rate,” reflecting “global imbalances,” trend growth, and so on. Central banks strongly believe that this “supply” effect is slow moving. The current active debate concerns whether \(r_t^* \) has declined from about 2% to 1% or less, and consequently whether nominal interest rates should asymptote to something like 4% or something like 2% or 3%. Systematic responses to endogenous variables \(\theta_\pi \pi_t + \theta_x x_t \) in this framework generate useful responses to typical shocks. The disturbance \(u_{t,t} \) then consists of short-run responses to other shocks, beyond what happens naturally via the rules \(\theta_\pi \pi_t + \theta_x x_t \). Those shocks could include financial events such as 2008, 1987, international events, or supply shocks such as covid-19. This discussion breaks the debate into three components \((r_t^*, \theta_\pi \pi_t + \theta_x x_t, u_{t,t})\) based on frequency and economic mechanism. The question is how the observed, equilibrium interest rate \(i_t^* \) should react to events, so this analysis is the same if fiscal theory selects equilibria rather than a \(\phi(\pi_t - \pi_t^*), \phi > 1 \) threat.

This optimal-policy digression has a larger point for us. In the context of the new-Keynesian model, we learn that the \(\phi(\pi_t - \pi_t^*) \) reaction part of the rule is completely irrelevant to stabilization policy. The parameter \(\phi \) does not enter equilibrium dynamics, so it cannot have anything to do with optimal policy.

So why is there so much study of optimal \(\phi \)? For example, Woodford (2003) Chapter 6 studies optimal \(\phi \) extensively. The answer is, such optimal \(\phi \) calculations rule out the stochastic intercept, and thereby tie equilibrium dynamics to the off-equilibrium threats. But if the central bank contemplates any deviations from a rule, any reaction to temporary disturbances, any variation in the natural rate, any time-varying
inflation target, i.e. i^*_t and π^*_t, then these alone are powerful enough to accomplish everything the central bank can do in equilibrium.

17.5.2 Determinacy

To study potential multiple equilibria in the full model, define deviations from a given equilibrium, following King (2000). Use tildes to denote deviations of an alternative equilibrium x_t from the * equilibrium, $\tilde{x}_t \equiv x_t - x^*_t$. Subtracting, deviations must follow the same model as (17.15)-(17.17) and (17.22), but without constants or disturbances.

\[
\begin{align*}
\tilde{i}_t &= \tilde{r}_t + E_t \tilde{\pi}_{t+1}^* \\
\tilde{x}_t &= E_t \tilde{x}_{t+1} - \sigma \tilde{r}_t \\
\tilde{\pi}_t &= \beta E_t \tilde{\pi}_{t+1} + \kappa \tilde{x}_t. \\
\tilde{i}_t &= \phi \tilde{\pi}_t.
\end{align*}
\]

In matrix notation,

\[
\begin{bmatrix}
E_t \tilde{x}_{t+1} \\
E_t \tilde{\pi}_{t+1}
\end{bmatrix} = \frac{1}{\beta} \begin{bmatrix}
\beta + \sigma \kappa & -\sigma (1 - \beta \phi) \\
-\kappa & 1
\end{bmatrix} \begin{bmatrix}
\tilde{x}_t \\
\tilde{\pi}_t
\end{bmatrix}.
\]

This is the same transition matrix as (25.55) with the same eigenvalues (25.57). $\phi > 1$ generates two explosive ($\lambda > 1$) eigenvalues and $\|\phi\| < 1$ leaves one stable ($\lambda < 1$) eigenvalue.

Thus, if the policy rule is sufficiently active, any equilibrium other than $\tilde{i}_t = \tilde{y}_t = \tilde{\pi}_t = 0$ is explosive. Ruling out such explosions, we now have $\tilde{i}_t = \tilde{y}_t = \tilde{\pi}_t = 0$ as the unique locally-bounded equilibrium. This is the matrix version of $E_t \tilde{\pi}_{t+1} - \pi^*_{t+1} = \phi(\pi_t - \pi^*_t)$.

“Active” policy is now a property of the whole system. In general $\phi > 1$ is neither necessary nor sufficient for explosive eigenvalues. Adding ϕx_t responses widens the range of parameters for which this is the case (Cochrane (2011b)).

As before, this expression makes it immediately clear that ϕ does not enter the equilibrium dynamics of the observed equilibrium variables i^*_t, π^*_t, x^*_t. The parameter ϕ lives only in (17.32), which reads $0 = 0$ in equilibrium. That equation and ϕ are entirely a threat used to select equilibria. Interest rate policy $\{i^*_t\}$, which may react and correlate with π^*_t and x^*_t, or structural disturbances u_t, in all sorts of interesting ways, including observed Taylor rule regressions, is distinct from equilibrium selection policy, the reaction $\phi(\pi_t - \pi^*_t)$, never seen in equilibrium, by which the central
bank makes threats to force a single equilibrium to emerge. As in the simple model, the point of equilibrium-selection policy is to induce explosive dynamics, eigenvalues greater than one, not to “stabilize” so that the economy always reverts after shocks.

The Fisherian response to permanent and to expected interest rate rises of this three-equation model is a crucial part of this interpretation. If inflation rises, the central bank raises interest rates. But even in this full sticky-price model, higher interest rates lead to higher long run inflation. By this means the Taylor principle is destabilizing, not stabilizing as it is in ISLM models. If higher expected interest rates led to lower expected inflation, the Taylor principle would not work to select equilibria.

The analysis so far has exactly mirrored my analysis of the simple model of Section 17.1. So, in fact, that model does capture the determinacy issues, despite its absence of any frictions. Conversely, determinacy in the new-Keynesian model does not fundamentally rely on frictions, the Fed’s ability to control real rates, or a Phillips curve.

17.5.3 Interpreting policy, and fiscal reconciliation

The two points of this section add up to a comprehensive view of new-Keynesian monetary policy. The expression of the Taylor rule as $i_t = i^*_t + \phi (\pi_t - \pi^*_t)$ clearly separates interest rate policy from equilibrium selection policy. One can read its instructions as: First, the central bank should set the interest rate, reacting appropriately to shocks in the economy as suggested by the stochastic intercept rules (17.25) and (17.26). In reality, that effort is constrained by the difficulty of measuring shocks and communicating a rule-based rather than discretionary policy. Then, the central bank should follow a separate and distinct equilibrium-selection policy. If it set $i_t = i^*_t$ as a time-varying state-contingent peg, in this model, there are still multiple equilibria. It needs to make alternative-equilibrium blow-up-the-world threats to enforce its desired unexpected inflation $\Delta E_{t+1} \pi^*_{t+1}$.

With this formulation, fiscal theory of monetary policy agrees with the first item exactly. Keep $\{i^*_t, \pi^*_t, x^*_t\}$. But in lieu of selecting equilibria with $\phi(\pi_t - \pi^*_t)$, or the enhanced threats described above, and counting on a passive fiscal policy to produce the needed innovation in the present value of fiscal surpluses, just specify directly that fiscal innovation to enforce $\pi_{t+1} = \pi^*_{t+1}$.
In this form we also see lack of identification and observational equivalence in the full model context. The parameter ϕ does not enter equilibrium dynamics. If one accepts empirical evidence that interest rates vary more than one for one with inflation, that evidence says that equilibrium interest rates i^*_t vary more than one for one with equilibrium inflation, π^*_t. Such observations tell us nothing about determinacy, how deviations from equilibrium $i - i^*$ related to deviations $\pi - \pi^*$. A more than one-for-one relation between i^*_t and π^*_t is consistent with a less than one-for-one relationship $\phi < 1$ between deviations $(i - i^*)$ and $(\pi - \pi^*)$. A less than one-for-one relationship between i^*_t and π^*_t may emerge from a locally determinate regime in which the response to alternative equilibria is stronger. (Cochrane (2011b) constructs an example.) Moreover, there is still no way for agents in the model to learn ϕ by running regressions on any data they can observe.
Chapter 18

Summary and implications

This chapter summarizes lessons of this part for interest-rate targets in passive-fiscal models as a complete model of inflation.

18.1 New and old-Keynesian confusion

Why does there remain so much confusion on these basic points? These points were not so obvious in advance. The distinction between stability and determinacy is subtle. That central banks do not stabilize inflation, but instead destabilize it to fight multiple equilibria is so unlike intuition and central bank statements, that it was hard to recognize in the equations. The new-Keynesian model was developed in a quest to deliver ISLM intuition. Recognizing that the resulting equations operate in a completely different way from ISLM is therefore even harder. We can see this tension clearly in the proposals to trim equilibria, which are built on sensible policies to stabilize inflation, rather than make direct and clear blow-up-the-world threats. Active policy takes a stabilizing policy in old-Keynesian model and turns it into a destabilizing equilibrium-selection threat. That it has this new and different role was not clear. But now that the distinction is clear, we should recognize just how the equations of the new-Keynesian model behave.

New-Keynesian and old-Keynesian models are dramatically different. In old-Keynesian and monetarist thinking, the Taylor principle stabilizes an otherwise unstable, determinate economy. Higher interest rates lower inflation by reducing aggregate demand. In new-Keynesian models, the Taylor principle destabilizes an otherwise stable but
multiple-equilibrium economy, to solve multiple equilibria. Higher interest rates lower inflation by forcing jumps between equilibria.

As a reader with an ex-post view of these issues, you may wonder why this difference took so long to figure out. Why does there remain so much confusion between new-Keynesian models and old-Keynesian intuition?

A little history will help to understand the source of that confusion. Also, I hope, it will help to put the confusion behind us. Confusion is understandable. All ideas start complicated and confused and they get slowly simple and clear over time. It takes a lot of reflection, digestion and debate to understand what equations really say, and to figure out what is central, part of the parable, and what is technical detail or simplifying assumption.

Friedman (1968) articulated most influentially the classic doctrine that inflation is unstable under an interest rate peg, spiraling away to hyperinflation or deflation, until the central bank gives in and abandons the peg. Already, Friedman’s view was revolutionary as it brought money and economics back to thinking about inflation, which at the time was mostly relegated to “wage-price spirals,” union negotiations, and a static Phillips curve with no economic underpinnings. That a nominal interest rate peg would not work, that the central bank could not forever move real interest rates or unemployment, that money is neutral in the long run were dramatic news, for which Friedman’s speech is justly famous. But his expectations were explicitly adaptive. He saw spirals, not sunspots.

The Taylor principle emerged in the 1980s. If the interest rate target moves actively, following a rule such as $i_t = \phi \pi_t$ with $\phi > 1$, then the instability of old-Keynesian models is cured, while maintaining an interest rate target rather than a money growth rule. This is a central result because central banks do follow interest rate targets, and merely reiterating that they should go back to money growth rules does not let us confront data or policy. McCallum (1981) is the first paper I know in the modern literature with the result that raising interest rates more than one for one with inflation either stabilizes the price level or renders it determinate. Carlozzi and Taylor (1985) is the first paper by John Taylor with the result (I asked Taylor). This paper has the “Wicksellian” form that the interest rate should increase with the price level to stabilize the price level. Taylor (1993) and Taylor (1999) are more famous for really bringing the importance of the Taylor rule to life.

In conversation, Taylor reports that the general idea was in the air previously. Many people realized that a money growth target would result in higher interest rates when inflation is higher, though not necessarily more than one for one. Many economists
felt that interest rates should have been raised more aggressively in the 1970s to fight
inflation, the main disagreement being a policy preference for inflation vs. unem-
ployment. The concept that the Fed should raise the nominal interest rate enough
to raise the real interest rate in response to inflation – a nominal rate that rises more
than one for one – seems simple within standard ISLM thinking, yet an expression of
the idea with that clarity emerged slowly. The deeper view that such active interest
rate policy can fully determine inflation, without money supply control roots, took
even longer. Hall (1984) comes close, writing “In the long run, control over the Treas-
ury Bill rate gives the Fed control over the price level. Whenever the price level is a
little to high, the Fed should raise interest rates, and whenever it is too low, it should
lower them...” Woodford (2003) credits Knut Wicksell, Wicksell (1898), republished
as Wicksell (1965), with this basic idea. That idea however is a long way from its
modern expression, as the fiscal theory is a long way from the Adam Smith quote
that begins this book. And everyone else forgot Wicksell in the meantime.

This discussion took place in an implicitly old-Keynesian or adaptive-expectations
framework, in which the Taylor rule brings inflation back down again should it get
too high, bringing stability to spirals.

New-Keynesian models were developed starting in the late 1980s. Michael Woodford
summarizes his own and many others’ contributions in the seminal Woodford (2003).
(Galí (2009) is an excellent and updated textbook treatment.) As we now know, the
Taylor principle in new-Keynesian models serves to rule out indeterminacy, by having
the central bank induce instability and a rule against explosive solutions.

Sargent and Wallace (1975) showed that with rational expectations, the problem is
indeterminacy, not instability. As we have seen, from the rational-expectations Fisher
equation, $i_t = r + E_t \pi_{t+1}$, pegging the interest rate i_t, can determine expected inflation
$E_t \pi_{t+1}$, but unexpected inflation $\delta_{t+1} = \pi_{t+1} - E_t \pi_{t+1}$ can be any unpredictable
random variable, $E_t \delta_{t+1} = 0$.

My summary here, however, is a modern interpretation benefiting from much hind-
sight. Sargent and Wallace’s paper uses overlapping generations, so one might have
thought it really about money or dynamic inefficiency. And the crucial difference
between indeterminacy and instability was not really clear in most people’s minds
for decades afterwards. One might have thought that Sargent and Wallace just
formalized Friedman’s view. I did so, for decades.

The new-Keynesian literature had an explicit goal: to rescue ISLM intuition and
monetary policy recommendations from the empirical failures of ISLM models, the
theoretical destruction brought by the rational expectations revolution, and the rise
of real business cycles.

ISLM models failed miserably to capture the rise of inflation in the 1970s or the swift decline in inflation in the 1980s. One might avoid that failure with patches and epicycles, and go along another 40 years leaving theorists to fruitlessly search for "microfoundations" of Keynesian economics (a large, long-running, and now mostly forgotten enterprise). But the rational-expectations revolution destroyed ISLM as a coherent theoretical enterprise. Most effectively, perhaps, Lucas (1976) pointed out that the models could not be used for analyzing policy, as coefficients such as the marginal propensity to consume change when policy changes. By modeling "consumption," "investment," and so forth, the models left out people, who simultaneously decide how much to consume and invest, face budget constraints, and look to the future while deciding what to do today. Modern macroeconomics is inherently intertemporal economics, and produces cross-equation restrictions as emphasized by the devastating critique in Sims (1980). Meanwhile, Kydland and Prescott (1982), King, Plosser, and Rebelo (1988) and Long and Plosser (1983) started the real business cycle revolution, which showed how the cross-sectional and time-series correlations of recessions – many industries rise and fall together, investment, employment, and output move together and more than consumption – could result from supply-side disruptions, leaving aggregate demand, and monetary and fiscal policy out altogether as a first approximation. As unfashionable as RBC models are these days, VAR estimates still do not assign much GDP volatility to monetary policy mistakes, and most inflation comes from inflation shocks, i.e. shocks to the Phillips curve. At best, monetary policy helps to smooth shocks that come from somewhere else. A detailed production side, elaborate preferences, tax, financial and other "wedges," and important non-policy shocks have snuck back into the DSGE exercise without the real business cycle name.

New-Keynesian models were built on optimal price-setting with frictions, intertemporal optimization with budget constraints, rational expectations, and market clearing. Market clearing with sticky price setting was a key innovation relative to the previous best attempt to forge a rigorous general equilibrium understanding of Keynesian economics, epitomized by the Barro and Grossman (1971) general disequilibrium view, in which rationing in one market spills over to supply and demand in other markets. But, again, their explicit goal was to rationalize ISLM thinking in a Lucas-Critique-proof model. Many authors illustrate new-Keynesian models with ISLM-like graphs. Introductions and conclusions try to interpret new-Keynesian results with old-Keynesian intuition.

Why did it take so long to figure out that the equations of new-Keynesian models
18.1. NEW AND OLD-KEYNESIAN CONFUSION

are diametrically opposed to ISLM intuition? Why has the difference between sta-

bility and determinacy, between aggregate demand and equilibrium selection been

so confusing? Why is it still so confusing? I devote many pages of this book to

the mechanics of what are now 25-year old models because in my view just how

these simple equations work is still not clear to many active researchers, let alone

struggling graduate students. Why?

Well, first, since the explicit motivating goal of the new-Keynesian enterprise was to

produce ISLM intuition with proper microfoundations, one tends to find what one

is looking for. Columbus went to his grave thinking he had found Japan.

Second, a rigorous set of equations that embody ISLM intuition would be enormously

useful, and it’s hard to discard something so useful. The policy world employs back-

of-the-envelope static or hydraulic Keynesianism, filling “gaps” with monetary and

fiscal “stimulus,” 40 years after its demise in publishable academia. Read anything

coming out of the Federal Reserve Treasury, Congress, ECB, or international policy

organizations to see this mindset. The basic insights that decisions are made across

time and across equations, that expectations are not a third force but rather depend

on policy, so we can only think of policy as a rule or regime, has made essentially no

impact at the top levels of economic policy making. Modern macroeconomics still

has a difficult marketing job to do.

So if you’re a young central bank researcher and you describe your model in terms

of equilibrium selection and determinacy, your superiors are not likely to pay much

attention. If you write old-Keynesian equations, you’ll never get the paper pub-

lished. So, you walk the line: new-Keynesian equations, old-Keynesian introduction,

intuition and policy implications.

Third, the new-Keynesian equations look a lot like ISLM equations. Subtle timing

differences, π_{t+1} in place of π_{t-1} make a huge difference to stability and determinacy

properties, but it’s easy to miss that fact.

Fourth, new-Keynesians started with the complex models that include price stick-

iness, changing real interest rates, something like interest-rate induced aggregate

demand, spelled out microfoundations, and so forth. Nobody would have been silly

enough to investigate a model with flexible prices. The instability, equilibrium-

selection, and identification issues that are so obvious in the stark frictionless model

I start with here are much harder to see in more complex models. Even the three-
equation model I ended up with is greatly simplified relative to the models new-

Keynesians were working with. Only after the fact and much digestion did the simple

model emerge as a paradigm for the behavior of the more complex model. [Woodford]
CHAPTER 18. SUMMARY AND IMPLICATIONS

(2003) did the world a great favor by developing the flexible-price new-Keynesian model and advancing it as a simple environment to understand the model with price stickiness. I would never have understood these issues even in the three-equation model, and if I had advanced the frictionless model in a critique I would have been laughed at. In my own thinking the frictionless model in Benhabib, Schmitt-Grohé, and Uribe (2001) was the lightbulb that allowed me to understand instability vs. indeterminacy.

Rightly, most papers in the new-Keynesian enterprise focused on microfoundations of each equation, on the project of fitting the model to data, or on deriving advice for politicians and central bankers. Stability, determinacy, and equilibrium selection seem like boring technical issues compared to this much more exciting effort. Of course you rule out weird solutions that blow up. Then let’s get to work with the one sensible solution, and not get bogged down. I long regarded transversality conditions and rules to rule out hyperinflationary equilibria as pointless technicalities and didn’t pay too much attention as well. I was wrong. (I still likely don’t pay enough attention to foundations of equilibria beyond the Walrasian / Ramsey tradition, as in Bassetto (2002).)

Fifth, the distinction between instability and indeterminacy is a difficult concept and was confused for a long time. Instability – eigenvalues greater than one – is not the same thing as indeterminacy – multiple equilibria. Both can give rise to volatility, but they are different forces. It took a long time to understand the difference. Like everything else, it’s only obvious in retrospect.

We can see the slow process of discovery, of confronting what the equations are saying with what researchers want them to say, in policy prescriptions to trim multiple equilibria. I surveyed these prescriptions in detail above in part to make this point. If the point is equilibrium selection, making a blow-up-the-world, equilibrium-can’t-form threat to rule out multiple equilibria, why build that threat in a subtle transition period in an otherwise sensible existing policy idea, advocated to cure inflation or deflation? Well, clearly, the distinction between “stabilize inflation,” or “stop a hyperinflation or deflation,” and “rule out an inflationary equilibrium in the first place” was not clear.

Active policy itself was part of this discovery process. The original Taylor rule described how the Fed behaves empirically, and as such includes output responses,

\[i_t = \phi_\pi \pi_t + \phi_x x_t + u_{i,t}. \] \hspace{1cm} (18.1)

Empirical rules, designed to be even more realistic, include inertia and responses to
expected values, say

\[i_t = \phi_i i_{t-1} + \phi_i \pi_t + \phi_x x_t + \phi_{\pi,1} E_t \pi_{t+1} + \phi_{x,1} E_t x_{t+1} + u_{i,t}. \] (18.2)

Around 1980 the U.S. Fed seemed empirically to raise its inflation coefficient, and inflation dropped like a stone in 1982. These Taylor rules naturally morphed into a recommendation how the central bank should behave. These sorts of rules make lots of sense in old-Keynesian, stabilizing models.

So imagine that you’re constructing an early new-Keynesian model. What will you use for monetary policy? Well, the Taylor rule (18.1) with \(\phi_\pi > 1 \) seems to fit and work pretty well, and both Taylor’s work and the ISLM intuition we want the model to capture say it works well. So of course you put it in the model. You discover playing with hard equations that \(\phi_\pi > 1 \) gives the eigenvalue you need for a unique linearized solution. Presto! On we go to calculating impulse-response functions. Since \(\phi > 1 \) rules out volatility induced by multiple equilibria, it is natural to write an introduction that says \(\phi > 1 \) just expresses “stabilization” in the new model. The policy rule is the same in new-Keynesian models – it is the change in the rest of the model that alters its role from stabilizing and inflation control to destabilizing and equilibrium selection. It’s natural not to notice that one is assuming radically different central bank behavior, by using the same equation in a different model.

As these issues are much clearer in the frictionless model, otherwise hiding in the eigenvalues of big matrices, they equally much clearer when we write the policy rule in the equivalent [King (2000)] formulation,

\[i_t = i^*_t + \phi(\pi_t - \pi^*_t). \] (18.3)

But until King, nobody wrote the policy rule this way. And why would you? If you plug (18.1) into the model, which usually requires numerical solution, and (of course) rule out explosions, you get a unique solution and pleasant-looking response functions. Why look harder? Taylor didn’t write it this way, and unless you’re really thinking hard about multiple equilibria, you wouldn’t think to do it. While you’re constructing models to make policy predictions and fit data, and multiple equilibria are just one of hundreds of annoying technical details.

[Clarida, Galí, and Gertler (2000)] is a good example halfway through the discovery process. They estimate policy rules, and find \(\phi_\pi < 1 \) before 1980, and \(\phi_\pi > 1 \) afterwards. They interpret this finding in terms of the new-Keynesian model, so that \(\phi_\pi < 1 \) means multiple-equilibrium volatility, and \(\phi_\pi > 1 \) means determinacy, which should reduce the volatility of inflation. Read carefully – this is not the conventional...
wisdom that $\phi_\pi < 1$ means ISLM instability and $\phi_\pi > 1$ restores stability. That’s
the old-Keynesian interpretation of the coefficient. Indeed, they write (p. 150)

the pre-Volcker rule leaves open the possibility of bursts of inflation
and output that result from self-fulfilling changes in expectations... On
the other hand, self-fulfilling fluctuations cannot occur under the esti-
mated rule for the Volcker-Greenspan era since, within this regime, the
Federal Reserve adjusts interest rates sufficiently to stabilize any changes
in expected inflation.

The last sentence is revealing. In their model, the Federal Reserve adjusts interest
rates to destabilize expected inflation. But “stable” can also mean “less volatile.”
Then it also harks back to old-Keynesian intuition, which does not describe the
model. This is all only clear in retrospect.

So do not read old papers harshly, or my conclusion that they are fundamentally
wrong as criticism of the authors. It has taken me twenty-five years to figure out
what I now think these equations are telling us, and you will see many confusions in
my early papers too.

But, now we do understand what the equations mean. And I can only conclude that
all of these efforts to trim multiple equilibria of the new-Keynesian model without
active fiscal policy have failed. The natural economic model gives us an equation
that determines the price level, and unexpected inflation, namely the government
debt valuation equation. If we throw out that equation by assuming globally passive
policy, that equation can’t be replaced, and we lose the ability to determine one
endogenous variable, the price level.

The new-Keynesian model set out to provide microfoundations to ISLM intuition.
Once we really listen to the equations we see it ended up creating something en-
tirely different. That’s fine. New models should embody new mechanisms and make
new predictions! But that creation has a fundamental flaw – it does not surmount
the equilibrium-selection problem. This flaw is easy to fix – add back active fiscal
policy. The result, however, is even less likely to confirm ISLM intuition. Well,
so much for ISLM intuition. It failed to predict inflation in the 1970s, it failed to
predict disinflation in the 1980s, it failed to predict the long quiet zero bound. It
is for most macroeconomists a treasured memory of their first exposure to macro in
an undergraduate class, but comfortable nostalgia is not a reason to keep hanging
on.

Is the Taylor rule valuable because it delivers stability or because it delivers deter-
minacy? Well, both, if you ask Taylor. The fact that it delivers good, if not exactly optimal, results across a wide range of models including such drastically different models as new- vs. old-Keynesian is a point in its favor. For an articulation of this view, see most recently, Cochrane, Taylor, and Wieland (2020). We have seen that fiscal theory of monetary policy models add to that list. Interest rate responses to inflation and output smooth the economy’s response to shocks. It is a third and distinct reason for good performance, but it adds to the sort of robustness across models that Taylor wisely values.

18.2 Adaptive expectations?

Why not just retreat to adaptive expectations? First, that model fails empirically. In recent history, it predicts a deflation spiral at the zero bound which did not happen. Second, while somewhat irrational expectations and price stickiness may be useful ingredients to better fit time series or to understand the reaction to never-before-seen events, it would be unfortunate to require these ingredients for even the most basic model – to deny that there is any simple supply and demand model of inflation or the price level on which to build models with frictions. Such a mechanistic model cannot maintain the Lucas-critique hope to work once policy makers exploit it and people get used to the results, or to work out of its institutional framework, such as studying large inflations or financial innovations.

Why not just return to adaptive expectations, one might reasonably ask? It produces a set of equations that embody the late 1970s ISLM intuition beloved by policy makers – higher interest rates lower inflation – and it gives us a model with determinate inflation, if not quite a price level, and none of these multiple equilibrium problems.

The first reason not to follow this path is empirical. This traditional view clearly predicts that if the interest rate does not or cannot move more than one for one with inflation, inflation or deflation should be unstable. Yet in 8 years at the zero bound in the U.S., 12 years in Europe, and a quarter century in Japan, inflation stayed remarkably stable, and no spiral emerged. (Section 20 treats this episode in detail.) ISLM adaptive expectations fell apart the first time when those models failed to predict the rise of inflation in the 1970s, a second time in the relatively quick end of inflation in the 1980s, and again in the rapid ends of fiscal hyperinflations and inflation-target stabilizations. At best it is a contingent, occasionally and in a few places theory, not an always and everywhere theory.
A second reason is more esthetic or philosophical, but esthetics are important. Some-
what irrational expectations and mechanically sticky prices may be useful ingredi-
ents as icing on a cake, as epicycles to understand dynamics of small inflations, to
model dynamics of small inflations and deflations, or to understand never-before-
seen policies and events. But if we follow the old-Keynesian path, we put irrational
expectations and mechanically sticky prices squarely in the foundations of monetary
economics. We then cannot understand the basics of price level determination, and
the basic sign and stability properties of monetary policy, without irrational expec-
tations or mechanically sticky prices. We say there is no truly economic theory by
which the price level in our economy is determined, no simple supply and demand
story underlying inflation. The price level is all a conjuring trick, by which clever
bureaucrats exploit our foibles to fool a naive populace. And if people ever wake up
and figure out what’s going on, if the regime changes to one of more volatile inflation
attracting more attention, the whole edifice falls apart and we have no theory of the
price level at all.

A little bit of irrational or adaptive expectations will not do. The central issues are
the stability and determinacy of equilibria. Eigenvalues cannot shift a bit, they have
to cross one. Reducing undetermined expectations, $E_t \pi_{t+1}$ with a smaller coefficient
in front of it, will not do. They have to disappear.

ISLM, with all forward-looking behavior turned off, isn’t really an economic model
at all. It is at best a set of equations that captures historical correlations. It is not
“policy invariant.” It does not survive the (Lucas (1976)) critique. ISLM parameters
will not stay still if they are regularly and systematically exploited for policy. People
may not be “rational,” but they are not permanently, systematically, and exploitably
“irrational” either. Such a model does not allow us to ask structural questions
such as, what if the Fed stops paying interest on reserves? What if people start
using a lot of Bitcoin? What if the internet makes prices less sticky, or people more
attentive? What happens at negative interest rates? It needs perpetual patching up
with each failure. We want a theory that works beyond the relatively quiet (so
far) postwar U.S. time series. A theory of the price level should extend to currency
crashes, hyperinflations, currency reforms, and so on, and not treat those as somehow
fundamentally different.

Creating an economic, micro-founded, Lucas-Critique-proof theory was the whole
reason for starting the new-Keynesian agenda in the first place. It was constructed
to satisfy this esthetic principle, not directly to solve empirical problems with ISLM
models. And let us cheer it for that effort, fix the effort, not abandon the effort.
18.3 INTEREST RATE TARGETS: A SUMMARY

If the choice were only between new and old-Keynesian models, one might well choose
the adaptive expectations model as the lesser of evils. But the new-Keynesian (DSGE
with non-neutralities) model enhanced with fiscal theory provides an economic model
that is simple, complete, Lucas-proof, and so-far consistent with evidence. That
surely is worth exploration before giving up on the “economics” part of “monetary
economics,” before giving up hope that one can start analyzing the price level with
a coherent supply and demand model and then add frictions, as we do elsewhere
else in economics. All the new-Keynesian effort needs is a little fiscal patching in the
equilibrium-selection department, and the ship can sail again.

The recent new-Keynesian literature, recognizing huge difficulties at the zero bound
episode and some of these theoretical difficulties has moved towards adaptive ex-
pectations, while, a puzzle to me, steadfastly avoided active fiscal policy or even
looking at fiscal implications still relegated to footnotes. Two excellent and instruc-
tive examples are García-Schmidt and Woodford (2019), and Gabaix (2020). Both
are instructively difficult and complex. What is the minimum we need to understand
the price level? Apparently, hundreds of pages and dozens of difficult equations. Both
authors make large and fundamental changes to basic economics, which if true have
wide-ranging implications, which one cannot with logical consistency invoke only to
solve zero-bound puzzles and then ignore in other work.

Merging ISLM or irrational expectations models with fiscal theory is an interesting
research question. I do not explore such models, because I’m not sure how to proceed.
Does one get rid of rational expectations in intertemporal substitution and price-
setting, but not in the asset pricing formula that values government debt? That
seems silly. But how is government debt valued with irrational expectations? But
answering such questions is possible especially with a theory of expectation formation
more founded than just plonking last year’s inflation in the place of π_t^e. The Garcia-
Schmidt and Woodford or Gabaix frameworks should be amenable to fiscal theory if
one wishes to pursue that direction.

18.3 Interest rate targets: A summary

I conclude that active interest rate targets, with a globally passive fiscal policy, are
not, in fact, a coherent alternative theory of inflation or the price level. Replacing
$\phi(\pi_t - \pi_t^*)$ and related blow-up-the-world threats with the government debt valuation
equation, and an active fiscal policy that does not react to off-equilibrium price levels
can maintain all the good parts of the new-Keynesian structure, selecting equilibria
in a different way.

We need a theory of inflation under interest rate targets. Central banks follow interest rate targets. If we want to analyze data and policy, it doesn’t do much good to argue again they should do something else, like target monetary aggregates.

It seemed that active $\phi_\pi > 1$ interest rate targets, with globally passive fiscal policy, could completely determine the price level or inflation rate, overcoming the indeterminacy or instability of interest rate targets from classical theory. I conclude after this tour, however, that active interest rate targets with passive fiscal policy are not successful in that endeavor.

Even within the theory, it doesn’t quite get there. The rational-expectations new-Keynesian theory gives a theory of inflation, but not of the price level, which is anchored by whatever it was at date zero. Woodford adduces a “cashless limit” in which a tiny amount of cash intersected with an immense velocity still determines the price level, but that theoretical nicety, having nothing to do with current institutions, points to the hole in the theory. The theory could determine the price level with a Wicksellian policy $i_t = i^*_t + \phi(p_t - p^*_t)$, but our central banks don’t do that. Adaptive-expectation interest rate target theory is even more silent on the price level. The theory describes inflation, but the price level is whatever it was at the beginning, incremented by inflation.

More importantly, the new-Keynesian model does not successfully surmount indeterminacy. And old Keynesian models aren’t economic models.

The fix is easy. Adding fiscal theory to new-Keynesian models easily handles determinacy issues and produces the kind of theory we need. The observational equivalence and non-identification theorems make that fix even easier than may have seemed before, at least technically. Rather than specify destabilizing threats $\phi(\pi_t - \pi^*_t)$ to select equilibria, we can put the same the same inflation target π^*_t in an active-fiscal specification. Observational equivalence closes the door to easy tests, but it opens the door to easy reinterpretations. The modified theory may take us in different directions, however, not the least of which will be to pay attention to the fiscal underpinnings of the new-Keynesian models.
Chapter 19

Monetarism

The most durable current theory of inflation is based on money supply and demand. Money is intrinsically worthless. People need to carry around some money to make transactions, so they are wiling to hold some of it, despite its intrinsic worthlessness and despite a rate of return less than bonds. The central bank controls and limits the supply of money. Money demand \(MV = Py \) intersected with a limited supply \(M = M^* \) leads to a determinate \(P \). I’ll lump these ideas together under a common term, “monetarism,” despite important differences between early quantity theorists such as Irving Fisher, Milton Friedman whose views today define classic “monetarism,” and cash-in-advance, money-in-utility, overlapping-generations, search-theoretic and related formal theories of money.

I have deferred a detailed discussion, because monetarism manifestly does not apply to current institutions. The distinction between money and bonds has vanished, and whatever it is, our central banks target interest rates. Central banks don’t pretend to control monetary aggregates. However, monetarism is a vital piece of history, history of thought, and economics that an economist should understand. Its insights matter to many historical episodes. And to understand fiscal theory we need to understand how it is different from monetarism.

In this chapter I look more deeply at a monetary regime. The main technical point is that monetarism suffers from multiple equilibrium problems analogous to those of the new-Keynesian model. \(MV(i) = Py \), a fixed money supply, and globally passive fiscal policy does not determine \(P \), except in one special and unrealistic case, that money demand does not depend on interest rates, and money supply is limited. Adding fiscal theory cures that indeterminacy. This point buttresses my claim that
the fiscal theory is really the only theory we have. However, for practical application, the fact that the separation between money and bonds has disappeared and central banks don’t limit money is even more important. Even if you adhere to one or another alternative method for pruning monetary equilibria, our economy does not have the preconditions for monetarism to work.

Along the way to this technical point, I develop the standard models of money, money in utility and cash in advance. I show how cash in advance turns in to our basic fiscal theory model, when asset markets reopen in the afternoon and with active in place of passive fiscal policy. We see how fiscal theory handles the case, usually brushed under the rug, of cash in advance but zero interest rates or money that pays the same interest rate as bonds. I include a comparison of fiscal theory with the Sargent and Wallace (1981) unpleasant monetarist arithmetic model. The latter is a central precursor, but fiscal theory is more general.

Some Cheshire-cat intellectual remnants of monetarism remain in thinking about current policy. We still call it “monetary policy,” not “interest rate policy” or “government debt management.” In the end, once an interest-rate target discussion gets too confusing, many economists retreat to $MV = Py$ as a foundation for price level determination, regarding the interest rate target as an indirect way of setting the money supply M. Woodford (2003) appeals to the cashless limit to describe how a new-Keynesian central bank controls interest rates. One may appeal to $MV = Py$ to determine the price level in a new-Keynesian model that otherwise only determines the inflation rate. An active discussion surrounds central bank operating procedures. Should the Fed return to a small amount of reserves that pay no interest, and implement interest rate targets by controlling the daily quantity of reserves, as it did before 2008? (Section 2.9) Why does the Fed target the level of reserves at all, controlling the size of the balance sheet, rather than run a pure corridor or peg, in which people can borrow or lend to the bank freely at the targeted rate? Some feeling remains that QE “works” by increasing reserve supply, not by reducing bond supply, and that this source of “support,” “easing” or “stimulus” is important, if not by increasing transactions balances then by “injecting liquidity” into financial markets, whatever that means. Should central banks reestablish control of monetary aggregates, by tightening reserve requirements? Will open market operations stimulate at the zero bound by raising M even though interest rates cannot change? Some economists argue that central banks should target monetary aggregates, or that one should analyze events and the impact of interest rate targets entirely through a monetary aggregate channel. A good deal of commentary periodically looks at M2 and warns of inflation to come. Viewing the world through fiscal theory lenses, I view all
of these arguments as historical remnants, but the issues are alive.

19.1 Equilibria and regimes

We start with a quick reminder. With money demand, both money demand equals money supply and the government debt valuation equation are equilibrium conditions. Monetary analysis says that the money supply, the split of liabilities between money and bonds, is controlled, which determines the price level. Surpluses adjust passively so that the valuation equation holds. Fiscal theory says that the government debt valuation determines the price level, so money supply must be passive. The two views are observationally equivalent. Monetary analysis often considers the possibility of needed fiscal backing.

In Section 3.4, we added money demand,

\[M_t V_t = P_t y_t, \]

(19.1)
to the fiscal theory. With money that does not pay interest, and ignoring inside money, we saw that the government debt valuation equation becomes

\[\frac{B_{t-1}}{P_t} = E_t \sum_{j=0}^{\infty} \frac{\Lambda_{t+j}}{\Lambda_t} \left(\frac{M_{t+j} - M_{t+j-1}}{P_{t+j}} + s_{t+j} \right) \]

(19.2)
or

\[\frac{B_{t-1} + M_{t-1}}{P_t} = E_t \sum_{j=0}^{\infty} \frac{\Lambda_{t+j}}{\Lambda_t} \left(\frac{i_{t+j}}{1 + i_{t+j}} \frac{M_{t+j}}{P_{t+j}} + s_{t+j} \right). \]

(19.3)

We considered an “active-money, passive fiscal” regime, in which a fixed money supply \(M_t = M_t^s \) and money demand (19.1) determine the price level. In that case, the government must adjust surpluses ex-post so that the government debt valuation equation holds – it must follow a “passive” fiscal policy.

Fiscal theory looks at the same equilibrium conditions but describes an active-fiscal passive money regime. Fiscal policy sets surpluses \(\{s_t\} \) in the government debt valuation equations. This sets the price level \(P_t \). Then monetary policy must be “passive,” providing the money that people demand. Seigniorage muddies the picture, but the logic remains intact, as we have seen. As above, central banks follow such passive policies.
CHAPTER 19. MONETARISM

The biggest difference is that monetarist analysis focuses on management of the money supply M by an exchange of money for government bonds, more M and less B, a rearrangement of the composition of government debt, rather than by changes in the overall supply of government debt, more $M + B$. Monetarist analysis also focuses on restrictions on the creation of inside money.

If monetary and fiscal policy are both passive, then the price level is undetermined. For this reason monetarists have long bemoaned the fact that central banks so often follow apparently passive policies. Inflation is always something, so it’s hard to know what “undetermined” means as an empirical prediction. In the event, inflation has often been remarkably quiet under passive monetary policies. That fact ought to cause disquiet in the face of a prediction that the price level is undetermined.

The fiscal and monetary regimes are observationally equivalent. All we see in equilibrium are the two equilibrium conditions, (19.1) and (19.2) or (19.3). Both conditions hold in both models. You cannot tell them apart from time-series data. If an off-equilibrium value of the price level were to occur, the monetarist says that money M will not move and surpluses will move, while the fiscal theorist says that surpluses will not move, but money will. But we do not see off-equilibrium values of the price level.

Monetary-fiscal coordination has always been part of fully-described monetarist ideas. In any well-written article, you will find, often in a footnote, the assumption that the government raises or lowers surpluses as necessary so that the present value condition holds. Monetary analysis of events and institutions takes fiscal coordination seriously. Looking at the “passive” fiscal policy to see if it is there is much more common in monetary analysis than it is to date in new-Keynesian analysis. Monetary analysis of disinflations usually includes the requirement for long-term fiscal reform to cover lost seigniorage revenue. The need to pay off government debt at a higher than expected value is less often considered. Monetary analysis of large inflations usually notices that money was printed to pay intractable government deficits, not because central bankers were too stupid to see the error of their ways. Contrariwise monetarists recognize that in order to contain inflation, the government must abstain from printing money to finance fiscal deficits, and must therefore run sufficient surpluses on the right-hand side of the valuation equations to allow that restraint. One may think of the thousand-year history of paper money as, basically, a long voyage of discovery of institutional and legal constraints that keep fiat money from being quickly inflated away by fiscally-pressed governments.

But as long as the government has adequate fiscal space, the fiscal part lies in
19.2. INTEREST-ELASTIC MONEY DEMAND AND MULTIPLE EQUILIBRIA

the background of monetarist analysis of advanced economies, and rightly so since seigniorage is so small. The focus of monetarist analysis remains on how the government splits a given debt between inflationary M and non-inflationary B, presuming surpluses adapt as necessary.

19.2 Interest-elastic money demand and multiple equilibria

With interest-elastic money demand, control of the money supply is not enough to determine the price level. Multiple inflationary or deflationary equilibria can emerge, and sunspots can cause the economy to jump from one to another arbitrarily. Adding the fiscal theory, in a coordinated money-fiscal regime, solves the multiple-equilibrium problem.

The equation $M_t V = P_t y_t$ and control of money supply seems to determine the price level. However, money demand is interest-elastic. V is not a number, but a rising function of the nominal interest rate. We really should write

$$M_t V(i_t) = P_t y_t$$

with $V'(i) > 0$. When nominal interest rates are higher, the opportunity cost of holding money is larger. People go to the ATM machines more often and hold a lesser real amount of money on average. Financial institutions put more effort into cash management. Interest-elastic money demand means that even a fixed money supply is not sufficient to determine the price level with passive fiscal policy. Monetarism suffers the same indeterminacy problems as we saw for interest rate targets.

To exhibit the problem, consider a simple example. Let output be constant, and let money demand be a declining function of interest rates,

$$M_t = P_t y V^{-\alpha i_t}$$

(19.4)

or in logs

$$m_t - p_t - y = -\alpha i_t v.$$

(Here, V and v are parameters, numbers.) Introduce the Fisher equation

$$i_t = r + E_t \pi_{t+1} = r + E_t p_{t+1} - p_t.$$
The price level paths \(\{ p_t \} \) are then given by
\[
m_t - p_t - y = -\alpha v \left(r + E_t p_{t+1} - p_t \right).
\]
(19.5)

The interest elasticity of money demand, and the relation between interest rates and inflation mean that
\[
MV(i) = Py
\]
is now a difference equation for the sequence of prices, not a single equation for the price level at one date.

Suppose now that money is constant \(m_t = m \). There is a steady-state price level
\[
p = m - y + \alpha vr.
\]
(19.6)
The steady-state price level is higher as the real interest rate is higher, because then
the nominal rate is higher and money demand is lower.

There are other equilibria. From (19.5), the full set of equilibrium price levels is any sequence with
\[
(E_t p_{t+1} - p) = \theta (p_t - p),
\]
(19.7)
where
\[
\theta \equiv \frac{1 + \alpha v}{\alpha v} > 1.
\]
There is a whole family of solutions. Writing (19.7) as
\[
(p_{t+1} - p) = \theta (p_t - p) + \delta_{t+1},
\]
the model restricts \(E_t \delta_{t+1} = 0 \), but the expectational error \(\delta_{t+1} \) can take any value ex-post. The full set of solutions is
\[
p_t - p = \theta^t (p_0 - p) + \sum_{s=1}^{t} \theta^{t-s} \delta_s.
\]

The alternative solutions are explosive. At any date for \(p_t \neq p \), people expect explosive hyperinflation or hyperdeflation. But nothing in the specification of the model so far rules out these alternative solutions, just as we could not rule out nominal explosions \(E_t \pi_{t+1} = \phi \pi_t, \phi > 1 \) in the simple new-Keynesian model.

These multiple paths are often called “speculative hyperinflations.” If one reads causality from future to present, changing expectations of future price levels causes
19.2. INTEREST-ELASTIC MONEY DEMAND AND MULTIPLE EQUILIBRIA

the price level today to jump, and then the hyperinflation can take off on its own with no external shock.

For a general money supply process \(\{m_t\} \), we can solve (19.5) forward, to

\[E_t p_{t+1} = \theta p_t - (\theta - 1) (m_t - y + \alpha r) \]

\[p_t = \left(1 - \frac{1}{\theta}\right) (m_t - y + \alpha r) + \frac{1}{\theta} E_t p_{t+1} \]

\[p_t = \left(1 - \frac{1}{\theta}\right) E_t \sum_{j=0}^{\infty} \frac{1}{\theta^j} (m_{t+j} - y + \alpha r) + \lim_{T \to \infty} \frac{1}{\theta^T} E_t (p_{t+T}) \].

(19.8)

It is tempting to set the last term on the right-hand side to zero and to declare a unique forward-looking equilibrium. The price level then depends beautifully on a forward-looking moving average of money rather than today’s money alone, just as in the simple new-Keynesian model, we found inflation depends on an a forward-looking moving average of monetary policy disturbances. But there is again no reason to set to zero the last term of (19.8).

As with interest rate targets, most papers simply pick the bounded solution without further ado. But this is an extra criterion, not (yet) part of the economic model.

Once again, the fiscal theory solves this multiple-equilibrium problem. The government debt valuation equation is a part of this model. The monetary analysis throws the valuation equation out by assuming a globally passive fiscal policy: surpluses adjust to whatever price level emerges, including price levels that emerge from whatever multiple-equilibrium hopscotching the price level happens to do.

Let us reverse that assumption and add an active fiscal policy to the constant money supply monetary policy. With perfect foresight (19.2) reduces to

\[\frac{B_{t+1}}{P_0} = \sum_{j=0}^{\infty} \beta^j s_j. \]

This condition picks the one missing element, \(P_0 \), and we now fully determine the price level.

In the stochastic case, similarly,

\[\frac{B_t \Delta E_{t+1}}{P_t} \left(\frac{P_t}{P_{t+1}} \right) = \Delta E_{t+1} \sum_{j=0}^{\infty} \beta^j s_{t+1+j} \]
picks unexpected inflation at each date, and

\[
\frac{B_t}{P_t} E_t \left(\frac{P_t}{P_{t+1}} \right) = E_t \sum_{j=0}^{\infty} \beta^j s_{t+1+j}
\]

with expected inflation picked by (19.7) determines nominal bond sales \(B_t \).

The solutions picked in this way will generically be one of the explosive solutions, not the steady state or bounded solution. We don’t routinely see explosive inflation, one might object. But governments are not so pig-headed as to set constant money forever in the face of exploding inflation. They are also not so pig-headed as to set \(m \) and \(B \) randomly, independently of the other, and independent of fiscal policy and the price level they wish to produce. They are also especially not so pig-headed as to follow fiscal policies that validate any inflation or deflation that comes along. They change surpluses too.

In sum, with interest-elastic money demand, money supply control is not enough to determine the price level. If we add fiscal theory, we can solve this indeterminacy problem, and produce a sensible monetary-fiscal regime, as fiscal theory plus interest rate targets did. A sensible coordinated policy sets surpluses consistent with the money supply, or sets the money supply consistent with surpluses, to avoid the unique, but explosive solutions. I don’t pursue this example further because no government these days controls monetary aggregates, nor plans to do so.

This section stems from the famous Cagan (1956) analysis of hyperinflations. Cagan uses adaptive expectations. Sargent and Wallace (1973) and Christiano (1987) use rational expectations, which leads to the forward-looking solutions and determinacy problems here.

If you read monetarists, there is a lot of talk about how velocity is “stable” at least in a “long run.” One purpose of that talk is to brush this multiple-equilibrium problem stemming from interest-elastic money demand under the table. (The other purpose is to assert that \(MV = Py \) still allows \(M \) to raise \(Py \) when interest rates are zero, to deny a “liquidity trap.”)
19.3 Money in utility

We examine the classic money in the utility function model. This section introduces the utility function and budget constraints, and defines equilibrium.

I review two standard explicit models for producing a money demand and monetary price level determination, the money in the utility function model here and the cash in advance model in the next section. The models serve an immediate purpose, to examine more carefully the analysis of the last section. Does \(MV = Py \) and passive fiscal policy really not determine the price level, if we spell out a model completely? No, it turns out. Adding fiscal theory, however, the two models are useful workhorses for studying monetary-fiscal policies when there are special liquid assets. They are worth study for that larger purpose.

To set up the simplest monetary model, I introduce money in the utility function. The representative household maximizes

\[
\max E \sum_{t=0}^{\infty} \beta^t u \left(c_t, \frac{M_t}{P_t} \right). \tag{19.9}
\]

Money in the utility function stands in for the fact that holding some money makes it easier to purchase goods and services. Models that detail the search, information, transactions or shopping frictions that really motivate holding liquid assets usually end up with something like this indirect utility function. This is the easiest model, not the one with the best explicit micro-foundations.

The day follows our usual timing. The household holds nominal one-period government bonds \(B_{t-1} \) and government money \(M_{t-1} \) overnight. I keep the model simple with no inside money. Then the household receives an endowment \(y_t \), consumes \(c_t \), pays net real taxes \(s_t \) and buys new bonds \(B_t \) at price \(Q_t \). The household's period budget constraint is

\[
B_{t-1} + M_{t-1} + P_t(y_t - c_t) = Q_t B_t + M_t + P_t s_t. \tag{19.10}
\]

The household operates in complete contingent claim markets with state price \(\Lambda_t \).

Money and debt holdings must also satisfy a lower bound, \(M_{t-1} + B_{t-1} > -B \), and their optimal choices include transversality conditions. Thereby the household must satisfy the present value budget constraints, either

\[
\frac{B_{t-1}}{P_t} = E_t \sum_{j=0}^{\infty} \frac{\Lambda_{t+j}}{\Lambda_t} \left(\frac{M_{t+j} - M_{t+j-1}}{P_{t+j}} + s_{t+j} + c_{t+j} - y_{t+j} \right). \tag{19.11}
\]
\[\frac{B_{t-1} + M_{t-1}}{P_t} = E_t \sum_{j=0}^{\infty} \frac{\Lambda_{t+j}}{\Lambda_t} \left[\frac{i_{t+j}}{1 + i_{t+j}} \frac{M_{t+j}}{P_{t+j}} + s_{t+j} + c_{t+j} - y_{t+j} \right]. \] (19.12)

The government sets a sequence \(\{M_t^s, B_t^s, s_t\} \). The government obeys a flow constraint, that money not soaked up is left over:

\[B_{t-1}^s + M_{t-1}^s = P_t s_t + Q_t B_t^s + M_t^s. \]

The government does not need to obey a transversality condition or present value budget constraint. If people wish to paper their caskets with money, and absorb an ever increasing amount of it, no budget constraint stops the government from satisfying this need.

An equilibrium is a set of \(\{M_t, B_t, s_t, c_t, y_t, \Lambda_t\} \) that satisfy consumer optimality, the government flow constraint, and equilibrium \(c_t = y_t, M_t^s = M_t, B_t^s = B_t \). The eventual government debt valuation equation results from the consumer’s budget constraint, and equilibrium \(c_t = y_t \).

19.3.1 First-order conditions and money demand

The first-order conditions in equilibrium \(c = y_t \) give a money demand function,

\[\frac{u_m(y_t, M_t/P_t)}{u_c(y_t, M_t/P_t)} = \frac{i_t}{1 + i_t} \]

or

\[M_t = P_t L(y_t, i_t). \]

The first-order conditions for maximizing (19.9) subject to (19.12) are\(^1\)

\[\beta^t u_c \left(y_t, \frac{M_t}{P_t} \right) = \Lambda_t \] (19.13)

\(^1\)To derive these first order conditions easily, consider each item as a function of state \(x^t \) in the time zero problem, i.e. think of \(c_t \) as \(c_t(x^t) \) and so forth in

\[\max \sum_{t=0}^{\infty} \sum_{x^t} \beta^t \text{pr}(x^t) u(c_t, M_t/P_t) \]
Here, I save a later step, substituting $y_t = c_t$ to characterize the equilibrium. We can rewrite these equations in several useful and intuitive ways. From the consumption condition we have the standard asset pricing formula,

$$\frac{\Lambda_{t+1}}{\Lambda_t} = \frac{\beta u_c(t+1)}{u_c(t)}$$

where I use the notation $(t) \equiv (y_t, M_t/P_t)$. Bond prices follow the standard formula

$$Q_t = \frac{1}{1 + i_t} = E_t \left(\frac{\beta u_c(t+1)}{u_c(t)} \frac{P_t}{P_{t+1}} \right).$$

Dividing the two first-order conditions,

$$\frac{u_m(y_t, M_t/P_t)}{u_c(y_t, M_t/P_t)} = \frac{i_t}{1 + i_t}.$$ (19.16)

We can rewrite this equation as a money demand or “liquidity preference” function, which is typically interest-elastic

$$M_t = P_t L(y_t, i_t).$$

We can also write from the first-order conditions

$$1 = \frac{u_m(t)}{u_c(t)} + E_t \left[\beta \frac{u_c(t+1)}{u_c(t)} \frac{P_t}{P_{t+1}} \right].$$

s.t.

$$\frac{B_{-1} + M_{-1}}{P_0} = \sum_{t=0}^{\infty} \sum_{x^t} pr(x^t) \frac{\Lambda_t}{\Lambda_0} \left[\frac{i_t}{1 + i_t} \frac{M_t}{P_t} + s_t + c_t - Y_t \right].$$

Now introduce a Lagrange multiplier λ on the constraint and take the derivative with respect to $c_t(x^t)$, yielding

$$\beta^t pr(x^t) u_c(c_t, M_t/P_t) = pr(x^t) \frac{\Lambda_t(x^t)}{\Lambda_0} \lambda.$$ $u_c(c_0, M_0/P_0) = \lambda.$

Since contingent claim prices are only defined as relative prices, we might as well choose the numeraire so that $\lambda = 1$.

\[\beta^t u_m \left(y_t, \frac{M_t}{P_t} \right) = \Lambda_t \frac{i_t}{1 + i_t}. \] (19.14)
The real rate of return on money is \(\frac{P_t}{P_{t+1}} \) which is less than that on other assets, and in particular bonds which pay \((1 + i_t) \frac{P_t}{P_{t+1}}\). That deficient rate of return ("rate of return dominance") in the right side, is made up for by an unobserved "dividend" or "convenience yield" of money in the first term. Iterating, we can state an asset-pricing view of the value of money

\[
\frac{u_c(t)}{P_t} = E_t \sum_{j=0}^{T} \beta^j \frac{u_m(t+j)}{P_{t+j}} + E_t \left[\beta^{T+1} \frac{u_c(t+T+1)}{P_{t+T+1}} \right].
\]

An additional dollar, held forever, costs \(1/P_t\) utility. It generates a stream of benefits, though it depreciates (usually) with inflation.

\[u_m(t) = 1 - \frac{1}{1 + i_t} = 1 - E_t \left(\beta \frac{u_c(t+1)}{u_c(t)} \frac{P_t}{P_{t+1}} \right). \] (19.17)

Simplify to a separable utility function, so that money does not affect the intertemporal allocation of consumption. With a constant output \(c_t = y\) and perfect foresight, the bond price is simply

\[
\frac{1}{1 + i_t} = \beta \frac{P_t}{P_{t+1}}.
\]

With separable utility, \(u_m(t) = u_m(M_t/P_t)\). Equation (19.17) becomes a nonlinear

\[u_m(t) = u_m(M_t/P_t). \]
difference equation for real money holdings \(M_t/P_t \),

\[
\frac{u_m \left(\frac{M_t}{P_t} \right)}{u_c(y)} = 1 - \beta \frac{P_t}{P_{t+1}} = 1 - \beta \left(\frac{M_{t+1}}{P_{t+1}} \right) / \left(\frac{M_t}{P_t} \right) \frac{M_t}{M_{t+1}}. \quad (19.18)
\]

Figure 19.1 plots an example, described below.

Let money growth be a constant \(M_{t+1}/M_t = 1 + \mu \). The difference equation (19.18) has a steady state of constant real money holdings \(M_t/P_t = M/P \), and steady inflation driven by the money growth rate

\[
\frac{u_m \left(\frac{M}{P} \right)}{u_c(y)} = 1 - \beta \frac{M_{t+1}}{M_t} = 1 - \frac{\beta}{1+\mu} \quad (19.19)
\]

\[
\frac{M_{t+1}}{M_t} = 1 + \mu = \frac{P_{t+1}}{P_t}.
\]

Here prices are proportional to money over time, and inflation equals the money growth rate. This is the right-hand steady state of Figure 19.1.
In this nonlinear model, there is a second deflationary steady state however. At zero nominal rates $i_t = 0$, we have $u_m = 0$ (see (19.17)). Money and short-term bonds are perfect substitutes — and therefore they must pay the same return. In this case (19.18) becomes

$$\frac{P_{t+1}}{P_t} = \beta$$

or with $\beta = 1/(1 + \delta)$

$$\pi_{t+1} \approx -\delta.$$

This second steady state has zero interest rates and slight deflation to generate a positive real rate.

Can $u_m = 0$? We usually think that the marginal utility of money eventually vanishes, just like everything else.

$$\lim_{m \to \infty} u_m(m) = 0.$$

In this case zero interest rates are a limiting case, and the economy slowly drifts down to it. However, money is not really a good. Money in utility stands in for its use in arranging transactions. It is plausible that there is some finite level of money at which we are satiated, and more money provides no more help with transactions. Once you hold a lifetime’s worth of money, holding more money and less bonds does you no good in arranging the purchase of your morning cappuccino. And perhaps we are satiated in other individual goods as well. How many scented candles do you really want to consume? The recent decade of zero or even slightly negative interest on reserves, with “only” 3 trillion reserves, suggests satiation. In that case there is an upper bound, m_{sat} such that

$$u_m(m) = 0, \ m \geq m_{sat}.$$

Now we arrive at zero interest rates in finite time and stay there. Once we get to a zero interest rate, $i_t = 0$, with slight deflation equal to the discount and real interest rate, people will hold arbitrary amounts of money — the money demand curve becomes a correspondence $m \geq m_{sat}, \ i = 0$, because money and bonds are perfect substitutes. Though labeled “liquidity trap” and often disparaged, or subject to efforts to fix it, this outcome is also the “Friedman-optimal” quantity of money. Money is free for society to produce, so we should be satiated with it.

To calculate an example, I use a simple separable utility function,

$$u \left(c_t, \frac{M_t}{P_t} \right) = c_t^{1-\gamma} + \frac{\theta}{1-\gamma} \left(\frac{M_t}{P_t} \right)^{1-\gamma}.$$

(19.20)
19.3. MONEY IN UTILITY

Money demand is

\[M_t = P_t y_t \left(\frac{i_t}{\theta (1 + i_t)} \right)^{-\frac{1}{\gamma}}. \]

The difference equation (19.18) becomes

\[\theta \left(\frac{M_t}{P_t y_t} \right)^{\gamma} = 1 - \beta \left(\frac{M_{t+1}}{P_{t+1} y_{t+1}} \right) / \left(\frac{M_t}{P_t y_t} \right) \left(\frac{M_t}{M_{t+1}} \right). \] (19.21)

The inflationary steady state (19.19) is

\[\theta \left(\frac{P y}{M} \right)^{\gamma} = 1 - \frac{1}{(1 + \delta)(1 + \mu)} \approx \delta + \mu. \] (19.22)

Higher inflation, money growth, and nominal interest rates mean less real money holding.

To get some sense of a reasonable \(\theta \), note that for \(P y / M \approx 1 \), we need \(\theta \approx \delta + \mu \), already a small number on the order of 0.1. For a more realistic \(P y / M \approx 10 \), we need \(\theta \) on the order of 0.01. If we hold one tenth of a year’s income as money, losing at 5% interest rate one two hundredth of a year’s income in foregone interest, money is a relatively unimportant good in utility. That deeper fact should unsettle us on just how important its optimization is, and hence how much money demand is a line or a fuzzy set.

We can rewrite the difference equation (19.21) in terms of this inflationary steady state, eliminating \(\delta \) and \(\mu \), as

\[\left(\frac{P_{t+1} y_{t+1}}{M_{t+1}} \right) = \left(\frac{P_t y_t}{M_t} \right) \left[\frac{1 - \theta \left(\frac{P y}{M} \right)^{\gamma}}{1 - \theta \left(\frac{P y}{M} \right)^{\gamma}} \right]. \] (19.23)

Figure 19.1 presents the dynamics of this system. The solid curved line presents \(P_{t+1} y_{t+1} / M_{t+1} \) as a function of \(P_t y_t / M_t \), as given by (19.23). The parameters are \(\delta = \mu = 0.20, \gamma = 2 \), and \(\theta = 1/100 \).

If we start at the inflationary steady state, \(P_t y_t / M_t = P y / M \), the economy stays there. Other values of the initial price level, leading to other values of real money holdings \(P_t y_t / M_t \) lead to additional equilibrium paths. The phase diagram cuts from below at the steady state – the derivative of (19.23) is positive at \(P y / M \) – so dynamics are unstable around \(P y / M \). Therefore, \(P y / M \) is an unstable unique locally
bounded equilibrium. But nothing in this model so far rules out the other equilibrium paths.

The figure shows the second steady state at \(P_y/M = 0 \), i.e. \(M = \infty \). Write (19.23) as

\[
\frac{P_{t+1}}{P_t} = (1 + \mu) \frac{1 - \theta \left(\frac{P_y}{M} \right)^\gamma}{1 - \theta \left(\frac{P_y}{M} \right)^\gamma}.
\]

so, in the limit \(P_t/M_t \to 0 \), and using (19.22),

\[
\lim_{P_t/M_t \to 0} \frac{P_{t+1}}{P_t} = \frac{1}{1 + \delta}.
\]

Inflation approaches the negative of the real interest rate and discount rate. This steady state is stable; multiple equilibria \(P_0y/M_0 \) in this neighborhood stay nearby. This deflationary steady state appears even though money growth is positive, or mildly negative \(1 + \mu > 1/\beta \), i.e. approximately \(\mu > -\delta \). This is not a liquidity trap induced by deflationary money growth \(\mu = -\delta \). It is a second, stable, equilibrium of a world with arbitrarily large money growth, but interest-elastic money demand.

The analysis parallels exactly the situation of Figure 16.2 in Section 16.8 for interest rate targets. I write it and present it that way to highlight the parallel – new-Keynesian and monetarist theories suffer from the same multiple equilibrium problem. We arrive at the same logical point as we did with an interest rate target. \(MV(i) = P_y \) with interest-elastic demand does not determine the price level. We must add something if we want an economic theory that can determine the price level.

As in that case, if we add back the government debt valuation equations, (19.11) (19.12), rather than assume fiscal policy adjusts passively to make the valuation equations hold for any price level \(P_0 \), we obtain a determinate price level, and a complete monetary-fiscal policy description.

This observation could be the basis of elaboration, with more detail on money demand, inside and outside money, money supply rules, fiscal responses, long-term debt, and so forth, curing multiplicity with active fiscal policy, just as I did with interest rates in the first part of this book. That elaboration would also describe and reexamine many classic doctrines of monetary economics under money supply rules. We could construct a fiscal theory of monetary policy, rather than a fiscal theory of interest rate targets. I do not follow this path. Though it would result in a coherent and complete theory, and thus intellectually interesting to complete our taxonomy.
19.4. PRUNING EQUILIBRIA

of monetary theories, a repair of monetarism does not describe anything like current institutions. Our central banks target interest rates, not money supplies, and money demand is evaporating in a sea of interest-paying liquid assets and innovative transactions technologies.

Utility that is non-separable between money and consumption can lead to a phase diagram in which the inflationary steady state cuts from above, so there are multiple stable equilibria even here. Obstfeld (1984) makes this point in a delightfully concise 5 page paper. Nonseparable utility is a realistic specification. The point of money is not to enjoy Scrooge McDuck swims in it, but because money makes purchasing consumption and selling endowments easier. Appendix Section 27.2.4 treats this case.

In sum, the model formalizes the analysis of the last Section 19.2. It verifies that by looking at a money demand function, money supply, the standard bond-pricing equation and the government debt valuation formulas, we have indeed exhausted the conditions needed to construct an equilibrium. We had not left anything out or gotten anything wrong. One can form an equilibrium with a money supply rule and fully passive fiscal policy. But there are multiple such equilibria. We can eliminate multiple equilibria with active fiscal policy. The full nonlinear model makes multiple-equilibrium matters worse. It adds a second deflationary, zero-bound steady state and multiple stable equilibria that approach that state. The situation is closely analogous to the case of interest rate targets.

19.4 Pruning equilibria

As there have been many efforts to prune the multiple equilibria of interest-rate targeting models, covered in Section 16.10, there has been an even larger literature that tries to prune the multiple equilibria monetary models, without explicit recourse to active fiscal policy. Many of the ideas are closely related, as is my critique.

In my view, this literature has failed, for the same basic reason the interest-rate literature failed: To rule out an equilibrium, one must either add fiscal theory, which many proposals do when you look carefully, or one must add something to the policy specification that forbids equilibria from forming, i.e. that blows up the economy. But the government does not threaten to blow up the economy, and in the sensible Ramsey specification the government cannot do so. These are likewise proposals for policies that some future government could make to trim equilibria, not threats our
governments currently even whisper.

I defer a review of these issues and literature to Chapter 27 of the Online Appendix. While I find pleasure and symmetry in the claim that monetarist models with interest-elastic money demand and passive fiscal policies have exactly the same indeterminacies as new-Keynesian models have, and so do not provide a complete coherent alternative to fiscal theory, this point is not central to the larger argument. Even if this point is wrong, one should abandon monetarism because central banks do not control the quantity of money, because money demand has evaporated into a mush of liquid assets and fast transactions technologies, and because it does not work empirically. Subscribing to one or another of the fixes described in Chapter 27 will not fix the latter more important facts.

The most appealing fix is the observation that when the growth rate of money is perpetually positive, real money growth can exceed the real interest rate in the deflationary equilibria, apparently violating the consumer’s transversality condition. But this case is fiscal theory, not an alternative to fiscal theory. Passive fiscal policy adjusts surpluses so that the valuation equation holds, and the transversality condition is satisfied, for any initial price level. The government in the model that produces a transversality condition violation refuses to adjust surpluses to validate the too-low initial price. That is active fiscal policy, using fiscal theory to prune multiple equilibria. The fix is not always valid either. If perpetual money growth is achieved by open market operations, the total quantity of debt does not violate the transversality condition, which applies to total wealth not each component individually. Furthermore, since money is valued in utility, ever-growing real quantities of money may not violate the transversality condition.

Obstfeld and Rogoff (1983) is the most famous proposed fix for the inflationary equilibria. They specify that the government switches to a commodity standard above a certain threshold of inflation. Surveying this proposal, I make standard points, familiar from the interest-rate multiple-equilibrium discussion: The proposal is a version of fiscal theory, not an alternative, as the government must have the gold. The proposal can stop the hyperinflation, but doing so does not rule out the inflation and its resolution as an equilibrium, unless one sneaks in a blow-up-the-world provision. Obstfeld and Rogoff do that. Our governments and central banks do not even whisper a commitment to switch back to gold above a certain inflation threshold. At best it is a proposal for some future central bank. Our central banks do not control money growth. They certainly would not fix money growth immutably in face of a growing inflation. Likewise, our fiscal authorities would not stand by “passively” and let inflation ravage the land.
Both sets of fixes have an angels-on-heads-of-pins quality as well, since they depend on limiting properties of money demand. Good models in the middle are not necessarily good in limits. As interest rates decline to five, or one basis point, do people hold one, or five lifetime’s worth of money? Are money and goods complements or substitutes, especially at tiny interest costs or when held in tiny amounts in hyperinflations? Before 2008, we speculated about the low interest rate limit. Now we have observed the lower bound, and beyond, with persistent -1% interest rates in Europe and Japan, and treasury securities paying less than reserves in the U.S. Money holdings are large but did not explode. Do we learn that there is satiation, so there is no worry about violating the transversality condition? Or do we learn that at one basis point interest cost, or even negative 25 basis points interest costs, people just don’t care that much and money demand becomes a correspondence. Or a fuzzy set of epsilon-rational choices? Conversely, hinging equilibrium selection for today’s U.S. on whether in a hypothetical hyperinflation people have to hold cash for a day, or just for an hour, makes little sense. The theory of speculative inflations really is pretty speculative. If you are interested in this intellectual history, proceed to Appendix Chapter 27.

My view is not criticism. In constructing any theory, one should forge ahead and not get hung up on technicalities. $\text{MV} = \text{Py}$ seemed like a darn good and useful theory. It was much more important for Friedman and Schwartz to organize history with $\text{MV} = \text{Py}$ than to worry about multiple equilibria with interest elastic demand, or the properties of money demand in limits. First be useful, then tidy up details. With such a useful theory and a theoretical hole, of course it makes sense to spend a lot of effort trying to clean up the problems. Yes, we now can see things differently: monetarism is no longer so useful or successful, and the theoretical holes never really did get patched up. But there was nothing wrong with the effort.

19.5 Cash-in-advance model

The cash-in-advance model is in part motivated by the artificiality of money in the utility function. Cash in advance is the simplest and most tractable model that starts a little deeper. It models an explicit reason to hold money, in order to make transactions.

Money in the utility function models also deliver results that depend sensitively on the properties of the utility function – separable vs. nonseparable, limits as interest rates and money holdings rise or fall. Cash-in-advance models, though formally
equivalent to money in utility models, can effectively suggest some functional forms as more plausible than others.

The simplest cash-in-advance model, which I study here, appears to give a money demand with fixed velocity, which can determine the price level with passive fiscal policy. It turns out that the cash in advance model too has multiple equilibria. Money demand becomes L-shaped, rising as a correspondence when interest rates hit zero. We still cannot rule out equilibria that deflate to the zero bound. Again, an active fiscal policy can solve this indeterminacy. (Cash-in-advance models are also extended, e.g. with credit goods, to generate a more realistic interest-elastic demand. I don’t cover that extension here.)

The cash-in-advance model also allows me to display a frictionless model that eliminates the cash-in-advance constraint. That formalism allows a nice way to see how the fiscal theory continues to determine the price level in the frictionless environment, and to relate the fiscal theory story we started with to the cash-in-advance story.

The cash-in-advance model comes from Lucas (1980), Lucas and Stokey (1987), Lucas (1984), and see Sargent (1987). I modify these models to include fiscal theory, and thus to the frictionless case in which consumers can avoid holding cash overnight. I also consider the zero interest case, which is usually ignored. I emphasize nominal debt and the possibility of the fiscal regime. This treatment stems from Cochrane (2005b).

19.5.1 Setup

The cash-in-advance model specifies that money must be used for transactions, \(P_t c_t \leq M_t^d V \). In the standard specification, that money must be held overnight, despite a potential interest cost. In the frictionless variant, money can be returned at the end of the day. I write the model, the cash in advance constraint, the budget constraint, and I define equilibrium

The government chooses a state-contingent sequence for one-period nominal debt, money and primary surpluses, \(\{ B_t^s, M_t^s, s_t \} \). The representative household maximizes a standard utility function,

\[
\max E \sum_{t=0}^{\infty} \beta^t u(c_t).
\]
The household enters period t with money balances M_{t-1} and one-period nominal discount bonds with face value B_{t-1}. Any news is revealed. The household goes to the asset market. The household redeems maturing bonds B_{t-1}, pays net lump-sum taxes $P_t s_t$, buys new bonds B_t and leaves with money M_t^d.

Each household receives a nonstorable endowment y_t in the goods market. The household cannot consume its own endowment, and must therefore buy the endowments of other households. To do so, the household splits up into a worker and a shopper. The shopper takes the money M_t^d and buys goods c_t subject to a cash in advance constraint,

$$P_t c_t \leq M_t^d V.$$ \hfill (19.24)

The story is cleanest when $V = 1$, but it is useful to introduce the parameter V and consider what happens as it changes later. The worker sells the endowment y_t in return for money, and gets cash $P_t y_t$ in return.

In the monetary model, the shopper and worker go home and eat c_t. They must hold overnight any money $M_t^d - P_t c_t$ left over from the shopper, and the money $P_t y_t$ earned by the worker. M_t, which denotes money held overnight, is

$$M_t = M_t^d + P_t (y_t - c_t).$$ \hfill (19.25)

The frictionless cash-in-advance model makes one small change: The securities market reopens at the end of the day. The household can return to the securities market, i.e. the ATM machine is open in the afternoon. There, households can trade any unwanted cash for more bonds. Thus, the household can use cash during the day without holding it overnight. The absence of the constraint (19.25) is the only difference in the economic setup of the two models.

There is no interest on intraday bond holdings or cash loans in the model. This is, roughly, the current institutional arrangement.

The household can trade arbitrary contingent claims in the asset market at price Λ_t. Households are forbidden to issue money, to keep them from arbitraging zero interest money against interest-bearing bonds,

$$M_t \geq 0.$$ \hfill (19.26)

The household’s period budget constraint states that the nominal value of money and bonds at the beginning of the period, plus any profits in the goods market,
must equal the nominal value of bonds purchased, money held overnight, and net tax payments,

\[B_{t-1} + M_{t-1} + P_t(y_t - c_t) = Q_t B_t + M_t + P_t s_t. \]

(19.27)

The household’s money and debt demands must also obey the transversality condition

\[\lim_{T \to \infty} E_t \left(\frac{\Lambda_{t+T} M_{T-1} + B_{T-1}}{P_T} \right) = 0. \]

(19.28)

These conditions imply the present value budget constraint. As before, we can write it in two ways, treating the inflation tax either as an interest cost or as dilution due to money printing,

\[\frac{B_{t-1}}{P_t} = E_t \sum_{j=0}^{\infty} \frac{\Lambda_{t+j}}{\Lambda_t} \left(\frac{M_{t+j} - M_{t+j-1}}{P_{t+j}} + s_{t+j} + c_{t+j} - y_{t+j} \right) \]

(19.29)

or

\[\frac{B_{t-1} + M_{t-1}}{P_t} = E_t \sum_{j=0}^{\infty} \frac{\Lambda_{t+j}}{\Lambda_t} \left[\frac{i_{t+j}}{1+i_{t+j}} \frac{M_{t+j}}{P_{t+j}} + s_{t+j} + c_{t+j} - y_{t+j} \right]. \]

(19.30)

An equilibrium is a set of initial stocks \(B_0, M_0 \), and sequences for quantities \(\{c_t, M^d_t, M_t, B_t, s_t\} \) and prices \(\{\Lambda_t, P_t\} \) such that households optimize and markets clear. That is, given prices \(\{\Lambda_t, P_t\} \), initial stocks \(B_{-1}, M_{-1} \), and the tax and endowment streams \(\{s_t, y_t\} \), the choices \(\{B_t, M^d_t, c_t\} \) maximize expected utility subject to the budget constraints (19.27)-(19.28), the cash-in-advance constraint (19.24), and the no-printing-money constraint (19.26). In the cash-in-advance model, the household must also meet the constraint (19.25) that money coming from the goods market is held overnight. Market clearing requires \(c_t = y_t, M_t = M^*_t, B_t = B^*_t \) at each date and state of nature.

19.5.2 Monetary model

I characterize the equilibrium of the monetary model. The standard asset pricing equation holds, without monetary distortions. If interest rates are positive, the cash in advance constraint binds. The government debt valuation must hold.

The consumer’s first order conditions, budget constraints, and market-clearing imply the following characterizations:
1. The marginal rate of substitution is equal to the stochastic discount factor,
\[\beta^j \frac{u'(y_{t+j})}{u'(y_t)} = \frac{\Lambda_{t+j}}{\Lambda_t}. \] (19.31)

Hence, nominal bond prices are given by
\[Q_t = \beta E_t \left[\frac{u'(y_{t+1})}{u'(y_t)} \frac{P_t}{P_{t+1}} \right]. \] (19.32)

If the endowment is constant over time \(y_t = y \), then
\[\frac{\Lambda_{t+j}}{\Lambda_t} = \beta^j; \quad Q = \beta. \]

2. Any equilibrium with positive nominal interest rates, must have a binding cash constraint,
\[M_t V = P_t c_t = P_t y_t. \] (19.33)

3. The government debt valuation equation holds,
\[B_t - \frac{1}{P_t} = \sum_{j=0}^{\infty} E_t \left[\frac{\Lambda_{t+j}}{\Lambda_t} \left(s_{t+j} + \frac{M_{t+j} - M_{t+j-1}}{P_{t+j}} \right) \right] \] (19.34)

or, equivalently,
\[\frac{B_{t-1} + M_{t-1}}{P_t} = \sum_{j=0}^{\infty} E_t \left[\frac{\Lambda_{t+j}}{\Lambda_t} \left(s_{t+j} + \frac{i_{t+j} M_{t+j}}{1 + i_{t+j} P_{t+j}} \right) \right]. \] (19.35)

Fact 1 follows from the household’s first-order conditions for buying one less consumption good, investing in a contingent claim, and then consuming more at \(t + j \). Following [Sargent (1987)], there is no asset-pricing distortion with this timing convention. In order to raise consumption \(c_t \) the household must also get more money \(M_t \), but cash overnight \(M_t \) will be unaffected because \(P_t c_t \) changes by the same amount as \(M_t \) changes (see equation (19.25)). With positive nominal interest rates, money is strictly dominated by bonds, so the household will hold as little money as possible overnight. In the CIA model, that quantity is \(M_t = P_t y_t / V \); goods market equilibrium gives \(y_t = c_t \), and hence Fact 2. To derive Fact 3, use the bond price definition, iterate forward the consumer’s period to period budget constraint (19.27), impose the condition (19.28), and impose market clearing (\(y_t = c_t, \ M_t = M_t^* \)). Lucas (1984) and Sargent (1987) treat existence of equilibrium. It’s easy enough to construct examples with standard utility functions. Our issue is the uniqueness of equilibrium, and we shall see shortly that it is not.
19.5.3 Monetary-fiscal coordination

Monetary and fiscal policy must be coordinated. We commonly separate active-money, passive-fiscal or active-fiscal passive-money alternatives for this coordination. But the equilibrium is the same, so the two coordination stories, and the infinite number between them, are observationally equivalent.

The cash in advance constraint (19.33) and the government debt valuation equation (19.34) together determine the price level in terms of variables chosen by the government. I have been writing down these two equations. Now we have an explicit model to verify that this was the right thing to do. Looking at the explicit model helps us again to see that the government valuation equation (19.34) results from the consumer’s budget constraint and equilibrium. It is not a “government budget constraint.”

The government has three levers \(\{M_t, B_t, s_t\} \), which produce one outcome \(\{P_t\} \). Thus, the government must choose its levers in a coordinated way if it wishes to produce an equilibrium. In the Ramsey tradition, it must choose these levers acting in markets, taking equilibrium conditions as a constraint.

The standard solution to this model assumes at this point an active-money, passive-fiscal regime. The central bank, by controlling \(\{M_t\} \), determines the price level. Fiscal policy must then validate whatever price level the central bank has chosen. If you look closely, all good cash-in-advance papers have a footnote somewhere, often specifying that the government levies lump-sum taxes ex-post so that (19.34) holds.

But we can also solve the same model, and arrive at the same equilibrium, with a passive-money, active-fiscal regime. Here, by choice of \(\{B_t, s_t\} \) the government valuation equation controls the price level. The central bank must then passively provide the money \(\{M_t\} \) needed to solve money demand. The equilibrium, as defined above is the same, so the two ways of achieving coordination are observationally equivalent.

Moreover, we can tell any number of intermediate or other stories. The means by which central bank and treasury come up with a coordinated policy leaves no trace in the data. The active/passive story is only one, and a quite unrealistic, story of how coordination is accomplished.
19.5. CASH-IN-ADVANCE MODEL

19.5.4 Frictionless model

We characterize the equilibrium of the frictionless model, in which people do not have to hold money overnight. If interest rates are positive, they will hold no money. Nonetheless, there is a well defined equilibrium under an active fiscal policy.

In the frictionless model, asset markets, or the bank where households trade cash for bonds, remains open through the day. The cash in advance constraint therefore vanishes. The frictionless solution of this cash in advance model formalizes the story I told in the very first chapter about a “day,” in which the government prints up cash to pay off bonds, and that cash is then soaked up at the end of the day by selling new bonds.

In this model,

1. The marginal rate of substitution (19.31) is still equal to the stochastic discount factor or contingent claims prices,

 \[
 \beta^j \frac{u'(y_{t+j})}{u'(y_t)} = \frac{\Lambda_{t+j}}{\Lambda_t},
 \]

 (19.36)

 With a constant endowment \(\Lambda_{t+j}/\Lambda_t = \beta^j \).

2. Any equilibrium with positive nominal interest rates \(Q_t < 1 \), must have no money

 \[M_t = 0. \]

 (19.37)

 No equilibrium may have negative nominal interest rates, \(Q_t > 1 \).

3. The government debt valuation equation holds, now

 \[
 \frac{B_{t-1}}{P_t} = E_t \sum_{j=0}^{\infty} \frac{\Lambda_{t+j}}{\Lambda_t} s_{t+j}.
 \]

 (19.38)

The consumer’s flow budget constraint (19.27) is not changed, so first order condition behind fact 1 is the same. Removing the constraint (19.25) that cash from sales must be held overnight, the minimum cash that the household can hold overnight is zero, so (19.37) replaces the quantity equation (19.33). Equation (19.37) is still a money demand equation, but it now holds for any price level and so does not help in price level determination. A negative nominal interest rate is an arbitrage opportunity, and leads to infinite money and negative infinite bond demand, and so cannot be an equilibrium. Equation (19.38) specializes (19.35). In periods with positive nominal
rates $i_{t+j} > 0$, we have $M_{t+j} = 0$, so the seigniorage term drops because M is missing.

In periods with zero nominal rates, $i_{t+j} = 0$, seigniorage drops because there is no interest differential between money and bonds.

There are specifications of the utility function, endowment processes, and government choices \{\(B_t^s, M_t^s, s_t\)\} that result in equilibria of the frictionless model with determinate, finite price levels. I can prove this statement most transparently by giving a simple example. Suppose $u(c) = c^{1-\gamma}$, \(y_t = y\), \(B_t^s = B\), \(M_t^s = 0\), \(s_t = s\), all constant over time. Obviously, we must have $c_t = y$. From (19.36), the discount factor is constant,

\[
\Lambda_{t+1}/\Lambda_t = \beta.
\]

From (19.38), the price level must be constant and positive,

\[
P_t = P = (1 - \beta) \frac{B}{s}.
\]

Nominal interest rates are positive, $Q_t = \beta < 1$ so money demand equals money supply $M = 0$. We have $\lim_{T \to \infty} \beta^T B/P = 0$ so the transversality condition (19.28) is satisfied. The consumer’s first order conditions and transversality conditions are necessary and sufficient for an optimum. Thus, we have found sequences \{\(c_t, M_t^d, M_t, B_t, s_t, Q_t, p_t\)\} and \(M_0, B_0\) that satisfy the definition of an equilibrium. Furthermore, given all the other variables, \{\(P_t\)\} is unique.

Not all specifications of the utility function, endowment process and government choices \{\(B_t^s, M_t^s, s_t\)\} result in equilibria, as pathological utility functions and “uncoordinated” or otherwise nonsensical policy do not lead to equilibria in the monetary model. Here, I discuss the issues, but I do not attempt a characterization of the weakest possible restrictions on utility functions and exogenous processes that result in an equilibria.

As in all dynamic models, the endowment process and utility function must be such that equilibrium marginal rates of substitution $\Lambda_{t+j}/\Lambda_t = \beta^j u'(y_{t+j})/u'(y_t)$ are defined. For example, we can’t have occasionally negative endowments in a model with power utility.

Equation (19.38) and market clearing ensure a unique, positive, equilibrium price level sequence \{\(P_t\)\}, if the government always chooses a positive amount of nominal debt at each date, $\infty > B_t^s + M_t^s > 0$ and a surplus whose present value is positive $\infty > E_t \sum_{j=0}^\infty (\Lambda_{t+j}/\Lambda_t)s_{t+j} > 0$. It is not necessary that all these sequences are positive. One must rule out $0/0 = 0$ problems in (19.38).
One-period bond prices are determined from
\[Q_t = P_t E_t \left(\Lambda_{t+1} / \Lambda_t P_{t+1} \right). \]
For there to be an equilibrium, the government must choose a price level sequence, via its choices of \(\{ B_t, M_t, s_t \} \), so that the expectation exists, and so that the nominal interest rate is nonnegative, \(Q_t \geq 1 \). If the price level sequence requires a negative nominal interest rate, households try to hold infinite cash and infinite negative amounts of debt.

Finally, the government must produce a coordinated policy configuration \(\{ B_t, M_t, s_t \} \). In this frictionless model the government cannot produce that configuration by setting \(\{ s_t \} \) in response to prices, to mechanically have \((19.38) \) hold for any price level – it may not set a “passive fiscal” policy. If it did so, the price level would be undetermined. Thus, the government must also choose an “active-fiscal” policy in order for there to be an equilibrium price level in the frictionless model.

19.5.5 Multiple equilibria re-emerge

Even the cash-in-advance model has multiple equilibria with passive fiscal policy. Active fiscal policy easily trims them.

The cash in advance model appears to formalize the interest-inelastic case, \(M_t V = P_t y_t \), in which if the government sets a fixed money supply \(M_t^* \), we have a unique price level for fiat currency with a passive fiscal policy. Alas, even this case fails to determine the price level.

The money demand function for the cash-in-advance model is not, in fact, a perfect \(M_t V = P_t y_t \) with fixed \(V \). At zero interest rate, money demand becomes a correspondence. Any \(M_t \geq P_t y_t / V \) will do. At negative interest rates, money demand becomes infinite. One can think of the cash-in-advance money-demand function as the limit of the usual function as captured by money in the utility function, pushed to the axes – the curve becomes an L, going up the vertical axis at \(i = 0 \). But it is an L, not a horizontal line, and this L brings back the indeterminacy circus. Technically, the cash-in-advance constraint only binds if the interest rate is positive. If the interest rate is zero, the cash-in-advance constraint does not bind, as people are happy to hold more money than it requires.

One might think that indeterminacy therefore only holds for a low value of money growth, that drive inflation down to the point that the nominal rate is zero. That case does exist. Even the \(M_t V = P_t y_t \) equilibrium becomes indeterminate when money growth is too low. But there are multiple, zero-interest rate equilibria for any
money growth path, just as we found liquidity-trap equilibria in the money in utility function model and in the new-Keynesian model.

For example, consider perfect foresight equilibria. Let $M_{t+1}/M_t = 1 + \mu$, and a constant endowment y. The usual equilibrium is $P_t = M_t V/y = M_0 (1 + \mu)^t/y$. The nominal interest rate is $(1 + i) = (1 + \delta) P_{t+1}/P_t = (1 + \delta)(1 + \mu)$ where $1 + \delta = 1/\beta$.

So long as $1 + \mu > \beta$, the usual equilibrium has a positive interest rate and the cash-in-advance constraint binds.

But there are also equilibria with $P_{t+1}/P_t = \beta$, a slight deflation, despite positive money growth. Start with a price level that is too low, $P_0 < M_0 V/y$. Money is greater than needed for the cash in advance constraint, but the consumer does not care because $P_1/P_0 = \beta$, so $i_0 = 0$. Now, we also then have $P_1 < M_1 V/y$: We have $P_1 = \beta P_0$, and $M_1 = (1 + \mu) M_0$, and by assumption, $1 + \mu > \beta$. Likewise,

$$P_t = \beta^t P_0 \leq \beta^t M_0 V/y \leq (1 + \mu)^t M_0 V/y = M_t V/y.$$

In words, we have a too-low initial price level, and slight deflation. The interest rate is zero, and even though money keeps growing, people are happy to have ever larger amounts of money at zero interest rates.

The cash in advance model does not have the multiple inflations described above. But the cash in advance model has the same multiple equilibrium deflations. The indeterminacy of money demand at zero interest rates – the “liquidity trap” that bonds and money become perfect substitutes allows them.

Active fiscal policy can rule out the multiple equilibria. The government commits to financing the debt at price levels from the desired equilibrium, $P_t = M_t V/y$, but will not raise surpluses to validate deflations. It looks passive on the desired equilibrium path – surpluses rise to pay accumulated debts – but it is active in not validating alternative equilibria.

The same objection may be raised as with the money in utility model: in the case that money growth is positive, deflation at the real interest rate means that real money holdings grow faster than the interest rate. The same answer from Section 19.3.2 and explored in detail in Appendix Chapter 27 applies: A violation of the transversality condition is active fiscal policy. Yes, this consideration can rule out the equilibrium, but we no longer have a unique price level without active fiscal policy. A passive fiscal policy would raise taxes or exchange money for debt so that the transversality condition holds. That’s the definition of passive fiscal policy.

These problems are acknowledged if you read cash-in-advance models carefully. For
example, in the classic textbook treatment, Sargent (1987) p. 162 writes “except in
Section 5.5, we will focus on equilibria in which the currency-in-advance restriction
\(p_t c_t \leq m_t^p \) is met with equality because the risk-free net nominal interest rate is
positive...” “We will focus on” acknowledges that there are other equilibria, which
Sargent ignores, rightly as they are beside his point. The same erasure is implicit in
the usual dynamic programming approach, which is equivalent to the minimum state
variable approach. If you assume that the equilibrium price level must be a time-
invariant function of state variables, then you rule out the multiple equilibria.

Sargent’s Section 5.5 (p. 177 ff.) considers the possibility that money pays the same
interest as other risk-free securities, which is the more general case of \(i = 0 \) induced
by low money growth. Treating the case that reserves pay full interest on p. 178,
Sargent writes: “Because currency is not dominated in rate of return, \(m_t^p \geq p_t c_t \) will
not generally hold with equality. Instead the household’s demand for real balances
of currency is indeterminate...” As a result, p. 180, “...the price level, level of
taxes and real balances, are all indeterminate.” In that statement, Sargent p. 180
takes care to rule out the fiscal-theoretic repair: “...the government levies whatever
lump-sum taxes are necessary to finance the interest payments on currency.”

Appendix Section 27.3 includes a larger literature review on multiple equilibrium
problems in cash-in-advance models, mirroring the same problems for money-in-
utility models.

The cash-in-advance model differs from pure monetarism at the zero bound. Many
monetarists insist that \(MV = Py \) continues to hold even at zero interest rates. In
their view velocity is stable at least in a “long run.” Although, yes, at zero rates,
people might hold more money and less bonds without changing other decisions,
eventually they will want to reduce money holdings, pushing up the price level. The
cash in advance model, like the money in utility satiation model, says that money
and bonds are perfect substitutes at the zero bound, so there is no upper limit to
money demand, no reason that velocity will return to its “long-run” value.

These observations should not be taken as criticism of the cash-in-advance litera-
ture. The point of these models usually lies in characterizing the interesting “focus”
equilibria, not being picky about just what technicalities one wishes to invoke to
rule out multiple equilibria. When the models were developed, nobody had seen a
zero interest rate in decades, and inflation slowly declining with zero nominal rates
seemed rightly like a technical nuisance.

But our point is to worry about technicalities, and to see just what it takes to de-
determine the price level. Cash-in-advance models with passive fiscal policy leave open
CHAPTER 19. MONETARISM

multiple equilibria. With fiscal theory, it is easy to trim the undesired equilibria. If one wishes to use a cash-in-advance model, the only substantive change this analysis recommends is to add an equation or two to statements like “we focus on” the binding cash constraint equilibrium. Write that multiple deflationary equilibria are ruled out by an active fiscal policy, and the government’s refusal to validate deflation by raising taxes in particular.

19.5.6 FTPL vs. unpleasant arithmetic

In the end, monetary and fiscal policy must be coordinated. The government must produce \{B_t, M_t, s_t\} that produce one, and only one price level, i.e. it must respect the money supply = money demand and government debt valuation equilibrium conditions. The active fiscal/passive money or vice versa stories are unrealistic all-or-nothing descriptions of how the government does so. This and the next section give classic examples of monetary-fiscal coordination.

In the famous “Unpleasant Monetarist Arithmetic” Sargent and Wallace (1981) link deficits to inflation. This is a foundational work bringing fiscal considerations into monetary economics, and bringing to life that monetary-fiscal coordination is important for modern policy questions. How is fiscal theory different from unpleasant arithmetic? They are related, but fiscal theory offers more.

Sargent and Wallace consider a model with money, in which the equilibrium price level is determined by money demand = money supply, and a government debt valuation equation,

\[
M_t V = P_t y
\]

(19.39)

\[
b_{t-1} = \sum_{j=0}^{\infty} E_{t} \left[\beta^j \left(s_{t+j} + \frac{M_{t+j} - M_{t+j-1}}{P_{t+j}} \right) \right].
\]

(19.40)

Sargent and Wallace fix the stream of surpluses \{s_{t+j}\} to ask how control of the money supply \(M_t\) then affects inflation. Thus, they envision a “monetary policy” that cannot change surpluses, as I have. By (19.39), the money supply can directly control the price level. (With a truly constant \(V\) we don’t worry about multiple equilibria.) Sargent and Wallace specify real or indexed debt, so the value on the left hand side of (19.40) is unaffected by the price level. This specification is explicit below Sargent and Wallace’s equation (4). I use the lowercase \(b_t\) to reflect that fact.
Now, if current or future surpluses \(\{s_{t+j}\} \) decline, the central bank must generate some seigniorage revenue to avoid default on real debt. The central bank can still decide when it will print more money. But less money printing and less inflation now will require more money printing and more inflation later, unless the fiscal problem is fixed. (Section 14.3 discusses Sargent and Wallace in historical context.)

With Sargent and Wallace’s main point in front of us, we can see that it is justly famous as a pioneering study of fiscal-monetary links. However, the subsequent 40 years of fiscal theorizing have produced some novelty. First, rather than \(b_t \) indexed debt, the left hand side in fiscal theory may be the real value of nominal debt \(B_{t-1}/P_t \). With nominal debt, a fall in \(\{s_{t+j}\} \) can generate a higher price level \(P_t \) even with no money demand or seigniorage whatsoever – deleting (19.39) and setting \(M = 0 \) in (19.40). By removing the link to seigniorage revenue, which is small in the U.S., these modifications reinforce Sargent and Wallace’s basic point of an underlying fiscal cause and remedy of inflation. Long term debt and integration with interest rate targets are additional novelties.

19.5.7 Seigniorage and hyperinflation

The sudden emergence of hyperinflation when a government tries to finance larger and larger deficits by printing money provides a second classic parable of monetary-fiscal coordination.

As governments print more money to finance larger deficits, inflation rises. As inflation rises people try to hold less real money \(M/P \). They hold money for shorter amounts of time, they substitute to foreign currency, they revert to barter or common goods. Thus, each increase in money growth and inflation gives rise to a less than proportional increase in revenue. Eventually, the decreased real money demand is larger than the increased money growth. A further increase in money growth produces less revenue. If the government persists in printing more money to cover the same deficit, the system is unstable, and inflation shoots essentially to infinity. Seigniorage has a Laffer limit just like other taxes.

To see this behavior in equations, start with an inelastic money demand,

\[
MV(i) = Py. \tag{19.41}
\]

Examine steady states with varying inflation. The real revenue from seigniorage, as
a fraction of GDP, is
\[
\frac{s}{y} = \frac{1}{P_y} \frac{dM}{dt}.
\]
Differentiating (19.41) with respect to time in a steady state,
\[
\frac{dM}{dt} V(i) = \frac{dP}{dt} y + P \frac{dy}{dt},
\]
so seigniorage revenue as a percentage of GDP is
\[
\frac{s}{y} = \frac{\pi + g}{V(r + \pi)}.
\]
As the government raises money growth and hence inflation \(\pi\), it initially raises more revenue. But higher inflation \(\pi\) also means higher velocity \(V\), or lower money demand. These reduce the revenue produced by seigniorage, as all taxes produce less revenue after tax-avoidance behavior kicks in. If the rise in velocity is larger than the rise in inflation, more inflation leads to less revenue. Maximum revenue occurs where the elasticity of velocity is roughly one, or when the elasticity of money demand is roughly negative one,
\[
\frac{d \log s}{d \log \pi} = \frac{\pi}{\pi + g} - \frac{d \log V}{d \log \pi} = \frac{\pi}{\pi + g} + \frac{d \log (M/P_y)}{d \log \pi}.
\]
Now, the elasticity of money demand likely rises with inflation. When inflation changes from 1% to 2%, it is very unlikely that money demand halves, or velocity doubles. When inflation rises from 100% to 200%, a halving of money demand is more plausible. So, as inflation rises, more inflation generates less revenue.

So we can tell a lovely story. The government gets in trouble and starts printing money. Inflation rises. The government gets in more trouble, and prints more money. Inflation rises again, but money demand decreases, producing less revenue. Eventually the government hits the revenue-maximizing inflation point. When it then tries to squeeze one more bit of revenue from the inflation tax, inflation jumps to infinity. This is a good parable for how inflation can get so astronomically high, so suddenly, yet provide finite amounts of revenue. It also is part of the story of ends of hyperinflations, (Section [14.2]) in which less inflation corresponds to more seigniorage revenue.
19.6 Monetary history

The correlation of money with nominal income does not establish that money causes inflation. The failure of postwar interest rate pegs came amid great fiscal stress. When tried, monetary targets were quickly abandoned. Since the 1970s, central banks have operated entirely on interest rate targets. Inflation is stable at decades-long zero bound and with immense open market operations (QE) and rampant financial innovation. I opine even Milton Friedman might change his mind with new facts and experience at hand.

Would Milton Friedman object to this book’s turn away from monetarism? Perhaps not. Friedman’s Chicago school was ultimately empirical, disciplined by clear theory. A half-century of new facts, and a reevaluation of old ones might even change Friedman’s view.

The correlation of money and nominal income is the most celebrated monetarist fact. The Friedman and Schwartz (1963) monetary history traces this correlation through time. Plots of money vs. nominal income, M vs. Py, and plots of money M/Py vs. an interest rate, are favorite monetarist pieces of art. The “stability” of such plots over long time periods is admired. These are often called plots of money demand, but equilibrium quantities do not self-evidently trace out a demand curve.

The obvious criticism is that correlation does not prove causation: When real income or the price level rises for other reasons, people demand more money. Money supply is elastic, so we see a correlation between money and nominal income. A stable money demand plot is completely consistent with fiscal theory. Friedman and Schwartz anticipated this critique, pointing out that changes in money typically preceded changes in nominal income. And the point of their magisterial book was, in many ways, to argue causality from the details of each episode, to show exogenous actions of monetary authorities that arguably caused later changes in nominal income.

The attempt to tease money vs. income causality out of the data led to much famous economics. Andersen and Jordan (1968) ran regressions of nominal income on money and vice versa. But Tobin (1970) already pointed out that timing is not causality. People may see growth in nominal income ahead of time, and raise money demand now, as people build up other inventories in advance of a strong economy. Granger (1969) and Sims (1980) refined this argument by looking at ordering of surprises, not of variables. Money Granger-causes income if a surprise to money forecasts income surprises, if $\Delta E_{t+1}M_{t+1}$ forecasts $\Delta E_{t+1}(Py)_{t+1+j}$, if the impulse response function from money to nominal income is not zero. But as Granger and Sims make perfectly
clear, Granger causality is not causality. Additional variables observed by people but left out of the forecasts (VAR) can reverse Granger causality tests. The weather forecast Granger-causes the weather. As Granger (2004) observed, “many ridiculous papers appeared” that ignore this caveat. The revolution in time series did not settle the dispute that started it.

We are interested in a different type of “causality,” namely how equilibrium is formed. Since the equilibrium condition $MV = Py$ and the government debt valuation equation hold in both monetarist and fiscal views, no time series test can tell whether money causes inflation and fiscal policy follows, or vice versa. Observational equivalence is a deeper problem than temporal ordering causality.

Ex-post selection of the monetary aggregate is a long-standing criticism of monetarism. Which of the many possible aggregates should one take as the money in $MV = Py$? Early quantity theorists such as Irving Fisher based the demand for money in a demand for assets that one has to hold as an inventory to make transactions. That is the cornerstone of monetary theory to this day, as for example in the cash-in-advance tradition covered in Section 19.5, as well as the vast literature on micro-foundations of money. Yet monetarism favored larger aggregates, such as M2, which includes interest-paying savings accounts. Why? A cynic might say, because M2 is better correlated with nominal GDP. Monetarism adduces additional motivations to demand such money, including an asset demand. That view helps to understand M2 demand. But we also have an asset demand for bonds. Now the idea that controlling the split of assets between “money” and “bonds” is crucial for the price level loses much force.

What may have made some sense in the financial system of the 1930s or 1950s no longer does so. We now have an economy with a wide range of liquid assets, and arrangements such as unused credit card balances, trade credit, and repurchase agreements, that can help to make transactions, along with a complex set of liquidity needs beyond just transactions, such as collateral in financial affairs. The conclusion I draw is that a hope to separate some into “money” and others into “bonds” and hope that control of that split has first-order effects on the price level is now doomed.

I can hope that Friedman, starting afresh, might look at our current monetary and financial system, and come to the same conclusion.

Friedman and Schwartz argued forcefully that monetary policy mistakes were the prime source of macroeconomic volatility. But leaving aside controversy over the great depression, which continues, more recent literature finds that monetary policy shocks – unexpected changes in interest rates, deviations from a rule – do not con-
tribute much to output, employment and inflation volatility. (My small contribution is Cochrane (1994c). Ramey (2016) is an excellent recent survey.) The recessions of 2000, 2008 and 2020 clearly resulted from a stock market bust, a banking crisis, and a pandemic, not money-supply mistakes. (Well, 2008 is sometimes chalked up to a housing “bubble” stoked by too-low interest rates, but just how the level of nominal interest rates feeds in to a risk premium remains a verbal belief that is not yet well-modeled. The timing of the bust is hard to pin on the Fed, and the magnitude of the event clearly has more to do with amazingly thin capital, not Fed unwillingness to pour gin in the punchbowl at 2 AM.)

Friedman was strongly influenced by the disaster of the great depression. Friedman and Schwartz (1963) criticize the Fed that the collapse of banking led to a collapse of inside money, that the Fed should have prevented or offset by greater outside money. Even that story does not put the Fed in the causal role, but merely one of amplifying an already bad situation. And the causal importance this action has seen much more subsequent analysis. For example, Bernanke (1983b) points to the destruction of the banking system’s ability to make loans; Cole and Ohanian (2004) and Kehoe and Prescott (2007) point to the microeconomic damage of New Deal policies; and many more. The Fed’s tightening in advance of the 1929 stock market crash to try to rein in stock market speculation, an early instance of what is now approvingly called macro-prudential or credit-cycle policy, has attracted less attention.

During and after WWII, the Fed pegged the interest rate on long-term bonds to 2.5%, with a clear mandate to hold down the interest costs of WWII debt. In his Friedman (1968) presidential address, Friedman mentions prominently the failure of this peg, and postwar interest rate pegs in other countries, as evidence for the proposition that interest rate pegs are unstable and therefore money supply must control the price level:

These views [ineffectiveness of monetary policies] produced a widespread adoption of cheap money policies after the war. And they received a rude shock when these policies failed in country after country, when central bank after central bank was forced to give up the pretense that it could indefinitely keep “the” rate of interest at a low level. In this country, the public denouement came with the Federal Reserve-Treasury Accord in 1951, although the policy of pegging government bond prices was not formally abandoned until 1953. Inflation, stimulated by cheap money policies, not the widely heralded postwar depression, turned out to be the order of the day.
In retrospect, and with a fiscal theory in mind that Friedman could not have imagined, one can’t help but note that the postwar pegs fell apart coincident with fiscal problems.

Woodford (2001b) analyzes the U.S. peg. Our first question of this interest-rate peg should not be, why did it fall apart? Our first question should be, why did something supposedly unstable last so long? The peg lasted a decade, and two if you count zero rates in the Great Depression. Woodford credits fiscal-theoretic mechanisms for the surprising stability of the interest rate peg, just as I have analyzed here. In Woodford’s view, the peg fell apart when the Korean war undermined fiscal policy.

That larger picture shouts from the history of the period. We forget that borrowing for WWII was not easy. It included price controls, rationing, interest rate controls, and financial repression including limits on interest banks could pay, and of course foreign exchange and capital controls. All of these measures stimulate demand for government debt. When the U.S. lifted price controls in 1947, inflation swiftly rose. The resulting 40% cumulative price level rise by 1949 devalued WWII debt by 40%.

In Woodford’s analysis, the unexpected Korean war and recession required a sudden return to borrowing. Though the resulting deficits were not large by WWII standards, they upset expectations that WWII debt would be steadily repaid, and occasioned a return to 9% inflation.

European countries whose pegs fell apart had more severe fiscal problems in the wake of WWII. They also repressed financial markets and capital flows to try to force people to hold their money and debt, with an interest rate peg being only part of this financial repression. Price controls and rationing were pervasive. The U.K. suffered repeated fiscal and exchange rate crises.

Why did interest rate pegs fail? Fiscal stress is the plausible alternative answer, especially now that we have a clearer vision of how fiscal policy feeds to inflation. The postwar interest rate pegs were not a monetary policy that tried to manage inflation and unemployment by technocratic means, backed by “passive” fiscal policy with ample space to repay government debt, only in the thrall of bad ideas. Interest rate pegs were part of a coordinated system of financial repression undertaken to control dire fiscal situations; just one more price control. Their failure was just the beginning of the unraveling of Bretton Woods, fixed exchange rates, international capital controls, regulation of bank interest rates, and other measures of financial repression and government debt support.

Monetarism’s greatest challenge comes from the events of the 1970s until today. The
great success of Friedman (1968) was his prediction that if exploited, the Phillips curve would shift and stagflation would emerge. Given the stable Phillips curve in data to that time, this was an audacious prediction. But the prediction has nothing to with the source of that inflation, whether too much money printed in exchange for bonds, a mistaken interest rate target, or a fiscal expansion to finance the Great Society and Vietnam war without unpopular taxes.

One may take the end of inflation in the 1980s as a Friedman victory as well, and his name was used to bless much of the tight monetary policy. But the end of inflation was, if a victory of monetary policy and not as I argue a joint monetary-fiscal reform, a victory of interest rate targets and rules, not of money supply control.

In the early 1980s, the Fed experimented with a money supply target. Controversy continues over whether the Fed picked the right aggregate, and whether it really controlled the aggregate effectively or simply used aggregate control as a smokescreen for high interest rates. But the immediate response to changing \(M \) was that previously stable \(V \) started shifting. Whether exogenous “velocity shocks” all of a sudden woke up, or whether moving \(M \) to move the other way leaving \(P_y \) alone is also contentious. Even in the former interpretation, however, the event reinforced the view that money demand is not at all stable in the short run, so the Fed should target interest rates in order to accommodate shifts in money demand. That was after all its original mandate – to provide an elastic currency. After two years, the Fed gave up targeting monetary aggregates and has been targeting interest rates ever since, as it did before. (Until 2008, the Fed decided on a level of reserves each morning, and held reserves constant for a day. Eventually the resulting spikes in intra-day interest rates led the Fed to join other central banks and give up even that pretense. See Hamilton (1996). Even so, each morning’s reserves was set with a view to hitting the interest rate target, so the Fed was following an interest rate target with passive money supply on a daily basis, with vertical supply inside a day.)

The long quiet zero bound period with immense quantitative easing, described in more detail in Chapter 20 puts the nail in the monetarist coffin, especially of Friedman’s statement that interest rate pegs must soon fall apart in spiraling inflation or deflation, that control of the money vs. bond supply matters. In the failed postwar pegs, central banks were trying to hold down rates that otherwise wanted to rise, by lending out money to banks at low rates, and with financial repression to force people to hold government debt they did not want to hold, and in the face of fiscal difficulties. In the zero-bound era, central banks were, by force of the zero bound, if anything holding up interest rates that wanted to be lower, borrowing money from banks (large reserves), and in the face of large demand for government debt. Not all
pegs are the same, it turns out.

How would Friedman look back now at the failure of monetary targeting in the early 1980s, the conquest and subsequent stability of inflation under interest rate targets, inflation’s continuing stability at long-lasting near-zero interest rates, with reserve requirements on M2 not biding by trillions of dollars, in the face of a 30,000% expansion of reserves (from $10 billion to $3 trillion), and rampant financial innovation undoing the foundations of monetarism? I gather from verbal reminiscences of his colleagues that he became reconciled to interest rate targets that follow a Taylor rule, and as cited above Friedman (1992) endorses the spread target idea.

You can see that I fear the curse of Friedman’s ghost, given that he was so right about so much, that monetarism held such sway for so long, and that $MV = Py$ continues to underlie so much thinking about the price level. But Friedman was at heart an empiricist, guided by clear theory. So I hope that the facts since the 1970s and the availability of new theory might well have changed Friedman’s mind. And, perhaps, since I do not similarly seek forgiveness from Tobin, Solow, or Samuelson, we should just move on to facts and theory.

For us, it is a simple fact that central banks do follow interest rate targets and do not try to control monetary aggregates. One may say they should, but they don’t. Our task is to understand inflation under interest rate targets.

19.7 Money summary

There are three broad theories of the price level: backing, fiat, and interest rate targets. The fiscal theory is a backing theory: Money is valued because it is backed by the stream of primary surpluses.

Fiat money may be intrinsically useless. But if we all coordinate on one commodity – bits of paper, shells, chunks of encrypted computer code – if that commodity is in limited supply, if we each need to keep an inventory of that commodity with us, for example to make transactions, then the commodity will gain value. Monetarism is the modern and empirically-applied embodiment of these ideas, $MV = Py$. With a demand for special assets and government control of their supply, the price level can be determined.

We discover, however, that $MV = Py$ on its own, with passive fiscal policy, does not determine the price level. Since money demand is interest-elastic, since $MV(i) = Py$,
then there are again multiple equilibria. The fiscal theory can select one equilibrium, so we can develop a joint fiscal-monetary theory parallel to the interest rate target plus fiscal theory we developed previously.

One might justly regard this as a small technical point, and it is. One can patch up the monetarist theory with just a little bit of fiscal theory, producing the sensible and classical theory of coordinated fiscal and monetary policy.

However, monetarism faces a deeper set of problems: Modern economies no longer meet the criteria for fiat money to work. Money is not in limited supply. Central banks don’t target monetary aggregates M, they follow interest rate targets, letting money supply be passive. Moreover, money demand is falling apart. The supply of inside moneys and transactions innovations that reduce the use of money is essentially unlimited. Most legal transactions are handled with check, credit card, or wire transfer. Our transactions system more closely resembles an accounting system with debts periodically netted. Even reserves (accounts banks hold at the Federal reserve, and use to make payments to each other) now pay interest, so there is no special transactions demand – assets held anyway for savings purposes have perfect liquidity. $MV = Py$, pure fiat money demand and limited supply, with passive fiscal policy, is just not a candidate to describe inflation in a modern economy.

However, monetarist thinking has always recognized monetary-fiscal coordination, much more deeply than new-Keynesian thinking has done, perhaps because of monetarism’s so-far greater attention to history and other countries. Understanding most historical arrangements requires that we mix backing and liquidity ideas, as I put liquidity value in the government valuation equation. Coins were often valued more then their metallic content. \cite{sargent_velde_2003} offer a brilliant thousand-year history of the slow discovery of a liquidity value to backed money, culminating for them in the possibility of pure fiat money. Cigarettes and other commodities have circulated as money as well, at greater than their commodity value. Gold actually isn’t all that useful on its own, so one may really regard even gold coins and their “backing” of paper as an instance of fiat money. When government debt including money is restricted in supply and useful for transactions, it can pay lower rates of return, which changes the discount rate in the fiscal theory. And die-hard monetarists do not ignore government finance. They understand solvent government finances as a precondition for monetary control, and hyperinflations as money printing to finance out of control deficits. We study simplified extremes, but apply bits of both sets of ideas in practice.
Chapter 20

The zero bound

What happens if the nominal interest rate hits zero and stays there for years, indeed a decade or more? There had been much theory about this event, but it remained an object of speculation until it descended upon us in 2008, and on Japan two decades earlier. This event proves a decisive test of monetary theories, both in their ability to describe events and to provide useful policy advice. This event also provides an example of how one can surmount observational equivalence and the fruitlessness of formal regime-testing exercises, by analysis of episodes and which explanation makes more sense of those episodes. (This chapter summarizes and builds on Cochrane (2018) and Cochrane (2017c).)

20.1 The experiment

The decades of zero bound, immense QE and no inflation offer a classic experiment in monetary policy. Old-Keynesian thinking clearly predicted a deflationary spiral. New-Keynesian thinking clearly predicted volatile sunspot inflation. Monetarist thinking clearly predicted hyperinflation. None of these events happened. Fiscal theory of monetary policy clearly can predict stable quiet inflation at the zero bound. The key assumption is that fiscal authorities will react to deflation with stimulus, not austerity.

Starting in 2008 in the U.S. and Europe, in response to the financial crisis and deep recession, short term interest rates fell to zero and stayed there for nearly 10 years. Figure 20.1 illustrates this important episode in the U.S.
Interest rates effectively hit zero in Japan in 1995, and have been there ever since, as illustrated in Figure 20.2.

Interest rates cannot go much below zero without provoking a flight to cash, so these episodes are called the “zero lower bound” (ZLB). The term “effective lower bound” (ELB) is sometimes used as central banks seem to be able to lower some interest rates as low to -1% without provoking a flight to cash.

Clearly, in this situation, we cannot have active interest rate policy, $\phi > 1$ in $i_t = \phi \pi_t$, at least in the lower direction. Therefore, these episodes pose an important experiment for interest rate targeting theories of monetary policy.

What happens to inflation if interest rates cannot move, at least downward, if they stay at zero for many years, and are clearly expected to remain at zero for many more years? *Nothing.* The pattern of inflation in the 2008 recession was nearly identical to that in the 2000 recession, as shown. There was a decline in inflation early on in both cases, and then a quick rebound. Inflation at the subsequent long zero bound was if anything less volatile than in the earlier period, when central banks could actively move interest rates to “stabilize” the economy.
20.1. THE EXPERIMENT

Our interest-rate targeting theories of inflation make clear predictions about the zero bound. Old-Keynesian models, and the doctrines those models capture, clearly predict a deflation spiral at the zero bound. Disinflation gives us a too high real rate, that lowers aggregate demand, causing even lower inflation, the real rate rises further, and off we go.

Central bankers around the world, conventional macroeconomic policy analysts, international institutions such as the IMF, and opinion writers on the New York Times editorial page warned, correctly given their model, of this danger, a repeat of the 1930s or worse, a new great depression, and recommended larger and larger fiscal stimulus programs. Warnings that the deflation spiral could break out at any moment continued for the subsequent decade. It is a perfectly reasonable prediction. Arm yourself with the old-Keynesian spiral prediction of Figure 17.1. Consider Japan in, say, 2001, or the U.S. in late 2010. In each case, inflation is falling, and with stuck nominal rates. Real rates are rising. “Here comes the spiral” is almost an inevitable and honest conclusion.

It did not happen. It is more spectacular and visible when a theory fails to predict a big event, as Keynesian models failed with the rise and fall of inflation in the 1970s
and 1980s. But it is just as damning from a scientific point of view if a theory clearly predicts something big to happen and the world greets the prediction with silence.

The most natural conclusion: This theory is false. Inflation can be *stable* at the zero bound. By extension, inflation can be stable at an interest rate peg or with passive $\phi < 1$ policy. Stability is a core feature of the theory’s dynamics, not a minor side prediction easily fixed by model twiddles. If the stability of inflation under an interest rate peg is wrong, the theory is really wrong at a basic level. (I hedge with “can be” stable rather than “is” stable, as one episode does not prove always and everywhere. It does not tell us what else is held constant in the event. Other pegs have failed, and the one theory I have points to expectations of solvent fiscal policy as an important condition.)

New-Keynesian models with rational expectations predict that inflation is stable at the zero bound, as it is under passive policy or an interest rate peg, so they pass this first test. However, new-Keynesian models predict that inflation is indeterminate at the zero bound. There are many equilibria, and the economy can jump between them following “sunspots” or “self-confirming expectations,” as illustrated for example in Figure 16.2. The new-Keynesian model and tradition predicts that the zero bound, like passive interest rate policy or an interest rate peg, will lead to extra inflation volatility.

It did not happen. Inflation was if anything less volatile at the zero bound. The prediction of multiple equilibrium volatility is simply false. And this too is a central prediction, clearly made ahead of time. For example, the main empirical success in [Clarida, Galí, and Gertler (2000)](clarida2000monetary) is to tie volatile inflation in the 1970s to $\phi < 1$ and less volatile inflation in the 1980s to $\phi > 1$. [Benhabib, Schmitt-Grohé, and Uribe (2001)](benhabib2001sunspots) and [Benhabib, Schmitt-Grohé, and Uribe (2002)](benhabib2002sunspots) warn of volatility to come at the zero bound, and summarize the large literature repeating that warning. ([Cochrane (2018)](cochrane2018monetary) p. 194 includes a larger review with quotations.)

The most natural conclusion: This theory is false. Inflation can be *determinate* at the zero bound. By extension, inflation can be determinate at an interest rate peg or with passive $\phi < 1$ policy.

In classic monetarist thought, the zero bound is not an important constraint on monetary policy. Yes, the Fed can then no longer control the quantity of money implicitly via an interest rate target. But nothing stops the Fed from buying bonds and issuing more reserves at a zero interest rate, and letting $MV = Py$ do its work – as, a monetarist might add, it should have been doing all along anyway.
The contrary view is that at zero interest rates, or when money pays market interest, money and short-term bonds become perfect substitutes. Velocity becomes (if it was not already) a meaningless ratio of nominal income to whatever split of government debt between reserves and treasurys the Fed chooses. \(Py = MV \) becomes \(V = Py/M \).

This issue was central to the monetarist vs. Keynesian debates of the 1950s and 1960s. Keynesians thought that at the zero interest rates of the great depression, money and bonds were perfect substitutes, so monetary policy – buying bonds, issuing money in return – could do nothing. They advocated fiscal stimulus instead, though without the “unbacked” that a fiscal theorist might add. They called it the “liquidity trap,” a pejorative, not the “Friedman rule of optimal money.” Monetarists held that additional money, even at zero rates, would be stimulative, that even at zero rates velocity would not move arbitrarily downward in response to open market operations that raise \(M \). The Fed’s failure to provide or allow additional money in the 1930s deflation was, to them, the great policy error of that decade. In the postwar era of positive interest rates, with zero interest on reserves, there was really no way to tell these views apart.

Starting in 2009, with interest rates effectively zero, the Fed embarked on a massive quantitative easing experiment, shown by the dramatic rise in bank reserves in Figure 20.1. Bank reserves rose from $10 billion on the eve of the crisis in Aug. 2008 to $2,759 billion in Aug. 2014, a 30,000% increase. Europe, the U.K. and Japan followed similar policies. Monetarists and Wall Street Journal opeds predicted hyperinflation, correctly given a monetarist model. It’s hard to ask for a clearer experiment.

\textit{It did not happen.} Inflation trundled along a bit less than 2%. If you look at it is hard to see any effect of these QE operations at all. Two out of three corresponded with slight increases in long-term interest rates. But overall long-term rates and inflation continue a decades-long downward trend untroubled by the zero bound, QE, or any of the other radical innovations of the era. More generally, the zero bound does not seem to be a state variable for any change in macroeconomic dynamics.

The most natural conclusion: This theory is false. Reserve demand is a correspondence, not a function when reserves pay market interest rates; reserves and short-term debt are perfect substitutes; there is no tendency for velocity to revert to some “stable” value; arbitrary quantities of zero-cost reserves in exchange for treasury debt do not cause inflation. By implication and continuity, \(MV = Py \) will not work for positive nominal rates, at least so long as reserves continue to pay close to market
CHAPTER 20. THE ZERO BOUND

interest rates.

The immense size of the experiment avoids conventional objections – perhaps there was a contemporaneous “velocity shock” such as those alleged to move money demand in the 1980s; perhaps nominal GDP would have fallen had the Fed not increased reserves, perhaps we can see a few basis points of effects here and there. A 30,000% increase in reserves is a monetary hydrogen bomb, not a firecracker. If you’re arguing about basis points, the battle is lost.

By contrast, we have in hand a theory which is perfectly compatible with a long-lasting quiet zero bound: the fiscal theory of monetary policy. Add active fiscal policy to the new-Keynesian model, and we predict that inflation is stable and determinate at the zero bound.

The key fiscal assumption behind this result is that were a deflation to break out, our fiscal authorities would not respond with sharp tax increases and spending cuts in order to pay a windfall real profit to nominal bond holders. They will if anything respond with fiscal “stimulus” programs and do everything in their power to convince us that the fiscal stimulus is unbacked in order to create inflation. And this is exactly what they did. This is exactly what went wrong in 1933 ([Jacobson, Leeper, and Preston (2019)]) when the gold standard forced an expected fiscal contraction to meet deflation, until the Roosevelt Administration jettisoned gold. So we have a twin theory of why deflation did not break out in 2008, and why it did break out in 1933.

The second key assumption, ruling out inflation, is that bondholders have confidence that debt will be repaid. Just where that confidence comes from is harder to pin down. However, the zero bound era included negative real interest rates, negative real interest costs, and the emergence of the \(r < g \) view that government debt never has to be repaid. Technically, low discount rates help us to understand the lack of fiscal inflation at the zero bound, but warn us that higher real rates could undermine that quiet.

The three theories are hard to tell apart in normal times, when nominal interest rates vary. The long zero bound and immense QE are thus an especially important experiment which can distinguish otherwise apparently observationally equivalent theories.
20.1.1 Occam

Ex-post patches, epicycles, and extensions to standard theories can be adduced to explain the long quiet zero bound. Occam’s razor suggests that these are fragile paths to follow, when a simple theory lies before us.

Nothing is so simple in a non-experimental science. Surely there are many excuses one can make for this grand failure, or ways to patch up the theories to repair these Titanic-sized holes in their hulls.

Perhaps inflation really is unstable, but artful quantitative easing offset the deflation spiral with just enough hyperinflationary money to give the appearance of stability. Perhaps wages are much “stickier” than we thought, or money takes decades long time to leak from reserves to broader aggregates, so we just need to wait a bit more for unstable inflation to show itself. Perhaps we experienced the proverbial seven years of bad luck, Europe twelve, and Japan twenty-five. Survey expectations and the Fed’s forecasts featured a quick escape from zero interest rates every year of the zero bound. Perhaps expectations of active policy a few years out led to a determinate inflation. Perhaps there just weren’t any sunspots in the 2010s, and there happened to be a lot of sunspots in the 1970s. The economy doesn’t have to move around when there are multiple equilibria.

There is much opinion that expectations are “anchored.” But anchored by what? And why was that force absent in the 1970s? If anchoring was going to work this time, why did economic researchers not know that fact, and opine to forget about deflation spirals or monetary hyperinflation, and not worry about the zero bound?

All of these arguments have been seriously presented as explanations for the astonishing quiet at the zero bound. (Again, Cochrane (2018) includes a review.) All are logical possibilities. But Occam’s famous razor suggests, why not take the pre-existing, really simple explanation?

20.2 Zero-bound puzzles

The standard new-Keynesian approach to the zero bound selects equilibria by active policy after the zero bound period is over. I introduce the approach. It retains and worsens several problems of the active-money regime. Beliefs about active policy years in the future are even harder to substantiate than active policy today. This approach produces a big deflation early in the zero bound period, which did not
happen. It requires a large fiscal contraction, which also did not happen. Fiscal
theory picks the zero-bound equilibrium by initial inflation, not final inflation, and
therefore does not predict a big deflation jump.

The new-Keynesian approach produces several puzzles, resulting from the fact that
dynamics are unstable backwards at the zero bound. Forward guidance promises of
bit more inflation at the end of the trap have large immediate stimulative effects.
The effect is larger for promises about events further in the future. Deliberate capital
stock destruction, technical regress, and wasted government spending all improve
inflation and output, with large multipliers. All of these strange effects are larger as
pricing frictions decrease, without limit. But at the frictionless limit point, deflation,
recession and all the policy puzzles disappear. A fiscal approach, requiring us only
to bound the size of a fiscal contraction that comes with the zero bound, solves all
these puzzles and produces a smooth frictionless limit.

I review proposals to solve the puzzles without active fiscal policy by reverting to
complex models of irrational expectations. These proposals require large amounts
of irrationality and sticky prices, and bring back the problems of the old-Keynesian
model. Until the new rules for expectations are verified throughout economics, it is
not logically consistent to use them just to solve zero bound puzzles.

At the zero bound $i_t = \phi(\pi_t - \pi^*_t)$ can no longer select equilibria. In one strain
of new-Keynesian zero-bound literature, expectations of future active, destabilizing,
policy rules take the place of responses to current inflation to select equilibria while
interest rates are stuck at zero.

In these models, the economy eventually leaves the zero bound, either deterministi-
cally or stochastically. A destabilizing policy rule selects a unique locally-bounded
equilibrium in that future state. Modelers then tie equilibria during the zero-rate
period to the following equilibria, and thereby eliminate indeterminacies during the
(also summarized in Cochrane (2014a)) are good examples.

These papers make an important point, that current policy is not definitive about the
regime, i.e. which variable will explode at off equilibrium prices. But they introduce
a range of truly puzzling predictions.
20.2. ZERO-BOUND PUZZLES

1. **20.2.1 Removing sunspots?**

One could use the future selection scheme to argue that the new-Keynesian model does not, after all, predict sunspot volatility at the zero bound. Here is a concrete example, using the simplified IS model from Section 16.1,

\[x_t = -\sigma(i_t - E_t\pi_{t+1} - u_{r,t}) \]
\[\pi_t = E_t\pi_{t+1} + \kappa x_t. \]

I will call \(u_{r,t} \) a “natural rate” disturbance. Formally, one can model this shock as an increase in impatience, leading to a desire to save, perhaps due to precautionary saving. Such a shock is a common stand-in to model the 2008 financial crisis. The central bank follows a policy rule that is active when it can be, but hits the zero bound,

\[i_t = \max [\pi^* + \phi_t(\pi_t - \pi^*), 0]. \] (20.1)

This model exhibits a piecewise-linear version of the dynamics of Figure 16.2 with an active steady state and a passive zero bound steady state (Cochrane (2018) Fig. 5).

Eliminating \(x_t \), we reduce the model to a single equation in \(\pi_t \):

\[\max [\pi^* + \phi(\pi_t - \pi^*), 0] = -\frac{1}{\sigma\kappa}\pi_t + \left(\frac{1 + \sigma\kappa}{\sigma\kappa}\right) E_t\pi_{t+1} + u_{r,t}, \] (20.2)

or

\[(1 + \phi\sigma\kappa)(\pi_t - \pi^*) = (1 + \sigma\kappa)(E_t\pi_{t+1} - \pi^*) + \sigma\kappa u_{r,t} \] (20.3)

when \(0 < \pi^* + \phi(\pi_t - \pi^*) \)

and

\[\pi_t = (1 + \sigma\kappa) E_t\pi_{t+1} + \sigma\kappa u_{r,t} \] (20.4)

when \(0 > \pi^* + \phi(\pi_t - \pi^*) \).

Now, suppose from time \(t = 0 \) to \(t = T \), there is a negative “natural rate” shock, \(u_{r,t} = -2\% \). At time \(t = T \) this natural-rate shock passes, so \(u_{r,t} = 0, t > T \), provoking a zero-bound exit. Figure 20.3 shows consequent possible paths of inflation and interest rate. Starting at time \(t = T \) the central bank enforces its 2% inflation target with \(\pi^* = 2\% \). This expectation selects the equilibrium, shown by the solid
line in the middle. Before $t = T$, while the nominal rate remains stuck at zero, inflation is stable, converging as time goes forward. But when the nominal rate becomes unstuck, alternative equilibria diverge from the inflation target π^*. We can now rule the multiple stable equilibria before $t = T$ out by the usual rules.

In sum, the expectation of future equilibrium selection policy can select equilibria even when policy must currently be passive. This is an important general point, and a warning about labeling regimes when there is a stochastic switch between active and passive.
20.2. ZERO-BOUND PUZZLES

The solid line is the selected equilibrium. The dashed lines are alternative equilibria. There is a natural rate shock $u_r = -2\%$ from time $t = 0$ to $t = T = 10$. The central bank follows a rule $i_t = \max[\pi^* + \phi_\pi(\pi_t - \pi^*), 0]$. $\sigma = 1$, $\kappa = 1/2$, $\phi = 2$, $\pi^* = 2\%$.

Figure 20.3: Selection by future policy rules. Top: Inflation. Bottom: Interest rates. The solid line is the selected equilibrium. The dashed lines are alternative equilibria. There is a natural rate shock $u_r = -2\%$ from time $t = 0$ to $t = T = 10$. The central bank follows a rule $i_t = \max[\pi^* + \phi_\pi(\pi_t - \pi^*), 0]$. $\sigma = 1$, $\kappa = 1/2$, $\phi = 2$, $\pi^* = 2\%$.

This equilibrium-selection scheme has many troubles. As in all active monetary policy rules, inflation-expectation “anchoring” does not occur because the Fed is expected to stabilize inflation around the inflation target, but because the Fed is expected to destabilize inflation should it diverge from the target. Now this threat is removed from current events to the far future – not “Eat your spinach or there won’t be dessert,” but “Eat your spinach or there won’t be dessert next year.”

Equilibria in which inflation undershoots the time-T target π^* return back to zero inflation and zero interest rates. These equilibria are locally unstable around the target π^* and thus $\pi_t = \pi^*$ is the only locally bounded equilibrium, but they are not globally unstable, so $\pi_t = \pi^*$ is not the only globally bounded equilibrium. The rationale for ruling them out remains tenuous.

If this is the answer for the quiet inflation of the 2010s, why not the 1970s? If inflation was quiet in the 2010s because people knew that when, someday, we exit the bound, active policy will return to select equilibria, why did people in the 1970s not know that an era of active policy would return, as, the story goes, it did in 1980? Working backwards, that expectation should have removed self-confirming fluctuations in the 1970s, and Clarida, Galí, and Gertler (2000) should have found nothing.

20.2.2 Deflation jump

Figure 20.3 illustrates a predictive failure of this model. It predicts a jump to deflation at $t = 0$ when the shock hits, which then rapidly improves. This sharp deflation on entering the zero bound is a generic feature of new-Keynesian models, paralleling the “spiral” prediction of old-Keynesian models. (Some authors indeed refer to my “jump” as a “spiral,” though this terminology may reflect the frequent use of old-Keynesian intuition to describe new-Keynesian equations. Terms are not used the same way by everyone.)

The downward jump did not happen. You can smell the resolution coming: a deflation jump requires a strong “passive” fiscal contraction, to pay a windfall to bondholders. That contraction does not happen, so the jump does not happen.

To display this behavior and other features of the model more carefully, I use a continuous-time model from Section 5.7. The model comes from Werning (2012) and this section is based on Cochrane (2017c). The IS and Phillips curves are

$$\frac{dx_t}{dt} = \sigma (i_t - \pi_t - u_{r,t})$$

(20.5)
Here, $u_{r,t}$ is the natural rate, and g_t is a Phillips curve disturbance discussed below. Among other purposes we will verify that the analysis of the last section using a static IS curve does not mischaracterize the model.

Suppose again that starting at $t = 0$, the economy suffers a negative natural rate $u_{r,t} = -2\%$, which lasts until time $t = T = 5$ before returning to a positive value. The equilibrium nominal interest rate is zero up to period T, and then rises back to the natural rate $i_t = u_{r,t} = 0$, for $t \geq T$. I use $\rho = 0.05$, $\sigma = 1$ and $\kappa = 1$. Then, I find the set of output $\{x_t\}$ and inflation $\{\pi_t\}$ paths that, via (20.5) and (20.6), are consistent with this path of interest rates, and do not explode as time increases. Specifying directly the equilibrium path of interest rates does not mean that I assume a peg, that interest rates are exogenous, or that I ignore Taylor rules or other policy rules. Adding active monetary policy after the end of the trap

\[i_t = i_t^* + \phi(\pi_t - \pi_t^*) \quad (20.7) \]

will select the chosen i_t^*, π_t^* as a unique equilibrium, just as in the last section. Werning (2012) innovated this clever way of solving new-Keynesian models. It seems obvious only in retrospect, when we understand the separation of monetary policy into interest rate policy and equilibrium selection policy.

We solve the model as in Section 25.12. (See Cochrane (2017d) for detailed algebra.) The forward-stable solutions are

\[\pi_t = Ce^{-\lambda^t} + \frac{1}{\lambda^f + \lambda^b} \left[\int_{s=-\infty}^{t} e^{-\lambda^b(t-s)} z_s ds + \int_{s=t}^{\infty} e^{-\lambda^f(s-t)} z_s ds \right], \quad (20.8) \]

where

\[z_t \equiv \kappa \sigma(i_t - r_t) + \kappa \frac{d g_t}{dt} \quad (20.9) \]

and

\[\lambda^f \equiv \frac{1}{2} \left(\sqrt{\rho^2 + 4 \kappa \sigma} + \rho \right), \quad \lambda^b \equiv \frac{1}{2} \left(\sqrt{\rho^2 + 4 \kappa \sigma} - \rho \right). \]

From (17.2), then, the output gap follows

\[\kappa x_t = -\kappa g_t + \lambda^f Ce^{-\lambda^b t} + \frac{1}{\lambda^f + \lambda^b} \left[\lambda^f \int_{s=-\infty}^{t} e^{-\lambda^b(t-s)} z_s ds - \lambda^b \int_{s=t}^{\infty} e^{-\lambda^f(s-t)} z_s ds \right]. \quad (20.10) \]
I set to zero multiple forward-explosive equilibria corresponding to a second free constant $C_f e^{\lambda_f t}$. As before, we can argue about that, but let’s play by the rules of the game. For the same equilibrium interest rate path, there remain multiple forward-stable equilibrium inflation paths, indexed by the free constant C. These formulas are perfect foresight solutions. As such, they capture the impulse-response function, and the path of expected values in a stochastic model. In the case of an unexpected shock, the economy jumps from zero to these solutions on the date that the shock is known.

Figure 20.4: Inflation in a range of equilibria. There is a 2% negative natural rate shock leading to zero interest rate between $t = 0$ and $t = 5$, indicated by vertical dashed lines. The thick lines show three equilibria discussed in the text. Boxes indicate the inflation choice which selects equilibria. Thinner lines show a range of additional possible equilibria.

Figure 20.4 shows inflation in a range of such equilibria, when the shock $u_{r,t}$ is realized at time 0, generated by a range of values for the free constant C. These are multiple possible equilibria of the same model (20.5)-(20.6), with the same interest rate and natural rate path. We now use either active fiscal or active monetary policy, and a specification of that policy, to pick one of these equilibria, and the free constant C.
The standard new-Keynesian approach to this problem picks the equilibrium with zero inflation on the date that the trap ends, \(\pi_T = 0 \), shown as the lower solid line and with a square at \(\pi_T = 0 \) to emphasize that this point is used to select the equilibrium. As Werning explains, a central bank that cannot precommit will choose this equilibrium: Inflation \(\pi_t = \pi^* \) is its target, and at time \(T = 5 \) and beyond, when active policy is again possible, the central bank will choose that value. More importantly, people expect the central bank to follow its target as soon as it can, which means people expect \(\pi_T = \pi^* = 2\% \) the moment the central bank is able to do it.

This equilibrium shows a large deflation jump at time \(t = 0 \), and a large output gap, shown as the thick dashed line in Figure 20.5 below, during the liquidity-trap period \(0 < t < T \). We also see strong dynamics - deflation steadily improves, and expected output growth is strong. The forward-looking Phillips curve produces a large output gap when inflation is lower today than in the future. This equilibrium does not show an unstable deflation “spiral,” in which a small deflation grows bigger over time. This equilibrium also does not produce a “slump,” a large but steady output gap and steady but low inflation. It thus misses the crucial features of the episode, except the sharp and strong recession of 2008.

A fiscal theorist picks the equilibrium by the fiscal innovation at time \(t = 0 \) when the shock hits (\(\Delta_0 \pi_0 \) or \(\Delta E_1 \pi_1 = -\varepsilon_{s,1} \) in discrete-time notation) not by expected equilibrium-selection threats at time \(T \) and beyond. The fiscal theorist looks at the \(\pi_T = 0 \) equilibrium, and notices that the deflation jump must correspond to a huge fiscal contraction. The fiscal theorist notices that is a strange specification of fiscal policy expectations. If anything, the natural rate shock accompanies an expected fiscal expansion, not contraction, stimulus, not austerity.

To keep it simple, and to illustrate the power of choosing equilibria by the behavior of inflation at time 0 by fiscal considerations, I focus on the equilibrium with innovation to the present value of surpluses, and hence no inflation jump, \(\pi_0 = 0 \). This equilibrium is shown by the middle solid line, with a square at \(\pi_0 = 0 \) to remind you this is the criterion that selects the equilibrium.

Observational equivalence still holds. The fiscal theorist could pick the new-Keynesian’s \(\pi_T = 0 \) equilibrium, by specifying the same fiscal contraction, just “actively” rather than “passively.” But it would be unreasonable to do so. The new-Keynesian could pick the \(\pi_0 = 0 \) equilibrium by specifying that the central bank will enforce a “glide path” of inflation after the trap. The difference between models is really, primarily, what joint fiscal and monetary policy actions seem reasonable when you approach
the event with each hat on.

In the no-jump, $\pi_0 = 0$, equilibrium, the declining natural rate is met by a slight increase in inflation during the trap episode. With slight inflation, a stuck nominal rate can still produce the reduction in real interest rate that a low natural rate requires. This is an often-missed general point: If the natural rate declines, people often assume the nominal interest rate must fall to meet it, and the zero bound may get in the way. No, inflation can rise instead, and does here. The no-jump equilibrium does not produce a deep recession, since it does not produce a strong real rate change, or a strong deflation response, via the Phillips curve.

Is the counterfactual quiet a fault? Well, in the absence of a huge but rapidly improving deflation, which we did not see, this Phillips curve is going to produce a deep recession. The recession was arguably caused by the supply and credit disruptions of the financial crisis, not by inflation (deflation) via Phillips curve mechanics. To be fair, the standard new-Keynesian equilibrium selection was also chosen in order to produce a deep recession and think about solving it. But it’s just impossible in this model to produce a deep recession without deep but improving deflation, and it’s impossible to produce that without a fiscal contraction.

In sum, the fiscal theory picks equilibria by their behavior at time 0, not at time T. By specifying that there cannot be a big fiscal contraction at time 0, the most natural fiscal theory approach to the episode removes the troublesome prediction of a huge deflation.

The standard approach is doubly troubling, and thereby revealing of the modeling approach. Does all concrete action of monetary policy really vanish, leaving only expectations of far-future off-equilibrium threats behind? Did Japan really avoid this deflation jump in 2001 because people expected some sort of explosive promises around a 2% inflation target to emerge and select equilibria, maybe sometime in 2030 when Japan finally exits zero rates? Did 1933 work because people expected equilibrium-selection policy starting in 1940? The ability to select equilibria by future active policy is a logical extension of the theory. There is no real reason to insist on $i_t = i_t^* + \phi(\pi_t - \pi_t^*)$, except historical tradition stemming from Taylor’s description of U.S. Fed historical behavior in the 1980s. But it leads us to a strange place!

The equilibria in Figure 20.4 are all stable forward, which means they are unstable backward. As time goes back before 0, or as we move the length of the zero bound episode T to the right, the new-Keynesian deflation blows up. The fiscal theory which limits the size of the time-0 jump eliminates this backward explosion. This behavior does not just fix the deflation jump prediction, but solves a range of additional
20.2. ZERO-BOUND PUZZLES

20.2.3 The puzzling frictionless limit

In the standard new-Keynesian approach, the deflation gets worse without limit as prices become less sticky. Then at the limit point of flexible prices, deflation and recession discontinuously disappear. With a fiscal-theory equilibrium choice that limits the inflation jump at time 0, deflation and recession get steadily better as prices become flexible, and the flexible-price limit is smooth.

Prices become more flexible as \(\kappa \) increases, and \(\kappa = \infty \) is the flexible-price case. With fully flexible prices, the output gap from (20.6) is \(x_t = 0 \) for any value of inflation. In (20.5), if \(x_t = 0 \) then \(dx_t/dt = 0 \) and we must have \(i_t - u_{r,t} = \pi_t \). This is just the linearized Fisher relationship, which becomes the entire model. Thus, when the natural rate shock \(u_{r,t} = -2\% \) hits, inflation simply jumps up to \(\pi_t = 2\% \) for the period of the shock, returning to \(\pi_t = 0 \) the minute the shock ends. Inflation in the frictionless world rises to exactly equal to the negative natural rate, all on its own without extra prodding by the central bank, producing the required negative real rate to accommodate the natural rate shock. There is no output gap.

The dashed lines in Figure [20.5] show how solutions with the standard equilibrium choice \(\pi_T = 0 \) behave as we reduce price frictions, raising \(\kappa \). Deflation and (not shown) output gaps become larger as price stickiness is reduced: As pricing frictions decrease, dynamics happen faster. Faster backward explosions, tethered to \(\pi_T = 0 \), imply more deflation and lower output at \(t = 0 \). Although price stickiness is the only friction in this economy, structural reform to reduce price stickiness would only make matters worse. For example, Eggertsson, Ferrero, and Raffo (2014a) argues against structural reform in a zero-bound recession for this reason.

Despite this infinite limit, the limit point of the frictionless equilibrium is well-behaved at two percent inflation and no output gap. The model with \(\pi_T = 0 \) equilibrium selection thus displays a puzzling discontinuity. Tiny price stickiness has arbitrarily huge effects, but zero price stickiness has no effect.

By contrast, in the no-inflation-jump \(\pi_0 = 0 \) equilibria, the hat-shaped inflation response shown in Figure [20.4] smoothly rises to fill out a square function, 2% inflation from \(t = 0 \) to \(t = T \). “Faster dynamics” just means an easier time of going around the corners. As a result, \(\varepsilon \) price stickiness implies \(\delta \) deviation from the frictionless result. Any criterion that limits the time-0 inflation jump and its underlying fiscal...
Figure 20.5: Output and inflation in the standard $\pi_T = 0$ equilibrium. The thick lines show a price-stickiness parameter $\kappa = 1$. The thick solid line is inflation π and the dashed solid line is output x. The thin dashed lines plot inflation as the price-stickiness parameter κ is increases (prices become less sticky) from 1 to 2, 5, and 20.

Though there are second-best results in economics, that slightly improving the cause of an undesired effect makes it worse, they are generally pathological especially in such a simple model with only one friction. A smooth frictionless limit is an important feature of economic models. That is, of course, an esthetic choice. One person’s pathology is another’s appetizing invitation for clever policy.

20.2.4 Forward guidance

Looking across equilibria in Figure 20.4 and selecting equilibria based on inflation at time T, inflation at time 0 is sensitive to its expectation at time T. The mild no-jump $\pi_0 = 0$ equilibrium has only slightly higher inflation at time T than the original $\pi_T = 0$ equilibrium. If only the central bank could precommit ex-ante to
allow a very small amount of inflation that it will ex-post regret, a “glide path” back
to its target, then the huge deflation and its associated recession would be solved.
Without getting into the contentious issue of whether central banks, which refuse to
tie themselves to rules, are able to precommit to actions they will later regret, let us
think about the power of such promises.

Woodford (2012) gave a highly influential talk at the annual Jackson Hole conference,
highlighting the power of such forward guidance to stimulate immediately in this sort
of model. Forward guidance has since become a core strategy of central banking.
For example, the 2020 Federal Reserve Strategy Review (Federal Reserve Board of
Governors (2020)) prominently advertises a period of inflation slightly higher than
the usual 2% target after zero bound exit, intended to stimulate immediately. The
review also emphasizes forward guidance as a generally powerful and important part
of the Federal Reserve’s “tools” for stimulating. A cynic might say that a theory
describing immense power of speeches by central bank officials, offering promises
about a far-off future, but requiring no action today, might be a little too well
received in central banks.

The warm reception of such forward guidance analysis in central banks is awkward,
as the immense power of forward guidance has since become a puzzle to be solved
and eliminated in academic work. For forward guidance as described by this model
is too powerful. The solutions picked by inflation at time T all explode backwards.
Promises further in the future have greater effects today. A promise of one basis
point more inflation in 2100 would cure any recession today. Moreover, as prices
become less sticky, the backward explosions happen faster, and forward guidance
has greater and greater effect. Until all of a sudden at the limit point of flexible
prices, forward guidance has no effect at all. Indeed, Garcia-Schmidt and Woodford
(2019) and Gabaix (2020), reviewed in more detail later, undertake a deep surgery of
new-Keynesian models to try to remove this evidently troublesome prediction.

(To some extent central bankers view forward guidance about the short rate as a
way to drive down long rates via the expectations hypothesis, and thus to provide a
bit of stimulus to investment spending today. That’s a different mechanism.)

Any equilibrium-selection strategy that picks the equilibrium by the inflation jump
at time 0, including fiscal theory, will not display these paradoxes of forward guid-
ance.

Rather than directly raise the inflation target at time T, Woodford (2012) and Wern-
ing (2012) investigate a policy that commits to delaying an interest rate rise for some
time after T. This commitment has the same effect, the same puzzles, and is similarly
solved by tying down the inflation jump at time 0. (Cochrane (2017c) Figure 6 and 7 present calculations.)

The sensitivity of inflation and output at time 0 to forward guidance promises about equilibrium selection policy at time \(T \) also means that any source of variation in inflation expectations at the trap end has dramatic effects on inflation and output during and especially at the beginning of the trap episode. Any uncertainty about the Fed’s policy, or other sources of time \(T \) inflation explode backwards as well.

20.2.5 Magical multipliers and Bastiat banished

The standard new-Keynesian equilibrium choice has additional puzzling – or tantalizing, depending on your tastes – predictions. Government spending, even if totally wasted, can have immense multipliers. Technical progress is bad, and deliberate reduction in productivity can stimulate the economy. Bastiat’s broken window fallacy becomes powerful stimulus. Again, these effects result from the backward-explosive solutions, which in turn result by choosing equilibria at time \(T \). These effects are reversed by fiscal theory, or any other rule that limits the time-0 inflation jump. These predictions have been seriously advanced as guides to policy at the zero bound.

To see how these predictions emerge, I add a disturbance \(g_t \) in the Phillips curve (20.6),

\[
\frac{d\pi_t}{dt} = \rho \pi_t - \kappa (x_t + g_t),
\]

Following Werning (2012) and Wieland (2019), the variable \(g_t \) can represent government spending. It also can represent deliberate destruction of capital or technological regress – changes that increase marginal costs and therefore shift the Phillips curve directly. These policies increase inflation for a given output gap. The higher inflation reduces the real interest rate and consumption growth. Assuming a return to trend, reducing consumption growth increases the current level of consumption.

Solving the IS equation (20.5) forward, we have

\[
x_t = - \int_0^\infty \frac{dx_{t+s}}{ds} ds = - \int_0^\infty \sigma (i_{t+s} - u_{t+s} - \pi_{t+s}) ds.
\]

Expected future inflation is the key for stimulus in this model, not current inflation, or unexpected current inflation. Similarly, since output is demand-determined in the model, wealth or capital destruction does not directly affect output or consumption.
20.2. ZERO-BOUND PUZZLES

This new-Keynesian multiplier is utterly different from static Keynesian intuition. The static Keynesian multiplier results because more income generates more consumption which generates more income. In this new-Keynesian model, the marginal propensity to consume is effectively zero, as the consumer is intertemporally unconstrained and there are no permanent changes in the level of consumption. Fiscal policy acts entirely by creating future inflation, affecting the intertemporal allocation of consumption.

I specify that $g_t = g$ during the trap, for $0 < t < T$, and $g_t = 0$ thereafter. I examine how increasing g affects equilibrium output and employment by the multiplier $\partial x_t / \partial g$ evaluated at $g = 0$. To find the multipliers, I take the derivative with respect to g of the solution (20.10), including where needed the derivative of c with respect to g, evaluated at $g = 0$.

![Figure 20.6: Output multipliers with respect to a Phillips curve disturbance g. The graph plots the derivative $\partial x_t / \partial g$ for an increase in g through the trap period $0 < t < T$. Thin dashed lines show multipliers for price stickiness $\kappa = 2, 5, 20$.](image)

Figure 20.6 presents these multipliers. For the standard $\pi_T = 0$ equilibrium, multipliers are large and substantially greater than one. Such eye-popping multipliers are also generated by the quantitatively serious papers cited above. Normally economists fight about multipliers between 1 and 1.5. Multipliers of 10 or more seems available.
CHAPTER 20. THE ZERO BOUND

at the lower bound.

The multipliers increase exponentially as the length of the liquidity trap increases, moving to the left. Not shown, but clear from the dynamics, spending or output destruction in the future is exponentially more effective than spending today. Multipliers increase as price stickiness is reduced. In the limit that price stickiness goes to zero, the multiplier goes to infinity. Very small amounts of price stickiness generate very large multipliers. The multiplier is -1 at the limit point, however, since \(x_t = -g_t \). All of these predictions flow from forward-stable, and backward-unstable dynamics.

By contrast, the multiplier in the no-jump \(\pi_0 = 0 \) equilibrium is small, and clustered around the frictionless value -1, as its output gaps are small. As price-stickiness is reduced or the period of the trap lengthens the no-jump equilibrium multipliers converge smoothly to -1. (The frictionless multiplier is -1 not 0. The variable \(x_t \) represents private consumption, so government spending drives down private consumption one for one.)

In sum, large multiplier predictions are direct results of equilibrium choice. The no-jump or backward-stable equilibria produce government-spending or productivity-reduction, cost-increase multipliers that are, if anything, lower than conventional wisdom, and more in line with the complete crowding-out or supply-limited results of equilibrium models.

20.2.6 Literature and patches

The zero-bound predictions of the new-Keynesian model and these astonishing policy prescriptions were taken seriously. What may seem paradoxically large is, from another point of view, an intoxicating possibility to end a damaging recession with some speeches, a bit of promised spending, or rolling back structural reforms and destroying some capital stock. Among others, Woodford (2011), Christiano, Eichenbaum, and Rebelo (2011), Eggertsson, Ferrero, and Raffo (2014b), Eggertsson (2010) and Eggertsson (2011). Wieland (2019) begins with a quote

“As some of us keep trying to point out, the United States is in a liquidity trap: [...] This puts us in a world of topsy-turvy, in which many of the usual rules of economics cease to hold. Thrift leads to lower investment; wage cuts reduce employment; even higher productivity can be a bad thing. And the broken windows fallacy ceases to be a fallacy:
something that forces firms to replace capital, even if that something
seemingly makes them poorer, can stimulate spending and raise employ-
ment.” – Paul Krugman, 3d September 2011.

Wieland includes a more comprehensive review of papers that advance the para-
doxes as useful policies. Wieland offers a negative empirical evaluation, showing
that the East Japan earthquake and oil supply shocks were contractionary at the
zero bound.

But the predictions were also quickly seen as policy paradoxes, indicating problems
with the model that need fixing. Rather than adopt fiscal theory, which as we have
seen solves the puzzles quickly, authors turned to rather severe modifications of the
basic new-Keynesian model.

At heart, as I digest them, these modifications move the new-Keynesian model back
towards the old-Keynesian model with stable backward, unstable forward dynamics.
The puzzles come, basically, from the forward stable / backward unstable dynamics
of the rational expectations model, that my graphs blow up from right to left. But
changing the basic stability and determinacy properties of a model is not a little
patch, it is heart surgery. A small change in system eigenvalues will do no good:
Eigenvalues must switch from greater to less than one. And then we recover all the
failures of the old-Keynesian model.

Gabaix (2020) is an excellent and concrete example. Gabaix uses a model of rational
inattention to argue that people and firms pay less attention to expectations of future
income and future prices than they should. In the end, he modifies the standard IS
and Phillips curves to

\[x_t = M E_t x_{t+1} - \sigma (i_t - E_t \pi_{t+1}) \]
\[\pi_t = M^f \beta E_t \pi_{t+1} + \kappa x_t \]

where \(M \) and \(M^f \) are less than one. For sufficiently low \(M \) and \(M^f \), Gabaix pro-
duces traditional forward-explosive, backward stable dynamics under a peg. In this
way, Gabaix’ model can be seen as a behaviorally micro-founded version of the old-
Keynesian model studied above. Gabaix also uses the model to generate a negative
sign of inflation to interest rate increases.

But to get these traditional signs, Gabaix must change the stability properties of the
model. As one starts to lower \(M \) and \(M^f \), nothing happens at all until the eigenvalues
cross one. Cochrane (2016) finds that one needs \(M \) less than a half, together with
substantial price stickiness \(\sigma \kappa \) less than about a half, to cross that boundary. Thus,
Gabaix’s result is bounded away from rationality. It is also bounded away from the frictionless price limit. As prices become less sticky, new-Keynesian dynamics always reappear. A little bit of irrationality or price stickiness will not do.

Gabaix’ model remains unstable, like the old-Keynesian model – that’s the point – and so does not accommodate the long quiet zero bound without a second complex patch (Section 5.3, and appendix Section 9.2). It is at least esthetically more pleasing if long-run neutrality describes the simple form of a model, and dynamics the result of patches, rather than the other way around.

Gabaix’ model is based on a complex and fundamental change in how people form expectations, Gabaix (2014). García-Schmidt and Woodford (2019) resolve the zero-bound paradoxes with an even more complex model of expectations formation, which denies the validity of perfect-foresight modeling. Kiley (2016) provides a good survey of these policy paradoxes and advocates a Mankiw and Reis (2002) “sticky expectations” model, which puts lagged information in the Phillips curve to take us back to old-Keynesian stability and determinacy properties.

It is certainly not necessary or wise to insist on rational expectations at every data point. One should certainly consider somewhat slow to adjust expectations as icing on the cake to match episodes and dynamics. Rational expectations analyses that require agents to know the structural model of the economy, rather than learn from experience, are naturally more fragile. But we are looking here at the opposite side of that coin: the fundamental, underlying, long-lasting, basic economic nature of money and the price level; the central mechanism on which all of policy analysis depends. Are we really satisfied if that basic foundation relies crucially on non-economic, systematically irrational behavior, or complex models of expectation formation? Moreover, if we need a new model of expectation formation, then we can’t just dredge that up once to solve zero-bound puzzles and put it away again. We have to take that model seriously throughout macro and micro economics, rewrite it all, and see that it all still makes sense. If we do not, or if that project does not pan out, the zero-bound fixes are empty.

Occam responds: Perhaps. Or, perhaps one should take seriously the simplest answer: The fiscal foundations of the puzzles don’t make any sense. The puzzles specify dramatic and counterfactual “passive” fiscal responses. All you need is a limit on the time-zero inflation jump, inspired by fiscal coordination, to make the puzzles go away, without reviving the failures of the old-Keynesian model or creating a model that must fall apart if prices get less sticky or people get more smart.
20.3 Zero bound summary and implications

The zero bound has been traditionally thought of as a bad state, a “trap” to be avoided, threatening instability, sunspot volatility or stagnation. The long quiet zero bound, and the fiscal theory interpretation, question that judgement. Perhaps we can live the optimal quantity of money after all.

In sum, the zero bound is a non-event to a fiscal theory of monetary policy. Inflation is stable and determinate at the zero bound. Either at or away from the zero bound, the economy is stable forward. Expectations of far-off events have little effect today, the economy has a smooth frictionless limit, and the limit equals the limit point. Stickier prices and broken windows do not help.

In the old-Keynesian view, the zero bound constantly threatens a deflation spiral. In the new-Keynesian view, the zero bound threatens a deflation jump, and then opens the door to almost magical policies. But neither the jump nor the spiral ever happened. Large government spending, many productivity-reducing policies, and a robust program of central banker promises did not interrupt a decade of steady low inflation and slow growth. The fiscal theory’s insight cuts off all the danger, and all the intoxicating fun for activist policy at the zero bound.

The central fiscal insight is that inflation is tied down, \(\pi_0 \) is determined in these simulations, by fiscal policy. A big deflation requires a big fiscal austerity. Governments don’t do that.

To a fiscal theorist, monetary policy was passive all along, so the zero bound just means a slight change in the ability of monetary policy to smooth shocks by varying interest rates, if that’s what it was doing, or to induce pointless volatility in expected inflation, if central banks weren’t doing that good a job. True, if some combination of real shocks and sticky prices demand a sharply negative nominal rate, it cannot be achieved, but such a negative rate is not needed to ward off instability or indeterminacy.

The long quiet zero bound, and now a theory to digest this experience, should provoke a reassessment of the zero bound, and by analogy interest rate pegs. Zero interest rates have traditionally been regarded as a horrible state of affairs, to be avoided if at all possible. Keynes called zero interest rates a liquidity “trap.” A deflation spiral and sunspot volatility retain the negative judgement. The vast literature investigates means to escape the presumably horrible fate.
Zero-bound aversion as already a curious judgement. In typical new-Keynesian models the zero bound is optimal or close to it. The zero-bound left equilibrium Π_L in Figure 16.2 has greater welfare than the desired right-hand equilibrium Π^*. Less inflation means that firms are closer to their optimal prices, and relative prices are less distorted. In new-Keynesian thinking, we prefer the less efficient equilibrium Π^* only because it is thought to be determinate, avoiding sunspot volatility. But that volatility did not occur. Zero nominal interest rates are optimal in monetarist thinking as well, being the Friedman (1969) optimal quantity of money. Again, monetarists shy away from a nominal peg at zero, I presume because it threatens a deflation spiral. Slight deflation enforced by a money growth target seems less objectionable, but monetarists did not advocate it.

Keynes and the earlier generation of Keynesians thought in static, not dynamic terms. Much of that spirit remains alive in zero-bound commentary. Commenters ascribe Japan’s slow growth to being stuck at zero interest rates and unable to stoke inflation. Others invoke “secular stagnation,” an idea last seen in 1939, that zero interest rates lead to perpetually deficient aggregate demand. But it’s awfully hard to believe that monetary non-neutralities and sticky prices and wages last thirty years. Moreover, Japan had very low unemployment most of the time, belying perpetual lack of demand. Toward the end of the zero bound era, the U.S. achieved low levels of unemployment not seen in decades. Japanese growth was slow, as was U.S. and European growth in the zero bound era. But slow growth, with low unemployment, plausibly also comes from slow productivity growth, microeconomic distortions, and lack of “supply,” not “demand.” Such slow growth leads to low real interest rates, not the other way around. In sum, it is quite possible that Japan simply lived 30 years of Friedman’s optimal monetary policy, and the U.S. and Europe a decade.

Europe and the U.S. experienced a zero bound with 1-1.5% inflation. If the real rate of interest ever becomes positive again, a zero bound will involve slow deflation, as Japan experienced for some time. Much informal commentary regards 1%-2% slow and expected deflation as a perpetual drag on growth. But that’s hard to justify that either empirically or as a matter of economics as well. The last half of the 19th century saw steady deflation, with distributional consequences, but it is not a period one associates with “secular stagnation.”

Zero bound fear is understandable historically. The memory of the previous example, the 1930s, obviously had a stokes a lot of zero bound fear. But lots of other things went wrong in the 1930s. And now we have a new contrary episode to ponder.
So, despite the long-standing prejudice that the zero bound is a horrible fate, perhaps experience and theory should open a new door: We can, in fact, live the good parts of the zero bound without fear of the undesired consequences. We can have low and stable inflation, even a steady price level, and thus remove needless noise in relative prices (new-Keynesian), shoe-leather costs of cash management (monetarists), along with tax distortions induced by inflation, inflation risk premiums, and other costs of inflation. Having solved the dynamic problems of the zero bound, we can enjoy its steady-state advantages.

The fiscal fly in the ointment remains, however. Low and steady inflation at the zero bound also requires solvent fiscal policy. Postwar interest rate pegs fell apart without fiscal support, and a peg at zero can fall apart just as easily. Just why people want to hold such vast quantities of government debt at such low real rates of return, and how long they will continue to do so, is a puzzle for our age.
Chapter 21

Observational equivalence and regimes

I have alluded to observational equivalence and some of its implications many times. Now, with the new-Keynesian and monetarist models before us, and with their equilibrium-selection rules fully spelled out, I return to clarify observational equivalence and non-identification and their implications.

21.1 Equivalence and regimes

I restate observational equivalence and the non-identification theorems in the simplest models and preview some implications.

The clearest simple example of observational equivalence for interest rate regimes comes from Section 16.4. We wrote monetary and fiscal policy rules

\[
i_t = i_t^* + \phi(\pi_t - \pi_t^*) + u_{i,t}
\]

\[
s_t = \alpha v_t^* + \gamma (v_t - v_t^*) + u_{s,t},
\]

in the context of a frictionless model with

\[
i_t = E_t \pi_{t+1}
\]

\[
\rho v_{t+1} = v_t + i_t - \pi_{t+1} - s_{t+1}.
\]
Parameters $\phi > 1$, $\gamma > 0$ generate the active-money, passive-fiscal regime. Parameters $\phi < 1$, $\gamma = 0$ generate the active-fiscal, passive-money regime.

The clearest simple example for monetary control regimes comes from Section 19.1. Simplifying further to the case that money pays interest, or that surpluses react one-for-one to seigniorage, we have

$$M_t V_t = P_t y_t,$$

$$\frac{B_{t-1} + M_{t-1}}{P_t} = E_t \sum_{j=0}^{\infty} \beta^j s_{t+j}.$$

In an active-money passive-fiscal regime, the central bank controls the split of M vs. B. The quantity of money M determines the price level P, and surpluses s follow. In an active-fiscal passive-money regime, fiscal surprises control unexpected inflation, and then the central bank provides the needed money passively. We can characterize these behaviors in the policy-rule tradition: In an active-money regime, the money supply does not react one-for-one with the price level to validate any inflation or deflation. In an active-fiscal regime, surpluses do not react one-for-one with the price level to validate any inflation or deflation.

As this reminder makes clear, the “regimes” are observationally equivalent.

- The equilibrium conditions are the same in each regime. Any time series produced by an active-money/passive fiscal regime can be produced by an active-fiscal/passive-money regime and vice versa.

The regimes differ in how we imagine the government behaves away from equilibrium, when variables do not equal their starred counterparts, how monetary and fiscal authorities hash out a coordinated policy. We can’t observe that behavior in data drawn from the equilibrium. Observational equivalence is the same as non-identification.

- Without auxiliary assumptions, the parameters that separate regimes such as γ and ϕ are not identified from time series of observable equilibrium variables.

Observational equivalence does not doom fiscal theory. Observational equivalence does not imply that it is all an empty angels-on-heads-of-pins exercise. If it did so, then observational equivalence would equally doom the new-Keynesian or monetarist enterprises. An argument that fiscal theory is wrong or pointless since you can’t tell it from standard theories cuts both ways. If so, standard theories are equally wrong.
because you can’t tell them from fiscal theory or from each other. There is no
scientific burden of proof based on who came along first.

In particular, a strand of fiscal theory evaluation looks to puzzles of the government
debt valuation equation – why isn’t there inflation in Japan? – and proclaims such
puzzles as a rejection of fiscal theory. But, an instance of the last bullet point,

• The government debt valuation equation is an equilibrium condition for all of
 these models.

Any puzzle of the government debt valuation equation is equally a puzzle for interest
rate and monetarist models. It is a puzzle of debt sustainability in equilibrium, not
an indication of how that equilibrium is formed. It does not reject fiscal theory in
favor of the others, which also include this condition.

Observational equivalence is good news to the new kid on the block. Observational
equivalence means that no time series test can prove fiscal theory wrong relative to
these more established competitors. It opens the door to looking at a whole sample
in fiscal theory terms, casting out the other theories entirely.

Observational equivalence theorems abound in economics and finance. They do not
mean that the fields are empty. Observational equivalence theorems are simply funda-
mental guiding principles for logical critical thought. We often surmount observa-
tional equivalence theorems with identifying assumptions. Observational equivalence
focuses our attention on those assumptions. If your equations seem to be identifying
regimes, you must be adding assumptions somewhere. What are those assumptions?
Are they reasonable? Such assumptions are all too often hidden or implicit. By
asking the observational equivalence question, we can see what the identifying as-
sumptions are, think whether they make sense, and reconcile apparently differing
results.

Thus, observational equivalence warns us to be wary of formal time-series tests that
to try to select broad classes of models. It tells us that such tests necessarily involve
identifying restrictions. Observational equivalence per se is not the central case
against extant tests for fiscal vs. monetary regimes. The central case is that when
we look at the identifying restrictions used so far, they don’t make sense.

We have seen in the last few chapters that current passive-fiscal theories don’t ac-
tually determine the price level, rely on unbelievable behavior by governments or
central banks, or don’t correspond to current institutions. I conclude that tests of
fiscal vs. these other theories are doubly pointless. There is no complete, coherent,
and plausible alternative to fiscal theory. Observational equivalence adds, and even
if they did make sense, there is no data they can explain that fiscal theory cannot also explain.

Observational equivalence only says that time-series of observables may be produced by either class of models. It does not rule out troves of other types of evidence. Observational equivalence induces us to focus on a model’s ability to understand episodes, such as the zero bound in the last chapter. It leads us to study policy institutions directly, to read what statements, precommitments, and legal restraints central banks and treasuries make and operate under. It welcomes narrative evidence. It leads us to study moments of regime change, institutional reform, and to study government choices in terms of objectives and constraints. It leads us to measure, as I did above, the pattern of surpluses and discount rates that accounts for inflation, rather than try to proclaim no such patterns exist. It invites us to use fiscal theory as we use other theories, including auxiliary assumptions, and see which proves more useful. This is, in the end, how all theories prosper or die, not in some grand F-test.

Finance has a similar observational equivalence theorem. Marginal utility and probability always enter together in asset pricing formulas, $p = \sum_s \pi_s u'(c_s) x_s$, so “rational” ($u'$) and “behavioral” ($\pi$) finance are observationally equivalent. This is a modern version of Gene Fama’s Fama (1970) “joint hypothesis” theorem, formalized in the Harrison and Kreps (1979) theorem. Attempts to show that all “rational” asset pricing is wrong because of present value puzzles are empty. If only the law of one price holds, there exists a discount factor $\{\Lambda_t\}$ by which price is the present value of dividends

$$p_t = E_t \sum_{j=1}^{\infty} \frac{\Lambda_{t+j}}{\Lambda_t} d_{t+j}.$$

This observational equivalence has not stopped both branches of finance from productive investigation, nor does it prove that the debate is empty. But it very usefully pours cold water on endless attempts to construct a statistical test that will prove one or the other class of theory wrong. There is no interesting test of the present value relation per se – not volatility tests, not regression tests, not the hundreds of anomalies and alphas. You cannot forecast dividends, discount, and proclaim the present value formula fails because the result is not equal to the price. Any grand effort to distinguish all of “rational” vs. “behavioral” finance per se is doomed to fail.

Instead, asset pricing gets to work on the messy job of writing an economic or psychological model of the discount factor, and the stochastic process of dividends –
identification assumptions. Such models have predictive, and rejectable content. You
try power utility and aggregate consumption. It doesn’t work well. You try more
complex utility functions. Maybe this path eventually just doesn’t work well ever,
and you move on to more useful alternatives. That’s how theories prosper or die, not
in some grand F test. It may be difficult to construct a reasonable discount factor
model, or a non-vacuous psychological model – but you can’t proclaim it impossible,
and perhaps you just haven’t been clever enough. So, the heart of asset pricing, just
like the heart of inflation, is to think hard about what is reasonable, and to evaluate
what is useful. A lot of acrimony in finance could have been saved by paying attention
to this basic theorem. We can save a lot of time and effort by not repeating for fiscal
theory the tortured history of the empirical asset pricing literature.

Applied to government debt, the discount factor theorem states that

- **Absent arbitrage, there is a discount factor that reconciles the value of debt to**
 surpluses, a \{\Lambda_t\} such that

\[
\frac{B_{t-1}}{P_t} = E_t \sum_{j=0}^{\infty} \frac{\Lambda_{t+j}}{\Lambda_t}s_{t+j}.
\]

Thus, present value puzzles are doubly irrelevant as tests of the fiscal theory vs.
conventional theories. Present value puzzles are entirely puzzles of a discount factor
mode, probability model, or a restriction on the surplus process.

Observational equivalence has a long tradition in monetary economics. Tobin (1970)
pointed out that the correlation between monetary aggregates and nominal income
shown in \(MV = Py\) can be read as \(M = Py/V\) – nominal income causes money –
just as easily as it can be read \(Py = MV\) – money causes nominal income. Decades
of work, including a Nobel prize Sims (1980) have not given us a time-series test for
monetarism vs. Keynesianism. The history of that debate is just as I have described
– what assumptions make sense, what theory coincides with evidence on institutions,
what theory is most useful.

In microeconomics, data alone do not tell us the slopes of supply and demand curves
– what agents would do if the price came out differently from the equilibrium price.
Well, we write models and make assumptions. But we recognize the problem. We
look for instruments, we think hard about their plausibility. We don’t just presume
any movement traces out, say, a demand curve. (Well, we shouldn’t do so.)

Behavioral vs. rational finance, Keynesian vs. monetarist vs. rational expectations
vs. new-Keynesian vs. real business cycle macro were never settled by formal F tests
CHAPTER 21. OBSERVATIONAL EQUIVALENCE AND REGIMES

of equilibrium time series. Fiscal theory vs. interest rate targets or money supplies will not be settled that way. This observation is not a failing, it’s just the nature of all economics. Constructively, it points us to what will and not be a fruitful way to proceed.

21.2 Testing for regimes

Observational equivalence forces us to find and analyze the identifying assumptions behind formal estimates and tests of active-fiscal vs. active-money regimes. Common ideas for tests don’t work: Off-equilibrium responses should be the same as responses in equilibrium. Inflation should Granger-cause surpluses, even in a fiscal regime. Debts should precede and Granger-cause higher surpluses, even in a fiscal regime. Larger surpluses should forecast declines in debt, even in a fiscal regime.

The observational equivalence and non-identification theorems tend to be overlooked. Therefore, it is useful to review common ideas to measure or test regimes, and see how the theorems apply Observational equivalence tells us that any test must be entirely based on the auxiliary assumptions and model restrictions one introduces to gain identification. In the case of fiscal vs. monetary and interest rate theories, we need to model government behavior, and make some assumption that ties off-equilibrium behavior to observed in-equilibrium outcomes.

Auxiliary and identification assumptions are not objectionable per se. Models throughout economics and finance include basic principles plus auxiliary assumptions. Power utility is an auxiliary and identifying assumption to consumption-based asset pricing. So observational equivalence just tells us to pay attention to those assumptions, to examine if they are reasonable, and to worry about their failure. It tells us though to write our models in a way that the identifying assumption is clearly stated. The problem for fiscal theory tests is not observational equivalence per se. The problem is that when we dig in to state them, the auxiliary assumptions used to surmount observational equivalence are not believable.

Inspired by the original way of writing rules without the * distinction, one might try running regressions. Run $i_t = \phi\pi_t + u_{i,t}$, as Clarida, Galí, and Gertler (2000) do. Run $s_t = \gamma v_{t-1} + u_{s,t}$ as in Bohn (1998a) or Table 4.1. (Bohn runs the regression, but does not interpret it as test of regimes.) Many full-model estimates identify and test for regimes by this approach, surveyed below in Section 22.5. If you are aware of observational equivalence, you ask what is the implicit assumption that surmounts
observational equivalence. It is not clear in this writing.

With observational equivalence and a search for the identifying assumptions in mind, you are prodded to write the interest rate rule

\[i_t = \theta \pi_t^* + u_{i,t} + \phi (\pi_t - \pi_t^*) . \]

The interest-rate policy rule parameter \(\theta \) can, in principle, be measured. One needs heroic orthogonality assumptions, but it’s not impossible in principle. But written this way, you see that information about \(\theta \) tells you nothing about \(\phi \). The specification \(i_t = \phi \pi_t + u_{i,t} \) thus adds an implicit assumption, \(\phi = \theta \). That assumption overcomes non-identification and observational equivalence. But it is a separate and far-reaching assumption. The parameters \(\theta \) and \(\phi \) have distinct economic functions. The parameter \(\theta \) governs the relation between inflation and interest rates in equilibrium, devoted to smoothing fluctuations. The parameter \(\phi \) is an equilibrium-selection threat, devoted to making multiple equilibria unpleasant. In this simple model, we should have \(\theta < 1 \) if we wish stationary solutions, and \(\phi > 1 \) if we wish determinate solutions. There is no reason the parameters should be the same, and many reasons they should be different.

An analogous point applies to fiscal rule regressions, alone, or as part of a VAR, or in a full model. Observational equivalence prods you to write \(s_t = \alpha v_t^* + \gamma (v_t - v_t^*) + u_{s,t} \).

In this form, you see that the identifying assumption in reading \(\gamma > 0 \) in \(s_t = \gamma v_{t-1} + u_{s,t} \) as a measure of passive fiscal policy is \(\alpha = \gamma \), that the government responds to all variation in debt the same way. In particular, the government raises surpluses to validate arbitrary deflation in the same way as it raises surpluses to pay off debts rung up by borrowing to fund previous deficits. As we have seen, there is no reason that governments must equate these responses. There are excellent reasons for governments to respond differently to the different sources of variation in value of the debt, given that governments wish to borrow to finance deficits and wish to control inflation. If a fiscal-theory government borrows to finance deficits, even in part, and pledges future surpluses to repay such borrowing, then we will see a coefficient \(\gamma > 0 \) in a regression of surpluses on debt. Section 5.5 constructs an example. Leeper and Li (2017) also show that regressions of surplus on debt do not establish passive fiscal policy. Full-system estimates of models that contain the same equations do no better than single-equation regressions. This is not a problem of identification, not of regressions, or residual orthogonality.

Since the question is the fundamental “cause” of inflation, one is tempted to run Granger causality\(^1\) tests. If deficits Granger-cause inflation, we might conclude that

\(^1\)A variable \(x_t \) is said to Granger-cause \(y_t \) if surprises to \(x_t \) \(\Delta E_{t+1} x_{t+1} \) forecast surprises to
fiscal policy is active; if inflation Granger-causes deficits, we might conclude that fiscal policy is passive. If debts Granger-cause surpluses, we might conclude that fiscal policy is passive. If interest rate or monetary aggregates Granger-cause surpluses we might conclude that fiscal policy is passive and monetary active, and vice versa.

But without assumptions, Granger-causality tests are invalid for this purpose. If people learn from reading the news that surpluses will be poor, they rush to sell government bonds and drive up the price level. This decline in the value of government debt then helps us observing the economy to forecast deficits, beyond the information in the history of surpluses and deficits and other variables we can observe. Inflation Granger-causes deficits, but true causality goes from future deficits to inflation. We expect the value of debt to lead, and help to forecast, i.e. to Granger-cause surpluses, in an active-fiscal equilibrium, and even if surpluses are completely exogenous. Analogously, asset prices help to predict, and hence Granger-cause, subsequent dividends and returns. That doesn’t mean that price changes cause dividend and return changes. People have information about good future dividends, say, and then bid up asset prices. We, studying the economy with less information, see an unexpectedly higher price, and then the higher dividends. Consumption Granger-causes income. The boss tells you you’re getting a raise next year; you go out to dinner. The larger consumption helps an econometrician to forecast the larger income. Going out to dinner does not cause a raise (alas). In each case, Granger causality only establishes causality if one assumes there is no source of information excluded from the VAR. In each case, that’s not a good assumption. As in Section 19.6, the correlation of money with nominal income tells us nothing about causality, the fact that changes in money come ahead of changes in income do not do so.

One may be tempted to test whether a shock to surpluses reduces subsequent debts, following Canzoneri, Cumby, and Diba (2001) and analyzed in Section 4.2.2 and Section 4.2.6. But we saw that test comes down to the identifying assumption \(a(\rho) \gg 1 \) in \(s_t = a(L) \varepsilon_{s,t} \), or, related, the mistake of leaving the value of debt out of a forecasting VAR. Ruling out that nominal debt issued by governments that dislike inflation follow a process with \(a(\rho) << 1 \), as they must with real debt, is a strong and unreasonable identifying assumption.

More deeply, none of these tests are tests of active-fiscal versus active-money regimes.
The present value relation holds in both regimes. The equilibrium conditions are the same in both regimes. So the joint dynamic process of surplus, debt, discount rate and inflation tells us nothing about which regime produces the inflation. If the present value relation fails the Canzoneri, Cumby, and Diba (2001) test because \(a(\rho) > 1 \) is really a sensible restriction to impose, the “passively” achieved present value relation of active-interest rate or active-monetary regimes fails equally.

Many tests of the present value relation, apparently tests of fiscal theory, amount to restrictions on allowable surplus processes, and used to bound \(a(\rho) \) In his identification critique of Keynesian models, Sims (1980) cites such identification by lag-length restrictions and identification by exclusion restrictions (leaving \(v_t \) out of the VAR) as assumptions with particularly weak foundations.

If testing one regime is hard, observational equivalence and non-identification tell us it’s even harder to measure time-varying or regime-switching models, in which an economy like the U.S. switches between active-fiscal and active-monetary regimes. Section 22.4 and 22.5 contain reviews of this literature. Again, everything relies on the identifying assumptions, restrictions on the surplus time series process, restrictions on discount rate movement, or restrictions tying observable in-equilibrium behavior to unobservable off-equilibrium behavior. Per se, there is nothing wrong with identifying restrictions. But when we look at these restrictions in our case, they make little sense. Again, this point is a lot clearer in retrospect than it was at the time these authors wrote.

21.3 Laugh tests

Apparently easy armchair laugh-tests likewise fail. Deficits are higher in recessions, and lower in booms, yet inflation goes the other way, lower in recessions and higher in booms. What about Japan, and other countries with high debts and no inflation? The fiscal theory does not predict a tight relationship between deficits or debt and inflation. For both cyclical and cross-country comparisons, variation in the discount rate may matter more than variation in expected surpluses to understand the price level.

Aside formal testing, many commenters dismiss fiscal theory by apparently easy armchair rejections, or laugh tests. Recessions feature deficits and less inflation. Expansions feature surpluses and more inflation. The sign is wrong! Countries with large debts or deficits seem no more likely to experience currency devaluation
or inflation. What about Japan, with debt more than 200% of GDP, continuing fiscal deficits, and no inflation or slight deflation? What about the U.S., with large debts and deficits, annual warnings from the CBO of yawning fiscal gaps to come? Contrariwise, many currency crashes, and inflations, such as the late 1990s east Asian currency collapses, were not preceded by large deficits or government debts. Doesn’t all this invalidate the fiscal theory?

No, as observational equivalence and existence of discount factor theorems should indicate. There is an expectation of future surpluses, there is a discount factor that makes sense of all these observations. We have to at least state and examine those possibilities. And when we do so, underpinnings of all these observations are not implausible. Moreover, again, the present value equation is part of all theories, so if somehow the present value equation fails, it rejects other theories equally.

As we have seen, the fiscal theory does not predict a tight relationship, or even a positive correlation, between deficits and inflation. The fiscal theory ties the price level to the present value of future surpluses, not to current surpluses. There is good reason and evidence to suppose current deficits come with future surpluses. It is natural for governments to finance deficits by promising future surpluses, so the present value changes little. Big inflations and currency crashes, and ends of inflations and stabilizations, happen when important news about future surpluses and deficits emerges, not a slow pressure of current debt.

Similarly, the fiscal theory makes no prediction that large debts must lead to inflation. Large debts, resulting from deficits run to finance wars, financial crises, or as a result of recessions, were incurred on the promise that they would be paid back, not inflated away. So on average large debts, that raised revenue, must be followed by surpluses, and should not forecast inflation, or investors won’t lend in the first place.

CBO debt and deficit projections indicate a huge fiscal crisis should have already happened in the U.S. But as I argued in Section 6.5, CBO projections are not intended as a conditional mean. CBO projections are clearly stated as warnings about what will happen if law does not change. It is not impossible that bond markets believe the U.S. government will come to its senses and undertake straightforward reforms before driving the country to a catastrophic debt crisis.

Discount rates vary. The R, or, better the Λ, in

\[
\frac{B_{t-1}}{F_t} = E_t \sum_{j=0}^{\infty} \frac{1}{R_{t,t+j}} s_{t+j} = E_t \sum_{j=0}^{\infty} \frac{\Lambda_{t+j}}{\Lambda_t} s_{t+j}
\]

(21.1)
varies over time and across countries. As we have seen, discount rates are lower in
recessions and higher in booms, driving a time-series correlation of inflation with
business cycles.
Real interest rates also offer a plausible resolution to cross-country evidence Japan
has very low real rates, and simplistic \(r < g \) calculations say that the its present
value puzzle is the absence of much greater deflation! (6.4 considers \(r < g \) issues
more carefully and addresses that puzzle.) Likewise, the steady downward trend
of real interest rates from 1990 to 2020 suggestively correlates with high and rising
values of debt in advanced economies, together with low and declining inflation. Just
why real interest rates are so low is a good economic question. The decline in growth
driven by slower productivity growth \((r = \delta + \gamma(g - n)) \) is suggestive, as well as a
decline in the marginal product of capital. But it is an economic question, not a
fiscal theory question.

What about Japan? Japan’s gross debt to GDP ratio is indeed high, 264% as I write
in 2021. Japan’s net debt-to-DP ratio, however, is 154%. The Japanese government
has a lot of assets. Japan as a country accumulated foreign assets during a long
period of trade surpluses. Japan’s debt is largely long-term, held by thrifty Japanese
people and domestic financial institutions. Japan has an inheritance tax. And,
perhaps, just wait. Persistent high debts made possible by low interest rates leave
something like a doom-loop multiplicity open.

These observations need quantification, and evaluation in the data. I do not claim
here to have a quantitative and verified answer to these puzzles. The existence of a
discount factor and observational equivalence theorems tell us that there is a story,
and I only claim that there are plausible stories. Apparently obvious laugh tests of
the fiscal theory are not so obvious. The contrary view that government debt is an
inexhaustible source of wealth is more tenuous.

21.4 Chicken and regimes

Pure active/passive regimes are like the proverbial game of chicken. This is a con-
ceptually useful fable, but an unrealistic description of policy formation. In the end
the government must come up with a coordinated monetary-fiscal regime. Given
the eventual policy settings, how they are arrived at cannot and does not matter
to observed time series. We usually model government policy with a unitary actor
objective function. If we want to model internal conflicts, the game of chicken is
unrealistic. Therefore, it cannot be necessary to adopt the active/passive framework
to study inflation. I conclude that the whole concept of active/passive regimes is not
worth testing in data, even if it were possible to do so. Regimes make no sense.

The question of active vs. passive regime is often told as a game of chicken, the
game in which two drivers face head on, and the one who swerves is the chicken.
Sargent and Wallace (1981) famously used this metaphor for a situation in which
monetary and fiscal policy are in conflict. But the metaphor also makes clear that
the active/passive regimes are unrealistic and extreme caricatures.

In the end, the government must provide a coordinated fiscal and monetary policy –
a setting of interest rates or money supplies, and surpluses and debts, that generates
a unique equilibrium price level. When two tools conflict, the government needs
to figure out settings that do not conflict. This old advice goes well beyond fiscal
theory. A central bank cannot set both a money supply target and an interest rate
target, that do not respect the money demand curve. The Ramsey description of
policy says that the government cannot attempt to set policy levers that violate such
constraints.

From a historical, political-science, or just common-sense view, either “regime” em-
embodies a stylized and unrealistic story of how a government forms a coordinated
policy. Most of the time in economics and public finance we do not bother modeling
the inner workings of government or other economic agents. If government maxi-
mizes something, it is a unitary objective. We likewise don’t describe consumers
with a little angel on one shoulder and a devil on the other playing an ultimatum
game. If we do look under the hood, government is composed many interested play-
ers with conflicting objectives, who hash out the intricate negotiation that occupies
daily media coverage of public affairs. Modeling how household preferences result
from internal bargaining games is interesting too. Thus monetary-fiscal policy the-
ory seems strange in that it seems we have to model conflicting objectives of two
government agencies, and a Dr. Strangelove ultimatum game between them. We do
not. We can just as well ignore the whole regime business and write coordinated
policies. That takes a bit of shift in perspective, however, after so many years of
thinking about active vs. passive regimes.

The regime question narrows further, now that we understand the issue as equilibrium-
selection policy. The question is not “Who is in charge of inflation?,” but “Who is in
charge of equilibrium selection?” In fiscal theory of monetary policy, the central bank
remains in charge of expected inflation via the interest rate target. The question is
whether a central bank controls unexpected inflation by equilibrium-selection threats
\(\phi(\pi_t - \pi^*_t) \) to force a fiscal reaction, or whether fiscal policy directly determines un-
expected inflation. In game of chicken terms, the former is strained as a description
of what central banks do, and coordinated policy only requires the central bank to
abstain from making such blow-up-the-economy threats.

With \(MV = Py \) rather than interest-rate targets, the game of chicken interpretation
is a bit more sensible, and this is the context of Sargent and Wallace (1981). One
can ask whether a resolute central bank can refuse to monetize the deficits of a
profligate government, or conversely whether it can force inflation on a fiscally austere
government. But once asked, this question also immediately jumps beyond simple
“regime” game-of-chicken analysis to thinking about the government as a whole
choosing between the distortions of an inflation tax and those of the other taxes
at its disposal, or the consequences of spending cuts, and invites multiple-player
political-economy questions far more interesting than a game of chicken between
absolutes. Sargent and Wallace (1981) were also concerned about the larger “starve
the beast” game of chicken: Can refusing tax hikes, running large deficits, and putting
the government in fear of a debt crisis force changes to government spending?

In sum, we (we the literature) have made a serious but common mistake. Leeper
(1991) and Sargent and Wallace (1981) tell a good clear story for getting us to
think about polar opposite possibilities. But then we take these stories as necessary
options; we enshrine a game of chicken as the only way that governments come up
with coordinated policy, and we go on to testing one vs. the other, ignoring the vast
plain of reasonable negotiation that lies between them, and ignoring the vast and
common specification of government as a unitary actor.

Now, studying how governments come up with decisions is a separate and fruitful
investigation, of course. A “passive” fiscal policy must run into a Laffer limit at
some point. Strong and independent central banks pressure Treasuries to difficult
but necessary probity. That fiscal commitment is a prime reason for setting up
independent central banks in the first place. But this consideration goes into the
bucket of dynamic public finance, of figuring out what overall government preferences
for distorting taxes vs. inflation, say, are, not of figuring out how inflation and other
aggregates react once a coordinated policy is in place.

This all seems a headache. Fortunately, we have a theorem that tells us equilibrium
time series are completely unaffected by the process by which the government goes
about settling on a coordinated policy!

Pure active/passive regimes are good stories to tell in order to understand theoretical
possibilities. But pure active/passive regimes do not leave traces in the data, and
they make no sense as descriptions of how governments actually behave. The con-
cclusion seems inescapable: We should give up testing one vs. the other. We should
pursue data and policy analysis based on a coordinated regime, and not a particular
unrealistic story about how coordination is achieved. And when thinking about how
policy and institutions are formed, we should be much more thoughtful than pure
games of chicken.

21.5 Inconsistent or undetermined regimes

I fill in the two other possibilities: Undetermined and inconsistent regimes. Neither
makes sense, emphasizing that it is unwise to test for these stylized “regimes.”

The conventional taxonomy following [Leeper 1991] lists four parameter regions, not
two. If $\phi > 1$ and $\gamma = 0$ both policies are active. Now, with the rule against
hyperinflation, inflation is overdetermined and no equilibrium can form. Similarly,
if monetary policy fixes M and fiscal policy fixes surpluses at an inconsistent value,
no equilibrium can form. The cars collide. If $\phi < 1$ or M is passive and $\gamma > 0$, then
both policies are passive, and we are back to indeterminacy.

“Equilibrium cannot form” makes no sense here, however, any more than it did in
our efforts to trim multiple equilibria. Suppose that the central bank cuts the money
supply in half and leaves it there. That should cut the price level in half. But
that would double the value of government debt. What if fiscal authorities refuse to
raise taxes - or what if they are at the top of the Laffer curve and can’t raise tax
revenues? Well, bondholders see government bonds as overvalued at the low price
level so they try to sell before the inevitable default. That raises aggregate demand
and pushes the price level up. Money will become scarce, with troubles in markets
and financial institutions. People will start using scrip or foreign currency. In the
short run, whether government finances or the money demand curve is the more
flexible economic relationship will determine the outcome. In the long run, either
the treasury or the central bank will have to give in. “Equilibrium can’t form” just
means you’ve written down an incomplete theory.

A double-passive policy would also fall apart. One view of the matter is that inflation
is always something, the price level is a real number. Thus, any model that stops
at “indeterminate” is just missing an ingredient, even if the ingredient is sunspots.
A double-passive policy would likewise fall apart. Inflation or deflation comes from
any source – a frost raises the price of orange juice, say – money adapts. Fiscal
policy responds to inflation or deflation with spending or austerity. Inflation slowly
becomes unhinged, and authorities figure out they need a better policy.

These configurations are likewise useful for telling stories and exploring how theory
works, but they are not realistic policy configurations to consider in applications, to
try to measure or test.

21.6 Plausibility and other evidence

We can look at the plausibility of different regimes. As before, the passive fiscal
regimes are not plausible.

Institutions, rules, legal limitations are all ways that governments communicate off-
equilibrium behavior in order to circumvent the observational equivalence and non-
identification theorems. Their analysis along with the analysis of choices governments
make in times of stress are revealing about the regime.

Observational equivalence and non-identification do not mean that regimes or their
middle grounds are meaningless or indistinguishable. We can and should examine
the plausibility of different regimes, off-equilibrium behaviors, and identifying as-
sumptions. We should use information beyond time-series analysis of equilibrium
quantities and prices to inform us about the world. How would monetary and fiscal
policy authorities respond to unexpected variation in the price level? How do people
in the economy expect those authorities to behave? What do they say (sometimes
loudly) they would do in various circumstances? What kinds of behavior are en-
coded in the legal and institutional structures and restrictions of monetary and fiscal
policy? Why, and in response to what historical experiences, were those structures
chosen? When we see governments making hard choices, say between unpopular and
distortionary taxation or spending cuts vs. inflation or devaluation, what do those
choices tell us about the economic constraints governments perceive?

This sort of analysis is exactly how we overcome similar theorems elsewhere in eco-
nomics and finance. Behavioral and rational asset pricers (often grudgingly) admit
observational equivalence, but then question (or lampoon) plausibility of the alter-
native interpretations. Sure, you can cook up a set of preferences to account for
time-varying expected returns, but aren’t they pretty strained? Sure, you can posit
that something deep in human psychology leads people to misunderstand the dis-
tribution of stock returns following an IPO, but isn’t that “explanation” awfully arbitrary and vacuous? And didn’t you make the opposite assumption for the last anomaly? (Fama (1991), Fama (1998).)

Well, how plausible are the off-equilibrium stories, in the light of all this other evidence? We spent a lot of time on this issue, for just this reason that it is central, once observational equivalence knocks out formal tests.

Looking at the new-Keynesian equilibrium condition in the form $E_t \left(\pi_{t+1} - \pi_{t+1}^* \right) = \phi \left(\pi_t - \pi_t^* \right)$, I object that no central bank on this planet would respond to inflation with more inflation, to select equilibria. An explosive inflation or other “no equilibrium can form” threat would be empty (time-inconsistent, subgame-imperfect) as hyperinflation or deflation is so contrary to the central bank’s objectives. Central banks always describe their commitments as stabilizing, $\phi < 1$ dynamics, bringing inflation back should it wander off target.

Monetarism could be true. It just isn’t. Our central banks do not limit money supplies, money demand is interest-elastic, money demand has lost any meaning in a plethora of liquid assets and electronic transactions. We see passive monetary policy before us. I conclude for this reason as well, that an active-fiscal policy is the only coherent foundation we have for price level determination in an economy with our institutional features.

Fiscal theory critics offer similar critiques of the plausibility of “active” fiscal policy, and whether people could expect such a thing. I have argued that the contrary fiscal commitment to refuse to adapt surpluses to variation in debt caused by unexpected inflation is a reasonable description of current institutions, expectations and sound government policy.

Monetary and fiscal policies are chock full of institutions, rules and commitments about government behavior that we can interpret as ways of committing to and communicating off-equilibrium behavior and equilibrium-selection policies that cannot be directly observed from macroeconomic time-series. The gold standard, foreign exchange pegs, backing promises, currency boards, balanced budget rules, inflation targets, Taylor rules, legal restrictions against inflationary finance and central bank actions, the institutional separation of monetary and fiscal policy, and so on are all examples. Central banks’ repeated statements about how they would react to events (and eternal silence about inflation threats and equilibrium selection) tell us something about their off-equilibrium behavior.

Events often suggest one or another of possible interpretations is more plausible. A
country – Venezuela, say – has large persistent deficits, inflation, and prints a lot of money. Now it’s possible that the central bank went nuts, printed up a lot of money, caused inflation, and the fiscal authorities though fully able to raise taxes or cut spending went along “passively,” because the central bank is supposed to be in charge of inflation. But, though it satisfies the letter of observational equivalence, that’s pretty implausible story!

In moments of stress we see decisions that reflect the choices that governments see in front of them. A government in a crisis chooses between distorting taxes and the distortions of inflation. Its choices, and the mechanisms it puts into place to avoid another crisis tell us a lot. Does it put into place a rule demanding any inflation be met with higher inflation ($\phi > 1$)? Or does it put into place institutions that react to inflation with fiscal tightening? That choice tells us a lot about the fundamental determinants of its price level.

This kind of institutional and plausibility discussion may seem annoyingly chatty to those trained in modern formal methods. But observational equivalence means we have to talk about plausibility, and we have to assemble evidence from institutional structures and statements. We cannot rely on formal testing.

Plausibility arguments can go on and on. The 50-year old behavioral vs. rational finance debate is exhibit A of that observation, with Keynesians vs. monetarists, and then vs. general equilibrium going on for even longer. But that is how we do things, given that formal tests are empty.

21.7 Regimes and practice

Observational equivalence suggests that we modify procedures so that the choice of regime is, where possible, less important. By writing models in terms of observable equilibrium quantities, a researcher can keep most of the workaday practical use of the new-Keynesian model for understanding time series intact without taking a stand on regimes. However, one should at least calculate and examine implicit fiscal predictions. The regime question still impinges on policy calculations: If the central bank raises interest rates, should we include or not a contemporaneous fiscal shock? And it affects central doctrines: Can the central bank set an interest rate peg without causing volatile indeterminate inflation? Must a central bank raise observable interest rates more than one for one with observable inflation? Bottom line: since tests for regimes are not possible, since the alternative monetary and interest rate models
What should we do, in light of observational equivalence? From the fact that tests depend on identification assumptions, one might be led to a search for better identification assumptions and get back to testing regimes. But 30 years of search haven’t gotten that far, similar efforts elsewhere in economics and finance have never borne fruit, and I have argued that the active-money regimes don’t make much sense, so this does not seem a productive path.

Another approach is that anything unobservable shouldn’t matter that much. So in applied work, put aside these controversies and adopt a set of modeling and empirical procedures in which the choice of regime is of minor importance. Chapter [5] showed how we can just study equilibrium conditions and leave equilibrium-selection to footnotes for much applied work. As a specific example, consider the simplest model based on $i_t = E_t \pi_{t+1}$ only. The equilibrium quantities, $i_t^*, \pi_t^*, \varepsilon_{s,t}^*$ (or s_t^*) are the observables. So, write just the equilibrium conditions and not equilibrium selection rules,

$$i_t^* = E_t \pi_{t+1}^*, \quad \text{(21.2)}$$

$$\Delta E_{t+1} \pi_{t+1}^* = -\Delta E_{t+1} \sum_{j=0}^{\infty} \beta^j s_{t+1+j}^* = -\varepsilon_{s,t}^*. \quad \text{(21.3)}$$

That’s all we need to do for fitting data, or asking how changes in observable interest rates or observable surpluses map into changes in inflation. Indeed, observational equivalence and non-identification suggest that it is much more interesting to plot, say, the response of variables to the actual, observed interest rate, than it is to plot the response to policy rule shocks. Drop the pedantic stars, and add a footnote stating that one could support the equilibrium by specifying either active monetary policy $i_t = i_t^* + \phi(\pi_t - \pi_t^*)$ with any $\phi > 1$, a passive fiscal policy, and a rule against nominal explosions, or by specifying active fiscal policy $\{\varepsilon_{s,t}^*, \varepsilon_{s,t}^*\}$ and a passive monetary policy $i_t = i_t^*$. Thus, at a minimum, fiscal theory suggests a nicer set of equilibrium-selection footnotes. (Werning (2012) innovated this clever strategy, including the footnote.)

Though better equilibrium-selection footnotes are important, however, this attitude does not free us completely from thinking about foundations especially when analyzing policy. Whether a fiscal contraction accompanies an interest rate shock matters
a lot, and as we have seen each regime suggests a different view of whether such a
contraction is interesting.

For example, suppose that the data show contemporaneous monetary and fiscal
shocks, as in the bottom group of Figure 2.2. If one simply wishes to fit the data,
it does not matter whether we regard this outcome as an active-money equilibrium
selection, with a passive fiscal contraction, or whether we regard this outcome as si-
multaneous changes in monetary and fiscal policy under a fiscal theory of monetary
policy, perhaps each policy responding to the same external events. But if one wants
to ask, “what happens if the Fed raises interest rates?” we have to know if it is in-
teresting to specify a contemporaneous fiscal contraction to a monetary contraction.
To a new-Keynesian, yes. To a fiscal theorist, no.

Taking this equanimous attitude, since the “passive” fiscal support for unexpected
inflation is still required, a new-Keynesian modeler should at least calculate what the
passive fiscal shock is, calculate a response function for surpluses, think about how
that path is achieved, and check that response in the data along with all the other
responses of the model. Thus, observational possibility does not mean observational
plausibility. Fiscal theory suggests a more serious study of monetary-fiscal coordi-
nation, and that study may undermine the plausibility of traditional new-Keynesian
calculations.

Finally, the point of the long chapters on new-Keynesian and monetarist views is
that when we undertake this look under the hood, the new-Keynesian equilibrium-
selection story such as $i_t = i^*_t + \phi(\pi_t - \pi^*_t)$, and its monetarist counterparts don’t
make sense. Some version of the active-fiscal regime is the only coherent complete
model of the price level we have, that is vaguely consistent with current institutions.
In this context, observational equivalence is a feature not a bug. It means you can’t
prove fiscal theory wrong! Add to that, there is no point in trying to test for regimes
that don’t make any sense. What do we do? Let’s get on with understand the world
— like a discount factor model in finance, the hard part — with the only sensible
regime we have. Write coordinated monetary-fiscal policies in which the ultimate
foundation of price level determinacy is fiscal and see how to specify them so that
they work. Like finding the right utility function in finance, like finding the right
surplus process and discount rate process above, this is not easy work.
Part V

Past, Present, and Future
Chapter 22

Past and present

I have kept extensive pointers to and reviews of literature out of the main text of this book to keep it readable. Though inevitably I will fall short, I try here to point to some of the crucial work in the development of fiscal theory, focusing on work that I have not described already, and I outline some recent and current work beyond the scope of this volume. The fiscal theory is an active research field. Despite the length of this book I have barely touched on many current efforts, and this review will necessarily be incomplete as well. I close with some more speculation about the future of the fiscal theory.

22.1 The beginning of a distinct FTPL

Leeper (1991) “equilibria under active and passive policies” is the fiscal theory watershed. Leeper considers interest rate rules, not money growth rules, to characterize monetary policy, and thus connects with contemporary macroeconomics. Leeper shows that active fiscal policy can uniquely determine inflation even with passive $\phi < 1$ monetary policy. Even an interest rate peg can leave have a stable, determinate inflation. Boiling it down to a very simple model, Leeper analyzes

\begin{align}
 i_t &= E_t \pi_{t+1} \\
 i_t &= \phi \pi_t \\
 \tilde{s}_{t+1} &= \gamma v_t \\
 v_{t+1} &= v_t + i_t - \pi_{t+1} - \tilde{s}_{t+1}.
\end{align}
As we have seen many times, the first two equations do not tie down unexpected inflation $\Delta E_{t+1}\pi_{t+1}$. The system needs a forward-looking eigenvalue to do that, plus a rule against explosive equations. We can achieve the forward-looking root with active monetary and passive fiscal policy, $\phi > 1$, $\gamma > 0$, or with active fiscal and passive monetary policy $\phi < 1$, $\gamma = 0$. Leeper’s singular contribution is to point out the latter possibility. The fiscal theory is born.

(As a reminder, we can substitute for \tilde{s}_{t+1} and i_t to write

$$v_{t+1} = (1 - \gamma)v_t - \Delta E_{t+1}\pi_{t+1}.$$

If $\gamma > 0$ the value of debt grows more slowly than the interest rate, so any unexpected inflation $\Delta E_{t+1}\pi_{t+1}$ is consistent with the transversality condition. If $\gamma = 0$, then only one value of unexpected inflation keeps debt from exploding at the interest rate. I use $\rho = 1$ here to keep the discussion simple.)

Sims (1994) writes a full, not loglinearized model, emphasizing the possibility that controlling money might not determine the price level, and emphasizing the stability and determinacy of an interest rate peg under fiscal theory. Woodford (1995) shows that fiscal theory can give a determinate price level with a passive money supply policy, thereby titling his paper “Price-Level Determinacy Without Control of a Monetary Aggregate.” Woodford also first uses the term “fiscal theory of the price level” (that I have found). Woodford (2001b) again shows determinacy under an interest rate peg.

I got involved in the mid-1990s with Cochrane (1998a). This paper shows the observational equivalence theorem, and how attempts to test fiscal theory or active fiscal policy vs. active monetary policy fail. I express the issue in terms of on-equilibrium vs. off-equilibrium responses. I tangle with the data. I show how the AR(1) surplus cannot work, because it predicts a tight connection between inflation, debt and deficits. I present a two-component model that generates a s-shaped response, how we need such a process to fit the data, and that fiscal theory is compatible with such a process. The s-shape or surpluses that respond to debt are not signs of passive fiscal policy. I discuss the need for discount rate variation, to make sense of the data, and offer simple version of the linearizations and VAR reported here. I also explored long term debt.

This paper was mistitled “a frictionless view.” I should have titled it “a fiscal view.” I was enthralled with the idea that fiscal theory allows one to think about the price level in models with no monetary frictions, and that such frictionless models might go a long way to understanding the data. But fiscal theory was always a foundation,
and just how far one can go before adding monetary or pricing frictions is not really
important. The paper gained comparatively little attention, at least relative to what I
thought it deserve. Much of what is in the paper, including observational equivalence,
the s-shaped surplus, and more, was forgotten in subsequent controversies. Title your
papers well, and edit them better.

Cochrane (2001) explores long-term debt more deeply, giving rise to most of the
treatment of long-term debt you see here. I also show that the two-component s-
shaped surplus process is not recoverable from VARs that exclude the value of debt.
That argument was complex, involving spectral densities. The version presented here
in Online Appendix section 26.1.4 is a lot clearer.

Just after the first fiscal theory papers arrived, Woodford also produced his mag-
isterial Woodford (2003) “Interest and prices,” putting in one place the emerging
new-Keynesian model. This was a watershed book, of the sort that comes along
once a generation to redefine monetary economics. Yet, despite Woodford’s leading
role in bringing fiscal theory to life, he abandoned it in this book, relying exclusively
of explosive inflation threats to select equilibria.

22.2 Precursors

Leeper, quickly followed by Woodford and Sims, started the snowball. With hind-
sight, one can see many precursors. We all stand on the shoulders of giants.

The 1970s and 1980s had an outpouring of work on monetary and fiscal policy under
rational expectations, including monetary-fiscal coordination, from which the fiscal
theory sprang. However, though we can see the roots, the questioning of many central
monetarist doctrines, and many important fiscal theory propositions, much of that
literature retained the central concern with money vs. bonds, seigniorage, targeting
aggregates rather than interest rates, rate of return distortions, separate central
bank balance sheets, and so forth. Much of it took place within the overlapping
generations framework, which adds dynamic inefficiency questions and is difficult to
relate to actual money, since money turns over more than once every 80 years. Only
after Leeper did we break through and move the baseline to a completely cashless
economy, nominal debt, and interest rate targets, with monetary frictions tacked on
as needed but not central to price level determination.

Sargent and Wallace (1981) unpleasant monetarist arithmetic, and Sargent (1982b)
ends of hyperinflations, surveyed above in Sections 14.3 and 19.5.6 were a huge
They combine clear simple theory, an evident match to experience, and relevance to contemporary policy. At a minimum, fiscal and monetary policy are closely intertwined.

We can see many precursors in the theoretical literature of the time. Sargent (1982a), surveying the intertemporal rational expectations revolution, writes “the most natural first step is probably to ... begin with the initial working hypothesis that the government is like a firm and that its debt is priced according to the same sorts of equilibrium asset-pricing theories developed for pricing bonds and equities... the return stream backing the government’s debt is the prospective excess of its explicit tax collections over its expenditures.” (p. 383.) But he immediately retrenches with “this approach is valuable, if only for the qualifications that it immediately invites.” Most of those qualifications center around non-interest bearing cash, and financial distortions induced by regulation. Sargent also offers the first use I have seen of the term “Ricardian regime,” and by implication its obverse. He imagines “…two polar monetary-fiscal regimes. In the first or Ricardian regime, the issuing of additional interest-bearing government securities is always accompanied by a planned increase in future explicit tax collections just sufficient to repay the debt... In the second polar regime, increased government interest-bearing securities will be paid off... by eventually collecting seigniorage through issuing base money.” The s-shaped surplus begins. By implication, a regime can lie between the “polar extremes” with $a(\rho) = 0$. Much of Sargent’s review is, to me, a good reminder of just how hard the preceding literature was, how many extraneous details needed to be jettisoned before the clear picture could emerge. It is always thus.

Aiyagari and Gertler (1985) notice that monetarist propositions rely on what Leeper later calls passive monetary policy. They consider a model with money, induced by overlapping generations, and government debt, but no pricing frictions. Following Sargent, they analyze a “non-Ricardian regime” in which “the central bank fully accommodates a fiscal deficit by financing the new debt with current and future money creation.” In their non-Ricardian regime, the price level becomes proportional to the total supply of government debt, as in the fiscal theory, independent of the composition of government debt.

Wallace (1981), a “Modigliani-Miller Theorem for Open-Market Operations,” proves that open market operations can be irrelevant: “Monetary policy determines the composition of the government’s portfolio. Fiscal policy ... determines the path of net government indebtedness ... alternative paths of the government’s portfolio consistent with a single path of fiscal policy can be irrelevant...” Again the model is based on overlapping generations. Indeed the paper includes an apologia to economists who
find that framework a strained parable for money (me). As the irrelevance theorem
is not true when there is a standard monetary distortion, one might be forgiven for
seeing it as an overlapping generations curiosity.

Sargent and Wallace (1982) show that a real bills doctrine, with passive money
supply, can lead to a determinate price level, and is indeed optimal, but again in an
overlapping-generations context.

Contrariwise, Sargent and Wallace (1985) find that paying market interest on re-
serves gives a “continuum of equilibria” in an overlapping generations model. Not
everything that comes out of OLG is fiscal theory in disguise. But full interest on
reserves, financed by taxes, is happily consistent with a determinate price level. This
is implicitly an early simple version of fiscal theory.

Of course, monetary economists long recognized the importance of monetary-fiscal
interactions, if for nothing else that fiscal stress led governments to finance deficits by
printing money. Friedman (1948), though quite different from his later thoughts, was
a program for monetary and fiscal stability. Patinkin (1965) emphasized a wealth
effect of government bonds, which we can see in fiscal theory. The intuition of the
fiscal theory is already reflected by Adam Smith, quoted in the epigraph.

The “chartalist” school embodies some elements of fiscal theory. Knapp (1924) wrote
in 1905 a “State theory of money.” He views that “money” is defined by legal status
in paying debts, including and especially debts to the state. He writes (p. 95) that
the key “test” of money is whether it is “accepted in payments made to the State’s
offices.” Metallic content is not relevant to Knapp, and we should think of even
metallic money as a “token,” “ticket” or “Charta.” (He coined the word “Chartal,”
p. 32.) But Knapp’s work is mostly devoted to the philosophical question “what
is money?” and classifying money into a schema of properties such as “morphic,”
“authylistic,” “lyric,” “hylogenic,” “autogenic,” “amphithropic,” “monotropic,” and
so forth. He is not concerned with the value of money, the price level, or inflation,
other than the price of gold, silver, and foreign exchange rates. One can regard the
book equally as a precursor to the legal restrictions school, which regards demand
for fiat money as generated by legal restrictions on the forms of payment, and the
price level as MV=PY intersecting that demand with limited supply.

In “Functional Finance” Lerner (1943) recognizes that taxes can soak up extra cur-
rency and hence stop inflation. His view basically is a static L-shaped aggregate
supply curve. More demand induced by printing more money or by borrowing first
raises output and employment, and then inflation, unless soaked up by taxes. More
recently “Modern Monetarists” such as Kelton (2020) have taken on the mantle fol-
lowing Lerner and the chartalist school. However, they mix one good idea – money can be soaked up by taxes to prevent inflation – with a great number of wrong ideas to produce sharply different analysis. (See, among other reviews, Cochrane (2020).)

That money is valued if it is backed by some real claim, and that government-issued money is valued when backed by taxes, are ideas stretching back millennia – as is the observation that such money can gain value if limited in supply and useful for transactions. Inscribed bits of clay giving rights to receive goods in port circulated in ancient Babylon. Fiat money is the newcomer on the intellectual block. That paper money devalues when governments print it to finance spending was seen and understood time and again. Indeed, rather than see in our relatively stable inflation the final victory of institutions that limit money printing under MV=PY, perhaps we should see it as a slow but perhaps temporary victory of institutions by which sovereigns commit to repay nominal debts rather than default or inflate them away.

22.3 Disputes

The fiscal theory entered a period of theoretical controversies. Is the fiscal theory even right? How can an agent “threaten to violate an intertemporal budget constraint?” Among others, Buiter (1999), Buiter (2002), Buiter (2017) calls the fiscal theory “fatally flawed” and a “fallacy” for mistreating a “budget constraint.” Kocherlakota and Phelan (1999), Bohn (1998b), and Ljungqvist and Sargent (2000) more charitably write that fiscal theory assumes that the government has a special ability to violate a budget constraint at off-equilibrium prices. Marimon (2001) while recognizing fiscal theory as analogous to a “financial theory of the firm” still characterizes the fiscal theory as “a theory that does not respect Walras’ law.” Even Woodford (2003) (p. 691 ff.) endorses the view that there is a “budget constraint” but the government is special.

I wrote “Money as Stock” Cochrane (2005b) to address this critique. As you’ve seen many times in this book, the fiscal theory is based on a valuation equation, an equilibrium condition not a “budget constraint.”

That paper also discusses whether it is plausible that a government refuses to adapt surpluses to changes in the valuation of debt brought on by inflation and deflation. The long and better discussion in this book started there. This issue owes a lot to
persistent discussions with Marty Eichenbaum and Larry Christiano, for which I am grateful. \cite{christiano2000} put some of this thought in writing. I think the bottom line, as expressed here is simple, but subtle. Just because we see governments often “respond” with surpluses to higher debt generated by past deficits, in equilibrium, does not mean that they would respond to higher debt generated by off-equilibrium deflation with similar extra surpluses. Repaying ones’ debts is different than validating a deflation-induced windfall to bondholders, with 1933 the prime example.

Controversy is understandable. The valuation equation is a lot closer to an “intertemporal budget constraint” in a model with real debt and no default. Economists had spent decades studying such models. The distinction between budget constraint and valuation equation is subtle. I used the word “intertemporal budget constraint” as well before the distinction dawned on me.

\cite{niepelt2004} offers a different critique, calling the theory a “Fiscal Myth.” To Niepelt, the fiscal theory is wrong because it cannot start from a period 0 with no outstanding nominal debt. This analysis has the usual problem of thinking about surpluses as a fixed, exogenous, or AR(1)-style process. No, the government can issue initial debt, incur a deficit, and at the same time promise future surpluses to pay it off. Period 0 may also involve issuing nominal debt by retiring real debt, or offering a new currency in exchange for an old one, as in the introduction of the Euro. \cite{daniel2007} rebuts this critique, and I discuss it in Section 2.2.

I emphasize the approach in which he fiscal theory is perfectly normal and simple Walrasian equilibrium. It does not violate the basic rule that demand and supply curves must respect budget constraint. True budget constraints do hold at off-equilibrium prices, and prices are determined only by supply equals demand equilibrium conditions. \cite{bassetto2002} takes a more principled approach to these theoretical controversies, spelling out game-theoretic foundations for dynamic equilibria involving government policies. This work parallels similar game-theoretic equilibrium-selection foundations for new-Keynesian models in \cite{atkeson2010}, \cite{christiano2018}, and the extensive literature in general equilibrium theory which regards the Walrasian auctioneer as an unsatisfactory equilibrium concept. \cite{bassetto2020} is a beautiful use of this framework, thinking of government policies as “strategies” and mapping the joint monetary-fiscal analysis to events in U.S. history.

Bassetto is surely right in a deep sense. My verbal discussion here of how governments react to non-equilibrium prices, my v vs. v^* and π vs. π^* distinctions and my
long discussions of institutions to guide expectations of off-equilibrium behavior, certain
qualify as Bassetto’s “more complex than the simple budgetary rules usually associated with the fiscal theory,” such as simple $s_{t+1} = \gamma v_t$ or $s_t = \phi \pi_t$ feedback that I also criticize.

Why then does this book then not survey game-theoretic foundations in its hundreds of pages? I hope in this book to make fiscal theory usable. Our challenge is to use fiscal theory, to map it to events and institutions, to see what pricing and monetary frictions it needs to explain data, and to fruitfully analyze policy. My hope is that it is not necessary to spell out game-theory foundations in order to use fiscal theory productively, just as standard Walrasian general equilibrium theory is useful though game-theoretic foundations can be more satisfying, and applied new-Keynesian work ignores its parallel game-theoretic foundations. More generally, I have not spent much time on these theoretical controversies because whether the fiscal theory is wrong seems to me a settled and unproductive argument. Old and new Keynesian, and monetarist theory are wrong in some deep ways, yet have prospered because they are useful. A lot of right theories do not organize events and are ignored. If the fiscal theory is not useful, nobody will care about its game-theoretic foundations.

However, Bassetto and Sargent (2020) is a challenge to this view, as it shows the practical usefulness of game-theoretic foundations, mapping government actions in those episodes to such concepts. But the counterexample proves the theorem: Sophisticated approaches will catch on, as they should, to the extent they are useful.

One must also accept comparative advantage, and mine does not lie in clarifying game-theoretic foundations of equilibrium. So my silence on these questions does not signal that they are not important or potentially productive.

McCallum (2001), McCallum (2009a), McCallum and Nelson (2005) and Christiano (2018) add “learnability” to the definition of equilibrium, and view the active-money passive-fiscal equilibria as learnable, while the passive-money active-fiscal equilibrium is not learnable. I argue the opposite case for new-Keynesian models in Cochrane (2009), and survey this issue in Section 16.10.7 above. Since we do not observe $\pi_t \neq \pi^*_t$, there is no way to learn ϕ in $i_t = i^*_t + \phi(\pi_t - \pi^*_t)$ of the new-Keynesian model.

Learnability is an addition to the standard Walrasian paradigm, as is the restriction to locally-bounded equilibria. We don’t need game theory or learnability to say supply and demand determines the price of tomatoes. Game theory or learnability buttress Walrasian equilibrium in that context. But here, having thrown out one Walrasian equilibrium condition, authors need to add something else. Think what
they really claim: that one must extend the definition of Walrasian equilibrium in order to write any model, no matter how simple, that determines the price level. If so, maybe one needs a better model! Fiscal theory alone still offers the Occam’s razor simple possibility that the price level can be determined by Walrasian equilibrium with no frictions, additional rules, and so forth. Game theoretic foundations deepen that understanding, but are not necessary for the basic result.

Theoretical controversy continues, but, once again, in my view we should put more effort into the business of seeing if fiscal theory is useful. On usefulness it will rise or fall.

22.4 Tests

For contemporary macroeconomists, the first instinct with a new theory is to run econometric tests. We are tempted to attempt grand tests for one class of theory vs. another. An earlier generation might have stopped to tell some stories and investigate history first. I cover some of these tests in Section 21.2 with a focus on observational equivalence. This section emphasizes the development of the literature.

Canzoneri, Cumby, and Diba (2001) is the first important “test.” They start by disclaiming the obvious test: Run a regression of \(s_{t+1} = \gamma v_t + \epsilon_t \), and see if \(\gamma > 0 \), if surpluses respond to debt. Such a test would parallel Clarida, Gali, and Gertler (2000), who ran (essentially) \(i_t = \phi \pi_t + \epsilon_t \) to test if \(\phi > 1 \) for active monetary policy. As Cumby, Canzoneri and Diba point out, we see \(\gamma > 0 \) in the data, as surpluses were higher in the early post-WWII era than in the 1970s, and shown in regressions by Bohn (1998a). But Cumby, Canzoneri and Diba recognize that we can see \(\gamma > 0 \) in both active and passive fiscal regimes. Recall the \(v \) vs. \(v^* \) example in Section 5.4.1 or that a surplus moving average with \(a(\rho) < 1 \) generates a regression coefficient \(\gamma > 0 \). Indeed they recognize (p. 1223) the observational equivalence theorem, that took longer to sink in to the parallel Taylor-rule estimation literature, and is ignored in a lot of fiscal theory literature too. Their careful analysis of this point did not stop \(\gamma > 0 \) from being a persistent informal argument against fiscal theory, as in Christiano and Fitzgerald (2000) for example.

Cumby, Canzoneri, and Diba’s main evidence is instead that surplus innovations lower the value of debt. They acknowledge both interpretations of this result and argue against the plausibility of the s-shaped surplus discussed at length in Section 4.2.
Yet Canzoneri, Cumby, and Diba (2001) are still ahead of the bulk of subsequent literature, most recently Jiang et al. (2019), which still views the puzzles of Section 4.2 as a basis for tests of fiscal theory, by implicitly or explicitly ruling out s-shaped surplus processes and restricting the discount rate process.

It took asset pricing 20 painful years to figure out that you cannot fit models of dividends and discount rates, and try to test the present value relation. Those lessons have been slow to soak into fiscal theory.

22.5 Fiscal theory models

Most empirical application of fiscal theory in the last two decades has taken the form of model-building rather than tests. These models combine fiscal price determination, detailed fiscal policy rules, and interest rate targets. Leeper and Leith (2016) is an excellent review survey including its own advances in the state of the art.

These models are specified in much more detail than any model in this book. Many are estimated or calibrated to realistic parameters. The models include ingredients such as detailed fiscal policy rules, often separating taxes and spending, distorting taxes, valuable government spending, labor supply, sticky wages, more complex preferences, production with capital and investment, financial frictions, explicit micro-foundations, nonlinear solution methods, optimal policy, commitment vs. discretion, and other elaborations. They typically describe full micro-foundations, rather than jump to linearized aggregate equilibrium conditions as I have.

Following DSGE macro tradition, authors estimate the models, and simulate the effects of policies. By computing impulse response functions to policy interventions, these models give concrete advice, and provide an account of history. They thus move beyond testing a theory in the abstract and move on to using the theory to answer practical questions.

So far, however, this style of model building and evaluation has remained a subdiscipline. It has not infused fiscal roots into the larger DSGE model construction and evaluation enterprise. We should consider why not, and how to foster that jump.

The models in this literature take a different approach than I have in this book on the central question of how to specify regimes and how to integrate monetary and fiscal policy. The models include the possibility of active fiscal or active monetary policy, and often include Markov switching between the two regimes. They estimate
which regime the economy is in at each point in time. That can be viewed as testing fiscal theory, as one might find the monetary regime captures the whole sample. In broadest terms, in the context of (22.1)-(22.4), these models look for time periods in which $\phi > 1$ and $\gamma > 0$, active monetary and passive fiscal policy, vs. time periods in which $\phi < 1$ and $\gamma = 0$, passive monetary and active fiscal policy. Conceptually, the models look for periods of “monetary dominance,” in which traditional new-Keynesian views hold, vs. periods of “fiscal dominance,” in which in some sense fiscal policy drives inflation and central banks sit on the sidelines.

By contrast, I have taken the approach that active money via interest rate targets doesn’t make any sense. Therefore, I broaden the parameterization of the active-fiscal regime so it can describe all data. For the goal of merging fiscal and monetary policy, and recognizing the role of central banks, I note that even in an active-fiscal regime, monetary policy remains powerful. In the simple models, the interest rate target sets expected inflation, leaving fiscal policy only to determine unexpected inflation. A similar intuition extends to more complex models. Thus, the broad impression that active fiscal policy leaves central banks out of the story is not true. Thus I integrate monetary policy into fiscal theory with an alternative path, expanding our vision of what central banks can do within an active-fiscal regime, applied to all time periods.

How are these models able to distinguish which policy is active, in the face of observational equivalence? By adding identifying assumptions, usually implicitly. Let’s ferret them out. Broadly, these models do not (yet) include in their fiscal regime the s-shaped surplus process, or the equivalent v vs. v^* possibility that the surplus, while reacting to debt, does not react to arbitrary unexpected inflation. In simplest terms, and in my notation, these authors write

$$s_{t+1} = \gamma v_t + \ldots + u_{s,t+1}$$

with positively correlated $u_{s,t+1}$, typically an AR(1). They identify active fiscal policy with $\gamma = 0$, and passive fiscal policy with $\gamma > 0$. They specify monetary policy as,

$$i_t = \phi \pi_t + u_{i,t}$$

and identify $\phi > 1$ with active monetary policy. You see the key identifying assumption: An active fiscal policy cannot generate an s-shaped surplus response. As a result, the active-fiscal parameterization must fit data quite badly. A single-equation regression estimate may lose $\gamma > 0$ in standard errors, and allow a long active-fiscal period. But a full-model estimate faces the counterfactual correlations
and puzzles of Section 4.2 in particular that higher surpluses raise, rather than
lower, the value of debt. The model can estimate an active-fiscal regime only when
the $\phi > 1$ parametrization does even more violence to the data.

This is a broad picture, which may not characterize every paper. But we know
that any paper which finds an active-money period, which does not report a flat
likelihood function, has imposed some identifying restriction, and that restriction
limits the fiscal regime’s ability to describe data, and vice versa.

It is natural that authors proceeded this way. This procedure is the most natural
thing to do with models written in this standard form, and before one really digests
observational equivalence and identification issues. Estimating ϕ by regressions that
unite on- and off-equilibrium behavior was the standard thing to do for years in the
new-Keynesian literature. But now that we have the clarity of the observational
equivalence theorems, now that we can express monetary and fiscal policy in terms
of on vs. off-equilibrium reactions, i.e. now that we can write $i_t = i_t^* + \phi(\pi_t -
\pi_t^*)$ and $s_t = \alpha v_t^* + \gamma(v_t - v_t^*)$ which make non-identification clear, we know that
measuring regimes must rely on strong and unrealistic identifying restrictions, which
artificially limit each regime’s ability to describe the data. The door is now open
to understanding the whole sample with an active-fiscal passive-money regime. If
that is not “testable,” so much the better. (If this characterization is not accurate
of some papers, nonetheless, observational equivalence tells us the author has made
some identifying restriction, and the restrictions must constrain the model’s ability
to fit data with one or the other regime.)

Moreover, these restrictions artificially limit the models’ overall fit. If the fiscal
regime periods include the prediction that higher surpluses raise the value of debt,
and the estimate chooses that specification, the monetary regime must really fit
badly. Adding an s-shaped surplus process, writing the regimes in observationally
equivalent form, must improve model fit, and likely a lot.

How did we not notice? Curiously, the DSGE literature largely disregards goodness
of fit measures or forecasting ability, cornerstones of earlier model building, and fo-
cuses on policy evaluation. In a sense, all models fit perfectly, because they add
enough shocks to every equation to fit the data. But the size of the shocks is large,
and becomes the predominant part of the model’s explanatory power. For exam-
ple, if one fits the data with the many new-Keynesian models, including the simple
three-equation model presented here, inflation volatility comes almost entirely from
inflation shocks, or “marginal cost” shocks, innovations $\varepsilon_{\pi,t}$ to the disturbance in
$\pi_t = \beta E_t \pi_{t+1} + \kappa x_t + u_{\pi,t}; u_{\pi,t} = \eta_{\pi} u_{\pi,t-1} + \varepsilon_{\pi,t}$. Expected inflation doesn’t move
much, and the inflation-output relation is a big cloud, so output in the Phillips curve does little to explain or to forecast inflation. Where one might hope for an analysis that inflation volatility, for example the difference between the pre- and post-1980 periods, comes down to better monetary policy – fewer monetary policy shocks, or a change in the monetary policy rule that reduces the influence of other shocks on inflation – in fact, a variance accounting throws up its hands and says inflation became less volatile because the Gods sent us fewer inflation shocks. But such variance accounting, or looking at the fit of the model without shocks, is no longer a common part of model evaluation. It is common to compare selected impulse-response functions to estimates, but if the corresponding shocks do not account for much variance, the model may still fit the data badly.

How could decades of new-Keynesian models miss a poor fit? How can detailed and carefully estimated fiscal theory models miss the grossly counterfactual puzzles induced by large $a(\rho)$, to the point that surpluses raise rather than lower debt? Because by and large they do not look. And, to be fair, if the goal is to write the best model you have, to match an estimated response function for a monetary policy shock, even if that shock contributes a tiny fraction of output and inflation forecast-error variance, and to present responses under alternative policies, the bad fit is not a salient fact.

(To be clear, I do not know that the more complex models inherit the bad fit suggested by the last section, because by and large measures of fit are not presented. But I do know that evaluation of fit is not common. And we know that models make some counterfactual restrictions, or they could not identify regimes.)

How did regime identification and estimation go on despite clear warnings of observational equivalence from [Cochrane (1998a)] and [Canzoneri, Cumby, and Diba (2001)]? I think the answer may be that a clear and simple alternative was not readily at hand. While the [King (2000)] representation $i_t = i_t^* + \phi(\pi_t - \pi_t^*)$ was available in 2000, its implication for monetary policy identification didn’t show up until [Cochrane (2011a)]. The point remains contentious, with many critics of that work feeling there are reasonable identification restrictions one can make to measure ϕ. King’s representation is still not a part of the regular toolkit and expression of new-Keynesian models. The parallel way to write fiscal policy that distinguishes in-equilibrium responses, responses to past deficits and real interest rates, from responses to multiple-equilibrium inflation, for example $s_t = \alpha v_t^* + \gamma(v_t - v_t^*)$ is, I hope and as far as I know, original in summer 2020 manuscripts of [Cochrane (2021b)] and this book. That’s hardly common technology. To write a model, you need the technology to do it, not just general theorems and whining from commenters and
reviewers. That limitation, together with the enduring wish (and perpetual referee
demand) to “test” an entire class of model vs. another – active fiscal vs. active
money, Monetarism vs. Keynesianism, rational vs. behavioral asset pricing, and
so on, despite the desolate history of such grand attempts, makes the literature’s
progression understandable.

But now, I think, we have the key to fix the problem, and a range of interesting work
needing only slight modification. We can write an active fiscal regime in a way that
fits the data at least as well as any active money regime. We can free active money
regimes from the $\phi = \theta$ restriction as well. Slightly modifying these fiscal-theory
models to better-fitting fiscal policies, allowing them to describe the whole sample
with a fiscal theory of monetary policy regime is more low-hanging fruit.

Indeed, most of what these papers do can make a lot of sense with only a slight change
of interpretation. The papers measure the correlations between on-equilibrium policy
variables, changes in the relation between i^*, π^*, s^*, and v^*. They measure θ in
$i^*_t = \theta \pi^*_t$ or α in $s^*_t = \alpha v^*_t$, not ϕ in $i_t = i^*_t + \phi (\pi_t - \pi^*_t)$ and γ in $s_t = \alpha v^*_t + \gamma (v_t - v^*_t)$. This measurement remains valid, interesting, and important, with a change of words
about what they measure. The typical finding of active-fiscal / passive-money in
the 1970s suggests θ was lower in the 1970s. The papers document that observable
parameters do vary over time, and such shifts are important, even if they do not
document a switch between regimes, a switch of unobservable parameters.

But while one can keep most of the existing models, one cannot keep everything,
and the differences may matter. Allowing an s-shaped surplus process in the active
fiscal regime will certainly change, well, the estimated surplus process! So just how
much the results will change with more flexible policies, is an open question. So, the
opportunity to make minor modifications to models where all the hard work is done,
yet there is a promise of interestingly different results, is really ripe low-hanging
fruit.

Specific examples follow.

Davig and Leeper (2006) is a foundational paper in this line. Davig and Leeper
estimate interest rate and surplus policy rules that depend on inflation, output, and
in the latter case lagged debt, with uncorrelated disturbances. In a central and
widely-followed innovation, the policy-rule coefficients vary between active fiscal and
active money according to a Markov process, i.e. switches between $\gamma = 0$, $\phi < 1$ and
$\gamma > 0$, $\phi > 1$. They embed these estimates in a detailed DSGE model with nominal
rigidities and calculate the responses to policy shocks. The perpetual possibility of
changing to a different regime plays a big role in these responses, which is a central
Markov-switching captures a deeply important theoretical point, also in [Davig and Leeper (2007): If an economy is currently in what looks like a passive-fiscal regime, but people expect a switch to what looks like an active-fiscal regime, then that future active fiscal policy selects equilibria. We are in an active-fiscal regime all along. One view, for example, says that we have $\phi > 1$, but if inflation really gets out of control, the government will switch to active fiscal. Well, then we are in active-fiscal all along.

This fact means that measuring regimes is doubly hard – and thus, in my view, doubly impossible and doubly pointless. We it is not enough to surmount on- vs. off-equilibrium identification issues in estimating current responses of surpluses and interest rates to inflation and debt, we have to estimate the structure of Markov-switching and the cumulative probability of ending up in one vs. another regime. We have to find which variable actually explodes as time goes forward and regimes switch back and forth. If you thought estimating γ in $s_t = \alpha v_t^* + \gamma (v_t - v_t^*)$, or ϕ in $i_t = i_t^* + \phi (\pi_t - \pi_t^*)$, are hard, now you have to face the fact that the current parameters don’t matter. If people expect a switch, it is policy after that switch that selects equilibria. If people expect stochastic switches back and forth, the problem is harder still. The same point applies to new-Keynesian models. Using the [Eggertsson and Mehrotra (2014)] approach to zero bounds – selection by active policy after the bound ends, though $\phi = 0$ during the bound – maybe [Clarida, Gali, and Gertler (2000)] were wrong, and the 1970s were determinate after all. The 1970s may have had $\phi < 1$ locally, but if people expected that sooner or later a Volcker would come along, even the 1970s were determinate. (Section 20.2 discusses these zero-bound issues.)

The key is not just that policies may switch regimes. It is that, if policies may do so, then even “in” one regime, people may forecast a switch to another regime. The response functions of each regime, and the stability and determinacy properties of the model depend on the probability of such switches. [Davig and Leeper (2006)] warn against leaving out regime switches: “Many estimates of policy rules... condition on sub-samples in which a particular regime prevailed... embedding the estimated rules in fixed-regime DSGE models can lead to seriously misleading ...inferences...”

However, I don’t think Davig and Leeper, nor their followers surveyed below, really take to heart the deep lessons of regime switching. At minimum, we need different language. A time with $\phi < 1$ should be something like “locally passive” or “temporarily passive” monetary policy, not “passive” without qualification, and similarly
for fiscal policy. Davig and Leeper suggest that the switches to fiscal outweigh the
switches back, writing “the fiscal theory of the price level is always operative.” But
they do not make the above computation, and a view that the fiscal theory is op-
erating whenever it is possible for fiscal policy to become active cannot be quite
right because one could also write that monetary theory is operating whenever it
is possible for monetary policy to become active, as the new-Keynesian zero-bound
literature does. Later papers also refer to the temporary policy configuration ϕ and
γ as “active” and “passive,” ignoring the Davig and Leeper (2006) warning that the
true regime we are in depends not on current ϕ and γ but on the regime transition
probabilities.

Markov switching between active fiscal and active money regimes has become a
common feature of this literature, so it merits some thought whether it is necessary.
Regime-switching papers are right that policy rules matter, not policy actions, in any
sensible intertemporal model. They are right that policy-rule parameters vary over
time and in response to economic outcomes. They are right that we should look at
the economy as a single meta-rule, or meta-regime, in which policy parameters vary
over time, people expect such variation, and such variation should be incorporated in
expectations and response calculations. Surely, for example, a big part of the story
for persistently high ex-post one-year real interest rates in the 1980s was that people
put some weight on a return to 1970s policy. Responses to monetary policy and
other shocks in that period should to include changing assessments of the chance of
such a change.

But it is not obvious that such parameter variation is best modeled by Markov-
switching rather than, say, conventional linear time-series models for parameters.
Now, as a modeling approximation, there is some sense to Markov-switching. In
history, policy parameters have arguably changed somewhat discontinuously. Pre-
and post-1980, the zero bound era, and pre-war, 1940-1945, and postwar era are
suggestively discretely different regimes, stable within but shifting discontinuously
across. But that is a modeling choice, and it is not entirely obvious. There is also lots
of policy drift within regimes. Moreover, the Markov assumption, with exactly two
(or even N) states is also restrictive. It allows zero possibility that people consider,
say, a return to the Gold standard, Latin American hyperinflation, or that \(r < g \) or
modern monetary theory open us to a new world of infinite possibilities.

So why not adopt simpler, more flexible models of policy-rule parameter evolution?
Here I think the mistake of linking policy-rule changes to shifts of the equilibrium-
selection regime is a core trouble. Shifting from active-fiscal passive-money to active-
money passive-fiscal would be a momentous change. It requires a discrete shift in
variables, to move eigenvalues from stable to unstable. But if we are simply viewing shifting correlations between equilibrium variables, a shift of θ in $i_t^* = \theta \pi_t^*$, it has no such momentous or discontinuous consequences.

So I conclude that Markov-switching is not the only, or necessarily the best way to capture policy parameters (θ) that vary over time and in response to other variables. Once we separate in-equilibrium policy rules from active vs. passive equilibrium selection regimes, one can use a variety of linear or nonlinear time-series models to capture parameter variation where necessary in the data.

The same approach has continued, with full model estimation rather than just policy rules and calibrated models, and calculating responses to other policy interventions and other shocks. Some prominent examples follow.

[Leeper, Davig, and Chung (2007)] show that apparently active money / passive fiscal is not enough to insulate the economy from the inflationary effects of fiscal shocks. Only their passive fiscal policy can have an s-shaped response, so that regime is needed for debt repayment. But the passive fiscal policy may not last long enough to repay debt, so an expectation of a switch to active fiscal, which does not have an s-shaped response, means that fiscal shocks affect inflation immediately, even in the locally active-money passive-fiscal regime. Again, though, the possibility of active fiscal policy with an s-shaped surplus would remove that result. And a switch from active fiscal with an s-shaped surplus to active fiscal that inflates away debt would reinforce the result. We do not need to tie policy parameter changes to regime changes.

[Leeper, Traum, and Walker (2017)] present a detailed sticky-price model allowing fiscal theory solution, aimed at evaluating the output effects of fiscal stimulus. They specify fiscal policy as an AR(1) along with one-period debt. They include an indirect mechanism that buffers the AR(1) surplus conundrum somewhat. Surpluses respond to output. So, a deficit leads to inflation, which raises output, which raises tax revenues, and leads to higher later surpluses. But that mechanism is not necessarily large enough to generate substantial repayment of large debts, $a(\rho) << 1$.

That the regime is identified means there is some restriction. Their paper is focused on a different issue, of course, quantitative evaluation of fiscal stimulus, so there is no reason they should analyze this question.

[Bianchi and Melosi (2013)] offer an interesting application of regime-switching ideas. They call the active-money passive-fiscal regime “virtuous.” The opposite (sinful?) passive-money active-fiscal regime features $\phi < 1$. They use the usual identification assumption for a reading of history. Sinful regimes do not just refuse to accommodate
inflation shocks, they follow unsustainable fiscal policies, policies that do not have
s-shaped responses, policies that refuse to repay debts even at the current price level.
They describe some events as what I would call an s-shaped response – persistent
but temporary deficits followed by “reversion” to surpluses – but accompanied by
passive $\phi < 1$ monetary policy. Such temporary lapses in virtue can be accompanied
by little inflation, because present values of surpluses matter and people will tolerate
temporary deficits. But an unbacked fiscal expansion with inadequate expectation
of reversion to virtuous policy can give rise to large immediate inflation. As before,
it does not really matter what regime one is in now, expectations of regime switches
matter. In this way, they account for some episodes in which persistent deficits and
accommodative monetary policy do not give rise to inflation, or only give rise to slow
inflation, and others in which deficits lead to inflation quickly. Bianchi and Melosi
introduce the lovely idea of a “dormant” shock, expectations of future fiscal policy
that causes inflation today, leaving conventional analysis puzzled about the source
of the inflation, “...if an external observer were monitoring the economy focusing
exclusively on output and inflation, he would detect a run-up in inflation and an
increase in volatility without any apparent explanation.” We have seen many parallel
analyses.

Again I read their point more generally. If one separates parameter switches from
regime switches, all their analysis goes through, even with a fully fiscal regime.
Expected policy-parameter switches matter. A temporary $\alpha = 0$ still implies debt
repayment if people expect a switch to $\alpha > 0$. A temporary $\alpha > 0$ can still imply
inflation if people expect a switch to $\alpha = 0$, and $a(\rho) \geq 1$.

Bianchi and Melosi (2017) show how fiscal theory accounts for the absence of deflation
in response to a preference shock, the zero bound puzzle of new-Keynesian models
studied here in Section 20.2 and how expectations of a switch between regimes affects
responses to shocks. Bianchi and Melosi specify that taxes follow an AR(1) that also
responds to output. Their model switches between a locally passive fiscal regime in
which surpluses respond to debt and an locally active fiscal regime that does not do
so (their equation (6) p. 1041). Government spending also follows an AR(1) that
responds to output (p. 1040).

Bianchi and Ilut (2017) come to an appealing conclusion: The inflation of the 1970s
came from loose fiscal policy, and the disinflation of the 1980s followed a fiscal reform.
This paper begins to fill the great gaping hole of applied fiscal theory analysis: In a
fiscal theory narrative, just what went wrong in the 1970s, and what fixed it in the
1980s? They augment a new-Keynesian model with a fiscal block and a geometric
term structure for government debt. Long-term debt is an important generalization
as we have seen, and by and large not yet incorporated in this literature. They also
posit monetary and fiscal rules that feed back from inflation and output. They spec-
ify Markov-switching between locally active-fiscal and locally active-money regimes,
finding locally passive fiscal policy in the 1980s and locally active fiscal policy in
the 1970s. This result fills in the standard picture, say of [Clarida, Galí, and Gertler
(2000), who by finding passive monetary policy, are silent about just what did de-
termine inflation in the 1970s, offering only multiple equilibrium sunspot volatility
for a miserable decade. I interpret Bianchi and Ilut’s result that $\phi = \theta > 1$ is a
really bad fit to interest rates and inflation the 1970s, overwhelming the also bad
fit of the $\gamma = 0$ prediction that higher surpluses raise debt, but $\phi > 1$ fits better
in the 1980s and after, allowing the model to reject the bad fit of $\gamma = \alpha = 0$ fiscal
policy. To gain identification they also rule out the s-shaped surplus possibility. If
we reinterpret their paper within a fiscal regime, but with policy parameter shifts, it
offers a model-based suggestion of a tantalizing possibility: the 1970s were launched
on large fiscal problems, and the late 1980s and 1990s a fiscal cornucopia.

Bhattarai, Lee, and Park (2016) likewise add fiscal policy to a DSGE model. They
split the sample pre and post-Volcker. They find both monetary and fiscal policy
passive pre-Volcker, and thus “equilibrium indeterminacy in the pre-Volcker era,”
modeled as sunspot shocks. They include standard fiscal and monetary policy rules.
Again identification comes from the assumption that the government either responds
or does not to the entire value of debt, treating past surpluses symmetrically with
off-equilibrium inflation, ruling out the s-shape.

Bianchi and Melosi (2019) study a situation of temporarily uncoordinated policy,
thinking about how a large stock of debt such as the U.S. has in 2021 will play out.
Will the government choose high taxes or inflation? Both fiscal and monetary policy
are temporarily active, both $\phi > 1$ and $\gamma = 0$ for a while. Eventually one loses the
game of chicken, and agents expect that fact ahead of time. If fiscal policy wins, which
in their restricted specification means that fiscal policy refuses to raise surpluses, then
“hawkish monetary policy backfires” and creates additional inflation. As I digest the
result, $\phi > 1$ policy is “hawkish” in that it is trying to make a threat to push the
economy to a low-inflation equilibrium, including the fiscal authorities. If that threat
does not work, then we see the higher interest rates, which by $i_t = E_t \pi_{t+1}$ must then
mean we see higher inflation. The result is similar to that of Section 17.4.2 in which
monetary policy cannot work, even in an active-money regime, if the “passive” fiscal
austerity does not follow.

Beck-Friis and Willems (2017) construct a crisp new-Keynesian model with fiscal
theory, to address the “multiplier” question of government spending shocks. They
study the standard model similar to (20.5) and (20.6), except that their government spending provides utility, so g enters alongside consumption, i.e. output, x in the IS curve (20.5) as well as in the Phillips curve as in (20.6). They contrast the effect of government spending shocks with active money, $\phi > 1$ in $i_t = \phi \pi_t$ and passive fiscal policy, $\gamma = 0$ in

$$
\tau_t = \gamma b_{t-1} + \varepsilon_{\tau,t} \\
g_t = \eta g_{t-1} + \varepsilon_{g,t},
$$

where $\tau =$ taxes, with the same experiment under active fiscal policy $\gamma > 0$ and $\phi < 1$. They find important differences in the multipliers across the active-money vs. active-fiscal regime. With the benefit of hindsight, we see that their surpluses are i.i.d. in the active fiscal regime, so government cannot repay any debts in the active-fiscal regime, and finances all spending shocks by inflating away debt. What happens if one allows the fiscal regime also to repay debts, with $a(\rho) < 1$? Or how much of the result comes from asking different questions of the government spending shock, i.e. holding monetary policy constant in a different way? Analysis of fiscal multipliers along this line is more low-hanging fruit.

By focusing on the possibilities for refinement and for future work, I do not mean to diminish the substantial accomplishment. We have here a body of detailed and careful fiscal-theory modeling, and an indication of the range of historical experience and policy analysis it can apply to. These papers take on the challenge of using fiscal theory, by the DSGE rules of the game of modern macroeconomics, to analyze data and policies. The rest of this long book is really a preamble to this important effort.

In sum, an opportunity beckons to build on all the hard work in this literature, by slightly generalizing the fiscal specification so that the models can fit all the data, better, entirely with a fiscal regime, and reinterpreting regime-switching models as parameter-switching models within that regime. As a recipe for writing papers and better fitting data, this is great news. Again, however, finding the right model is hard.

22.6 Exchange rates

If we are to replace $MV = Py$ or interest rate targets at the foundation of price determination, exchange rates are a natural place to start or at least to apply ideas.
As a measure of the value of the dollar, exchange rates are a lot less sticky and better measured than price indices. And exchange rates have been a perpetual puzzle for international finance and macroeconomics. Traditional theory either starts with $MV = Py$ and tries to relate exchange rates to relative money stocks, or starts with Keynesian models and relates exchange rates to interest differentials. The disconnect between exchange rates and “fundamentals” has been one of many puzzles in this literature. The world is not all darkness. Exchange rates do line up with interest rate differentials, for example. Some fiscal connections are evident. Exchange rates appreciate on good news of countries’ growth rates. Well, more growth means better government finances. Exchange rate collapses are usually connected to bad fiscal news. Exchange rates often fall suddenly without much “fundamental” news, though on fears about the future, which our present value formulation encourages.

Dupor (2000) brings fiscal theory to exchange rates. In classic passive-fiscal theory, if countries peg interest rates rather than money supplies, as they do, or if people can use either country’s money, then the exchange rate becomes indeterminate, mirroring the indeterminacy of the price level under interest rate pegs and passive money. For example, Kareken and Wallace (1981) showed indeterminacy in the then-popular overlapping generations setup, again driven by the fact that people can use either country’s money. Dupor introduces fiscal theory, but he emphasizes what seems to me a rather curious case, that one country can run persistent deficits and the other persistent surpluses. Two currencies vie for a common pool of surpluses, so the exchange rate is indeterminate. When two countries with separate currencies pay off their own debts, exchange rates are determinate under the fiscal theory, determined by the present value of each country’s surpluses.

Daniel (2001b) responds directly, making this point, and giving an explicit model why governments would choose to run separate surplus streams, giving a determinate exchange rate.

Daniel (2001a) has an early and innovative analysis of currency crises. Crises happen when the present value of primary surpluses can no longer support a pegged exchange rate. Daniel brings to international economics the stabilizing potential of long-term debt: “In the absence of long-term government bonds, the exchange rate collapse must be instantaneous. With long-term government bonds, the collapse can be delayed at the discretion of the monetary authority... Fiscal policy is responsible for the inevitability of a crisis, while monetary policy determines ...the timing of the crisis and the magnitude of exchange rate depreciation.”
CHAPTER 22. PAST AND PRESENT

Daniel (2010) has a dynamic FTPL model of currency crises. An exchange rate peg implies a passive fiscal policy, but there is an upper bound on debt and surpluses. When that limit is reached, policy must switch including depreciation. Daniel applies the model to the 2001 Argentine crisis.

Burnside, Eichenbaum, and Rebelo (2001) was, to me, a watershed in this effort, though they do not pitch it as fiscal theory. This paper shows that the east Asian currency crises of the late 1990s were precipitated by bad news about prospective deficits. The countries did not have large debts, and were not experiencing bad current deficits, nor did they exhibit current monetary loosening. But these countries had entered situations in which they were suddenly likely to have intractable future and contingent deficits. The governments were poised to bail out banks, and banks had taken on a lot of short-term foreign currency debt. The lesson that contingent liabilities can kick in to undermine fiscal monetary affairs is one we might pay attention to more broadly, given the large size of U.S. implicit and explicit bailout and income-support guarantees. Burnside, Eichenbaum, and Rebelo (2001) also point to fiscal benefits of devaluation, for example that it lowers the real value of sticky government-employee salaries.

Jiang (2019a) Jiang (2019b) brings fiscal theory directly to exchange rates. Jiang shows that exchange rates fall when forecasts of future deficits rise. This is a good case in which a positively correlated surplus process seems to work. The s-shape is not always and everywhere, especially in bad news for emerging markets.

22.6.1 Applications

Reading history, policies and institutions through the lens of the fiscal theory, finding simple parables that help pave the way to more fundamental understanding, is of course what a lot of this book is about. Here I list a few efforts not already mentioned.

Leeper and Walker (2013) and my Cochrane (2011f), Cochrane (2011d) are attempts in real time to confront how fiscal theory accounts for the 2008 recession and to look through the fog to see what lay ahead. The combination of large debts, large prospective deficits and low growth sounds some sort of alarm bell, but just what is it? Most macroeconomics imagines monetary policy alone able to control inflation, but the new situation calls that faith into question. Historically, some debts have been managed successfully, others lead to creeping inflation, others lead to crisis. What will ours do?
I saw many mechanisms echoed here. I interpreted “flight to quality” as a lower
discount rate for government debt, i.e. an increase in demand for government debt,
which on its own is deflationary. I analyzed many policies from stimulus to QE as
efforts to raise the supply of government debt. I considered stimulus from a fiscal the-
ory perspective, as I have analyzed here, noting that the “stimulative” effect depends
on expected future deficits. Hence promises to repay later are not useful for stimulus
in this framework. In retrospect, however, one sees the tension between trying to
engineer a default through inflation now while preserving a reputation for repaying
debt to allow future borrowing. I offered the analysis of quantitative easing offered
here: neutral to first order but potentially stimulative as an inflation rearrangement
with long-term debt. I worried then as now about fiscal inflation. I noted what we
see here in greater detail, that fiscal inflation can come slowly, not just a price-level
jump. I worried about real and contingent liabilities. I introduced the present value
Laffer curve analysis echoed here. I emphasized the run-like unpredictable nature of
a fiscal inflation, and how the central bank is powerless to stop it.

Leeper and Walker start by reminding us of the difference between seigniorage-based
views of inflation and the fact that a fiscal inflation can break out without seigniorage,
by devaluing nominal bonds directly, the point of Section [19.5.6] Leeper and Walker
also stress that the prospective deficits of Social Security and Medicare in the U.S.
pose a central fiscal challenge, analyzed in detail in [Davig, Leeper, and Walker (2010)].
Leeper and Walker pioneer the inclusion of long-term debt, which alters dynamics
substantially as we have seen.

These papers were written in the immediate aftermath of the 2008 recession and
its then shocking increase in debt, before the large primary deficits even in the
economic expansions of the late 2010s, and arguments for additional large deliberate
fiscal expansion. But they were also written before the astounding era of persistent
negative real rates, lowering discount rates and interest costs. Just how large debts
will play out, and the role inflation will play is still a good question. Even the best
theory in the world is hard to deploy in real time for soothsaying, as Sargent and
Wallace discovered 40 years ago.

[Sim[2013] used his AEA presidential address to “bring FTPL down to earth.” This
is a lovely summary and exposition of many fiscal theory issues. Sims starts with a
mechanism we have seen in the stick-price analysis: A rise in interest rates might
be inflationary through a fiscal channel, raising discount rates and interest costs, not
just by potentially raising expected inflation. This mechanism can apply to fiscally
strapped emerging economies. [Loyo (1999)] cites examples in Brazil in which higher
interest rates raise interest costs on debt and seem to bring on higher inflation. But
the mechanism obviously has the potential to apply to the U.S. and Europe, in the
shadow of our large debts and deficits. Sims explains as I have that $MV(i) = Py$
does not determine the price level, and that fixes to restore determinacy essentially
involve adding fiscal theory, backing money at some point with taxes.

Sims points to the fiscal foundations of the euro, and interactions between central
banks and treasuries when there is an institutional separation between their balance
sheets, at least for a while. He sees ultimate fiscal backing of an independent central
bank in recapitalization, as I have, but points to some doubts that such recapitaliza-
tion might happen (p. 567). Sims explains clearly the distinction between real and
nominal debt, that nominal debt is a “cushion” like equity.

Sims (2001), mentioned above, opined that Mexico would do well not to dollarize,
so as to maintain an equity-like cushion. One can, as I did above, disagree with the
judgement, valuing the precommitments to repay of a peg, while agreeing entirely
with the analysis of the options and appreciating the use of fiscal theory to think
about an important issue.

The fiscal foundations of the euro is a related question of international economics
and an obvious case of fiscal-monetary interactions. If a central bank is committed
to print money as needed to keep every country from defaulting, and countries can
borrow freely, there is an obvious problem. Sims (1997) and Sims (1999) presciently
think about the foundations of the euro in explicitly fiscal theory terms. While not
directly fiscal theory, the Sargent (2012) parallels between fiscal affairs in the early
U.S. and those of European fiscal integration underlying the euro in Sargent (2012)
are deeply insightful.
Chapter 23

The future

It’s tough to make predictions, especially about the future. Nonetheless, I close with some thoughts about where the fiscal theory may go, or at least avenues on my ever-growing list of possibilities to explore.

23.1 Episodes

As many papers by Tom Sargent with coauthors have shown us, the analysis of historical episodes through the lens of monetary theory with monetary-fiscal interactions can be deeply revealing. Sargent and Velde (2003) history of small change, Sargent and Velde (1995) macroeconomics of the French revolution, and Velde (2009) chronicle of deflation, Hall and Sargent (2014) tale of which 18th and 19th century debts the U.S. paid, and which it did not or inflated away, and Sargent (2012) contrast between 19th century U.S. and today’s euro are particular favorites.

The emergence of inflation in the U.S. and worldwide in the 1970s, and its decline in the 1980s still needs a more comprehensive and well-documented fiscal theory narrative. We have the beginnings, for example work like Bianchi and Ilut (2017) and Sims (2011). But the purely monetary conventional narrative – an insufficiently aggressive $\phi < 1$ Taylor rule giving instability in the 1970s, followed by tough-love $\phi > 1$ in the 1980s – developed on thousands of papers and their digestion. The new-Keynesian narrative – multiple equilibrium indeterminacy $\phi < 1$ in the 1970s followed by $\phi > 1$ determinacy – likewise stands on a large body of work.
Developing a durable fiscal theory narrative that has a chance of unseating such solidified conventional wisdoms will be a challenge, even if it is right.

Summarizing and extending previous comments, in particular in Sections 6.1 and 8.6, there are many tantalizing fiscal clues. Inflation emerged in the late 1960s along with fiscal pressure of the Great Society and Vietnam war. The U.S. did have a major crisis ending with the U.S. abandoning the remaining gold standard and devaluing the dollar in 1971. But one must address just why the deficits of this episode provoked inflation and our much larger deficits did not, at least until 2021. The restrictions of the Bretton Woods system and closed international financial markets surely play a role. The U.S. could not finance trade deficits with securities as it does now, or borrow gold abroad as it had in the 1800s. The restricted capital markets of the Bretton woods era did not allow persistent trade deficits financed by capital sales. Either dollars or gold had to flow the other way via central banks.

The 1970s saw a sharp productivity and growth slowdown. An apparently lower trend of GDP growth is terrible news for the present value of surpluses. They saw a break in the traditional cyclical behavior of primary surpluses. 1975 was the worst deficit by far since WWII, with no bright future in sight.

The 1980s saw a 20-year resumption in growth and, as it turned out, tax receipts, despite lower tax rates. 1980 looks in retrospect a lot like a classic inflation stabilization combined with fiscal and pro-growth reform, such as inflation targeting countries introduced. The fiscal and pro-growth reform came after monetary policy changes, and may have been partly induced by the interest-expense provoked by higher interest rates. The interest expense channel can be virtuous, if it provokes fiscal reform, rather than a doom loop, if it does not. Or, the fiscal reform may have been the clean-up effort that made the monetary tightening stick. Many attempted monetary tightenings have failed when promised fiscal reforms did not materialize.

In 1933, I argued, the U.S. refused to accommodate a surprise deflation by fiscal austerity to pay a windfall to bondholders. Starting in 1980, the U.S. did exactly the opposite. Investors who bought bonds at the high nominal interest rates of the late 1970s, expecting a low real return and continuing inflation, instead got a huge windfall, repaid in sharply more valuable dollars, courtesy of the U.S. taxpayer.

Fiscal and monetary policies are intertwined. The Sims (2011) vision of interest rate increases that temporarily reduce inflation, but without fiscal support eventually make it worse, has a 1970s flair to it needing quantitative exploration, or deeper investigation with more detailed models of the temporary negative inflation effect of interest rate increases. Likewise the model of 17.4.2 in which higher interest rates
without fiscal backing do not lower inflation may apply to the 1970s/1980 divergence,
as well as sound a cautionary note for future stabilization efforts in the shadow of
debt.

But this is storytelling, not economic history. The fiscal roots of this inflation and its
conquest need a closer, quantitative, model-based look. I opined several times that
the slow inflation various models produce in response to a fiscal shock is reminiscent
of the 1970s. Reminiscent isn’t good enough. [Bordo and Levy (2020) have a good
summary of fiscal-monetary affairs through the inflation and disinflation.]

Cross country comparisons are revealing. What about Japan? And Europe? What
about perpetual Latin American inflations, clearly linked to fiscal problems, and
their occasional conquests, clearly linked to fiscal reforms? Does my story about the
joint fiscal-monetary analysis of inflation-target stabilizations – they are equally a
commitment by Treasuries to pay off debt at the inflation target – hold up?

As in Sargent and Wallace’s hyperinflations, in many extreme events we can see
a direct correlation between contemporaneous deficits, debts and inflation. [Høien
(2016) includes a nice example from Russia 2012-2015, where primary deficit and
inflation march hand in hand.

23.2 Theory and models

Obviously, we need more comprehensive theory. And it is easy to describe the list
of ingredients that one should add to the soup. But one must be careful. Good
economic theory does not consist of merely stirring important ingredients into the
pot.

Inflation is always a choice: the government can inflate, default (haircut, reschedule),
raise distorting taxes, or cut spending. The fiscal theory is a part of dynamic public
finance – the discipline which asks which distorting taxes are better than others – and
political economy. Contrariwise, by understanding the decisions governments take,
we gain some understanding of what the tradeoffs are, i.e. we learn about economics
not visible in time-series from a settled regime in equilibrium. [Leeper, Plante, and
Traum (2010) is an example of the dynamic DSGE tradition exploring these issues
without a nominal side, with a good literature review. It is waiting for integration
with real/nominal issues via FTPL.

Fiscal theory is a part of the larger question of sovereign debt management and
sustainability. The full range of time-consistency, reputation-building and other
concerns, which already consider inflation as a form of default, can productively be
merged with a fiscal theory that recognizes means other than seigniorage by which
inflation comes about, and the dynamics seen in models here.

I have emphasized the importance of institutions, including fiscal precommitments,
the separation between central bank and treasury, the legal structures preventing
inflationary finance, and so forth. Institutions are if nothing else good ways to
communicate off-equilibrium commitments. That whole question needs deeper study,
both in the historical and institutional vein, and in the more modern game theory
tradition.

I have preached enough about how to integrate fiscal theory with the DSGE tradition,
so I’ll just repeat again how technically easy but fertile that enterprise ought to be.
DSGE models, however, have traditionally had a Keynesian flair, typically ignoring
for example the distortionary effects of taxation, especially on physical and human
capital formation and thereby on long-run surpluses. If we integrate fiscal theory of
inflation with DSGE models, the “supply” end of those models could use a lot of
elaboration.

The end of this long book is really just a beginning.
Part VI

Appendix
Chapter 24

Notation

General: I try to use capital letters for nominal variables and levels, and lowercase letters for real variables, logs, and rates of return. Variables without subscripts are steady state values, though sometimes I use them to refer to the variable in general rather than at a specific date, or to indicate that a variable is constant over time. I use the same symbol for variables and for their deviations from steady state, so you have to look in context. If it’s a deviation from steady state, then there are no constants and 0 = 0 is a solution. I use a comma to separate an identifying subscript from a time subscript, e.g. ε_{i,t} is an interest rate i shock at time t. I do not use a comma when an identifying subscript uses two letters, e.g. i_t = \theta_{iπ}π_t. I follow the usual convention of dating variables when they are known. Thus the nominal interest rate i_t and a real risk free rate r_t are returns for an investment from t to t+1, as are risky returns r_{t+1} or R_{t+1}. I only define widely-used symbols here. When symbols are defined and only used within a section, they are omitted here.

Roman letters:
A. Transition matrix, e.g. z_{t+1} = Az_t + Bε_{t+1} + Cδ_{t+1} or dz_t = Az_tdt + Bdε_t + Cdδ_t.

a(L). Lag polynomial, e.g. s_t = a(L)ε_t.

a_x. Vector which selects a variable from a vector, e.g. x_t = a'_x z_t.

B_t. Face value of nominal debt. B_{t-1}^{(t)} is one-period debt issued at t – 1 due at time t. B_t is used with no superscript can mean one period debt when there is no long-term debt in the model, or an aggregate quantity of debt. E.g. debt with geometric
maturity structure is $B_t^{(t+j)} = B_t \omega^j$ or $B_t e^{-\omega^j}$.

B_t. Part of the matrix representation of a model, e.g. $z_{t+1} = A z_t + B \varepsilon_{t+1} + C \delta_{t+1}$.

b_t. Real (indexed) debt.

$B_{y,x}$. Regression coefficient, e.g. $y_t = a + B_{y,x} x_t + u_t$.

c_t. Real consumption, e.g. $u(c_t)$.

C_0. An arbitrary constant in the solution to a differential equation.

C_t. Part of the matrix representation of a model, $z_{t+1} = A z_t + B \varepsilon_{t+1} + C \delta_{t+1}$.

c_t. Real consumption, e.g. $u(c_t)$. Where necessary for clarity, I use capital letters for the level and lowercase letters for the log, $c_t = \log(C_t)$.

D. Differential operator, $D = d/dt$.

D_t. Fraction of debt coming due at time t that is repaid in a partial default.

d. Differential operator, e.g. dx_t. Also dividends, e.g. $R_{t+1} = (p_{t+1} + d_{t+1})/p_t$.

dz_t. Generic compensated jump or diffusion term, e.g. $dx_t = \mu_t dt + \sigma_t dz_t$. $E_t dz_t = 0$.

E. Expectation. $E_t(x_{t+1})$ conditional expectation at time t.

$f(k)$. Production function, used for marginal product of capital $f'(k)$.

g_t. Real GDP growth rate.

i_t. Net or log nominal interest rate.

i^m_t. Interest rate on money, e.g. interest on excess reserves.

i^*_t. Interest rate target, equilibrium interest rate. E.g. $i_t = i^*_t + \phi(\pi_t - \pi^*_t)$.

I. Identity matrix.

I_t. Investor information set, e.g. $E(x_{t+1}|I_t)$.

j. Used as index for sums, $\sum_{j=1}^{\infty} \beta^j s_{t+j}$.

L. Lag operator, e.g. $x_{t-1} = L x_t$. Also used to express money demand, e.g. $M_t/P_t = L(y, i_t)$.

L. Continuous-time lag operator, $L(D)$, corresponding to $a(L)$. For example if $ds_t = -\eta s_t + d\varepsilon_t$, then $(\eta + D)s_t = d\varepsilon_t$. The moving average representation is $s_t = \int_{\tau=0}^{\infty} e^{-\eta \tau} d\varepsilon_{t-\tau} = 1/(\eta + D)d\varepsilon_t = L(D)d\varepsilon_t$.

M_t. Money. Usually only money issued by the government, i.e. cash and reserves. M_t is held from time t to time $t + 1$. M^d, M^s money demand and supply. Mb, Mi Monetary base and inside money.

$m_t = \log(M_t)$.

n. Population growth rate, e.g. $r = \delta + \gamma (g - n)$.

P_t. Price level, dollars per goods.

P^*_t. Price level target.

p_t. Log price level, $p_t = \log(P_t)$, or proportional deviation from steady state. Also stock price.

R_{t+1}. Real gross rate of return. Ten percent is 1.10, not 0.10 or 10.

R^n_{t+1}. Nominal gross rate of return.

r_{t+1}. Real net or log rate of return. Ten percent is 0.10. When a riskfree rate, it is r_t.

r^n_{t+1}. Nominal net or log return.

r. A constant or steady state real rate of return.

Q_t. Nominal bond price. $Q^{(t+j)}_t$ price at time t of a zero coupon bond that comes due (pays 1) at time $t + j$. Q_t is also the price of a bond with geometrically-declining coupon.

q_t. Log bond price, or proportional deviation of bond price from steady state, $q_t = \log(Q_t)$, or $q_t = Q_t/Q$.

T. Upper time limit for sums, integrals, transversality conditions.

s_t. Real primary surplus or surplus to GDP ratio.

\tilde{s}_t. Real primary surplus expressed in units of a fraction of the real value of debt. e.g. $\tilde{s}_t = s_t/V$

u. Utility, e.g. $u(c_t)$.

u_t. Serially correlated disturbances. Additional subscripts distinguish variables when needed. E.g. $i_t = \theta \pi_t + u_{i,t}$, $u_{i,t+1} = \eta_t u_{i,t} + \varepsilon_{i,t+1}$. Also used to denote an arbitrary regression disturbance, e.g. $y_t = a + b_{y,x}x_t + u_t$.
CHAPTER 24. NOTATION

1. V, v. Velocity, $MV = Py$. When a function of other variables $V(i, \cdot)$, $v = \log(V).
2. Also steady states of the value of government debt V_t, v_t.
3. V_t, v_t Real value of government debt, e.g. $V_t = B_t/P_t$. May have units of debt to GDP, $V_t = B_t/(P_t y)$.
4. v_t. Log real value of government debt, or proportional deviation, e.g. $v_t = \log(V_t)$ or $v_t = V_t/V - 1$.
5. V_t^*, v_t^*. Latent variable for active fiscal policy, equal to debt in equilibrium.
6. W_t. Value of a continually reinvested portfolio, usually of government debt. $W_{t+1} = R_{t+1}W_t$.
7. $W_t^{(j)}$. Weights in the long-term debt formula (7.17).
8. x_t. Real income, gap or deviation from trend used in sticky price models.
9. y_t. Real GDP or income. Also yield on long-term bonds, $Q_t = 1/(y_t + \omega)$.
10. z_t. A generic compensated jump or diffusion, e.g. $dx_t = \mu_t dt + \sigma_t dz_t$. Also a vector of state variables, e.g. $z_t = [x_t \quad \pi_t \quad i_t \quad \ldots]'$.

Greek letters:
11. α. Coefficient of surplus on debt for active fiscal policy, $s_t = \alpha v_t^* + \ldots$ Also interest-elasticity of money demand, $M = PyV^{-\alpha}$.
12. β. Subjective discount factor. Utility is $\sum_{t=0}^{\infty} \beta_t u(c_t)$.
13. β_s, β_i. Regression coefficients of unexpected inflation target on surplus and interest rate shocks. $\Delta E_{t+1} \pi_t^* = \beta_s \varepsilon_{s,t+1}$.
14. γ. Coefficient of surplus on debt in passive fiscal policy, $s_t = \gamma v_t + \ldots$ Also coefficient of risk aversion, $u'(c_t) = c_t^{-\gamma}$.
15. Δ. Used as a difference operator. $\Delta x_t = x_t - x_{t-1}$. Applied to an expectation, it takes a difference of expectations of the same variable, e.g. $\Delta E_{t+1}(y_{t+1}) = E_{t+1}(y_{t+1}) - E_t(y_t)$. In continuous time Δ_t is the corresponding expectation operator. If $dx_t = \mu dt + \sigma dz_t$ then $\Delta_t(dx_t) = \sigma dz_t$. Also used to denote a small discrete time difference, $x_{t+\Delta} - x_t$, or a small difference in a variable, $c_t + \Delta c$.
16. δ. Subjective discount rate, $\beta = e^{-\delta}$.
17. δ_{t+1}. Expectational errors, e.g. $\pi_{t+1} = E_t \pi_{t+1} + \delta_{\pi,t+1}$ or $d\pi_t = E_t d\pi_t + d\delta_{\pi,t}$. I use δ_{t+1} to distinguish expectational errors from shocks ε_{t+1} A complete model derives
expectational errors, and takes shocks as exogenous.

A shock. When necessary a first subscript denotes the variable, e.g. \(\varepsilon_{i,t+1} = \Delta E_{t+1} \). \(\varepsilon_{\Sigma,s,t+1} \) denotes the shock to the present value of surpluses \(\varepsilon_{\Sigma,s,t+1} = \Delta E_{t+1} \sum_{j=0}^{\infty} \rho^j \tilde{s}_{t+j} \).

\(\zeta_i \). Partial-adjustment coefficient in an interest- rate policy rule, \(d_i = -\zeta_i [i_t - (\theta_i \pi_t + \theta_i x_t + u_{i,t})] dt + \theta_i \varepsilon_{i,t} \).

\(\eta \). Serial correlation parameters, e.g. \(u_{t+1} = \eta u_t + \varepsilon_{t+1} \) or \(du_t = -\eta u_t dt + \sigma dz_t \). Note the units are different in discrete and continuous time. The discrete version of the latter is \(u_{t+1} - u_t = (1 - \eta) u_t + \varepsilon_{t+1} \).

\(\theta \). Used for the parameters of policy rules, with subscripts when needed to distinguish variables, e.g. \(i_t = \theta_i \pi_t + u_{i,t} \). Also used as a moving average coefficient, e.g. \(a(L) = 1 + \theta \) and other parameters as defined and used within a few sections.

\(\kappa \). Price stickiness parameter of the new-Keynesian Phillips curve, e.g. \(\pi_t = \beta E_t \pi_{t+1} + \kappa x_t \).

\(\Lambda_t \). Stochastic discount factor, e.g. \(1 = E_t (\Lambda_{t+1} / \Lambda_t R_{t+1}) \); \(\Lambda_t = \beta^t u'(c_t) \).

\(\mu_t \). Drift term of diffusion/jump processes, e.g. \(dx_t = \mu_t dt + \sigma_t dz_t \). Also average money growth rate.

\(\Pi_t \). Gross inflation rate, \(\Pi_t = P_t / P_{t-1} \).

\(\pi_{t+1} \). Net or log inflation rate, \(\pi_{t+1} = P_{t+1} / P_t - 1 \) or \(\pi_{t+1} = \log(P_{t+1}/P_t) \). In continuous time with differentiable prices, \(\pi_t = d \log(P_t) / dt \).

\(\pi_t^e \). Expected inflation. When rational, \(\pi_t^e = E_t \pi_{t+1} \).

\(\pi_t^* \). Inflation target.

\(\rho \). Constant of linearization in present value formulas, e.g. \(\rho v_{t+1} = v_t + r_{t+1} - \pi_{t+1} - g_{t+1} - \tilde{s}_{t+1} \). Units of a discount factor, \(\rho = e^{-\rho} \). Also the discount rate in the continuous-time Phillips curve. \(E_t d\pi_t = (\rho \pi_t - \kappa x_t) dt \).

\(\sigma \). Intertemporal substitution elasticity, e.g. \(x_t = E_t x_{t+1} - \sigma (i_t - E_t \pi_{t+1}) \). Also standard deviation and coefficient in diffusion processes, e.g. \(dx_t = \mu_t dt + \sigma_t dz_t \).
τ. Tax rate, e.g. \(s_t = \tau y_t \). Also an index for integrals, e.g. \(\int_{\tau=0}^{\infty} e^{-\tau t} s_{t+\tau} d\tau \).

φ. Used for policy rules that select equilibria in new-Keynesian models, e.g. \(i_t = i_t^* + \phi_t(\pi_t - \pi_t^*) \). I distinguish \(\theta \) for rules that relate equilibrium quantities and \(\phi \) for rules that select equilibria.

Φ. Φ(Π) is a nonlinear version of \(i = \phi \pi \) or \(\pi_{t+1} = \phi \pi_t \).

Ω. Full economic agent information set.

ω. Parameter of a geometric maturity structure of debt; \(B_t^{(t+j)} = B_t \omega^j \) in discrete time, \(B_t^{(t+j)} = e^{-\omega t} B_t \) in continuous time. Note the units are different in discrete vs. continuous time.

ω\(_{j,t}\). Maturity structure when not geometric. \(\omega_{j,t} = B_t^{(t+j)} / B_t^{(t+1)} \).

¯ω. Used for the continuous time case when needed to contrast with the discrete time case \(\omega = e^{-\bar{\omega}} \). When clear from context I use \(\omega \) for both cases.

Symbols:

{·}. Denotes a sequence. \(\{s_t\} = s_0, s_1, s_2, ... s_t \ldots \)

·. Denotes an unstated list of variables. \(f(\cdot) = f(x, y, z, ...) \)

∗. Used to denote target or equilibrium values, \(i_t^*, \pi_t^* \), etc.
Part VII

Bibliography
Bibliography

———. 2021c. “r < g?” *Manuscript*.

Mankiw, N. Gregory and Jeffrey A. Miron. 1991. “Should the fed smooth interest rates?
the case of seasonal monetary policy.” Carnegie-Rochester Conference Series on Pub-

of the firm.” In Monetary Theory as a Basis for Monetary Policy, edited by Axel

Matsuyama, Kiminori. 1990. “Sunspot Equilibria (Rational Bubbles) in a Model of Money-

McCallum, Bennett T. 1981. “Price Level Determinacy with an Interest Rate Policy Rule

of Monetary Economics 50:1153–75.

McCallum, Bennett T. and Edward Nelson. 2005. “Monetary and Fiscal Theories of
the Price Level: The Irreconcilable Differences.” Oxford Review of Economic Policy

McCandless, George T. 1996. “Money, Expectations, and the U.S. Civil War.” The Amer-

McDermott, John and Rebecca Williams. 2018. “Inflation targeting in
govt.nz/-/media/ReserveBank/Files/Publications/Speeches/2018/

Reis, Ricardo. 2021. “The Constraint on Public Debt when \(r < g \) but \(g < m \).” *Manuscript*.

President-Elect Ronald Reagan from His Coordinating Committee on Economic Policy.

Part VIII

Online Appendix to *The Fiscal Theory of the Price Level*
Chapter 25

Algebra and extensions

This chapter collects algebra for several results in the main text along with some additional issues.

25.1 The transversality condition

The transversality condition \(\lim_{T \to \infty} E_t \left(\beta^T B_{T-1}/P_T \right) = 0 \) results from a “no-Ponzi” condition, that the consumer cannot borrow, eat, and roll over the debt forever, \(\lim_{T \to \infty} E_t \left(\beta^T B_{T-1}/P_T \right) \geq 0 \), plus an optimality condition, that the consumer should eat rather than let wealth grow forever \(\lim_{T \to \infty} E_t \left(\beta^T B_{T-1}/P_T \right) \leq 0 \).

The transversality condition, introduced in Section 2.1, remains an object of much confusion. My general advice is to make sure a model makes sense with a finite horizon and then take limits.

The transversality condition takes us from flow budget constraints to the present value budget constraint. For example, with a constant real interest rate, perfect foresight, and no money, the consumer’s flow budget constraint (2.2) is

\[
B_{t-1} + P_t y = P_t c_t + P_t s_t + \frac{1}{R} \frac{P_t}{P_{t+1}} B_t
\]

(25.1)
Iterate forward to
\[
\frac{B_{t-1}}{P_t} = \sum_{j=0}^{\infty} \frac{1}{R^j} (c_t + s_t - y) + \lim_{T \to \infty} \frac{1}{R^T} \frac{B_{t+T}}{P_{t+T+1}}. \tag{25.2}
\]

The first term of (25.2) is the present value budget constraint, which is what you
would write down for a consumer buying contingent claims in time-0 markets. It is
equivalent to the sequence of period budget constraints \((25.1)\) plus the transversality
condition, that the second term of (25.2) goes to zero. Trading in a sequence of
markets offers an opportunity to borrow and roll over debt forever, which we have
to rule out to give the same result as the time-0 budget constraint.

The lower limit \(\lim_{T \to \infty} E_t (\beta^T B_{T-1}/P_T) \geq 0\) (later \(\lim_{T \to \infty} E_t (\Lambda_T B_{T-1}/P_T) > 0\)
with \(\Lambda_T\) a stochastic discount factor) is a genuine budget constraint. The consumer
can’t borrow, eat, and roll over the debt forever. It stems from a “no-Ponzi” condition
imposed in various ways, such as a borrowing limit and \(B_t \geq 0\) here. The upper limit
\(\lim_{T \to \infty} E_t (\beta^T B_{T-1}/P_T) \leq 0\) is a condition of consumer optimization. No budget
constraint stops you from accumulating infinite amounts of debt. But if you were to
do so, you can improve utility.

As a simple example, consider an equilibrium with constant income \(y\), constant
surplus \(s_t = s\), and no uncertainty. The initial price level should satisfy
\[
\frac{B_{t-1}}{P_t} = \sum_{j=0}^{\infty} \beta^j s = \frac{s}{1-\beta}.
\]

Suppose that the initial price level is too low. Now debt evolves as
\[
\frac{B_{t-1}}{P_t} = s + \beta \frac{B_t}{P_{t+1}}
\]
\[
\frac{B_{t-1}}{P_t} - \frac{s}{1-\beta} = \beta \left(\frac{B_t}{P_{t+1}} - \frac{s}{1-\beta} \right)
\]
\[
\frac{B_{t+T}}{P_{t+T+1}} = \beta^{-(T+1)} \left(\frac{B_{t-1}}{P_t} - \frac{s}{1-\beta} \right) + \frac{s}{1-\beta}
\]

The terminal or transversality term does not go to zero. The valuation equation
reads
\[
\frac{B_{t-1}}{P_t} = E_t \sum_{j=0}^{T} \beta^j s_{t+j} + \beta^{T+1} \frac{B_{t+T}}{P_{t+T+1}}.
\]
25.1. THE TRANSVERSALITY CONDITION

\[\frac{B_{t-1}}{P_t} = E_t \sum_{j=0}^{T} \beta^j s + \left(\frac{B_{t-1}}{P_t} - \frac{s}{1 - \beta} \right) + \beta^{T+1} \frac{s}{1 - \beta}. \]

and taking the limit,

\[\frac{B_{t-1}}{P_t} = E_t \sum_{j=0}^{\infty} \beta^j s + \left(\frac{B_{t-1}}{P_t} - \frac{s}{1 - \beta} \right). \]

What’s wrong? The consumer would prefer to reallocate some of this terminal wealth to consumption. Specifically, facing prices \(\{P_t\} \), an initial debt \(\{B_{t-1}\} \), surpluses and endowment \(s \) and \(y \), and facing real interest rates \(\beta^{-1} \), the consumer’s \(T \)-period budget constraint is

\[\frac{B_{t-1}}{P_t} = E_t \sum_{j=0}^{T} \beta^j [s + c_{t+j} - y] + \beta^{T+1} \frac{B_{t+T}}{P_{t+T+1}}. \]

The limit of the last term must be non-negative as part of the budget constraint. But suppose it is positive.

The first-order conditions for intertemporal allocation still hold, so optimal consumption will be flat at all dates. Suppose the consumer raises consumption by \(\Delta c \) at each date, \(c_t = y + \Delta c \), proposing to consume just a little more and buy a bit less government debt. Debt now accumulates as

\[\frac{B_{t-1}}{P_t} = s + \Delta c + \beta \frac{B_t}{P_{t+1}} \]

and hence

\[\frac{B_{t+T}}{P_{t+T+1}} - \frac{s + \Delta c}{1 - \beta} = \beta^{-(T+1)} \left(\frac{B_{t-1}}{P_t} - \frac{s + \Delta c}{1 - \beta} \right). \]

So long as the initial price level is still too low,

\[\frac{B_{t-1}}{P_t} > \frac{s + \Delta c}{1 - \beta} \] \hspace{1cm} (25.3)

terminal debt still explodes at the interest rate. The new allocation satisfies optimal intertemporal allocation, budget constraints, and improves utility. Indeed, the increase \(\Delta c \) by which \(\text{(25.3)} \) holds with equality is the optimal choice. But with \(\Delta c > 0 \), i.e. \(c > y \), this choice is not an equilibrium, as the goods market does not clear. Prices rise until it does.
The transversality condition is, in general, weighted by contingent claims prices, which are equal marginal utility by the consumer’s first order condition,

$$\lim_{T \to \infty} E_t (\Lambda_T B_{T-1} / P_T) = 0$$

$$\beta^T u'(c_T) = \Lambda_T.$$

When confused, return to the question: Facing the prices of a hypothesized equilibrium, keeping intertemporal and asset pricing first order conditions intact, can the consumer raise utility by reducing the object that does not go to zero on the right-hand side of a present value?

25.2 Derivation of the linearized identities

First, I derive the linearized flow identity (3.17). Denote by

$$V_t = M_t + \sum_{j=0}^{\infty} Q_t^{(t+1+j)} B_t^{(t+1+j)}$$

the nominal end-of-period market value of debt, where M_t is non-interest-bearing money, $B_t^{(t+j)}$ is zero-coupon nominal debt outstanding at the end of period t and due at the beginning of period $t+j$, and $Q_t^{(t+j)}$ is the time t price of that bond, with $Q_t^{(t)} = 1$. It turns out to be a bit prettier to consider this end-of-period value rather than the beginning-of-period convention we have used so far. Taking logs, denote by

$$v_t \equiv \log \left(\frac{V_t}{y_t P_t} \right)$$

the log market value of the debt divided by GDP, where P_t is the price level and y_t is real GDP or another stationarity-inducing divisor such as consumption, potential GDP, population, etc. Denote by

$$R_t^{n} \equiv \frac{M_t + \sum_{j=1}^{\infty} Q_{t+1}^{(t+j)} B_t^{(t+j)}}{M_t + \sum_{j=1}^{\infty} Q_t^{(t+j)} B_t^{(t+j)}}$$

the nominal return on the portfolio of government debt, i.e. how the change in prices overnight from the end of t to the beginning of $t+1$ affects the value of debt held overnight, and

$$r_t^{n} \equiv \log(R_t^{n})$$
is the log nominal return on that portfolio. As usual,
\[\pi_{t+1} \equiv \log \Pi_{t+1} = \log \left(\frac{P_{t+1}}{P_t} \right), \quad g_{t+1} \equiv \log G_{t+1} = \log \left(\frac{y_{t+1}}{y_t} \right) \]
are log inflation and GDP growth rate.

Now, I establish the nonlinear flow and present value identities. In period \(t+1 \), we have the flow identity

\[M_t + \sum_{j=1}^{\infty} Q_{t+1}^{(t+j)} B_t^{(t+j)} = P_{t+1} sp_{t+1} + M_{t+1} + \sum_{j=1}^{\infty} Q_{t+1}^{(t+1+j)} B_{t+1}^{(t+1+j)}. \] (25.5)

Money \(M_{t+1} \) at the end of period \(t+1 \) is equal to money brought in from the previous period \(M_t \) plus the effects of bond sales or purchases at price \(Q_{t+1}^{(t+j)} \), less money soaked up by real primary surpluses \(sp_{t+1} \).

Using the definition of return, (25.5) becomes

\[\left(M_t + \sum_{j=1}^{\infty} Q_{t}^{(t+j)} B_t^{(t+j)} \right) R_{t+1}^n = P_{t+1} sp_{t+1} + \left(M_{t+1} + \sum_{j=1}^{\infty} Q_{t+1}^{(t+1+j)} B_{t+1}^{(t+1+j)} \right), \]

or,
\[V_t R_{t+1}^n = P_{t+1} sp_{t+1} + V_{t+1}. \] (25.6)

The nominal value of government debt is increased by the nominal rate of return, and decreased by primary surpluses. This seems easy. The algebra all comes from properly defining the return on the portfolio of government debt.

Expressing the result as ratios to GDP, we have a flow identity

\[\frac{V_t}{P_t y_t} \times \frac{R_{t+1}^n}{G_{t+1} P_{t+1}} \frac{P_t}{y_t} = sp_{t+1} + \frac{V_{t+1}}{P_{t+1} y_{t+1}}. \] (25.7)

We can iterate this flow identity (25.7) forward to express the nonlinear government debt valuation identity as

\[\frac{V_t}{P_t y_t} = \sum_{j=1}^{\infty} \frac{1}{\prod_{k=1}^{j} R_{t+k}^n / (\Pi_{t+k} G_{t+k})} sp_{t+j} y_{t+j}. \] (25.8)

(I assume here that the right-hand side converges. Otherwise, keep the limiting debt term or iterate a finite number of periods.)
I linearize the flow equation (25.7) to get its linearized counterpart (3.17) and then iterate that forward to obtain (3.18), the linearized version of (25.8). Taking logs of (25.7),

\[v_t + r^n_{t+1} - \pi_{t+1} - g_{t+1} = \log \left(\frac{sp_{t+1}}{yt_{t+1}} + \frac{V_{t+1}}{Pt_{t+1}yt_{t+1}} \right). \]

(25.9)

I linearize in the level of the surplus, not its log as one conventionally does in asset pricing, since the surplus is often negative. Taylor expand the last term of (25.9),

\[v_t + r^n_{t+1} - \pi_{t+1} - g_{t+1} = \log(e^v + sy) + \frac{e^v}{e^v + sy}(v_{t+1} - v) + \frac{1}{e^v + sy}(sy_{t+1} - sy) \]

where

\[sy_{t+1} \equiv \frac{sp_{t+1}}{yt_{t+1}} \]

(25.10)

denotes the surplus to GDP ratio, and variables without subscripts denote a steady state of (25.9). With \(r \equiv r^n - \pi \), steady states obey

\[r - g = \log \left(\frac{e^v + sy}{e^v} \right). \]

(25.11)

Then,

\[v_t + r^n_{t+1} - \pi_{t+1} - g_{t+1} = \left[\log(e^v + sy) - \frac{e^v}{e^v + sy} \left(v + \frac{sy}{e^v} \right) \right] + \frac{e^v}{e^v + sy} v_{t+1} + \frac{e^v}{e^v + sy} \frac{sy_{t+1}}{e^v} \]

(25.12)

\[v_t + r^n_{t+1} - \pi_{t+1} - g_{t+1} = \left[v + r - g - \frac{e^v}{e^v + sy} \left(v + \frac{e^v + sy}{e^v} - 1 \right) \right] + \rho v_{t+1} + \rho \frac{sy_{t+1}}{e^v} \]

(25.13)

where

\[\rho \equiv e^{-(r-g)}. \]

(25.14)

Suppressing the small constant, and thus interpreting variables as deviations from means, the linearized flow identity is

\[v_t + r^n_{t+1} - \pi_{t+1} - g_{t+1} = \rho \frac{sy_{t+1}}{e^v} + \rho v_{t+1}. \]

(25.15)
I use the symbol \tilde{s}_t in the linearized formulas to refer to the surplus/GDP ratio scaled by the steady-state value to GDP ratio,

$$\tilde{s}_{t+1} \equiv \rho \frac{sy_{t+1}}{e^v}.$$

There is nothing wrong with expanding about $r = g$, $\rho = 1$, in which case the constant in the identity is zero. The point of linearization need not be the sample mean. For most time-series applications v_t is stationary, so $\lim_{T \to \infty} E_t v_{t+T} = 0$ even without discounting by ρ^T. We usually apply linearizations to variables that have been demeaned, or to understand second moments of the data, so the constant drops in that case as well.

Cochrane (2021a) evaluates the accuracy of approximation, by comparing the surplus calculated from the exact nonlinear flow identity to the surplus calculated from the linearized identity. I find it reasonably close outside of the extreme deficits of early WWII.

25.2.1 Nonlinear geometric maturity formulas

A geometric maturity structure $B_{t-1}^{(t+j)} = \omega^j B_{t-1}$ in discrete time and $B_t^{(t+j)} = \omega e^{-\omega j} B_t$ in continuous time is analytically convenient. I present formulas for the examples in Figure 3.1 and Figure 7.1.

To maintain the geometric structure, the government must roll over debt, and gradually sell more debt of each coupon as its date approaches.

A geometric maturity structure $B_{t-1}^{(t+j)} = \omega^j B_{t-1}$ is analytically convenient. A perpetuity is $\omega = 1$, and one-period debt is $\omega = 0$. Here I work out exact formulas for one-time shocks. This analysis is a counterpart to the linearized formulas in Section 3.5.1. I use these formulas in Figure 3.1.

Suppose the interest rate $i_{t+j} = i$ is expected to last forever, and suppose surpluses are constant s. The bond price is then $Q_t^{(t+j)} = 1/(1 + i)^j$. The valuation equation at time 0 becomes

$$\sum_{j=0}^{\infty} \frac{Q_0^{(j)} \omega^j B_{-1}}{P_0} = \sum_{j=0}^{\infty} \frac{\omega^j B_{-1}}{(1 + i)^j P_0} = \frac{1 + i}{1 + i - \omega P_0} = \frac{1 + r}{r} s. \quad (25.14)$$
Start at a steady state $B_{-1} = B$, $P_{-1} = P$, $i_{-1} = r$. In this steady state we have

$$\frac{1 + r}{1 + r - \omega} B = \frac{1 + r}{r} s. \quad (25.15)$$

Now suppose at time 0 the interest rate rises unexpectedly and permanently from r to i. We can express (25.14) as

$$\frac{P_0}{P} = \frac{(1 + i)(1 + r - \omega)}{(1 + r)(1 + i - \omega)}. \quad (25.16)$$

These formulas are prettier in continuous time. The valuation equation is

$$\frac{1}{P_t} \int_{j=0}^{\infty} Q_t^{(t+j)} B_t^{(t+j)} dj = E_t \int_{j=0}^{\infty} e^{-rj} s_t^{(t+j)} dj.$$

With maturity structure $B_t^{(t+j)} = \varpi e^{-\varpi j} B_t$, and a constant interest rate $i_t = i$,

$$\varpi \int_{j=0}^{\infty} e^{-ij} e^{-\varpi j} dj \frac{B_t}{P_t} = \frac{\varpi}{i + \varpi} \frac{B_t}{P_t} = \frac{s}{r}. \quad (25.17)$$

Here $\varpi = 0$ is the perpetuity and $\varpi = \infty$ is instantaneous debt. They are related by $\omega = e^{-\varpi}$. (I use the overbar here to contrast the continuous-time parameter from the discrete-time parameter. Elsewhere, I use the same symbol ω without overbar in both cases.) B_t is predetermined. P_t can jump.

Starting from the $i_t = r$, $t < 0$ steady state, if i_0 jumps to a new permanently higher value i, we now have

$$\frac{P_0}{P} = \frac{r + \varpi}{i + \varpi} \quad (25.18)$$

in place of (25.16).

In the case of one-period debt, $\omega = 0$ or $\varpi = \infty$, $P_0 = P$ and there is no downward jump. In the case of a perpetuity, $\omega = 1$ or $\varpi = 0$, (25.16) becomes

$$P_0 = \frac{1 + i}{1 + r} P. \quad (25.19)$$

and (25.18) becomes

$$P_0 = \frac{r}{i} P. \quad (25.20)$$

The price level P_0 jumps down as the interest rate rises, and proportionally to the interest rate rise.
This is potentially a large effect; a rise in interest rates from \(r = 3\% \) to \(i = 4\% \) occasions a 25% price level drop. However, our governments maintain much shorter maturity structures, monetary policy changes in interest rates are not permanent, and they are often pre-announced, each factor reducing the size of the effect. With \(\omega = 0.8 \), the permanent interest rate rise graphed in Figure 3.1 leads to a 3.5% price level drop. The forward guidance of Figure 7.1 leads to a 1.6% price level drop. A mean-reverting interest rate rise has a smaller effect still. Price stickiness also makes the effect smaller, because higher real interest rates also devalue the right-hand side of the valuation equation, a countervailing inflationary effect.

When the government announces at time 0 that interest rates will rise from \(r \) to \(i \) starting at time \(T \), equation (7.3) reads

\[
\left[\sum_{j=0}^{T} \frac{\omega^j}{(1+r)^j} + \sum_{j=T+1}^{\infty} \frac{\omega^T}{(1+r)^T} \frac{\omega^{(j-T)}}{(1+i)^{(j-T)}} \right] B_{-1} \frac{P_0}{P_0} = \frac{s}{1 - \beta}
\]

and with a bit of algebra

\[
\frac{P_0}{P} - 1 = \left(\frac{\omega}{1+r} \right)^T \left[\frac{(1+i)(1+r-\omega)}{(1+r)(1+i-\omega)} - 1 \right],
\]

generalizing (25.16). In continuous time, we have

\[
\left[\int_0^T e^{-rj}e^{-\varpi j} dj + \int_T^\infty e^{-rT-i(j-T)}e^{-\varpi j} dj \right] B_0 \frac{s}{P_0} = \frac{s}{r},
\]

leading to

\[
\frac{P_0}{P} - 1 = e^{-(r+\varpi)T} \left(\frac{r+\varpi}{i+\varpi} - 1 \right),
\]

generalizing (25.18).

The price level \(P_0 \) still jumps – forward guidance works. Longer \(T \) or shorter maturity structures — lower \(\omega \) or larger \(\varpi \) – give a smaller price-level jump for a given interest rate rise. As \(T \to \infty \), the downward price-level jump goes to zero.

A geometric maturity structure needs tending, except in a knife edge case that surpluses are also nonstochastic and geometric. To see the needed bond sales, write bond sales as

\[
B_t^{(t+j)} - B_{t-1}^{(t+j)} = \omega^{j-1} B_t - \omega^j B_{t-1}.
\]
Thus, to maintain a steady state,

\[B_t^{(t+j)} - B_{t-1}^{(t+j)} = \omega^{j-1} (1 - \omega) B = \frac{1 - \omega}{\omega} B_{t-1}^{(t+j)}. \]

In order to pay off maturing debt \(B_{t-1} \), in addition to the current surplus \(s_t \), the government must issue new debt. It issues debt across the maturity spectrum, in the same geometric pattern as debt outstanding. Equivalently, the government issues more and more of each bond as it approaches maturity, again with a geometric pattern. This is roughly what our governments do, since they issue short-term bonds while older long-term bonds have the same maturity.

25.3 Geometric maturity structure linearizations

I derive linearized identities for geometric maturity structures. The return and price obey

\[r_{t+1}^{n} \approx \omega q_{t+1} - q_t. \]

The bond price is negative the weighted sum of future returns,

\[q_t = -\sum_{j=1}^{\infty} \omega^j r_{t+j}^{n}. \]

Taking innovations, we obtain (3.21),

\[\Delta E_{t+1} r_{t+1}^{n} = -\sum_{j=1}^{\infty} \omega^j \Delta E_{t+1} (r_{t+1+j}^{n}) = -\sum_{j=1}^{\infty} \omega^j \Delta E_{t+1} [(r_{t+1+j}^{n} - \pi_{t+1+j}) + \pi_{t+1+j}]. \]

Under the expectations hypothesis we also have

\[i_t = E_t r_{t+1}^{n}, \]
\[i_t = \omega E_t q_{t+1} - q_t. \]

Denote the maturity structure by

\[\omega_{j,t} \equiv \frac{B_t^{(t+j)}}{B_t^{(t+1)}} \]
and \(B_t \equiv B_t^{(t+1)} \). Then the end of period \(t \) nominal market value of debt is
\[
\sum_{j=1}^{\infty} B_t^{(t+j)} Q_t^{(t+j)} = B_t \sum_{j=1}^{\infty} \omega_{j,t} Q_t^{(t+j)}.
\]

(I ignore money to keep the formulas simple.) Define the price of the government debt portfolio
\[
Q_t = \sum_{j=1}^{\infty} \omega_{j,t} Q_t^{(t+j)}.
\]

The return on the government debt portfolio is then
\[
R_{t+1}^n = \frac{\sum_{j=1}^{\infty} B_t^{(t+j)} Q_t^{(t+j)}}{\sum_{j=1}^{\infty} B_t^{(t+j)} Q_t^{(t+j)}} = \frac{\sum_{j=1}^{\infty} \omega_{j,t} Q_t^{(t+j)}}{\sum_{j=1}^{\infty} \omega_{j,t} Q_t^{(t+j)}} = 1 + \sum_{j=1}^{\infty} \omega_{j+1,t} Q_{t+1}^{(t+1+j)} Q_t.
\] (25.21)

I loglinearize around a geometric maturity structure, \(B_t^{(t+j)} = B_t \omega^{j-1} \), or equivalently \(\omega_{j,t} = \omega^{j-1} \). I use variables with no subscripts to denote the linearization points.

When we linearize, we move bond prices holding the maturity structure at its steady-state, geometric value, and then we move the maturity structure while holding bond prices at their steady-state value. As a result, changes in maturity structure have no first-order effect on the linearized bond return. At the steady state \(Q^{(j)} = 1/(1 + i)^j \),
\[
R_{t+1} = \frac{\sum_{j=1}^{\infty} \omega_{j,t}/(1 + i)^{j-1}}{\sum_{j=1}^{\infty} \omega_{j,t}/(1 + i)^j} = (1 + i)
\]

independently of \(\{w_{j,t}\} \). Intuitively, at the steady state bond prices, all bonds give the same return, so all portfolios of bonds give the same return. Moreover, maturity structure is a time-\(t \) variable in the definition of return \(R_{t+1}^n \). The return from \(t \) to \(t + 1 \) is not affected by the time \(t + 1 \) maturity structure. (Changes in maturity structure might affect returns if there is price pressure in bond markets. These are formulas for measurement, however, and such effects would show up as changes in measured prices coincident with changes in quantities.)

Maturity structure has a second-order interaction effect on the bond portfolio return. For example, suppose yields decline throughout the maturity structure. Now, a longer maturity structure at \(t \) results in a larger bond portfolio return at \(t + 1 \). A longer maturity structure at \(t \) likewise raises the expected return if the yield curve
at t is also temporarily upward sloping. But a first-order decomposition does not include interaction effects.

To be clear, in empirical work I measure the bond portfolio return r_{t+1}^n directly, and exactly, and such a measure includes all variation in maturity structure. The linearization only affects the decomposition of the bond portfolio return to future inflation and future expected returns or other calculations one makes with the linearized formula.

The term of the linearization with steady-state bond prices and changing maturity thus adds nothing. The linearization only includes a linearization with steady-state, geometric maturity structure and changing bond prices. Linearizing \((25.21)\) then, we have

$$R_{t+1}^n = \frac{1 + \sum_{j=1}^{\infty} \omega^{j+1} Q_{t+1}^{j+1} Q_t}{Q_t} = \frac{1 + \omega Q_{t+1}}{Q_t}$$

$$r_{t+1}^n = \log (1 + \omega e^{q_{t+1}}) - q_t \approx \log \left(\frac{1 + \omega Q}{Q} \right) + \frac{\omega Q}{1 + \omega Q} \tilde{q}_{t+1} - \tilde{q}_t$$ \(25.22\)

where as usual variables without subscripts are steady state values and tildes are deviations from steady state. In a steady state,

$$Q = \sum_{j=1}^{\infty} \omega^{j-1} \frac{1}{(1+i)^j} = \left(\frac{1}{1+i} \right) \left(\frac{1}{1 - \omega \frac{1}{1+i}} \right) = \frac{1}{1 + i - \omega}.$$ \(25.23\)

The limits are $\omega = 0$ for one-period bonds, which gives $Q = 1/(1 + i)$, and $\omega = 1$ for perpetuities, which gives $Q = 1/i$. The terms of the approximation \((25.22)\) are then

$$\frac{1 + \omega Q}{Q} = 1 + i$$

$$\frac{\omega Q}{1 + \omega Q} = \frac{\omega}{1 + i}$$

so we can write \((25.22)\) as

$$r_{t+1}^n \approx i + \frac{\omega}{1 + i} \tilde{q}_{t+1} - \tilde{q}_t.$$ \(25.24\)
In empirical work, I find the value of ω that best fits the return identity, rather than measure the maturity structure directly, so the difference between ω and $\omega / (1 + i)$ makes no practical difference.

To derive the bond return identity (3.21), iterate (25.24) forward to express the bond price in terms of future returns,

$$\tilde{q}_t = -\sum_{j=1}^{\infty} \omega^j \tilde{r}^n_{t+j}. $$

Take innovations, move the first term to the left hand side, and divide by ω,

$$\Delta E_{t+1} \tilde{r}^n_{t+1} = -\sum_{j=1}^{\infty} \omega^j \Delta E_{t+1} \tilde{r}^n_{t+1+j}. \quad (25.25)$$

Then add and subtract inflation to get (3.21),

$$\Delta E_{t+1} \tilde{r}^n_{t+1} = -\sum_{j=1}^{\infty} \omega^j \Delta E_{t+1} \left[(\tilde{r}^n_{t+1+j} - \tilde{\pi}_{t+1+j}) + \tilde{\pi}_{t+1+j} \right].$$

The expectations hypothesis states that expected returns on bonds of all maturities are the same,

$$E_t r^m_{t+1} = i_t$$

$$i + \omega E_t \tilde{q}_{t+1} - \tilde{q}_t = i_t$$

$$\omega E_t \tilde{q}_{t+1} - \tilde{q}_t = \tilde{i}_t.$$

All variables are deviations from steady state, so I drop the tilde notation.

25.4 Continuous time with short-term debt

To connect the flow (3.29) and present value relations (3.31) (3.32) of Section 3.6.1 note

$$r_t dt = -E_t \left(\frac{d\Lambda_t}{\Lambda_t} \right)$$

$$i_t dt = -E_t \left[d \left(\frac{\Lambda_t}{P_t} \right) / \left(\frac{\Lambda_t}{P_t} \right) \right] \quad (25.26)$$
$i_t \, dt = - \frac{d [1/(P_t W_t)]}{1/(P_t W_t)}$.

(The latter takes a few lines of algebra starting from (3.33).) Then, work either up or down,

$$\frac{B_t}{P_t} = E_t \int_{\tau=t}^{\infty} \frac{\Lambda_{\tau}}{\Lambda_t} s_{\tau} \, d\tau$$

$$\Lambda_t \frac{B_t}{P_t} = E_t \int_{\tau=t}^{\infty} \Lambda_{\tau} s_{\tau} \, d\tau$$

$$d \left(\frac{\Lambda_{t}}{P_t} \right) = -s_{t} \Lambda_{t} \, dt$$

$$\Lambda_t \frac{dB_t}{P_t} + B_t E_t \left[d \left(\frac{\Lambda_{t}}{P_t} \right) \right] = -\Lambda_{t} s_{t} \, dt$$

$$dB_t + B_t E_t \left[d \left(\frac{\Lambda_{t}}{P_t} \right) \right] = -P_t s_{t} \, dt$$

$$B_t i_t \, dt = P_t s_{t} \, dt + dB_t.$$

Similarly, for the rate of return as discount factor, work either up or down,

$$\frac{B_t}{P_t} = \int_{\tau=t}^{\infty} \frac{W_t}{W_\tau} s_{\tau} \, d\tau$$

$$\frac{1}{W_t} \frac{B_t}{P_t} = \int_{\tau=t}^{\infty} \frac{s_{\tau}}{W_\tau} \, d\tau$$

$$d \left(\frac{1}{W_t} \frac{B_t}{P_t} \right) = -\frac{s_{t}}{W_t} \, dt$$

$$\frac{1}{W_t} \frac{dB_t}{P_t} + B_t d \left(\frac{1}{P_t W_t} \right) = -\frac{s_{t}}{W_t} \, dt$$

$$\frac{1}{W_t} \frac{dB_t}{P_t} - \frac{B_t}{P_t W_t} i_t \, dt = -\frac{s_{t}}{W_t} \, dt$$

$$-dB_t + B_t i_t \, dt = P_t s_{t} \, dt.$$
25.5 Continuous time with long-term debt

This section connects the long-term debt flow relation \(3.34\) to the present value relations with a stochastic discount factor \(3.35\) and an ex-post return \(3.36\), presented in Section 3.6.2.

From \(3.39\) we can connect the flow relation to the present value relation using the ex-post return as discount factor. Write \(3.39\) as

\[
\frac{dV_t}{V_t} = -\frac{s_t}{V_t} dt + \frac{dW_t}{W_t}.
\]

(25.27)

At non-jump points, this implies

\[
\frac{dV_t}{V_t} = \frac{dW_t}{W_t}.
\]

Thus,

\[
d \left(\frac{V_t}{W_t} \right) = \frac{V_t}{W_t} \left(\frac{dV_t}{V_t} - \frac{dW_t}{W_t} \right) = \frac{dW_t}{W_t}.
\]

Integrating,

\[
\frac{V_t}{W_t} - \lim_{T \to \infty} \frac{V_T}{W_T} = - \int_{\tau=0}^{\infty} d \left(\frac{V_t}{W_t} \right) = \int_{\tau=0}^{\infty} \frac{s_t}{V_t} dt
\]

\[
\frac{V_t}{W_t} = \int_{\tau=t}^{\infty} \frac{s_\tau}{W_\tau} d\tau.
\]

(25.28)

From \(25.27\), \(V\) grows more slowly than \(W\), so the limit is zero.

At jump points \(25.27\) implies that the jumps obey

\[
\frac{dW}{W} = \frac{dP}{P}.
\]

At the jump points \(d(V_t/W_t) = 0\) so they do not affect the integral \(25.28\).
To go backwards, take the differential of the final integral. (The same steps allow us
to express a stock’s price as the present value of its dividend stream, discounted by
the ex-post return, in continuous time. Start with
\[\frac{dW}{W} = dR = \frac{d}{P} dt + \frac{dP}{P}. \] (25.29)

Follow the same steps to conclude
\[\frac{P_t}{W_t} = \int_{\tau=t}^{\infty} \frac{d_\tau}{W_\tau} d\tau \] (25.30)
and vice versa.)

To connect flow and present value relations using the discount factor, note that the
definition of a discount factor \(\Lambda_t \) implies the basic pricing relation
\[E_t [d(\Lambda_t W_t)] = 0 \]

hence
\[E_t \left(\frac{d\Lambda_t}{\Lambda_t} + \frac{dW_t}{W_t} + \frac{d\Lambda_t}{\Lambda_t} \frac{dW_t}{W_t} \right) = 0. \]

From (25.27), which in turn came from the flow relation, we have
\[\frac{dW_t}{W_t} = \frac{dV_t}{V_t} + \frac{s_t}{V_t} dt. \]

So,
\[E_t \left(\frac{d\Lambda_t}{\Lambda_t} + \frac{dV_t}{V_t} + \frac{d\Lambda_t}{\Lambda_t} \frac{dV_t}{V_t} \right) = -\frac{s_t}{V_t} dt \]
\[E_t [d(\Lambda_t V_t)] = -\Lambda_t s_t dt \]
\[V_t \Lambda_t = \int_{\tau=t}^{\infty} \Lambda_\tau s_\tau d\tau, \]
and vice versa.
25.6 Money in continuous time

This section presents the algebra behind the expressions of the government debt valuation equation with money in continuous time, Section 3.6.4. I repeat some of that discussion for completeness, so you don’t have to flip back and forth.

The nominal and real flow conditions in continuous time are

\[dM_t = i_t B_t dt + i^m_t M_t dt - P_t s_t dt - dB_t. \]
\[\frac{B_t}{P_t} i_t dt + \frac{M_t}{P_t} i^m_t dt = s_t dt + \frac{dB_t}{P_t} + \frac{dM_t}{P_t}. \]

To express seigniorage as money creation, specialize to \(i^m_t = 0 \), rearrange (3.52), and substitute the definition of the nominal interest rate,

\[\frac{dB_t}{P_t} + E_t \left[d \left(\frac{\Lambda_t}{P_t} \right) \right] \frac{B_t}{P_t} = -s_t dt - \frac{dM_t}{P_t} \]
\[\frac{\Lambda_t}{P_t} dB_t + E_t \left[d \left(\frac{\Lambda_t}{P_t} \right) \right] B_t = -\Lambda_t \left(s_t dt + \frac{dM_t}{P_t} \right) \]
\[E_t \left[d \left(\frac{\Lambda_t B_t}{P_t} \right) \right] = -\Lambda_t \left(s_t dt + \frac{dM_t}{P_t} \right) \]

Now we can integrate, and impose the transversality condition to obtain

\[\frac{B_t}{P_t} = E_t \int_{\tau=t}^{\infty} \frac{\Lambda_t}{\Lambda_t} \left(s_\tau d\tau + \frac{dM_\tau}{P_\tau} \right). \]

To express seigniorage in terms of interest cost, including the case that money pays interest \(0 < i^m_t < i_t \), start again from (25.31), and write

\[\frac{d}{P_t} \left(\frac{M_t + B_t}{P_t} \right) - i_t \left(\frac{B_t + M_t}{P_t} \right) dt = -s_t dt - (i_t - i^m_t) \frac{M_t}{P_t} dt \]
\[\frac{d}{P_t} \left(\frac{M_t + B_t}{P_t} \right) + E_t \left[d \left(\frac{\Lambda_t}{P_t} \right) \right] \left(\frac{B_t + M_t}{P_t} \right) dt = -s_t dt - (i_t - i^m_t) \frac{M_t}{P_t} dt \]
\[\frac{\Lambda_t}{P_t} \frac{d}{P_t} \left(\frac{M_t + B_t}{P_t} \right) + E_t \left[d \left(\frac{\Lambda_t}{P_t} \right) \right] \left(B_t + M_t \right) = -\Lambda_t \left(s_t + (i_t - i^m_t) \frac{M_t}{P_t} \right) dt \]
\[E_t \left[d \left(\frac{\Lambda_t M_t + B_t}{P_t} \right) \right] = -\Lambda_t \left(s_t + (i_t - i^m_t) \frac{M_t}{P_t} \right) dt. \]
Integrating again,

\[
\frac{M_t + B_t}{P_t} = E_t \int_{\tau=t}^{\infty} \frac{\Lambda_{t}}{\Lambda_{\tau}} \left[s_{\tau} + (i_{\tau} - i_{m}) \frac{M_{\tau}}{P_{\tau}} \right] d\tau. \tag{25.34}
\]

To discount with the ex-post return, define \(W_t^n\) and \(W_t^r\) as the cumulative nominal and real values of investment in short-term debt, so \(dW_t/W_t\) is the ex-post real return. Then,

\[
d\frac{W_t^n}{W_t^n} = i_t dt \]

\[
P_t W_t = W_t^n
\]

\[
d \left(\frac{1}{P_t W_t} \right) = -\frac{1}{W_t^n} \frac{dW_t^n}{W_t^n} = -\frac{1}{W_t^n} i_t dt = -\frac{1}{P_t W_t} i_t dt
\]

\[
i_t dt = -d \left(\frac{1}{P_t W_t} \right) / \left(\frac{1}{P_t W_t} \right) . \tag{25.35}
\]

\((P_t\) and \(W_t\) may jump here, but \(P_t W_t\) is differentiable.) Start again with the nominal flow condition (25.31), rearrange and divide by \(W_t\) to give,

\[
d \left(\frac{B_t}{P_t W_t} \right) - i_t \frac{B_t}{P_t W_t} dt = -\frac{1}{W_t} \left(s_t dt + \frac{dM_t}{P_t} \right) . \tag{25.36}
\]

Substituting (25.35) for \(i_t\),

\[
d \left(\frac{B_t}{P_t W_t} \right) + d \left(\frac{1}{P_t W_t} \right) B_t = -\frac{1}{W_t} \left(s_t dt + \frac{dM_t}{P_t} \right)
\]

\[
d \left(\frac{1}{P_t W_t} \right) B_t = -\frac{1}{W_t} \left(s_t dt + \frac{dM_t}{P_t} \right)
\]

Integrating,

\[
\frac{B_t}{P_t} = \int_{\tau=t}^{\infty} \frac{W_t}{W_{\tau}} \left(s_{\tau} d\tau + \frac{dM_{\tau}}{P_{\tau}} \right).
\]

To discount at the ex-post rate of return, expressing seigniorage as an interest saving, and allowing money to pay interest, start at (25.36), and write

\[
d \left(\frac{B_t + M_t}{P_t W_t} \right) - i_t \left(\frac{B_t + M_t}{P_t W_t} \right) dt = -\frac{1}{W_t} \left[s_t + (i_t - i_{m}) \frac{M_t}{P_t} \right] dt
\]
25.7. STICKY-PRICE MODEL ANALYTICAL SOLUTION

\[
\frac{d(B_t + M_t)}{P_t W_t} + d \left(\frac{1}{P_t W_t} \right) (B_t + M_t) = -\frac{1}{W_t} \left[s_t + (i_t - i_t^m) \frac{M_t}{P_t} \right] dt
\]

\[
d \left(\frac{B_t + M_t}{P_t W_t} \right) = -\frac{1}{W_t} \left[s_t + (i_t - i_t^m) \frac{M_t}{P_t} \right] dt
\]

\[
\frac{B_t + M_t}{P_t} = \int_{\tau=t}^{\infty} \frac{W_t}{W_\tau} \left[s_\tau + (i_\tau - i_\tau^m) \frac{M_\tau}{P_\tau} \right] d\tau.
\]

To write the discount factor as a rate of return that mixes the bond rate of return and the lower (zero) money rate of return, define \(W_t^{\text{nm}}\) and \(W_t^m\) as the cumulative nominal and real value of an investment in the overall government bond portfolio, now including money.

\[
\frac{dW_t^{\text{nm}}}{W_t^{\text{nm}}} = \frac{B_t}{B_t + M_t} i_t dt + \frac{M_t}{B_t + M_t} i_t^m dt
\]

\[
\frac{d}{P_t W_t^m} = \frac{W_t^{\text{nm}}}{W_t^m}
\]

\[
d \left(\frac{1}{P_t W_t^m} \right) = -\frac{1}{W_t^m} dW_t^m = -\frac{1}{P_t W_t^m} \left(\frac{B_t}{B_t + M_t} i_t dt + \frac{M_t}{B_t + M_t} i_t^m dt \right)
\]

\[
d \left(\frac{1}{P_t W_t^m} \right) = -\frac{1}{W_t^m} \frac{1}{B_t + M_t} \left(\frac{B_t}{P_t} i_t dt + \frac{M_t}{P_t} i_t^m dt \right)
\]

\[
(B_t + M_t) W_t^m d \left(\frac{1}{P_t W_t^m} \right) = -\left(\frac{B_t}{P_t} i_t dt + \frac{M_t}{P_t} i_t^m dt \right).
\]

Again start at (25.36), and substitute,

\[
\frac{d (M_t + B_t)}{P_t} - i_t B_t \frac{dt}{P_t} - i_t^m M_t \frac{dt}{P_t} = -s_t dt
\]

\[
\frac{d (M_t + B_t)}{P_t W_t^m} + (B_t + M_t) d \left(\frac{1}{P_t W_t^m} \right) = -\frac{1}{W_t^m} s_t dt
\]

\[
d \left(\frac{B_t + M_t}{P_t W_t^m} \right) = -\frac{1}{W_t^m} s_t dt
\]

\[
\frac{B_t + M_t}{P_t} = \int_{\tau=t}^{\infty} \frac{W_t^m}{W_\tau} s_\tau d\tau. \tag{25.37}
\]

25.7 Sticky-price model analytical solution

Here I derive the explicit solutions (5.5)-(5.14), for inflation and output given the equilibrium path of interest rates. (This section comes from Cochrane (2017b), which
includes a generalization to a model with money that pays interest \(i^m \leq i \). The simple model (5.1)-(5.2) is

\[
x_t = E_t x_{t+1} - \sigma(i_t - E_t \pi_{t+1})
\]
\[
\pi_t = \beta E_t \pi_{t+1} + \kappa x_t.
\]

Expressing the model in lag operator notation,

\[
E_t (1 - L^{-1}) x_t = \sigma E_t L^{-1} \pi_t - \sigma i_t
\]

Forward-differencing the second equation,

\[
E_t (1 - \beta L^{-1}) \pi_t = \kappa x_t
\]

Then substituting,

\[
E_t (1 - L^{-1})(1 - \beta L^{-1}) \pi_t = E_t (1 - L^{-1}) \kappa x_t
\]

Factor the lag polynomial

\[
E_t (1 - \lambda_1 L^{-1})(1 - \lambda_2 L^{-1}) \pi_t = -\sigma \kappa i_t
\]

where

\[
\lambda_i = \frac{(1 + \beta + \sigma \kappa) \pm \sqrt{(1 + \beta + \sigma \kappa)^2 - 4\beta}}{2}.
\]

Since \(\lambda_1 > 1 \) and \(\lambda_2 < 1 \), reexpress the result as

\[
E_t \left[(1 - \lambda_1^{-1} L)(1 - \lambda_2 L^{-1}) \lambda_1 L^{-1} \pi_t \right] = \sigma \kappa i_t
\]

\[
E_t \left[(1 - \lambda_1^{-1} L)(1 - \lambda_2 L^{-1}) \pi_{t+1} \right] = \sigma \kappa \lambda_1^{-1} i_t
\]

The bounded solutions are

\[
\pi_{t+1} = E_{t+1} \frac{\lambda_1^{-1}}{(1 - \lambda_1^{-1} L)(1 - \lambda_2 L^{-1})} \sigma \kappa i_t + \frac{1}{(1 - \lambda_1^{-1} L)} \delta_{t+1}
\]
where δ_{t+1} is a sequence of unpredictable random variables, $E_t \delta_{t+1} = 0$. I follow the usual practice and I rule out solutions that explode in the forward direction.

Using a partial fractions decomposition to break up the right hand side,

$$\frac{\lambda_1^{-1}}{(1 - \lambda_1^{-1}L)(1 - \lambda_2L^{-1})} = \frac{1}{\lambda_1 - \lambda_2} \left(\frac{\lambda_1^{-1}L}{1 - \lambda_1^{-1}L} + \frac{\lambda_2L^{-1}}{1 - \lambda_2L^{-1}} \right).$$

So,

$$\pi_{t+1} = \frac{1}{\lambda_1 - \lambda_2} E_{t+1} \left(1 + \frac{\lambda_1^{-1}L}{1 - \lambda_1^{-1}L} + \frac{\lambda_2L^{-1}}{1 - \lambda_2L^{-1}} \right) \sigma \kappa i_t + \frac{1}{(1 - \lambda_1^{-1}L)} \delta_{t+1}$$

or in sum notation,

$$\pi_{t+1} = \sigma \kappa \frac{1}{\lambda_1 - \lambda_2} \left(i_t + \sum_{j=1}^{\infty} \lambda_1^{-j} i_{t-j} + \sum_{j=1}^{\infty} \lambda_2^j E_{t+1} i_{t+j} \right) + \sum_{j=0}^{\infty} \lambda_1^{-j} \delta_{t+1-j}. \quad (25.38)$$

The long-run impulse-response function is 1:

$$\frac{1}{(1 - \lambda_1^{-1})(1 - \lambda_2)} \sigma \kappa = \frac{\sigma \kappa}{(1 - \lambda_1)(1 - \lambda_2)} = \frac{\sigma \kappa}{(1 - \lambda_1 + \lambda_2 + \lambda_1 \lambda_2)} = \frac{\sigma \kappa}{1 - (1 + \beta + \sigma \kappa) + \beta} = 1.$$

Having found the path of π_t, we can find output by

$$\kappa x_t = \pi_t - \beta E_t \pi_{t+1}.$$

In lag operator notation, and shifting forward one period,

$$\kappa x_{t+1} = E_{t+1} \left[(1 - \beta L^{-1}) \pi_{t+1} \right].$$

Now,

$$(1 - \beta L^{-1}) \left(1 + \frac{\lambda_1^{-1}L}{1 - \lambda_1^{-1}L} + \frac{\lambda_2L^{-1}}{1 - \lambda_2L^{-1}} \right) = \frac{1 - \beta \lambda_1^{-1}}{1 - \lambda_1^{-1}L} + \frac{(1 - \beta \lambda_2^{-1}) (\lambda_2 L^{-1})}{1 - \lambda_2L^{-1}},$$
so we can rewrite the polynomials to give

\[\kappa x_{t+1} = \frac{\sigma \kappa}{\lambda_1 - \lambda_2} E_{t+1} \left[\frac{1 - \beta \lambda_1^{-1}}{1 - \lambda_1^{-1} L} + \frac{(1 - \beta \lambda_2^{-1}) (\lambda_2 L^{-1})}{1 - \lambda_2 L^{-1}} \right] i_t + E_{t+1} \left[\frac{1 - \beta \lambda_1^{-1}}{1 - \lambda_1^{-1} L} \right] \delta_{t+1}. \]

(In the second term, I use \(E_t [\beta L^{-1} \delta_{t+1}] = 0 \).) In sum notation,

\[\kappa x_{t+1} = \frac{\sigma \kappa}{\lambda_1 - \lambda_2} \left[(1 - \beta \lambda_1^{-1}) \sum_{j=0}^{\infty} \lambda_1^{-j} i_{t-j} + (1 - \beta \lambda_2^{-1}) \sum_{j=1}^{\infty} \lambda_2^j E_{t+1} i_{t+j} \right] + (1 - \beta \lambda_1^{-1}) \sum_{j=0}^{\infty} \lambda_1^{-j} \delta_{t+1-j}. \]

25.8 Three-equation model solution

I solve the three-equation model of Figure 17.8 by standard methods, incorporating the Taylor rule into monetary policy rather than conditioning on the equilibrium interest rate and then constructing the underlying Taylor rule. Both methods give the same answer, but a conventional calculation is more transparent in this case, and it verifies that both approaches give the same answer.

While one can solve the model quickly via matrix techniques, here I use lag operator techniques to write the solution for inflation analytically.

The model is

\[x_t = E_t x_{t+1} - \sigma (i_t - E_t \pi_{t+1}) \]
\[\pi_t = \beta E_t \pi_{t+1} + \kappa x_t \]
\[i_t = \phi \pi_t + u_{i,t} \]
\[u_{i,t} = \eta u_{i,t-1} + \varepsilon_{i,t} \]

Substituting the Taylor rule,

\[x_t = E_t x_{t+1} - \sigma (\phi \pi_t + u_{i,t} - E_t \pi_{t+1}) \]
\[\pi_t = \beta E_t \pi_{t+1} + \kappa x_t \]

Expressing the model in lag operator notation,

\[E_t (1 - L^{-1}) x_t = \sigma E_t \left(L^{-1} - \phi \right) \pi_t - \sigma u_{i,t} \]
\[E_t (1 - \beta L^{-1}) \pi_t = \kappa x_t \]
Forward-differencing the second equation,

\[E_t(1 - L^{-1})(1 - \beta L^{-1})\pi_t = E_t(1 - L^{-1})\kappa x_t \]

Then substituting into the first equation,

\[E_t(1 - L^{-1}) (1 - \beta L^{-1}) \pi_t = \sigma \kappa E_t \left(L^{-1} - \phi \right) \pi_t - \sigma \kappa u_{i,t} \]

Factor the lag polynomial

\[E_t(1 - L^{-1})(1 - \beta L^{-1})\pi_t = \left[1 - \frac{1 + \beta + \sigma \kappa}{1 + \sigma \kappa \phi} L^{-1} + \frac{\beta}{1 + \sigma \kappa \phi} L^{-2} \right] \pi_t = -\frac{\sigma \kappa}{1 + \sigma \kappa \phi} u_{i,t}. \]

where

\[\lambda = \frac{1 + \beta + \sigma \kappa \pm \sqrt{(1 + \beta + \kappa \sigma)^2 - 4 \beta (1 + \phi \sigma \kappa)}}{2 (1 + \sigma \kappa \phi)} \]

These lag operator roots are the inverse of the eigenvalues of the usual transition matrix. The system is stable and solved backward for \(\lambda > 1 \); it is unstable and solved forward for \(\lambda < 1 \).

The standard three-equation model uses \(\phi > 1 \) so both roots are unstable, \(\lambda_1 < 1 \) and \(\lambda_2 < 1 \). Then, we can write

\[E_t(1 - \lambda_1 L^{-1})(1 - \lambda_2 L^{-1})\pi_t = -\frac{\sigma \kappa}{1 + \sigma \kappa \phi} u_{i,t} \]

\[\pi_t = -E_t \frac{1}{(1 - \lambda_1 L^{-1})(1 - \lambda_2 L^{-1})} \frac{\sigma \kappa}{1 + \sigma \kappa \phi} u_{i,t} \]

\[\pi_t = E_t \frac{1}{\lambda_1 - \lambda_2} \left(\frac{-\lambda_1}{1 - \lambda_1 L^{-1}} + \frac{\lambda_2}{1 - \lambda_2 L^{-1}} \right) \frac{\sigma \kappa}{1 + \sigma \kappa \phi} u_{i,t} \]

\[\pi_t = \frac{\sigma \kappa}{1 + \sigma \kappa \phi} \frac{1}{\lambda_1 - \lambda_2} E_t \left(-\lambda_1 \sum_{j=0}^{\infty} \lambda_1^j u_{i,t+j} + \lambda_2 \sum_{j=0}^{\infty} \lambda_2^j u_{i,t+j} \right) \]

Using the AR(1) form of the disturbance \(v^i \),

\[\pi_t = \frac{\sigma \kappa}{1 + \sigma \kappa \phi} \frac{1}{\lambda_1 - \lambda_2} \left(-\lambda_1 \sum_{j=0}^{\infty} \lambda_1^j \eta^j + \lambda_2 \sum_{j=0}^{\infty} \lambda_2^j \eta^j \right) u_{i,t} \]
\[\pi_t = \frac{\sigma \kappa}{1 + \sigma \kappa \delta} \left(\frac{1}{\lambda_1 - \lambda_2} \left(\frac{1}{1 - \lambda_1 \eta} + \frac{1}{1 - \lambda_2 \eta} \right) \right) u_{i,t} \]

\[\pi_t = \frac{\sigma \kappa}{1 + \sigma \kappa \delta} \left(\frac{1}{\lambda_1 - \lambda_2} \left(\frac{1}{(1 - \lambda_1 \eta)(1 - \lambda_2 \eta)} \right) \right) v_t \]

\[\pi_t = \frac{-\sigma \kappa}{1 + \sigma \kappa \delta} \left(\frac{1}{(1 - \lambda_1 \eta)(1 - \lambda_2 \eta)} \right) u_{i,t} \]

Thus, to produce Figure 17.8, I simply simulate the AR(1) impulse-response, for \{u_{i,t}\}, calculate \(\pi_t \) by the last equation, and calculate \(i_t = \phi \pi_t + u_{i,t} \).

25.9 Matrix and state variable solution methods

We write the discrete time models in standard form

\[z_{t+1} = A z_t + B \varepsilon_{t+1} + C \delta_{t+1}. \]

Then, eigenvalue-decompose the matrix \(A \), solve unstable eigenvalues forward and stable eigenvalues backward. With as many forward-looking eigenvalues as there are expectational errors \(\delta \), we obtain a unique solution.

Here I present the standard solution method for the discrete-time new-Keynesian models of this Section (Blanchard and Kahn (1980)). First express the system in standard form

\[A z_{t+1} = B z_t + C \varepsilon_{t+1} + D \delta_{t+1} + F w_t. \] (25.39)

The economic variables \(x_t, \pi_t, \) etc. go in the vector \(z_t \). Structural shocks to the behavioral equations and policy shocks go into \(\varepsilon_{t+1} \). For example, we might write a monetary policy rule \(i_{t+1} = \theta \pi_{t+1} + u_{i,t+1}, u_{i,t+1} = \eta u_{i,t} + \varepsilon_{i,t+1} \). I use the notation \(\delta_{t+1} \) to denote expectational errors in equations that only determine expectations. For example, I write the Phillips curve

\[\pi_t = \beta E_t \pi_{t+1} + \kappa x_t \]

as

\[\beta \pi_{t+1} = \pi_t - \kappa x_t + \beta \delta_{\pi,t+1}. \]

The structural shocks \(\varepsilon \) are known and exogenous shocks to the model. All the model says is that \(E_t \delta_{t+1} = 0 \). Solving the model means also finding \(\delta_{t+1} \) in terms of other variables.
As an example, I add to the simple model (5.15)-(5.16), a simple monetary policy rule, so we can see how to include such rules

\[i_t = \theta_i \pi_t + u_{i,t} + w_t \]
\[s_t = u_{s,t} \]
\[u_{i,t+1} = \eta_i u_{i,t} + \varepsilon_{i,t+1} \]
\[u_{s,t+1} = \eta_s u_{s,t} + \varepsilon_{s,t+1} \]

It’s then easy to see how to add output responses \(\theta_i x_t \) to the monetary policy rule and a surplus policy rule as well. To calculate the permanent unexpected interest rate rise of Figure 5.1 I use \(\theta_i \pi = 0, \eta_i = 1, w_t = 0 \). To calculate the expected interest rate rise of Figure 5.2, I use \(\theta_i \pi = 0, \varepsilon_{i,t} = 0 \) and \(w_t \) that rises from 0 to 1 at \(t = 1 \).

The \(w_t \) are variables known ahead of time. I use such a \(w \) to compute the effect of an expected interest rate rise. For example, to calculate the effects of an interest rate rise at time 5, I use \(w_5 = 1 \), but this \(w_5 \) is known at time 1. In this VAR(1) context, the alternative is to introduce variables that are known \(k \) periods ahead of time, and then carry around an extra \(k \) variables in the state vector.

Since (25.40) and (25.41) just define one variable in terms of others at the same time, I use them to eliminate \(i_t \) and \(s_t \). Then, I write

\[E_t x_{t+1} + \sigma E_t \pi_{t+1} = x_t + \sigma (\theta_i \pi_t + u_{i,t} + w_t) \]
\[\beta E_t \pi_{t+1} = \pi_t - \kappa x_t \]
\[\rho v_{t+1} + \pi_{t+1} + u_{s,t+1} = v_t + \theta_i \pi_t + u_{i,t} + w_t \]

and in matrix form,

\[
\begin{bmatrix}
1 & \sigma & 0 & 0 & 0 \\
0 & \beta & 0 & 0 & 0 \\
0 & 1 & \rho & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x_{t+1} \\
\pi_{t+1} \\
v_{t+1} \\
u_{i,t+1} \\
u_{s,t+1}
\end{bmatrix}
= \begin{bmatrix}
1 & \sigma \theta_i \pi & 0 & \sigma & 0 \\
0 & -\kappa & 1 & 0 & 0 \\
0 & \theta_i \pi & 1 & 1 & 0 \\
0 & 0 & 0 & \eta_i & 0 \\
0 & 0 & 0 & 0 & \eta_s
\end{bmatrix}
\begin{bmatrix}
x_t \\
\pi_t \\
v_t \\
u_{i,t} \\
u_{s,t}
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & 0 \\
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
\varepsilon_{i,t+1} \\
\varepsilon_{s,t+1}
\end{bmatrix}
+ \begin{bmatrix}
1 & \sigma \\
0 & \beta \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
\delta_{x,t+1} \\
\delta_{\pi,t+1}
\end{bmatrix}
+ \begin{bmatrix}
\sigma \\
0 \\
0 \\
0 \\
0
\end{bmatrix}
\begin{bmatrix}
w_t
\end{bmatrix}
\]
This case is simple enough to invert the leading matrix analytically and still get a pretty answer,

\[
\begin{bmatrix}
x_{t+1} \\
\pi_{t+1} \\
v_{t+1} \\
u_{i,t+1} \\
u_{s,t+1}
\end{bmatrix} =
\begin{bmatrix}
1 + \frac{\sigma}{\beta} & \sigma \left(\theta_{i\pi} - \frac{1}{\beta} \right) & 0 & \sigma & 0 \\
-\frac{\kappa}{\beta} & 0 & 0 & 0 & 0 \\
\frac{\kappa}{\rho^3} & \frac{1}{\rho} \left(\theta_{i\pi} - \frac{1}{\beta} \right) & \frac{1}{\rho} & \frac{1}{\rho} & -\frac{1}{\rho} \eta_s \\
0 & 0 & 0 & \eta_i & 0 \\
0 & 0 & 0 & 0 & \eta_s
\end{bmatrix}
\begin{bmatrix}
x_t \\
\pi_t \\
v_t \\
u_{i,t} \\
u_{s,t}
\end{bmatrix}
\]

\[
+ \begin{bmatrix}
0 & 0 \\
0 & 0 \\
0 & -\frac{1}{\rho} \\
1 & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
\varepsilon_{i,t+1} \\
\varepsilon_{s,t+1}
\end{bmatrix}
+ \begin{bmatrix}
1 & 0 \\
0 & 1 \\
0 & -\frac{1}{\rho} \\
0 & 0 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
\delta_{x,t+1} \\
\delta_{\pi,t+1}
\end{bmatrix}
+ \begin{bmatrix}
\sigma \\
0 \\
0 \\
\frac{\sigma}{\rho} \\
0
\end{bmatrix}
\begin{bmatrix}
w_t
\end{bmatrix}
\]

The eigenvalues of the transition matrix are

\[\rho^{-1}, \eta_i, \eta_s, \lambda_+ , \lambda_- \]

with

\[\lambda_{+/-} = \frac{1 + \beta + \kappa \sigma \pm \sqrt{(1 + \beta + \kappa \sigma^2) - 4\beta (1 + \kappa \sigma \theta_{i\pi})}}{2\beta}.\]

With two linearly independent expectational errors, we need two eigenvalues greater or equal to one. Conventional new-Keynesian models wipe out the \(\nu \) equation with passive fiscal policy, often just deleting it from the analysis with a footnote assuming lump-sum taxes move to satisfy the valuation equation, and assume \(\theta_{i\pi} > 1 \) so both \(\lambda \) are larger than one. We use \(\theta_{i\pi} < 1 \), as \(\rho^{-1} \) provides the extra explosive eigenvalue.

Next, write (25.39) as

\[z_{t+1} = A^{-1}Bz_t + A^{-1}C\varepsilon_{t+1} + A^{-1}D\delta_{t+1} + A^{-1}Fw_t.\]

Eigenvalue decompose the transition matrix \(A^{-1}B \), and transform the dynamics.

\[z_{t+1} = Q\Lambda Q^{-1}z_t + A^{-1}C\varepsilon_{t+1} + A^{-1}D\delta_{t+1} + A^{-1}Fw_t\]

\[Q^{-1}z_{t+1} = \Lambda Q^{-1}z_t + Q^{-1}A^{-1}C\varepsilon_{t+1} + Q^{-1}A^{-1}D\delta_{t+1} + Q^{-1}A^{-1}Fw_t\]

where \(\Lambda \) is a diagonal matrix of the eigenvalues \(\lambda_i \) of \(A^{-1}B \), and \(Q \) is the corresponding matrix of eigenvectors. Using hats to denote transformed variables \(\hat{z} = Q^{-1}z \),
\[\hat{\epsilon} = Q^{-1}A^{-1}C\varepsilon, \] etc., and \(k \) to denote elements of vectors, the system decouples into a set of scalar difference equations,

\[\hat{z}_{k,t+1} = \lambda_k \hat{z}_{k,t} + \hat{\epsilon}_{k,t+1} + \hat{\delta}_{k,t+1} + \hat{w}_{k,t} \] \hspace{1cm} (25.44)

We solve the stable eigenvalues backwards. Rather than write out the solution, we can just calculate response functions from (25.44).

We solve the unstable eigenvalues \(\lambda_k \geq 1 \) forward. We are looking for bounded, stable solutions, in which \(E_t \hat{z}_{k,t+1} = E_t \hat{\delta}_{k,t+1} + 0 \), and expressing the result at time \(t + 1 \),

\[\hat{z}_{k,t+1} = -\sum_{j=1}^{\infty} \lambda_k^{-j} \hat{w}_{k,t+j}. \]

Without the \(w \), which are deterministic and thus known ahead of time, the right-hand side would be zero. Taking innovations \(E_t + 1 - E_t \),

\[\hat{\delta}_{k,t+1} = -\hat{\epsilon}_{k,t+1}. \] \hspace{1cm} (25.45)

We have determined the expectational errors in terms of structural shocks. In order to have a unique locally-bounded solution, we need exactly as many unstable eigenvalues \(\lambda_k > 1 \) as there are linearly independent expectational shocks \(\delta \). This result is not magic, and usually has strong economic intuition. Prices jump when there is a change to expected dividends, consumption jumps when there is a change to expected income.

Explicitly, denote \(Q_{\lambda<1}^{-1} \) a matrix composed of the rows of \(Q^{-1} \) corresponding to stable eigenvalues, and likewise \(Q_{\lambda>1}^{-1} \) a matrix composed of the rows of \(Q^{-1} \) corresponding to unstable eigenvalues. Equation (25.45) then implies

\[Q_{\lambda>1}^{-1}A^{-1}D\delta_{t+1} = -Q_{\lambda>1}^{-1}A^{-1}C\varepsilon_{t+1}. \]

When there are as many explosive eigenvalues as expectational shocks \(\delta \) we can invert,

\[\delta_{t+1} = -[Q_{\lambda>1}^{-1}A^{-1}D]^{-1}Q_{\lambda>1}^{-1}A^{-1}C\varepsilon_{t+1}, \]

and then write

\[\hat{\delta}_{t+1} = -Q^{-1}A^{-1}D[Q_{\lambda>1}^{-1}A^{-1}D]^{-1}Q_{\lambda>1}^{-1}A^{-1}C\varepsilon_{t+1}. \] \hspace{1cm} (25.46)
We can now write the system dynamics as

\[
\lambda_k < 1 : \hat{z}_{k,t+1} = \lambda_k \hat{z}_{k,t} + \hat{\varepsilon}_{k,t+1} + \hat{\delta}_{k,t+1} + \hat{w}_{k,t}
\]

\[
\lambda_k \geq 1 : \hat{z}_{k,t+1} = -\sum_{j=1}^{\infty} \lambda_k^{-j} \hat{w}_{k,t+j}.
\]

Then we find the original variables by

\[
z_t = Q\hat{z}_t.
\]

25.9.1 State variables

An alternative “minimum state variable,” “method of undetermined coefficients” approach, similar to dynamic programming, is often even easier. However, it obscures the logic by which one rules out non-stationary solutions.

For example, write the simplest model

\[
i_t = E_t \pi_{t+1}
\]

\[
\rho v_{t+1} = v_t + i_t - \pi_{t+1} - s_{t+1}
\]

\[
i_t = u_{i,t}
\]

\[
s_t = u_{s,t}
\]

\[
u_{i,t+1} = \eta_i u_{i,t} + \varepsilon_{i,t+1}
\]

\[
u_{s,t+1} = \eta_s u_{s,t} + \varepsilon_{s,t+1}.
\]

We know the answer already,

\[
\pi_{t+1} = i_t + \Delta E_{t+1} \sum_{j=0}^\infty \rho^j s_{t+1+j} = u_{i,t} + \frac{1}{1 - \rho \eta_s} \varepsilon_{s,t+1}
\]

\[
v_t = E_t \sum_{j=0}^\infty \rho^j s_{t+1+j} = \frac{\eta_s}{1 - \rho \eta_s} s_t = \frac{\eta_s}{1 - \rho \eta_s} u_{s,t}.
\]

Now, we explore another way to get there.
We guess state variables \(u_{i,t}, u_{s,t}, v_t \), i.e. we guess that in equilibrium the endogenous variables are functions of state variables and their innovations. We guess

\[
\begin{bmatrix}
\pi_{t+1} \\
v_t
\end{bmatrix} = A \begin{bmatrix}
u_{i,t} \\
u_{s,t}
\end{bmatrix} + B \begin{bmatrix}
\varepsilon_{i,t+1} \\
\varepsilon_{s,t+1}
\end{bmatrix}.
\]

We could also guess that the endogenous variables are functions of a larger state vector \(\begin{bmatrix} u_{i,t} & u_{i,t+1} & u_{s,t} & u_{s,t+1} \end{bmatrix}' \). We normally would include \(i_t \) and \(s_t \) as endogenous variables, but they are trivial in this case. We plug this guess into the equilibrium conditions to see if we can find matrices \(A \) and \(B \) to make it work.

From \(i_t = E_t \pi_{t+1} \) we know \(u_{i,t} = E_t \pi_{t+1} \) and hence

\[
A = \begin{bmatrix}
A_{\pi i} & A_{\pi s} \\
A_{vi} & A_{vs}
\end{bmatrix} = \begin{bmatrix}
1 & 0 \\
A_{vi} & A_{vs}
\end{bmatrix}.
\]

Write (25.48) as

\[
\pi_{t+1} - v_t = -\rho v_{t+1} + u_{i,t} - \eta_s u_{s,t} - \varepsilon_{s,t+1}
\]

\[
\begin{bmatrix}
1 & -1
\end{bmatrix} \left(\begin{bmatrix}
A & B
\end{bmatrix} \begin{bmatrix}
u_{i,t} \\
u_{s,t}
\end{bmatrix} + B \begin{bmatrix}
\varepsilon_{i,t+1} \\
\varepsilon_{s,t+1}
\end{bmatrix} \right) = \begin{bmatrix}
0 & -\rho
\end{bmatrix} \left(\begin{bmatrix}
A & B
\end{bmatrix} \begin{bmatrix}
u_{i,t+1} \\
u_{s,t+1}
\end{bmatrix} + B \begin{bmatrix}
\varepsilon_{i,t+2} \\
\varepsilon_{s,t+2}
\end{bmatrix} \right) + \begin{bmatrix}
1 & -\eta_s
\end{bmatrix} \begin{bmatrix}
u_{i,t} \\
u_{s,t}
\end{bmatrix} + \begin{bmatrix}
0 & -1
\end{bmatrix} \begin{bmatrix}
\varepsilon_{i,t+1} \\
\varepsilon_{s,t+1}
\end{bmatrix}.
\]

If the guess is going to work, then

\[
\begin{bmatrix}
0 & -\rho
\end{bmatrix} \begin{bmatrix}
B_{\pi i} & B_{\pi s} \\
B_{vi} & B_{vs}
\end{bmatrix} \begin{bmatrix}
\varepsilon_{i,t+2} \\
\varepsilon_{s,t+2}
\end{bmatrix} = 0,
\]

\[
\begin{bmatrix}
B_{\pi i} & B_{\pi s} \\
B_{vi} & B_{vs}
\end{bmatrix} = \begin{bmatrix}
B_{\pi i} & B_{\pi s} \\
0 & 0
\end{bmatrix}.
\]

In words, \(v_t \) can’t respond to \(\varepsilon_{t+1} \). Using (25.49)-(25.50), then,

\[
\begin{bmatrix}
1 & -1
\end{bmatrix} \left(\begin{bmatrix}
A & B
\end{bmatrix} \begin{bmatrix}
u_{i,t} \\
u_{s,t}
\end{bmatrix} + B \begin{bmatrix}
\varepsilon_{i,t+1} \\
\varepsilon_{s,t+1}
\end{bmatrix} \right) = \begin{bmatrix}
0 & -\rho
\end{bmatrix} \left(\begin{bmatrix}
A & B
\end{bmatrix} \begin{bmatrix}
\eta_i & 0 \\
0 & \eta_s
\end{bmatrix} \begin{bmatrix}
u_{i,t} \\
u_{s,t}
\end{bmatrix} + B \begin{bmatrix}
\varepsilon_{i,t+1} \\
\varepsilon_{s,t+1}
\end{bmatrix} \right) + \begin{bmatrix}
1 & -\eta_s
\end{bmatrix} \begin{bmatrix}
u_{i,t} \\
u_{s,t}
\end{bmatrix} + \begin{bmatrix}
0 & -1
\end{bmatrix} \begin{bmatrix}
\varepsilon_{i,t+1} \\
\varepsilon_{s,t+1}
\end{bmatrix}.
\]
The coefficients on the u and ε must be separately equal, and hold for any values of the state variables. Therefore,
\[
\begin{bmatrix}
 1 & -1 \\
 \end{bmatrix}
A = \begin{bmatrix}
 0 & -\rho \\
\end{bmatrix}
\begin{bmatrix}
 \eta_i \\
 0 \\
\end{bmatrix}
+ \begin{bmatrix}
 1 & -\eta_s \\
\end{bmatrix}
\]
\[
\begin{bmatrix}
 1 & -1 \\
\end{bmatrix}
B = \begin{bmatrix}
 0 & -\rho \\
\end{bmatrix}
A + \begin{bmatrix}
 0 & -1 \\
\end{bmatrix}.
\]
Solving, we find the right answer
\[
A = \begin{bmatrix}
 1 & 0 & 0 \\
 0 & \frac{\eta_s}{1-\rho \eta_s} \\
 \end{bmatrix},
B = \begin{bmatrix}
 0 & 1 & 0 \\
 0 & 0 & 1-
ho \eta_s \\
 \end{bmatrix}.
\]

Although the model is linear, and the endogenous variables are linear functions of state, the coefficients A and B are not necessarily linear functions of the model coefficients. Analytic solutions are not always easy. Determinacy comes here from the assumption that v_t is a time-invariant function of the state variables.

25.10 New-Keynesian model with long-term debt

This section presents algebra for Section 5.2. From (5.17)-(5.21), and adding an interest rate rule
\[
i_t = \theta_{i,\pi} \pi_t + u_{i,t} + w_t
\]
where w_t is deterministic, we have
\[
x_{t+1} = \left(1 + \frac{\sigma \kappa}{\beta}\right)x_t + \sigma \left(\theta_{i,\pi} - \frac{1}{\beta}\right) \pi_t + \sigma u_{i,t} + \sigma w_t + \delta_{x,t+1}
\]
\[
\pi_{t+1} = -\frac{\kappa}{\beta} x_t + \frac{1}{\beta} \pi_t + \delta_{\pi,t+1}
\]
\[
v_{t+1} = \frac{1}{\rho} \frac{\kappa}{\beta} x_t + \frac{1}{\rho} \left(\theta_{i,\pi} - \frac{1}{\beta}\right) \pi_t + \frac{1}{\rho} v_t - \frac{\eta_s}{\rho} s_t + \frac{1}{\rho} u_{i,t} + \frac{1}{\rho} w_t - \frac{1}{\rho} v_{s,t+1} - \frac{1}{\rho} \delta_{\pi,t+1} + \frac{\omega}{\rho} \delta_{q,t+1}
\]
\[
q_{t+1} = \frac{\theta_{i,\pi}}{\omega} \pi_t + \frac{1}{\omega} q_t + \frac{1}{\omega} u_{i,t} + \frac{1}{\omega} w_t + \delta_{q,t+1}
\]}
This section presents algebra for Section 5.5. I solve the model in the standard way. I reduce it to

$A z_{t+1} = B z_t + C \varepsilon_{t+1} + D \delta_{t+1}$. I solve unstable eigenvalues forward and stable eigenvalues backward.

We can save some work by recognizing via (5.63) that we will have $v_t^* = v_t$ and $\pi_t^* = \pi_t$, so we can eliminate the * versions of the variables. Substituting (5.52) into (5.51), using (5.53) to eliminate i_t and (5.54) to eliminate s_t, and introducing expectational errors δ, we have

$$ x_{t+1} = \left(1 + \frac{\sigma \kappa}{\beta} + \sigma \theta_i x_t\right) x_t + \left(\sigma \theta_i x - \frac{\sigma}{\beta}\right) \pi_t + \sigma u_{i,t} + \delta_{x,t+1} $$

$$ \pi_{t+1} = -\frac{\kappa}{\beta} x_t + \frac{1}{\beta} \pi_t - (\beta_s \varepsilon_{s,t+1} + \beta_i \varepsilon_{i,t+1}) $$

$$ q_{t+1} = \frac{\theta_i x_{\omega} + \theta_i x_{\pi_t} + 1}{\omega} q_t + \frac{1}{\omega} u_{i,t} + \delta_{q,t+1} $$

$$ u_{i,t+1} = \eta_i u_{i,t} + \varepsilon_{i,t+1} $$

$$ u_{s,t+1} = \eta_s u_{s,t} + \varepsilon_{s,t+1} $$
Other variables follow from these. In matrix form,

\[
\begin{bmatrix}
x_{t+1} \\
\pi_{t+1} \\
q_{t+1} \\
u_{i,t+1} \\
u_{s,t+1}
\end{bmatrix} =
\begin{bmatrix}
1 + \frac{\sigma \kappa}{\beta} + \sigma \theta_{ix} & \sigma \theta_{ix} - \frac{\sigma}{\beta} & 0 & 0 & 0 \\
-\frac{\kappa}{\beta} & \frac{1}{\beta} & 0 & 0 & 0 \\
\theta_{ix} & \theta_{ix} & \frac{1}{\beta} & 0 & 0 \\
0 & 0 & 0 & \eta_i & 0 \\
0 & 0 & 0 & 0 & \eta_s
\end{bmatrix}
\begin{bmatrix}
x_t \\
\pi_t \\
q_t \\
u_{i,t} \\
u_{s,t}
\end{bmatrix} +
\begin{bmatrix}
0 & 0 \\
-\beta_i & -\beta_s \\
0 & 0 \\
1 & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
\varepsilon_{i,t+1} \\
\varepsilon_{s,t+1}
\end{bmatrix}
+
\begin{bmatrix}
1 & 0 \\
0 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
\delta x_{t+1} \\
\delta q_{t+1}
\end{bmatrix}.
\]

25.12 Algebra of the continuous-time sticky-price analytical solution

This section presents the algebra of the analytic solution (5.94) to the continuous-time sticky-price model (5.91)-(5.92).

Differentiating (5.92) and using (5.91) to eliminate \(x_t \),

\[
\frac{d^2 \pi_t}{dt^2} - \rho \frac{d \pi_t}{dt} - \kappa \sigma \pi_t = -\kappa \sigma i_t.
\]

To solve this differential equation, express it as

\[
(D - \lambda_1)(D + \lambda_2)\pi_t = -\kappa \sigma i_t; \quad D \equiv d/dt.
\]

with

\[
\lambda_1 = \frac{\rho + \sqrt{\rho^2 + 4 \kappa \sigma}}{2}, \quad \lambda_2 = -\rho + \sqrt{\rho^2 + 4 \kappa \sigma}.\]

(The equalities \(\lambda_1 \lambda_2 = \kappa \sigma \), and \(\lambda_1 - \lambda_2 = \rho \) come in handy.) Now solve it as

\[
\pi_t = -\frac{1}{(D - \lambda_1)(D + \lambda_2)} \kappa \sigma i_t \tag{25.51}
\]
To express the right-hand side in terms of integrals, note that if

\[(D - a)y_t = z_t,\]

i.e.

\[dy_t/dt = ay_t + z_t,\]

then we solve forward, and the stationary solution is

\[y_t = -\int_0^\infty e^{-a\tau}z_{t+\tau}d\tau.\]

If, on the other hand

\[(D + b)y_t = z_t,\]

then we solve backward, and the stationary solution is

\[y_t = Ce^{-bt} + \int_0^t e^{-b\tau}z_{t-\tau}d\tau.\]

The solution to (25.51), and thus to the pair (5.91)-(5.92), is the sum of the last two integral expressions. Cochrane (2012) describes the analogy between the \(D\) operator here and the \(L\) operator of discrete time in more detail.

25.13 Continuous-time model solutions

The continuous-time linear models are in the form

\[dz_t = A\epsilon_t dt + B\epsilon_t + C\delta_t\]

where \(\epsilon_t\) are structural shocks and \(\delta_t\) are expectational errors.

Eigenvalue decompose the transition matrix \(A\),

\[A = Q\Lambda Q^{-1}.\]
Defining \(\tilde{z}_t \equiv Q^{-1}z_t \),
\[
d\tilde{z}_t = \Lambda \tilde{z}_t dt + Q^{-1}Bd\varepsilon_t + Q^{-1}Cd\delta_t.
\] (25.52)

I offer two notations for the answer. First, defining by a + and − subscript rows corresponding to explosive eigenvalues and stable eigenvalues, we have
\[
\tilde{z}_t = 0,
\]
an autoregressive representation
\[
d\tilde{z}_t = \Lambda_{-t} \tilde{z}_t dt + Q_{-1}^{-1} \left[I - C \left[Q_{+1}^{-1} C \right]^{-1} Q_{+1}^{-1} \right] Bd\varepsilon_t,
\]
and a moving-average representation
\[
\tilde{z}_{-t} = e^{\Lambda_{-t} t} \tilde{z}_{-0} + \int_{s=0}^{t} e^{\Lambda_{-s} t} Q_{-1}^{-1} \left[I - C \left[Q_{+1}^{-1} C \right]^{-1} Q_{+1}^{-1} \right] Bd\varepsilon_{t-s}.
\]
Reassembling \(\tilde{z}_t \) and with \(z_t = Q \tilde{z}_t \) we have the solution.

Second, defining matrices \(P \) and \(M \) that select rows of \(Q^{-1} \) corresponding to explosive and non-explosive eigenvalues, we can express the whole operation as an autoregressive representation
\[
d\tilde{z}_t = \Lambda^* \tilde{z}_t dt + M'MQ^{-1} \left[I_{N_v} - C \left[PQ^{-1} C \right]^{-1} PQ^{-1} \right] Bd\varepsilon_t.
\]
and moving-average representation,
\[
\tilde{z}_t = e^{\Lambda^* t} \tilde{z}_0 + \int_{s=0}^{t} e^{\Lambda^* s} M'MQ^{-1} \left[I_{N_v} - C \left[PQ^{-1} C \right]^{-1} PQ^{-1} \right] Bd\varepsilon_{t-s}
\]
where
\[
\Lambda^* \equiv M'MAM'M.
\]
The linear models we study can all be written in the form
\[
dz_t = Az_t dt + Bd\varepsilon_t + Cd\delta_t
\]
where \(d\varepsilon_t \) are structural shocks and \(d\delta_t \) are expectational errors. We find the expectational errors in terms of the structural shocks, and then find an autoregressive and then a moving-average representation for the equilibrium \(x_t \).
Then the matrix representation for the model of Section 5.7.3 is

\[
\begin{bmatrix}
 x_t & \pi_t & q_t & v_t & i_t & u_{i,t} & u_{s,t} \\
 \pi_t & -\sigma & 0 & 0 & \sigma & 0 & 0 \\
 q_t & 0 & 0 & r + \omega & 0 & 1 & 0 \\
 v_t & -\theta_x & -1 - \theta_{sp} & 0 & r - \alpha & 1 & 0 & -1 \\
 i_t & \zeta_i \theta_{ix} & \zeta_i \theta_{i\pi} & 0 & 0 & -\zeta_i & \zeta_i & 0 \\
 u_{i,t} & 0 & 0 & 0 & 0 & 0 & 0 & -\eta_i \\
 u_{s,t} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\eta_s
\end{bmatrix}
\begin{bmatrix}
 x_t \\
 \pi_t \\
 q_t \\
 v_t \\
 i_t \\
 u_{i,t} \\
 u_{s,t}
\end{bmatrix}
+ \begin{bmatrix}
 0 & 0 \\
 -\beta_i & -\beta_s \\
 0 & 0 \\
 0 & 0 \\
 \theta_{i\varepsilon} & 0 \\
 1 & 0 \\
 0 & 1
\end{bmatrix}
\begin{bmatrix}
 d\varepsilon_{i,t} \\
 d\varepsilon_{s,t}
\end{bmatrix}
+ \begin{bmatrix}
 1 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
 d\delta_{x,t} \\
 d\delta_{q,t}
\end{bmatrix}.
\]

In the case with \(\alpha = 0 \) instead we must find \(d\delta_{\pi,t} \) to match the initial value of debt, rather than specify it as part of the surplus process. I highlight the changes in boxes.

\[
\begin{align*}
 dx_t &= \sigma(i_t - \pi_t)dt + d\delta_{x,t} \\
 d\pi_t &= (\rho \pi_t - \kappa x_t)dt + d\delta_{\pi,t} \\
 dq_t &= [(r + \omega) q_t + i_t]dt + d\delta_{q,t} \\
 dv_t &= [(i_t - \pi_t) + \left(r - \frac{\theta_{sp} \pi_t}{\pi_t} \right) v_t - (\theta_{sp} \pi_t + \theta_{sx} x_t + \theta_{is} x_s + \theta_{ui} u_{i,t} + \theta_{us} u_{s,t})]dt + d\delta_{q,t} \\
 di_t &= -\zeta_i [i_t - (\theta_{sp} \pi_t + \theta_{sx} x_t + \theta_{ui} u_{i,t} + \theta_{us} u_{s,t})]dt \\
 du_{i,t} &= -\eta_i u_{i,t} + d\varepsilon_{i,t} \\
 du_{s,t} &= -\eta_s u_{s,t} + d\varepsilon_{s,t}.
\end{align*}
\]
Then the matrix representation is

\[
\begin{bmatrix}
 x_t \\
 \pi_t \\
 q_t \\
 v_t \\
 i_t \\
 u_{i,t} \\
 u_{s,t}
\end{bmatrix}
= \begin{bmatrix}
 0 & -\sigma & 0 & 0 & \sigma & 0 & 0 \\
 -\kappa & \rho & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & r + \omega & 0 & 1 & 0 & 0 \\
 -\theta_{sx} & -1 - \theta_{s\pi} & 0 & 0 & 1 & 0 & -1 \\
 \zeta_i \theta_{ix} & \zeta_i \theta_{i\pi} & 0 & 0 & -\zeta_i & \zeta_i & 0 \\
 0 & 0 & 0 & 0 & 0 & -\eta_i & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & -\eta_s \\
\end{bmatrix}
\begin{bmatrix}
 x_t \\
 \pi_t \\
 q_t \\
 v_t \\
 i_t \\
 u_{i,t} \\
 u_{s,t}
\end{bmatrix}
+ \begin{bmatrix}
 0 & 0 \\
 0 & 0 \\
 0 & 0 \\
 \theta_{i\epsilon} & 0 \\
 1 & 0 \\
 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 d\tilde{\epsilon}_{i,t} \\
 d\tilde{\epsilon}_{s,t}
\end{bmatrix}
+ \begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1 \\
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
 d\delta_{x,t} \\
 d\delta_{\pi,t} \\
 d\delta_{\epsilon,t}
\end{bmatrix}.
\]

1. Eigenvalue decomposing the transition matrix \(A \),

\[A = Q\Lambda Q^{-1} \]

2. where \(\Lambda \) is a diagonal matrix of eigenvalues, we can premultiply by \(Q^{-1} \) and defining \(\tilde{z}_t \equiv Q^{-1}z_t \) we have

\[d\tilde{z}_t = \Lambda \tilde{z}_t dt + Q^{-1}Bd\tilde{\epsilon}_t + Q^{-1}Cd\delta_t. \quad (25.53) \]

The goal of this section is an autoregressive and then a moving-average representation for \(\tilde{z}_t \) and consequently \(z_t = Q\tilde{z}_t \).

4. We partition the system (25.53) into the rows with explosive (real part greater than zero) eigenvalues and the rows with stable (real part less than or equal to zero) eigenvalues. Let \(Q_+^{-1}, \tilde{z}_+ \) denote the rows of these matrices corresponding to explosive eigenvalues, and \(\Lambda_+ \) the diagonal matrix with positive eigenvalues. Then, the explosive eigenvalues obey

\[d\tilde{z}_+ = \Lambda_+ \tilde{z}_+ dt + Q_+^{-1}Bd\tilde{\epsilon}_t + Q_+^{-1}Cd\delta_t. \]

5. To have \(E_t\tilde{z}_{t+j} \) not explode, we must have

\[\tilde{z}_+ = 0 \]
and hence
\[Q^{-1}Cd\delta_t = -Q^{-1}Bd\varepsilon_t \]
\[d\delta_t = -[Q^{-1}C]^{-1}Q^{-1}Bd\varepsilon_t. \]

The explosive eigenvalues tell us the expectational errors as functions of the structural shocks – so long as there are many explosive eigenvalues as there are expectational errors, i.e. \([Q^{-1}C]\) is invertible.

The rows with stable eigenvalues then give us
\[d\tilde{z}_t = \Lambda_\omega \tilde{z}_t dt + Q^{-1}Bd\varepsilon_t + Q^{-1}Cd\delta_t \]
\[d\tilde{z}_t = \Lambda_\omega \tilde{z}_t dt + Q^{-1}Bd\varepsilon_t - Q^{-1}C[Q^{-1}C]^{-1}Q^{-1}Bd\varepsilon_t \]
\[d\tilde{z}_t = \Lambda_\omega \tilde{z}_t dt + Q^{-1}\left[I - C[Q^{-1}C]^{-1}Q^{-1} \right]Bd\varepsilon_t. \]

This gives us an autoregressive representation for the \(\tilde{z}_it\) with stable eigenvalues. Integrating, we have a moving-average representation
\[\tilde{z}_t = e^{\Lambda_\omega t}\tilde{z}_0 + \int_{s=0}^{t} e^{\Lambda_\omega (t-s)}Q^{-1}\left[I - C[Q^{-1}C]^{-1}Q^{-1}\right]Bd\varepsilon_{t-s}. \]

Here by \(e^{At}\) I mean
\[e^{At} = \begin{bmatrix} e^{\lambda_1t} & 0 & 0 \\ 0 & e^{\lambda_2t} & 0 & \cdots \\ 0 & 0 & e^{\lambda_3t} & \cdots \\ \vdots & \ddots & \ddots \end{bmatrix}, \]

element by element exponentiation and not including the off diagonal elements. We reassemble \(\tilde{z}_t\) from \(\tilde{z}_t\) and \(\tilde{z}_+t = 0\). Then, the original values are
\[z_t = Q\tilde{z}_t. \]

The matrix carpentry of this solution may seem inelegant. At the cost of a bit of notation we can do the same thing with matrices and obtain somewhat more elegant formulas. To do this, let \(N_v\) denote the number of variables, so \(A\) is \(N_v \times N_v\), let \(N_\varepsilon\) be the number structural shocks so \(B\) is \(N_v \times N_\varepsilon\), and let \(N_\delta\) be the number of expectational errors, so \(C\) is \(N_v \times N_\delta\). There are \(N_\delta\) explosive eigenvalues with positive real parts. Then let \(P\) be a \(N_\delta \times N_v\) matrix that selects rows of \(Q^{-1}\) corresponding to eigenvalues with positive real parts, and let \(M\) be an \((N_v - N_\delta) \times N_v\) matrix that
selects rows corresponding to eigenvalues with non-positive real parts. For example, if
\[\Lambda = \begin{bmatrix} 0.1 & 0 & 0 \\ 0 & -0.1 & 0 \\ 0 & 0 & 0.2 \end{bmatrix} \]
then
\[P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad M = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}. \]
The matrix \(P \) selects the first and third row, and \(M \) selects the second row. In terms of the notation of the last section, \(Q_{-1} = PQ^{-1}, \ z_{t+1} = Pz_t \), etc. The matrices \(P' \) and \(M' \) then put things back in the original rows, so \(P'P + M'M = I_{N_v} \). We start again from \(\text{(25.52)} \),
\[d\tilde{z}_t = \Lambda \tilde{z}_t dt + Q^{-1}Bd\varepsilon_t + Q^{-1}Cd\delta_t \]
\[Pd\tilde{z}_t = PA\tilde{z}_t dt + PQ^{-1}Bd\varepsilon_t + PQ^{-1}Cd\delta_t \]
to have \(E_t\tilde{z}_{t+j} \) not explode, we must have \(P\tilde{z}_t = 0 \)
and hence
\[PQ^{-1}Cd\delta_t = -PQ^{-1}Bd\varepsilon_t \]
\[d\delta_t = -[PQ^{-1}C]^{-1}PQ^{-1}Bd\varepsilon_t. \]
Again, the explosive eigenvalues tell us the expectational errors as functions of the structural shocks – so long as there as are many explosive eigenvalues as there are expectational errors, i.e. \(PQ^{-1}C \) is invertible.
The rows with stable eigenvalues then give us from \(\text{(25.52)} \),
\[Md\tilde{z}_t = MA\tilde{z}_t dt + MQ^{-1}Bd\varepsilon_t + MQ^{-1}Cd\delta_t \]
\[Md\tilde{z}_t = MA\tilde{z}_t dt + MQ^{-1}Bd\varepsilon_t - MQ^{-1}C[PQ^{-1}C]^{-1}PQ^{-1}Bd\varepsilon_t \]
\[dM\tilde{z}_t = MA(P'P + M'M)\tilde{z}_t dt + MQ^{-1} \left[I_{N_v} - C[PQ^{-1}C]^{-1}PQ^{-1} \right] Bd\varepsilon_t. \]
With \(P\tilde{z}_t = 0 \),
\[d(M\tilde{z}_t) = MAM' (M\tilde{z}_t) dt + MQ^{-1} \left[I_{N_v} - C[PQ^{-1}C]^{-1}PQ^{-1} \right] Bd\varepsilon_t \]
We can reassemble the whole \tilde{z} vector with

$$d\tilde{z} = (P'P + M'M) \, d\tilde{z}$$

$$d\tilde{z} = M'M \, d\tilde{z}$$

$$d\tilde{z}_t = \Lambda^* \, \tilde{z}_t \, dt + M'MQ^{-1} \left[I_{N_v} - C \left[PQ^{-1}C \right]^{-1} PQ^{-1} \right] \, Bd\varepsilon_t$$

where

$$\Lambda^* \equiv M'M\Lambda M'M$$

is the $N_v \times N_v$ diagonal matrix of eigenvalues, with zeros in place of the explosive

eigenvalues.

This is the autoregressive representation of \tilde{z}. The moving-average representation

is

$$\tilde{z}_t = e^{\Lambda^*t} \tilde{z}_0 + \int_0^t e^{\Lambda^*(t-s)} M'M \, d\tilde{z}_{t-s}$$

and the impulse-response function, i.e. to a single $d\varepsilon_0$ starting at $z_0 = 0$ is

$$\tilde{z}_t = e^{\Lambda^*t} M'MQ^{-1} \left[I_{N_v} - C \left[PQ^{-1}C \right]^{-1} PQ^{-1} \right] \, Bd\varepsilon_0 = e^{\Lambda^*t} Kd\varepsilon_0$$

Then, the original values are

$$z_t = Q\tilde{z}_t = Qe^{\Lambda^*t} Kd\varepsilon_0$$

(25.54)

To compute terms of the linearized identities as in Table 5.2, rather than sum up

terms of the response functions, we can find the terms of the decomposition directly

from the solution (25.54). Let $a'_x z_t$ select variable x from the state vector z_t. Then

the terms of the weighted-inflation identity (3.51) are

$$\int_{\tau=0}^{\infty} e^{-(r+\omega)\tau} a'_x z_t d\tau = - \int_{\tau=0}^{\infty} e^{-rt} a'_x z_t d\tau + \int_{\tau=0}^{\infty} e^{-rt} \left(1 - e^{-\omega t} \right) (a'_t - a'_\pi) z_t d\tau$$

$$a'_x Q \left\{ \int_{\tau=0}^{\infty} e^{(\Lambda^*-(r+\omega)I)\tau} d\tau \right\} Kd\varepsilon_0 = -a'_x Q \left\{ \int_{\tau=0}^{\infty} e^{(\Lambda^*-(r-I)\tau)} d\tau \right\} Kd\varepsilon_0$$

$$+ (a'_t - a'_\pi) Q \left\{ \int_{\tau=0}^{\infty} (e^{(\Lambda^*-(r)\tau)} - e^{(\Lambda^*-(r+\omega)I)\tau}) d\tau \right\} K_0 d\tau$$
Each of the terms in curly brackets is a diagonal matrix, e.g.,
\[
\left\{ \int_{\tau=0}^{\infty} e^{(\lambda^* - r)\tau} d\tau \right\} = \begin{bmatrix} \frac{1}{r-\lambda_1} & & \\ & \frac{1}{r-\lambda_2} & \\ & & \ddots \end{bmatrix}.
\]
The surplus is not directly an element of the state vector, so use
\[
a_s = \theta_{s\pi} a_\pi + \theta_{sx} a_x + \alpha a_v + a_{ui}.
\]

25.13.1 Calculating responses of the standard new-Keynesian model

This section discusses how to calculate responses to AR(1) monetary policy disturbances in the classic new-Keynesian model. I express the model for the matrix method and demonstrate the method of undetermined coefficients.

The standard new-Keynesian model is (17.15)-(17.17), with policy rule expressed as in (17.15)-(17.21) and AR(1) shocks,
\[
x_t = E_t x_{t+1} - \sigma r_t + u_{x,t}
i_t = r_t + E_t \pi_{t+1}
\pi_t = \beta E_t \pi_{t+1} + \kappa x_t + u_{\pi,t}
\]
\[
i_t = \phi \pi_t + u_{i,t},
u_{i,t} = \eta u_{i,t-1} + \varepsilon_{i,t}.
\]
Section [17.4.3] presents calculations of this model’s responses to monetary policy shocks. This section details the solution methodology.

There are (at least) four ways to approach a model of this form. First, express it in a standard matrix AR(1) form; eigenvalue decompose the transition matrix; and solve stable roots backwards and unstable roots forwards as outlined in Section 25.9. This method is the easiest to apply to large models as all the work is done by computers, but it often hides intuition. Second, substitute until you have a lag-operator expression for the variable of interest, \(\pi_t \) here. Factor the lag polynomial,
solve unstable roots forward and stable roots backward, to express π_t as a two-sided moving average of the forcing variables, (3.5) here. This form shows analytically how the variable of interest responds to the shock of interest, so it is useful for intuition. Third, guess that the final answer is a function of state variables, substitute that guess in (17.15)-(17.21) and use the method of undetermined coefficients. This is often the quickest way to get an analytic solution, but it hides the economics and especially how the model gets rid of multiple equilibria. Fourth, rewrite the rule in the form $i_t = i_t^* + \phi (\pi_t - \pi_t^*)$ and apply the solution of the last section. I’ll use each method according to which makes the particular point clearest.

Following the matrix method, eliminate i_t and r_t and rearrange, leaving

$$\begin{bmatrix} E_t x_{t+1} \\ E_t \pi_{t+1} \end{bmatrix} = \frac{1}{\beta} \begin{bmatrix} \beta + \sigma \kappa & -\sigma (1 - \beta \phi) \\ -\kappa & 1 \end{bmatrix} \begin{bmatrix} x_t \\ \pi_t \end{bmatrix} + \frac{1}{\beta} \begin{bmatrix} -1 & \sigma & \sigma \beta \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} u_{x,t} \\ u_{\pi,t} \\ u_{i,t} \end{bmatrix}. \tag{25.55}$$

This equation is the generalization of the equilibrium condition

$$E_t \pi_{t+1} = \phi \pi_t + u_{i,t} \tag{25.56}$$

of the frictionless model.

The eigenvalues of the transition matrix in (25.55) are

$$\lambda = 1 + \frac{1}{2\beta} \left[(1 - \beta + \sigma \kappa) \pm \sqrt{(1 - \beta + \sigma \kappa)^2 - 4\beta \sigma \kappa (\phi - 1)} \right]. \tag{25.57}$$

The $+$ eigenvalue is greater than one. But if $\phi < 1$ the $-$ eigenvalue is less than one, i.e. stable. Thus, with $\phi < 1$, we solve one part of the system backward. Since the left hand side of (25.55) determines only the expectations of future variables, we need two forward-looking roots and a rule against explosions to get rid of multiple equilibria, so with $\phi < 1$ we have multiple equilibria. If $\phi > 1$ then both eigenvalues are greater than one, and unstable. We solve the system forward and determine uniquely the expectational shocks in both x_t and π_t, in order to have a locally-bounded solution. This is the generalization of the idea that led to $\phi > 1$ and then solving the frictionless model (25.56) forward. From (25.55) we can apply the matrix machinery of Section 25.9 directly. The logic is the same as the frictionless case and the simplified case, though the algebra is considerably worse. Models of this complexity and more are typically solved on a computer, as the formulas for eigenvalues get worse quickly. Cochrane (2011b) contains the most general analytic formulas I know of.
In this case as well, $\lambda < -1$ or λ complex with modulus greater than one also lead to local determinacy. The oscillating hyperinflation threat is as good, or indeed better, if we wish to “coordinate equilibria” by ruling out unreasonable expectations. Here

$$\phi < -\left(1 + \frac{1 + \beta}{\sigma \kappa}\right)$$

serves just as well to rule out multiple equilibria. In models with more complex policy rules including responses to output and expected future inflation, complicated possibilities emerge. [Cochrane (2011b)] contains plots of the determinacy regions for a variety of such models. The lesson here is even clearer: $\phi_\pi > 1$ is neither necessary nor sufficient to generate explosive eigenvalues, so this model really does not really embody the standard intuition about the Taylor rule.

In this case, the nominal explosions can induce real explosions, $E_t x_{t+j} \to \infty$, and they can induce explosions faster than the interest rate so $E_t \beta x_{t+j} \to \infty$. One might rejoice that we now can rule out such solutions by appeal to the real transversality condition. However, the model of price stickiness that turns a nominal explosion to a real explosion, and especially its linearization, is not designed to describe extreme inflation and deflation. In actual hyperinflations and deflations, output does not go to infinity or negative infinity. Barter or use of foreign currencies takes over. The Calvo fairy comes more frequently in Argentina. So, I have not seen appeal to this mechanism to resolve just why the explosive inflation paths are not equilibria.

Usually, one finds eigenvalues and eigenvectors of the transition matrix and solves the model numerically. You can follow the above approach analytically. [Cochrane (2011b)] finds eigenvalues and eigenvectors and writes the most general analytic solutions to this class of model that I know of. It’s just a question of how much algebra you can stand. You get to the same answer more quickly with the method of undetermined coefficients. Specializing to the monetary policy shock only, guess an answer of the form

$$\pi_t = \alpha_\pi u_{i,t},$$
$$x_t = \alpha_x u_{i,t}.$$

Substitute this guess into (17.15)- (17.21), giving

$$\alpha_x u_{i,t} = \eta \alpha_x u_{i,t} - \sigma \left(\phi \alpha_\pi u_{i,t} + u_{i,t} - \eta \alpha_\pi u_{i,t}\right)$$
$$\alpha_\pi u_{i,t} = \beta \eta \alpha_\pi u_{i,t} + \kappa \alpha_x u_{i,t}.$$

Since these equations must hold for any $u_{i,t}$, conclude

$$\alpha_x = \eta \alpha_x - \sigma \left[1 + (\phi - \eta) \alpha_\pi\right]$$
\[\alpha_\pi = \beta \eta \alpha_\pi + \kappa \alpha_x, \]

\[(1 - \eta) \alpha_x = -\sigma [1 + (\phi - \eta) \alpha_\pi] \]

\[(1 - \beta \eta) \alpha_\pi = \kappa \alpha_x. \]

(25.59)

Eliminating \(\alpha_x \) and solving,

\[(1 - \beta \eta)(1 - \eta) \alpha_\pi = -\sigma \kappa [1 + (\phi - \eta) \alpha_\pi] \]

and finally, therefore

\[\pi_t = -\frac{1}{\delta \eta + \frac{(1-\beta \eta)(1-\eta)}{\sigma \kappa} u_{i,t}} \]

(25.60)

\[x_t = \frac{1 - \beta \eta}{\kappa \pi_t} \]

(25.61)

\[i_t = \left[\eta - \frac{(1 - \beta \eta)(1 - \eta)}{\sigma \kappa} \right] \pi_t. \]

(25.62)

I used (17.20) and (25.59) in the latter two equations. Yes, undetermined coefficients gets you to the answer quickly!

You can see the inflation response (25.62) is a natural generalization of the simple sticky price model (17.12),

\[\pi_t = -\frac{1}{\delta \eta + \frac{1-\eta}{\sigma \kappa} u_{i,t}}, \]

and of the frictionless model (16.9),

\[\pi_t = -\frac{1}{\delta \eta} u_{i,t}. \]

25.14 Future sales

Expected future bond sales with no change in surpluses affect price levels and interest rates. By doing so, they affect the proceeds of bond sales today, and therefore can affect the price level today in the presence of long-term debt.
With no long-term debt outstanding at time 0, expected future bond sales do not affect P_0. An expected future bond sale lowers P_1 and raises P_2, raising bond price $Q_1^{(2)}$ and lowering $Q_0^{(2)}$.

With long-term debt outstanding, expected future bond sales can affect P_0 as well. The sign depends on how much time 1 vs. time 2 debt is sold at time 0, relative to the amount outstanding. If the government sells proportionally more time 1 debt than time 2 debt,

$$\frac{B_0^{(1)} - B_{-1}^{(1)}}{B_0^{(1)}} > \frac{B_0^{(2)} - B_{-1}^{(2)}}{B_0^{(2)}}$$

then expected future debt sales $B_1^{(2)} - B_0^{(2)} > 0$ lower the price level P_0, and vice versa.

The effects of QE-like bond purchases depend on expected future purchases and sales.

This section underlies the discussion in text Section [25.14]. How do expected future bond sales affect current prices, future prices, and hence long-term interest rates? The algebra quickly gets more tedious than enlightening, so I pursue a three-period example. Figure [25.1] illustrates.

![Figure 25.1: Long term debt example, illustrating the effects of future purchases and sales.](image)

Figure 25.1: Long term debt example, illustrating the effects of future purchases and sales.

The novelty in this case is the additional sale $B_1^{(2)} - B_0^{(2)}$ during period 1. The formulas get complex because now we have outstanding period 0, 1, and 2 debt, time-0 sales of time 1 and time 2 debt and time 1 sales of time 2 debt to consider.
25.14. FUTURE SALES

To solve this example, start at the final period 2. Debt $B^{(2)}_1$ is outstanding, so the price level is determined by

$$\frac{B^{(2)}_1}{P_2} = s_2.$$ \hspace{1cm} (25.63)

Total two-period debt $B^{(2)}_1 = B^{(2)}_0 + (B^{(2)}_1 - B^{(2)}_0)$ affects P_2.

- Expected future bond sales and purchases $B^{(2)}_1 - B^{(2)}_0$ enter symmetrically with time zero sales $B^{(2)}_0 - B^{(2)}_{-1}$ in determining the expected price P_2.

The flow condition for period 1 gives us

$$\frac{B^{(1)}_0}{P_1} = s_1 + \beta \left(\frac{B^{(2)}_1 - B^{(2)}_0}{B^{(2)}_1} \right) E_1(s_2).$$ \hspace{1cm} (25.64)

Expected future debt sales $B^{(2)}_1 - B^{(2)}_0$ can affect the expected P_1.

- If the government leaves outstanding debt at time 0, $[B^{(2)}_0 > 0]$, then expected sales $[B^{(2)}_1 - B^{(2)}_0]$ of additional long-term debt can lower the expected price level P_1, and therefore raise the bond price $Q^{(1)}_0$.

To find P_0, start with the period 0 flow condition

$$\frac{B^{(0)}_1}{P_0} = s_0 + \beta E_0 \left(\frac{1}{P_1} \right) \left(B^{(1)}_0 - B^{(1)}_{-1} \right) + \beta^2 E_0 \left(\frac{1}{P_2} \right) \left(B^{(2)}_0 - B^{(2)}_{-1} \right).$$

Substituting in the prices P_1 and P_2 from (25.63) and (25.64), we have an expression for P_0.

$$\frac{B^{(0)}_1}{P_0} = s_0 + \left(\frac{B^{(1)}_0 - B^{(1)}_{-1}}{B^{(1)}_0} \right) E_0 \left[\beta s_1 + \left(\frac{B^{(2)}_1 - B^{(2)}_0}{B^{(2)}_1} \right) \beta^2 s_2 \right] + E_0 \left[\left(\frac{B^{(2)}_0 - B^{(2)}_{-1}}{B^{(2)}_1} \right) \beta^2 s_2 \right].$$ \hspace{1cm} (25.65)

To make sense of this expression, I consider a few special cases of this special case.

25.14.1 No outstanding long-term debt

Suppose there is no long-term debt outstanding, $B^{(1)}_{-1} = 0$ and $B^{(2)}_{-1} = 0$, and suppose the government sells some debt $B^{(1)}_0$ and $B^{(2)}_0$ at time 0. Equation (25.65) reduces
once again to
\[
\frac{B_{-1}^{(0)}}{P_0} = s_0 + E_0 \left(\beta s_1 + \beta^2 s_2 \right),
\]
so the expected bond sale \(B_1^{(2)} - B_0^{(2)} \) has no effect on \(P_0 \). Again, there must be debt outstanding to dilute in order for bond sales to affect the price level at time 0.

With \(P_0 \) fixed, future price levels translate to bond prices.

- Expected future bond sales and purchases \(B_1^{(2)} - B_0^{(2)} \) enter symmetrically with time zero sales \(B_0^{(2)} - B_{-1}^{(2)} \) in determining the bond price \(Q_0^{(2)} \)

This fact has an important implication for quantitative easing:

- The effects of a bond sale or purchase \(B_0^{(2)} \) on the long-term bond price \(Q_0^{(2)} \) can be undone by expected future bond sales or purchases.

When the government sells some debt at the end of time 0, expected future debt sales \(B_1^{(2)} - B_0^{(2)} \) can affect the expected \(P_1 \) and hence, with \(P_0 \) fixed, the bond price \(Q_0^{(1)} \).

- If the government sells some long-term debt at time 0, \(|B_0^{(2)}| > 0 \), then expected sales \(|B_1^{(2)} - B_0^{(2)}| \) of additional long-term debt raise the bond price \(Q_0^{(1)} \).

In sum, with no debt outstanding

- The timing of expected future bond sales and purchases affects intermediate price levels and bond prices, even though it has no effect on the terminal price level and its time-0 price.

25.14.2 Outstanding long-term debt

When long-term debt is outstanding at time 0, \(B_{-1}^{(2)} > 0 \), expected future sales \(B_1^{(2)} - B_0^{(2)} \) can affect the price level \(P_0 \).

\[
\frac{B_{-1}^{(0)}}{P_0} = s_0 + \frac{B_{-1}^{(1)} - B_0^{(1)}}{B_0^{(1)}} E_0 \left[\beta s_1 + \frac{B_0^{(2)} - B_{-1}^{(2)}}{B_1^{(2)}} \beta^2 s_2 \right] + E_0 \left[\frac{B_0^{(2)} - B_{-1}^{(2)}}{B_1^{(2)}} \beta^2 s_2 \right].
\]

(25.66)
Note all the time-1 debt sales $B^{(2)}_1 - B^{(2)}_0$ (implicit in $B^{(2)}_1$ terms) multiply time-0 debt sales, $B^{(1)}_0 - B^{(1)}_{-1}$ or $B^{(2)}_0 - B^{(2)}_{-1}$. If there are no time-0 sales, then there is no effect of time-1 sales on P_0. Put another way, time-1 sales only change the effects of time-0 sales.

- **Expected future sales only have an interaction effect on the initial price level P_0, modifying the dilution effects of time-0 sales in the presence of outstanding debt.**

With that in mind, it is easier to see how expected time-1 sales modify each of the time-0 sales in turn.

If there is no time 0 sale of time 1 debt, $B^{(1)}_0 - B^{(1)}_{-1} = 0$, then the price level at time 0 simplifies to

$$\frac{B^{(0)}_{-1}}{P_0} = s_0 + E_0 \left[\frac{\beta^2}{B^{(2)}_{-1} + (B^{(2)}_0 - B^{(2)}_{-1}) + (B^{(2)}_1 - B^{(2)}_0)} \right] s_2 .$$

The time 0 sale $B^{(2)}_0 - B^{(2)}_{-1}$ dilutes expected future debt $B^{(2)}_1 - B^{(2)}_0$ equally as it dilutes outstanding debt $B^{(2)}_{-1}$ as a claim to the time-2 surplus. Conversely, fixing the time 0 sale, the time-1 sale $B^{(2)}_1 - B^{(2)}_0$ adds to the total, reducing the dilution from the time 0 sale and raising P_0. (Don’t also consider $B^{(1)}_{-1} = 0$, as then the fraction in the second term of (25.65) is $0/0$).

If there is no time 0 sale of time 2 debt, $B^{(2)}_0 - B^{(2)}_{-1} = 0$ then the price level at time 0 simplifies to

$$\frac{B^{(0)}_{-1}}{P_0} = s_0 + \frac{B^{(1)}_0 - B^{(1)}_{-1}}{B^{(1)}_0} \left[\beta E_0 (s_1) + E_0 \left[\frac{B^{(2)}_1 - B^{(2)}_0}{B^{(2)}_0 + (B^{(2)}_1 - B^{(2)}_0)} \right] \beta^2 s_2 \right] .$$

The first term is the straightforward devaluation effect. The second term shows the interaction. An expected debt sale at time 1 transfers resources from time 2 to time 1, and thereby enhances the effects of a time 0 sale of time 1 debt.

The general interaction mechanism is easiest to see in the last term if we write it as

$$\frac{B^{(0)}_{-1}}{P_0} = ... + E_0 \left[... + \frac{B^{(2)}_0 - B^{(2)}_{-1}}{B^{(2)}_{-1} + (B^{(2)}_0 - B^{(2)}_{-1}) + (B^{(2)}_1 - B^{(2)}_0)} \right] s_2 .$$

(25.68)
Selling additional debt at time 0 when there is debt outstanding $B_0^{(2)} - B_{-1}^{(2)}$ can raise revenue and affect the price P_0. The twist is that the denominator includes expected future debt sales as well as outstanding debt. Dilution occurs relative to all expected claims, even future ones. Conversely, greater debt sales $B_1^{(2)} - B_0^{(2)}$ dilute the time 0 sales $B_0^{(2)} - B_{-1}^{(2)}$, raising revenue for period 1 at the expense of period 0, and thus raising P_0.

The second-to last term of (25.67) is more subtle. The first part $(B_0^{(1)} - B_{-1}^{(1)})/B_0^{(1)}$ expresses revenue raised at 0 by the dilution of outstanding time 1 debt. But time 1 debt is a claim to the revenues gained by diluting time 2 debt, as well as to s_1. That claim forms the interaction term.

The last two terms of (25.67) partially offset. Expected future sales $B_1^{(2)} - B_0^{(2)}$ raise the value of the time-1 claim, and lower the value of the time-2 claim. The weights of the two terms are the fractions of each maturity’s debt outstanding at the end of time 0 that was sold at time 0. When those two fractions are equal, when

$$\frac{B_0^{(1)} - B_{-1}^{(1)}}{B_0^{(1)}} = \frac{B_0^{(2)} - B_{-1}^{(2)}}{B_0^{(2)}}$$

the last two terms offset, and expected future debt sales have no effect.

- The effect of expected future debt sales $(B_1^{(2)} - B_0^{(2)})$ on P_0 depends on how much time 1 and time 2 debt is sold at time 0, relative to the amount outstanding. If the government sells proportionally more time 1 debt than time 2 debt,

$$\frac{(B_0^{(1)} - B_{-1}^{(1)})}{B_0^{(1)}} > \frac{(B_0^{(2)} - B_{-1}^{(2)})}{B_0^{(2)}}$$

then expected future debt sales $B_1^{(2)} - B_0^{(2)} > 0$ lower the price level P_0, and vice versa.
How not to test fiscal theory

Many apparent tests and puzzles of the fiscal theory forget hard-won wisdom from time series econometrics and tests of present value relations. Leaving the value of debt out of the VAR is a big mistake. Agents have more information than we do, so one cannot use VAR forecasts to test the present value relation. Without the value of debt in the VAR, the test is invalid. With the value of debt in the VAR, it is an identity. Even with completely exogenous surpluses, we expect a positive regression coefficient of surpluses on debt, and debt to Granger-cause surpluses. Neither observation is a test of the present value relation or of active fiscal policy. The state of the art in asset pricing examines which terms of the present value identity matter, as we have done, but do not try to test that identity. Perhaps the state of the art can be advanced some day, but we should not repeat mistakes that this state of the art put to rest.

Just how best to evaluate and use fiscal theory remains an open question. But we can avoid the many false starts of our predecessors. Asset pricing spent decades figuring out how to empirically analyze present value relations. Macroeconomics spent decades wrestling with forward-looking relations such as the permanent income hypothesis of consumption. Both disciplines went down a number of attractive but in the end fruitless paths. This section adds to the comments on testing for regimes in Chapter 21 by a reminder of the lessons of this large literature, and linking those lessons to fiscal theory.

It is naturally appealing to forecast surpluses and model discount rates, and then try to test whether the value of debt, or inflation-induced variation in that value, corresponds to changes in discounted surplus forecasts. It is natural to view such an
estimated present value of surpluses as the fiscal theory’s “prediction” for the price
level, and a failure of that prediction as the “rejection” of a “test.” It is naturally
appealing to look for Granger causality or other tests of the causal logic of active vs.
passive fiscal policy. It is naturally appealing to search for a definitive time-series
test of fiscal theory vs. some other theory. But all these natural impulses failed in the
asset pricing, macroeconomics, and time-series econometrics of the 1980s and 1990s.
So, let us remember and not rediscover the hard-won lessons of the past.

For two decades financial economists struggled to test present value relations. Lining
up prices with any forecasts of dividends never seemed to work, and many armchair
refutations of present value thinking seemed at hand, just as armchair refutations of
fiscal theory seem easy in the correlations of inflation, debt, and deficits. Yet markets
seemed pretty efficient when looking at one-period returns. Volatility tests (Shiller
1981) seemed to formalize a rejection of the present value relation. But when one
looked hard, extra assumptions always seemed to fly around. It took Campbell and
Shiller (1988) and another decade of controversy to understand that present value
tests and long-run return forecasts are the same thing, that all controversy is only
about the source of expected return variation, that it is pointless to test the present
value relation per se. In Campbell and Shiller (1988), as in fiscal theory discounted by
the ex-post return or other by-construction discount factor, the present value relation
is an untestable identity. But it remains interesting to measure which terms (cashflow
vs. discount rate) move to account for price changes. Puzzles come in reconciling
cashflows and discount rates with economic or, someday, psychological models, not
in the present value per se. That’s what asset pricing does now, and it is a fruitful
precedent for fiscal theory. (Cochrane 1991b, Cochrane 1992 are my contributions
to this literature; reviews in Cochrane 2005a and Cochrane 2011c.)

FTPL controversy has followed much of the same path with a two-decade lag. Most
analysis links inflation only to changes in surpluses, not to changes in discount rates.
Failures of such analysis are chalked up as rejections of the underlying fiscal theory
or the present value relation, not as a puzzle of discount rates, or the reflection of
unnecessary simplifying restrictions on the surplus time-series processes. These are
all the misconceptions of 1980s asset pricing and permanent income in a different
guise.

In particular, if we forecast surpluses and discount rates including the value of debt
in the forecasts, the present value relationship is a non-testable identity. To test it,
we must leave the value of debt out of the forecast. But leaving the value of debt
out of the forecast is a mistake. Campbell and Shiller likewise include the dividend-
price ratio in their VARs, resulting in an interesting decomposition but untestable
The fading lessons of 1980s time-series econometrics bear as well. Measuring the long string of higher order correlations that add up to $a(\rho) = \sum_{j=0}^{\infty} \rho^j a_j$ of a moving-average representation $s_t = a(L) \varepsilon_t$ is hard. Standard time-series methods, focused on short-run forecasts, can fail miserably.

In this chapter I summarize and apply some classic time-series and present value history and apply it to government debt.

26.1 Time-series lessons

Measuring the long string of higher order correlations that drive $a(\rho)$ is hard. The lessons of time-series econometrics emphasize that one should include the value of debt when forming long-run surplus forecasts.

26.1.1 Beware the ARMA(1,1)

The most likely, s-shaped, form of the surplus process will have features that make its long run forecasts particularly difficult to measure if one excludes the value of debt from the forecast. This fact is easiest to see in the example from Section 5.5.

There we studied a simple process (5.22)-(5.23),

$$s_{t+1} = \alpha v_t + a_u(L) \varepsilon_{s,t+1}$$

$$\rho v_{t+1} = v_t + \beta_s \varepsilon_{s,t+1} - s_{t+1}$$

that is equivalent to an s-shaped moving-average representation (5.26),

$$s_{t+1} = \left(1 - \frac{1-\alpha}{\rho} L\right) a_u(L) + \beta_s \frac{\alpha}{\rho} L \varepsilon_{s,t+1}.$$

I keep $\alpha > 1 - \rho$ so that debt remains stationary, and the denominator coefficient $(1-\alpha)/\rho < 1$. As we have seen, this sort of process captures the central facts in the data.

Consider the case $a_u(L) = 1$, an i.i.d. shock. Then we can write the moving average

$$s_{t+1} = \left(1 - \frac{1-\alpha}{\rho} \frac{\beta_s}{\rho} L\right) \varepsilon_{s,t+1} = \left(1 - \frac{\alpha(1-\beta_s)}{\rho(1-\alpha/\rho)} L\right) \varepsilon_{s,t+1}.$$
The second expression writes the response function as 1 in one direction followed by a small and geometrically decaying set of responses in the other direction. We have $a(\rho) = \beta_s$, so β_s controls how much of a shock is repaid, and how much results in inflation.

The first expression writes the response function in more conventional ARMA format. In the case $\beta_s = 1$, the roots cancel and we recover the i.i.d. shock $s_{t+1} = \varepsilon_{t+1}$. For smaller β_s, the numerator coefficient on the lag operator is slightly larger than the denominator coefficient and we have an ARMA(1,1) with nearly canceling roots – a classic econometric trap. The long tail of small responses all in the same direction dramatically affects the long-run properties of the series $a(\rho)$, and especially of its cumulation – debt cumulates surpluses, levels cumulate growth rates.

We have already seen in Figure 4.3 how close the true process is to an approximating AR(1), yet how different the sum of response functions is. Conventional time series estimation techniques minimize one-step ahead prediction errors $\min \text{var} (s_{t+1} - E_t s_{t+1})$ that do not much weight these long-run features. Once you add uncertainty over the true process – a bit of $a_u(L)$ – you can see the wisdom of experience: If you want to learn the long-run behavior of a time series, involving discounted sums of moving-average coefficients, finding the long-run implications of short-run ARMA models is a dangerous procedure. These statements are a summary of the lessons of Cochrane (1988), Campbell and Mankiw (1987). The long-run risks literature following Bansal and Yaron (2004), Bansal, Kiku, and Yaron (2012) is re-learning these lessons. See for example Beeler and Campbell (2012).

One could try techniques that put more weight on fitting long-run forecasts, as this literature explores. But when we have a forward-looking and informationrevealing variable such as the value of debt, price-dividend ratio, or consumption-income ratio, including that variable in a VAR easily substitutes for complex long-run oriented time-series estimates. The estimates based on a simple VAR with a forward looking variable in Cochrane (1988) are preferable to the univariate variance-ratio estimate in my Cochrane (1994b). Similarly, regressions of returns on dividend yields in Fama and French (1988a) uncover long-run forecastability better than long-run autocorrelations in Fama and French (1988b) and Poterba and Summers (1988).

In sum, to estimate a surplus process when you care about $a(\rho)$, use a vector autoregression that includes the value of debt!
26.1.2 Include slow-moving stationary variables.

The bottom line of the unit root/long-run estimation literature, in my view, is this: *Include a cointegrating vector in the VAR.* (I learned this lesson in *Cochrane (1994b)*.) A cointegrating vector captures how far away variables are from their long-run values, and acts as a state variable for the long sum of future forecasts in \(a(\rho) \).

In forecasting long-run consumption and income, include the consumption/income ratio as a forecasting variable. If that ratio is far from its mean, it will indicate long steady long-run forecastable growth in one of consumption or income. In forecasting long-run stock returns and dividend growth, include the price/dividend ratio as a forecasting variable. If prices are much higher than dividends, we can forecast that the level of prices will decline, or the level of dividends will rise, i.e. a period of low long-run returns or high long-run dividend growth.

The econometric lesson does not require cointegration. In this context, (26.6)-(26.8) are almost identical to a vector autoregression of return or dividend growth (in the place of \(s_t \)) and dividend yield (\(v_t \)). The value of debt is a slow-moving stationary variable that forecasts surpluses, accumulates surpluses, and thus captures long-run surplus forecasts that are hard, or for \(\beta_s < (1 - \rho)/\alpha \) impossible, to measure from the history of surpluses themselves.

26.1.3 Point nulls are pointless.

The unit root literature spent a lot of time testing unit roots against the alternative of a root less than one, indicating a stationary process. The asymptotic distribution theory is sharply different for a root of exactly one. But common sense should warn us that a root of 1.000 vs. a root of 0.999 cannot possibly make a difference in a finite sample, and unit-root asymptotics are a better guide to small sample distributions even if one knows the true root is 0.999.

The same situation occurs here. If we think \(\alpha = 0 \) vs. \(\alpha > 0 \) in a regression \(s_t = \alpha v_{t-1} + b(L)s_{t-1} + \varepsilon_t \) is the distinguishing characteristic of active vs. passive fiscal policy, including \(\alpha = 0.001 \), then clearly we are asking a question that cannot make a difference for our sample. (My view is in *Cochrane (1991a)*.) To the observation that we cannot reject \(\alpha = 0 \) in a regression \(s_{t+1} = \ldots + \alpha v_t \ldots + \varepsilon_{t+1} \), we should answer that we also cannot reject positive numbers. There is no reason that zero is a default null hypothesis. Of course, we should add that \(\alpha = 0 \) vs. \(\alpha > 0 \) is not a
test of active vs. passive policy in the first place, as the counterexample of Section 5.4 emphasizes.

26.1.4 Beware the non-invertible representation

For $\beta_s = a(\rho) = 0$, the example 26.3 simplifies to

$$s_{t+1} = \left(\frac{1 - \frac{1}{\rho}L}{1 - \frac{1}{\rho}aL} \right) \varepsilon_{s,t+1}.$$ \hfill (26.4)

The numerator coefficient is greater than one. This ARMA(1,1) is not invertible, and hence it cannot be recovered by any autoregression, or any other time series technique using the history of surpluses, or excluding the value of debt in the VAR. Leeper, Walker, and Yang (2013) have several excellent examples of the perils of non-fundamental representations. Fernández-Villaverde et al. (2007) give a nice treatment, emphasizing the role of state variables that agents see but we do not include in the VAR.

If you generate data by (26.4), run an autoregression, and find the implied moving average, you recover

$$s_{t+1} = \left(\frac{1 - \rho L}{1 - \frac{1}{\rho}aL} \right) w_{s,t+1}.$$ \hfill (26.5)

The shocks are one-step ahead prediction errors from the autoregression, $w_{s,t+1} = s_{t+1} - E(s_{t+1}|s_t,s_{t-1},...)$, This fitted process has

$$a(\rho) = \frac{1 - \rho^2}{\alpha}$$

not the correct answer $a(\rho) = 0$! (An autoregression of this surplus process recovers the Wold representation, which has an invertible moving average. The spectral density $S(\omega) = a(e^{i\omega})a(e^{-i\omega})$ of (26.5) and (26.4) is the same, so (26.5) is the Wold moving-average representation of the true process (26.5).)

This general observation holds beyond the specific univariate ARMA(1,1) example (26.4). A government that pays back its debts runs a surplus process with $a(\rho) = 0$, $\rho \leq 1$. The condition for invertibility is that all zeros of the moving-average representation are outside the unit circle. So the moving-average representation of the surplus $s_t = a(L)\varepsilon_{s,t}$ must be non-invertible. The project of estimating a surplus
process without including the value of debt to test whether governments pay back their
debts is doomed. As Hansen, Roberds, and Sargent (1992) (p. 122) put it concisely
“any vector autoregressive representation for \(\{s_t\} \) must correspond to a moving-
average representation that violates this restriction" [\(a(\rho) = 0 \)] – even if the data are
generated by a government that obeys the restriction.”

The true \(\varepsilon \) shocks and the true non-invertible moving average can still be recovered
if we include debt in the VAR. We can write (26.1)-(26.2)

\[
\begin{align*}
\mathbf{s}_{t+1} &= \mathbf{A} \mathbf{s}_t + \mathbf{B} \varepsilon_{s,t+1}, \\
\mathbf{v}_{t+1} &= \mathbf{C} \mathbf{s}_t + \mathbf{D} \varepsilon_{s,t+1},
\end{align*}
\]

(26.8)

The eigenvalues of the transition matrix are \((1 - \alpha)/\rho \) and 0, both less than one, so
this is the joint Wold moving-average representation. The true surplus shock can be
recovered from the history of debt, because debt reflects and reveals to us the expect-
tations of future surpluses that we need to identify the true surplus process.

The non-invertibility problem occurs for any \(\beta_s < (1 - \rho) / \alpha \). I use a parameteriza-
tion \(\rho = 1 \), in which only \(\beta_s = 0 \) suffers this problem with an exact unit root. But
the difficulty of estimating a process with nearly canceling and nearly non-invertible
roots, and how easy it is to estimate that process when one includes the value of
debt, extends for larger values of \(\beta_s \).

An MA(1) example

The MA(1) gives a simple and clear though unrealistic example. Suppose the surplus
follows

\[
s_t = a(L)\varepsilon_t = \varepsilon_t + \theta \varepsilon_{t-1}.
\]

Directly, the value of debt is

\[
\frac{B_{t-1}}{P_t} = E_t \sum_{j=0}^{\infty} \beta^j s_{t+j} = (1 + \beta \theta) \varepsilon_t + \theta \varepsilon_{t-1}.
\]

(26.9)

If a government wishes no unexpected inflation, the surplus process must follow

\[
a(\beta) = 1 + \beta \theta = 0.
\]
Therefore, the process must follow $\theta = -R$,

$$s_t = \varepsilon_t - R\varepsilon_{t-1} \quad (26.10)$$

In words, this government issues debt $B_{t-1}/P_t = \varepsilon_{t-1}$ at time $t-1$ to fund the surplus shock ε_{t-1}, and then pays it back one period later, with interest R.

But the moving average (26.10) is not invertible, so it cannot be estimated by an autoregression. If we try to invert the true process (26.10),

$$\frac{s_t}{1 - RL} = \varepsilon_t$$

we see exploding coefficients on the left-hand side.

What would happen if you ran autoregressions of surpluses from data generated by (26.10)? You would recover the wrong coefficient, the wrong error, and you would predict inflation volatility where there is none. Run the autoregression

$$b(L)s_t = w_t$$

From this regression you recover a stationary and invertible $b(L)$. When you invert it, you find an MA(1),

$$s_t = w_t - \beta w_{t-1} \quad (26.13)$$

Comparing (26.10) and (26.13), you recover a moving-average coefficient $\theta = -\beta = -1/R$ not the correct $\theta = -R$, and you recover $w_t \neq \varepsilon_t$, the wrong shock. (To show (26.13), match autocovariances.)

Most of all, using (26.9), (26.13) implies

$$(E_t - E_{t-1}) \sum_{j=0}^{\infty} \beta^j s_{t+j} = (1 - \beta^2)w_t,$$

not zero. You predict volatile inflation, and you are puzzled to see constant inflation. The mistake, really, is using the same symbol E_t to mean expectation conditional on agent’s information, which includes the ε_t, and expectation conditional on our information, just the set of current and past s_t.
26.1. TIME-SERIES LESSONS

Now, consider the *joint* process of surplus and debt. From (26.10) and (26.11), the fundamental (using structural shocks ε) joint moving average is

$$s_t = \varepsilon_t - R\varepsilon_{t-1}$$

(26.14)

$$\frac{B_t}{P} = -R\varepsilon_t.$$

(26.15)

(Here, since $P_t = \text{constant}$, I locate B_t/P_{t+1} in the time t information set, which clarifies the example.) Inverting this moving average, we find an autoregressive representation

$$s_t = \varepsilon_t + \frac{B_{t-1}}{P}$$

$$\frac{B_t}{P} = -R\varepsilon_t.$$

Or, to be super explicit,

$$
\begin{bmatrix}
 s_t \\
 B_t/P
\end{bmatrix}
=

\begin{bmatrix}
 0 & 1 \\
 0 & 0
\end{bmatrix}
\begin{bmatrix}
 s_{t-1} \\
 B_{t-1}/P
\end{bmatrix}
+
\begin{bmatrix}
 \varepsilon_t \\
 -R\varepsilon_t
\end{bmatrix}.

$$ (26.16)

The terms here do converge unlike (26.12). The right hand variables are uncorrelated with the error term. So OLS regressions uncover exactly (26.16). You can work backwards: If you run this *vector* autoregression, including debt on the right hand side,

$$
\begin{bmatrix}
 s_t \\
 B_t/P
\end{bmatrix}
= A
\begin{bmatrix}
 s_{t-1} \\
 B_{t-1}/P
\end{bmatrix}
+
\begin{bmatrix}
 w_t^a \\
 w_t^b
\end{bmatrix},

$$

this is a consistent estimate of the structural VAR (26.16). Inverting that VAR you can estimate the structural impulse response function (26.14) or (26.16). Equation (26.15) provides the key – the value of debt, which we can observe, reveals to us agents’ information about the structural shock, just as the value of equity reveals to us a slice of agents’ information about future dividends.

Invertibility with a general moving average

The same points hold in general, though less transparently than in the MA(1) or VAR(1) examples. The surplus follows a general moving average based on structural shocks

$$s_t = a(L)\varepsilon_t$$

with $a(\rho) = 0.$
One cannot estimate \(a(L)\) and test \(a(\rho) = 0\) from any autoregression. The condition for a moving-average representation to correspond to an autoregression is that all the zeros of \(a(z)\) lie outside the unit circle. The condition \(a(\rho) = 0\) means that a zero lies inside the unit circle, so this structural representation is not invertible.

I show here also that debt Granger-causes surpluses even though by construction surpluses are exogenous.

When we factor \(a(L)\),

\[
a(L) = \frac{(1 - \lambda_1 L)(1 - \lambda_2 L)\ldots(1 - \rho^{-1} L)}{(1 - \delta_1 L)(1 - \delta_2 L)\ldots},
\]

(26.17)

if we have \(a(\rho) = 0\), one of the numerator factors must be \((1 - \rho^{-1} L)\) as written. But since \(\rho^{-1} > 1\), you can’t invert to write this surplus process in autoregressive form

\[
\frac{(1 - \delta_1 L)(1 - \delta_2 L)\ldots}{(1 - \lambda_1 L)(1 - \lambda_2 L)} \frac{1}{(1 - \rho^{-1} L)} s_t = \varepsilon_t
\]

since the \((1 - \rho^{-1} L)\) root blows up going backwards. If you do run an autoregression you recover a representation that is invertible, by the Wold decomposition theorem. If all the other \(\delta\) and \(\lambda\) in the structural representation are appropriately less than one, an autoregression yields

\[
\frac{(1 - \delta_1 L)(1 - \delta_2 L)\ldots}{(1 - \lambda_1 L)(1 - \lambda_2 L)} \frac{1}{(1 - \rho^{-1} L)} s_t = w_t.
\]

You have both the wrong root, \(\rho\) not \(\rho^{-1}\), and the regression error is not the structural shock \(w_t \neq \varepsilon_t\). After you invert, the resulting estimate of \(a(L)\) does not have \(a(\rho) = 0\) even in infinite data. Thus, it implies innovations to inflation that do not exist. Though the surplus follows an exogenous univariate process, the whole procedure of estimating a surplus process and discounting it is wrong.

To see that debt Granger-causes surpluses, we need to find the vector autoregressive representation for surpluses and debt together, and then verify that regression shocks to debt help to forecast surpluses.

Given a surplus process with \(a(\rho) = 0\), debt follows the structural moving average representation

\[
v_t = \sum_{j=0}^{\infty} \rho^j s_{t+1+j} = \frac{a(L) \varepsilon_{t+1}}{1 - \rho L^{-1}} = \frac{s_{t+1}}{1 - \rho L^{-1}}.
\]

(26.18)
Yes, debt equals the ex-post as well as expected present value of surpluses. We can get to (26.18) by
\[\rho v_{t+1} = v_t - \Delta E_t \pi_{t+1} - s_{t+1} \]
with \(a(\rho) = 0 \), we have \(\Delta E_{t+1} \pi_{t+1} = 0 \) always, so
\[\rho v_{t+1} = v_t - s_{t+1} \]
and thus (26.18). The fact that people know the government will adjust surpluses \(\{s_{t+j+1}\} \) to offset shocks to \(s_{t+1} \) to give a constant price level is the key in this example.

More elegantly, for general \(a(L) \) the value of the debt follows a variant of the Hansen and Sargent (1981) prediction formula for geometric sums
\[E_t \sum_{j=0}^{\infty} \rho^j s_{t+1+j} = \frac{[a(L) - a(\rho)] L^{-1}}{1 - \rho L^{-1}} \varepsilon_t. \] (26.19)
(To derive this equation, note the \(a(L) \) term gives the present value of ex-post surpluses, and then see that the \(a(\rho) \) term subtracts off all the future shocks \(\varepsilon_{t+j} \). See Sargent (1987) p. 381-385.) Thus, if \(a(\rho) = 0 \) we have (26.18).

Now, express (26.18) using the factor representation of \(a(L) \), (26.17)
\[v_t = \frac{a(L)L^{-1}}{1 - \rho L^{-1}} \varepsilon_t = -\frac{a(L)\rho^{-1}}{1 - \rho^{-1}L} \varepsilon_t \]
\[= -\frac{\rho^{-1}}{(1 - \rho^{-1}L)} \frac{(1 - \lambda_1 L)(1 - \lambda_2 L)...(1 - \rho^{-1}L)}{(1 - \delta_1 L)(1 - \delta_2 L)...} \varepsilon_t \]
and thus,
\[= -\rho^{-1}(1 - \lambda_1 L)(1 - \lambda_2 L)... \varepsilon_t. \] (26.20)
The debt, though it is a strange-looking present value of future surpluses, is in fact a proper function of current and past shocks \(\varepsilon_t \), because the surplus process wipes out any shocks to that present value. The non-invertible root cancels – the debt is an invertible moving average of the structural shock. Thus, one can recover the structural shock to surpluses from an autoregression of debt on past debt.

Equation (26.20) is therefore also the moving-average representation of that autoregression of debt on past debt, up to a normalization of the size of the shock \(\varepsilon_t \). It, together with (4.1) and (26.17),
\[s_t = a(L)\varepsilon_t = \frac{(1 - \lambda_1 L)(1 - \lambda_2 L)...(1 - \rho^{-1}L)}{(1 - \delta_1 L)(1 - \delta_2 L)...} \varepsilon_t \] (26.21)
are now the moving-average representation of the debt and surplus VAR. And VAR
shocks to debt ε_t help to forecast surpluses, so debt Granger-causes surpluses.

One might get excited by these VAR and Granger-causality examples. Yes, estimating a surplus process that excludes debt and discounting the forecasted surplus will not work. But it seems one can run an autoregression that includes debt, recover the structural shocks ε_t, run a regression of surpluses on current and past debt shocks as in (26.21), and test whether $a(\rho) = 0$. Hansen, Roberds, and Sargent (1992) propose this test, and generalize to the case that some of the other zeros of $a(L)$ are inside the unit circle.

Alas, this test does not extend to a time-varying discount rate, and time-varying discount rates are central to making sense of the data. I believe the linearized present value identity allows such an extension, but that has not been worked out yet.

26.1.5 People have more information than we do

Time series teaches us that it is wise to include the value of debt in a surplus forecasting regression, but not why it is wrong to omit the value of debt unless we suspect a non-invertible moving average. The fact that agents have more information than we do makes it generically wrong to leave out the value of debt. And only by leaving out the value of debt can we try to test the present value relation – make a prediction about the value of debt that is not tautologically true. So, here we have in a nutshell why testing the present value relation per se is a hopeless cause.

The general argument is simple. Let Ω denote the information set of people in the economy. Then the valuation equation

$$ v_t = \left(E \sum_{j=0}^{\infty} \beta^j s_{t+1+j} \mid \Omega_t \right) $$

implies a present value relation using our forecasts on the right hand side

$$ v_t = \left(E \sum_{j=0}^{\infty} \beta^j s_{t+1+j} \mid I_t \subset \Omega_t \right) $$

where I_t is the VAR information set, only if we include the value of debt in the VAR, $v_t \in I_t$, or if agents use no more information than we have in the VAR, $I_t = \Omega_t$.

\[\text{CHAPTER 26. HOW NOT TO TEST FISCAL THEORY} \]
26.1. TIME-SERIES LESSONS

– a very restrictive assumption. Otherwise, we have \(E(v_t | I_t) \) on the left hand side. Leaving \(v_t \) out of the VAR, the present value relation \(26.23 \) does not imply the relation \(26.23 \) that one tests with the VAR.

In \(26.22 \) we see that the value of debt reveals agent’s expectations of the present value of surpluses, including the larger information set that we do not observe. That makes it such a useful forecasting variable – as consumption and stock prices are useful forecasting variables.

How to adapt econometric procedure to the fact that agents have more information than we have took a long time. Faced with a present value relation – \(B_{t-1}/P_t = \sum_{j=0}^{\infty} \beta^j s_{t+j} \), for example – one’s first and natural instinct is to fit a time series process to \(s_t \) by forecasting regressions, or examine analyst or survey forecasts, compute the right hand side, and compare it to the left hand side. When the two calculations don’t match up, one declares a puzzle.

This situation is exactly what faced macro and financial economists in the late 1970s, studying present value relations in finance and the permanent income hypothesis in macroeconomics. Starting with

\[
p_t = E_t \sum_{j=1}^{\infty} \beta^j d_{t+j},
\]

what could be more natural than to model dividends, say as an AR(1)

\[
d_{t+1} = \rho_d d_t + \epsilon_{t+1},
\]

to calculate a present value,

\[
E_t \sum_{j=1}^{\infty} \beta^j d_{t+j} = \frac{\beta \rho_d}{1 - \beta \rho_d} d_t,
\]

and to compare the result to \(p_t \)? The result is a disaster – prices do not move one for one with dividends, or with VAR forecasts of dividends that exclude the price (really price/dividend ratio), or analyst or survey forecasts.

Similarly, start with the permanent income model of consumption \(c \) and income \(y \),

\[
c_t = c_{t-1} + r \beta \sum_{j=0}^{\infty} \beta^j (E_t - E_{t-1}) y_{t+j}.
\]
What could be more natural than to model income as

\[y_t = \rho y_{t-1} + \varepsilon_t, \]

compute the present value, and compare it to consumption? The resulting model predicts a tight relation between consumption and income,

\[c_t - c_{t-1} = \frac{\tau \beta}{1 - \beta \rho_y} (y_t - \rho y_{t-1}). \]

This result is not quite as awful, but it is easy to reject statistically. The 100% \(R^2 \) prediction fails – there is no error term in the latter relation – and other variables help to predict consumption growth.

As illustrative exercises and as models, there is nothing wrong with these calculations. These calculations are really simple general equilibrium models. Such models are very useful for generating patterns reminiscent of those in the data and understanding mechanisms. But they are easily falsifiable as literal, testable representations of reality. As in these examples, they typically contain 100% \(R^2 \) predictions.

Thus, as tests of the present value relation, these procedures make several crucial mistakes. Vital here, these tests presume that agents, forming prices and setting consumption, have no more information than we do in specifying the dividend or income time-series models. This assumption is patently wrong. One should ask of any test in macroeconomics or finance, does this test (usually implicitly) assume agents have no more information than we use? Too many tests still fail that question. (These tests also presume constant expected returns, and they mistreat unit roots in dividends, prices, and income. We end up fixing all three issues.)

When we model surplus as an AR(1),

\[s_{t+1} = \eta_s s_t + \varepsilon_{t+1}, \]

compute present values such as

\[v_t = E_t \sum_{j=0}^{\infty} \rho^j s_{t+1+j} = \frac{\eta_s}{1 - \rho \eta_s} s_t, \]

\[\Delta E_t \pi_{t+1} = -a(\rho) \varepsilon_{t+1} = -\frac{1}{1 - \beta \eta_s} (s_{t+1} - \eta_s s_t), \]

and if we interpret the evident and large empirical failures of these calculations as rejections of the present value relation or rejections of the FTPL, we repeat exactly
26.2. SO HOW DO WE TEST PRESENT VALUE RELATIONS?

this mistake. The latter interpretation is doubly wrong, since the present value
relation holds under both active and passive fiscal policy.

This failure is more general than an AR(1). If we add extra variables to a VAR that
forecasts \(s_t\), omitting the value of debt \(v_t\) itself, and follow the same procedure, we
still assume that agents only see the variables of our VAR and no more.

What can we do? *Include the value of debt in the VAR.* If the resulting VAR shows
an s-shaped surplus process and no more puzzle, well, too bad, the puzzle (such as
proclaimed by Jiang et al. (2019)) hinges on the assumption that agents have no
more information than we have, so it isn’t a puzzle.

26.2 So how do we test present value relations?

OK, you can’t omit the value of debt from the VAR that forecasts surpluses and
discount rates. But suppose you put the value of debt in the VAR. Now, how do you
test the present value relation?

The short answer is, you can’t. If we allow time-varying expected returns, the present
value relation is an identity. Apparent tests are tests of auxiliary hypotheses, such
as agents don’t have more information than the history of surpluses, or expected
returns are constant over time, that are surely false, or tests of surplus or discount
rate models that may be true. Specifying and testing models of expected return
variation is interesting and important. It’s how we make theories useful. But such
tests are not tests of the present value relation per se.

The culmination of this sort of exercise in finance, the literature following Campbell
and Shiller (1988), no longer pretends to test the present value relation per se.
Instead, it investigates the terms of the present value identity. Do prices rise on
news of higher future dividends or lower future discount rates? When do those events
occur? It has to be one of the two. “Neither” is not a coherent answer. The worst
such a calculation can do is to point to large or puzzling discount rate variation, that
one may find implausible or hard to model, but it cannot reject the present value
identity. We should learn rather than rediscover this lesson.

To see the point explicitly, suppose that data including surplus and value of debt
follow a VAR,

\[z_{t+1} = Az_t + \varepsilon_{t+1}. \]
The flow identity \((3.17) \)

\[
\rho v_{t+1} = v_t + r^n_{t+1} - \pi_{t+1} - g_{t+1} - s_{t+1} \quad (26.24)
\]

implies that the VAR coefficients must satisfy

\[
(I - \rho A)a_v = (-a'_{r,n} + a'_x + a'_g + a'_s) A. \quad (26.25)
\]

These are not restrictions we need to impose. Since the data, if properly constructed, must obey \((26.24) \), the estimated parameters will automatically obey \((26.25) \).

Now, let us try to test the present value relation, \((3.18) \),

\[
v_t = E_t \left[\sum_{j=1}^{\infty} \rho^{-1} s_{t+j} + \sum_{j=1}^{\infty} \rho^{-1} g_{t+j} - \sum_{j=1}^{\infty} \rho^{-1} (r^n_{t+j} - \pi_{t+j}) \right]. \quad (26.26)
\]

We compute the terms on the right-hand side from the VAR as

\[
(a'_s + a'_g - a'_{r,n} + a'_x) (I - \rho A)^{-1} A z_t.
\]

so the present value holds if

\[
a'_v \equiv (a'_s + a'_g - a'_{r,n} + a'_x) (I - \rho A)^{-1} A.
\]

So long as the variables are stationary, the eigenvalues of \(A \) are less than one, and this restriction is identical to the restriction coming from the flow identity \((26.25) \). With \(v_t \) in the VAR, and without restrictions on expected returns \(E_t r^n_{t+1} \) (or the other variables, but that one is most common) the constructed present value of surpluses comes out to be each day’s value of debt, exactly, and by construction. Equation \((26.26) \) reduces to \(v_t = v_t \).

In the rear-view mirror, this statement is obvious. After all, we derived \((26.26) \) by iterating forward \((26.24) \), so it is unsurprising that the result is a present value identity. The \((I - \rho A)^{-1} \) operation just does the forward iteration that we did by hand to derive \((26.26) \). We’re looking at a tautology, not a test. (Throughout there is extra content in convergence of the present value, i.e. the absence of bubbles. This alternative is not the one usually in mind, so I leave out the discussion of such “rational bubbles” here.)

This identity looks easy, but it was hard-won knowledge. In the 1960s it seemed that one could test market efficiency by looking at returns alone, looking for random
walk stock prices for example. The discount factor existence theorems removed that
hope. (I have in mind the “joint hypothesis” theorem of Fama (1970), the Roll (1977)
critique, and of course Harrison and Kreps (1979). Cochrane (2005a) has a textbook
treatment.) Volatility tests (Shiller (1981)) seemed to offer a way to test and reject
the present value identity. But the reconciliation of volatility tests with long-term
return studies (for example Cochrane (1991b)) removed the same hope for present
value studies.

More generally, I think we have all learned that it is a bad idea to try to test whole
classes of theories. All theories rely on auxiliary modeling assumptions. We can and
should construct models, surplus forecasts, discount rate models, and then construct
present values and compare them with data. But when they fail, that tells us only
that we need a better model.

26.3 Summary: What can and cannot be tested

The quantity $a(\rho)$ and the restriction $a(\rho) = 0$ can be estimated and tested. Run a
VAR including at least the value of debt, estimate and test.

We can also estimate $a(\rho)$ and the present-value restriction $a(\rho) = 0$ in a model
with a constant discount rate. This is the insight of Hansen, Roberds, and Sargent
(1992). Section 4.2 suggests that the most potent pieces of evidence are likely to be
cross-equation restrictions, in particular whether the value of debt rises or declines
when there is a shock to surpluses. Here one alternative to $a(\rho) = 0$ is a constant
interest rate with $a(\rho) > 0$. The alternative also includes time-varying discount
rates, in which case the value of debt and inflation move with no surplus news at
all. If we think of the alternative being that the present value relation does not hold,
that must be because of an explosive bubble term, but such a term would render the
value of debt and potentially other variables non-stationary, so the properties of a
test against that alternative are challenging. The present value relation in a model
with a constant discount rate is not an identity. Therefore, some of the testable
content is that discount rate model.

When we enlarge our view to present value relations with a time-varying discount
rate, matters change. Recall the linearized identity,

$$v_t = \sum_{j=1}^{T} \rho^{j-1} s_{t+j} - \sum_{j=1}^{T} \rho^{j-1} r_{t+j} + \rho^{T} v_{t+T}$$
where \(r_t \equiv r^n_t - \pi_t \) denotes the ex-post real return. Unlike the present value with a constant discount rate, this formula is an identity. It always holds ex-post, so it always holds ex-ante. When we take limits, it is possible for the terminal condition to explode, so one can view tests of the present value relation as tests of that possibility. But again, then the value of debt and potentially the surplus as well become non-stationary, the statistical properties of such a test are challenging. And, the economics of the alternative are not that interesting, at least to me.

Imposing convergence of the last term, and writing the moving-average representation of surplus and returns \(s_t = a_s(L)\varepsilon_t, r_t = a_r(L)\varepsilon_t \), both including a vector shock \(\varepsilon_t \), and taking \(\Delta E_{t+1} \) of both sides, we obtain

\[
0 = a_s(\rho) - a_r(\rho).
\]

This looks like a promising extension of the testable \(a(\rho) = 0 \). But this relation derives from an identity, so it too is an identity. If you’ve done things right it always holds. You can measure the relative sizes of \(a_s(\rho) \) and \(a_r(\rho) \) which is interesting, but there is no alternative (other than the exploding debt, rational-bubble) under which the difference is not zero.

If we add a discount factor model, then we have something testable. Indeed, the constant discount factor model is just \(a_r(\rho) = 0 \). As has been done in asset pricing, one could test, for example, the hypothesis that the expected return on government bonds is measured by the ex-ante real rate, or some other measure, not by construction equal to the ex-post return on government bonds. One can create a complex stochastic discount factor that tiptoes around using the observed ex-post return on government bonds, as Jiang et al. (2019) do. Then we have a rejectable statement, but the rejection is only the discount factor model since we know it works perfectly using the ex-post return on government bonds. Or one can restrict the surplus process, e.g. require \(a_s(\rho) > 1 \), again as Jiang et al. (2019). But without restrictions or bubbles, \(a_s(\rho) = a_r(\rho) \) is an identity. For esthetic reasons I prefer to state tests of restrictions as tests of restrictions rather than as tests of an identity.

In sum, the key difference between the Hansen, Roberds, and Sargent (1992) test of \(a(\rho) = 0 \) and a generalization to a present value formula with time-varying discount rates is that the former restricts discount rates; it has a sensible alternative in which discount rates vary. In the latter case the present value formula is already an identity, so there is no sensible alternative.
26.4 An alternative surplus process

I explore a tractable and useful example, more realistic than the MA(1). The surplus has a permanent and transitory component, \(s_t = z_t + x_t; \ z_t = \eta_z z_{t-1} + \varepsilon_{z,t}; \ x_t = \eta_x x_{t-1} + \varepsilon_{x,t}, \) with \(\eta_z > \eta_x. \) The model generates a pretty response in which temporary deficits are financed by long-lasting increases in later surpluses, shown in Figure 26.1. When we pick parameters so that all debt is repaid, \(a(\rho) = 0, \) the univariate surplus process is not invertible. Again, forecasting surplus using debt, one can recover the structural process, and debt Granger-causes – helps to forecast – surpluses, though by construction surpluses cause variation in the value of debt.

This section summarizes another useful example of a surplus process that allows for an s-shaped moving average, and debts to be partially repaid. The \(v \) and \(v^* \) model introduced in Section 5.5 is more elegant, but a bit more complex and at first glance conceptually harder. The MA(1) \(s_t = \varepsilon_{s,t} + \theta \varepsilon_{s,t-1} \) is conceptually simple, but unrealistic. This example generalizes and simplifies the example in Cochrane (2001).

Suppose the surplus (or surplus/GDP ratio) has a permanent component and a transitory component, each AR(1).

\[
\begin{align*}
 s_t &= z_t + x_t \quad \text{(26.27)} \\
 z_t &= \eta_z z_{t-1} + \varepsilon_{z,t} \quad \text{(26.28)} \\
 x_t &= \eta_x x_{t-1} + \varepsilon_{x,t}. \quad \text{(26.29)}
\end{align*}
\]

Think of the cyclical component \(x_t \) as resulting from temporary events like recessions, wars, or economic booms like the late 1990s. These events result from temporary spending needs or fluctuations in GDP with a fixed tax code. Think of \(z_t \) as set by tax rates or the structure of entitlement programs. These changes are more permanent both by the nature of such policies and by tax-smoothing principles. These equations describe deviations about the means.

Thus, in a war or recession, the government has deficits – negative \(x_t. \) To fund the deficits, it issues debt. But in order to raise revenue from the debt sales and to fund the deficit, the government promises persistently higher taxes to pay off the debt after the war or recession is over – positive \(z_t. \) I allow \(\eta_x < 1 \) to avoid a pure random walk in the surplus, but \(\eta_z = 1 \) simplifies formulas even more and does little harm. Think of \(\eta_z \) as a large number, however, and \(\eta_x \) as a smaller number.

With this time-series model, and again using the constant discount rate short-term...
debt model, expected inflation is

\[\Delta E_{t+1} \pi_{t+1} = -\sum_{j=0}^{\infty} \rho^j \Delta E_{t+1} s_{t+1+j} = -\frac{1}{1 - \rho \eta z} \varepsilon_{z,t+1} - \frac{1}{1 - \rho \eta x} \varepsilon_{x,t+1}. \] \hfill (26.30)

We aim to understand the response to the cyclical shock \(\varepsilon_{x,t} \), and how much of that deficit is financed by inflation and how much is financed by borrowing, promising higher subsequent surpluses. To that end, let the government move long-run tax policy along with the deficit, leaving out for now orthogonal movements in long-run tax policy. It is useful to parameterize the response of long-run policy to short-run deficit shocks in terms of a parameter \(\beta_s \), as

\[\varepsilon_{z,t+1} = -\frac{[1 - (1 - \rho \eta z) \beta_s]}{[1 - (1 - \rho \eta z) \beta_s]} \varepsilon_{x,t+1}. \] \hfill (26.31)

When there is a deficit, a negative \(\varepsilon_{x,t+1} \), the government raises persistent taxes or cuts persistent spending \(\varepsilon_{z,t+1} \) in order to fund negative shocks to the transitory part of the deficit.

With this specification, the surplus innovation is

\[\Delta E_{t+1} s_{t+1} \equiv \varepsilon_{s,t+1} = \varepsilon_{z,t+1} + \varepsilon_{x,t+1} = \frac{\rho (\eta z - \eta x)}{[1 - (1 - \rho \eta z) \beta_s]} [1 - \rho \eta x] \varepsilon_{x,t+1}, \]

and from (26.30), the inflation innovation is

\[\Delta E_{t+1} \pi_{t+1} = -\beta_s \varepsilon_{s,t+1}. \]

For \(\beta_s = 0 \), the government fully pays back debts, and there is no inflation. For \(\beta_s > 0 \), the government partially repays debts and partially inflates. For \(\beta_s = 1/(1 - \rho \eta x) \), we have \(\varepsilon_{z,t} = 0 \) and \(z_t = 0 \) so \(s_t = x_t \). There is no long run tax response and the model reduces to the AR(1). (Now it should be clear why I did not write (26.31) as just \(\varepsilon_{z,t+1} = -\beta_s \varepsilon_{x,t+1} \).)

The surplus process is

\[s_t = \frac{1}{1 - \eta z L} \varepsilon_{z,t} + \frac{1}{1 - \eta x L} \varepsilon_{x,t} \]

\[s_t = \left[\frac{[1 - (1 - \rho \eta z) \beta_s]}{1 - \eta z L} \right] \left[\frac{[1 - (1 - \rho \eta x) \beta_s]}{1 - \eta x L} \right] \frac{1}{\rho (\eta z - \eta x)} \varepsilon_{s,t}. \]

The difference of two AR(1) produces a pretty s-shaped and hump-shaped response function. You can quickly verify \(a(\rho) = \beta_s \).
Figure 26.1: Surplus impulse-response function for the permanent-transitory model. The AR response is what one would infer from a regression of surpluses on past surpluses. $\eta_z = 0.975$, $\eta_x = 0.7$, $\rho = 1/1.05$.

Figure 26.1 presents the response function (26.32) for the case $\beta_s = a(\rho) = 0$. I plot the response to a unit negative $\varepsilon_t = -1$ shock, a deficit. As you can see, deficits are persistent. But deficits eventually turn to surpluses which pay back the accumulated debts.

We can also condense the surplus process into a single lag operator

$$s_t = \frac{1 - \beta_s (1 - \rho \eta_z) (1 - \rho \eta_x)}{(1 - \eta_x L)(1 - \eta_z L)} \varepsilon_{s,t}.$$

This is an ARMA(2,1) with similar AR and MA roots, already an econometric challenge. When $\beta_s = 0$, this expression reduces to

$$s_t = \frac{(1 - \rho^{-1} L)}{(1 - \eta_x L)(1 - \eta_z L)} \varepsilon_{s,t}. \quad (26.32)$$

You cannot recover this surplus response from running autoregressions of surpluses on their past values, as (26.32) is a non-invertible representation. If you run autoregressions or fit an ARMA model to surplus data generated by the model (26.32), you
recover an estimated model

\[s_t = \frac{(1 - \rho L)}{(1 - \eta_z L)(1 - \eta_x L)} w_t \]

(26.33)
rather than (26.32), where the \(w_t \) are residuals from the regression of \(s_t \) on lagged \(s_{t-j} \). You recover \(\rho \) not \(\rho^{-1} \) in the moving-average term, and the regression error \(w_t \) is not the true shock \(\varepsilon_t \).

In the not-unreasonable case \(\rho = \eta_z \), you recover exactly the wrong AR(1) response function with coefficient \(\eta_x \),

\[s_t = \frac{1}{1 - \eta_z L} w_t, \]
as if the taxes were not there at all. You measure

\[a(\rho) = \frac{(1 - \rho^2)}{(1 - \eta_x \rho)(1 - \eta_z \rho)}, \]

not the correct answer \(a(\rho) = 0 \).

Figure 26.1 also presents the implied estimated response function (26.33), the response to a single unit \(w_t = -1 \) shock. (The variance of the regression shocks \(w \) is also larger, so one will also misestimate the size of a one-standard-error shock. I graph the response to a unit shock to focus on the shape.) The response functions are broadly similar, but this one, fitted by a regression of surpluses on lagged surpluses, misses the rise in surpluses that pays off the debt. Hence, it predicts counterfactual surprise inflation associated with deficits.

Figure 26.2 presents a simulation of this permanent-transitory model. I picked parameters by eye to roughly match the dynamics of Figure 4.2. (I add a mean \(z = 1.1 \).) There is no simple relation that debt, price level or inflation is proportional to surpluses. When surpluses are positive, debt falls. When surpluses are negative, debt rises. The government seems to run surpluses to pay off debts, following a passive fiscal policy, though the example is constructed under the explicitly opposite assumption.

In this case as well, you can estimate the true surplus process, if you use a VAR that includes debt. The value of debt is

\[v_t = E_t \sum_{j=1}^{\infty} \rho^{j-1} s_{t+j} = \frac{1}{1 - \rho \eta_z} z_t + \frac{1}{1 - \rho \eta_x} x_t. \]
Together with

\[s_t = z_t + x_t \]

we can then find the structural VAR representation.

\[
\begin{bmatrix}
 z_t \\
 x_t
\end{bmatrix}
= \begin{bmatrix}
 \eta_x & 0 \\
 0 & \eta_x
\end{bmatrix}
\begin{bmatrix}
 z_{t-1} \\
 x_{t-1}
\end{bmatrix}
+ \begin{bmatrix}
 \varepsilon_{z,t} \\
 \varepsilon_{x,t}
\end{bmatrix}
\]

\[
\begin{bmatrix}
 s_t \\
 v_t
\end{bmatrix}
= \begin{bmatrix}
 \frac{1}{1-\rho_{z}} & \frac{1}{1-\rho_{x}} \\
 \frac{1}{1-\rho_{z}} & \frac{1}{1-\rho_{x}}
\end{bmatrix}
\begin{bmatrix}
 z_t \\
 x_t
\end{bmatrix}
\]

At this point, the pair of surplus and debt are a non-singular transformation of a pair of AR(1). So, it should be clear that the pair \(s_t, v_t \) also follow a first-order invertible VAR with stable roots. Mechanically, we have

\[
\begin{bmatrix}
 s_t \\
 v_t
\end{bmatrix}
= \begin{bmatrix}
 \frac{1}{1-\rho_{z}} & \frac{1}{1-\rho_{x}} \\
 \frac{1}{1-\rho_{z}} & \frac{1}{1-\rho_{x}}
\end{bmatrix}
\begin{bmatrix}
 \eta_x & 0 \\
 0 & \eta_x
\end{bmatrix}
\begin{bmatrix}
 \frac{1}{1-\rho_{z}} & \frac{1}{1-\rho_{x}} \\
 \frac{1}{1-\rho_{z}} & \frac{1}{1-\rho_{x}}
\end{bmatrix}
\begin{bmatrix}
 z_{t-1} \\
 x_{t-1}
\end{bmatrix}
+ \begin{bmatrix}
 \frac{1}{1-\rho_{z}} & \frac{1}{1-\rho_{x}} \\
 \frac{1}{1-\rho_{z}} & \frac{1}{1-\rho_{x}}
\end{bmatrix}
\begin{bmatrix}
 \varepsilon_{z,t} \\
 \varepsilon_{x,t}
\end{bmatrix}
\]

The construction already gives us a diagonalization of the VAR transition matrix verifying stable eigenvalues \(\eta_z, \eta_x \). Evaluating the matrix product, we have a structural...
autoregressive representation,

\[
\begin{bmatrix}
 s_t \\
 v_t
\end{bmatrix} = \begin{bmatrix}
 \eta_x + \eta_z - \rho^{-1} \\
 -\rho^{-1}
\end{bmatrix}
\begin{bmatrix}
 \rho^{-1} (1 - \rho \eta_x) (1 - \rho \eta_z) \\
 \rho^{-1}
\end{bmatrix}
\begin{bmatrix}
 s_{t-1} \\
 v_{t-1}
\end{bmatrix} + \begin{bmatrix}
 \varepsilon_{s,t} \\
 \varepsilon_{v,t}
\end{bmatrix}.
\] (26.34)

Since this is the autoregressive representation, the structural shocks \(\varepsilon_{z,t}, \varepsilon_{x,t} \) are recoverable from the regression residuals. This result holds for any correlation of the shocks \(\varepsilon_{z,t} \) and \(\varepsilon_{x,t} \) including \(\beta_s = 0 \) and perfect that produces a non-invertible moving-average representation for \(s_t \) alone. Even in the case of perfect shock correlation (26.31) and \(\beta_s > 0 \), in which \(s_t \) is in principle estimable from its own past, it is much easier to estimate a first-order VAR than it is to estimate an ARMA(2,1) with nearly-canceling roots.

This is also a pure fiscal-theory example with completely exogenous surplus process. Yet in (26.34), the regression coefficient of surplus \(s_t \) on value \(v_{t-1} \) is positive, showing us how that coefficient does not measure passive fiscal policy. Debt helps to forecast and thus Granger-causes surpluses. And the coefficient \(\rho^{-1} > 1 \) of debt on lagged debt warns us to be careful about misinterpreting individual regression coefficients for eigenvalues of systems.
Chapter 27

Pruning multiple monetary equilibria

This chapter gives an overview of efforts to prune the multiple inflationary and deflationary equilibria of monetary models, from Section 19.3.2, without recourse to active fiscal policy. I demote all this material to appendix, as I think it belongs in the department of historical controversies that have no bearing on models of inflation we might use today, as explained in the text. Still, having made the claim that multiple equilibria are not solved by this literature, here I offer a review. The review is at least interesting for covering standard history of thought.

Figure 19.1 exhibits the dynamics of the money in the utility function model. I repeat the figure here as Figure 27.1 for completeness. There is an inflationary steady state, a zero interest rate deflationary steady state, and a full range of deflationary and inflationary equilibria emanating from the inflationary steady state, either to large inflation or down to the deflationary steady state. I take up here efforts to prune all but the inflationary steady state as an equilibrium.

27.1 Pruning deflationary equilibria

A transversality condition argument can rule out the deflationary equilibria when money growth is nonnegative $\mu \geq 0$, and for some specifications of the utility function, when there is no debt and money growth is financed by lump-sum taxation. This is the fiscal theory, not an alternative to fiscal theory. The result is also sensi-
relative to assumptions. If there is nominal debt and the central bank controls money by open market operations, it also fails. If money growth is negative $\mu \leq 0$, deflationary equilibria survive as well.

Figure 27.1: Phase diagram for the money in the utility function model with constant money growth.

A subtlety of the deflationary equilibria: If money growth is non-negative $\mu > 0$, real money holdings in my example rise faster than the real interest rate. One might say the transversality condition is violated, ruling out these paths. We can see this outcome by manipulating (19.21) to give

$$\left(\frac{M_{t+1}}{P_{t+1}y}\right) / \left(\frac{M_t}{P_ty}\right) = (1 + \delta) (1 + \mu) \left[1 - \theta \left(\frac{P_ty}{M_t}\right)^\gamma \right]$$

so, as $P_ty/M_t \searrow 0$,

$$\left(\frac{M_{t+1}}{P_{t+1}y}\right) / \left(\frac{M_t}{P_ty}\right) \uparrow (1 + \delta) (1 + \mu).$$

Thus, if $\mu \geq 0$, real money holdings violate the condition,

$$\lim_{T \to \infty} E_t \beta^{T+1} \frac{M_{t+T}}{P_{t+T+1}y} \neq 0.$$
Consumers, seeing this rise in wealth, may try to increase consumption, and in the process drive the price level back up and away from the deflationary equilibrium.

This objection only applies to policies with positive money growth $\mu > 0$. If money growth is negative $-\delta < \mu < 0$, then even this subtlety vanishes and we unequivocally have multiple deflationary equilibria.

27.1.1 This *is* fiscal theory

When it holds, this argument is fiscal theory, not an alternative to fiscal theory. Passive fiscal policy means that fiscal policy does what it takes so that the government debt valuation holds, i.e. that the transversality condition is satisfied for any initial price level. This government refuses to raise taxes as passive policy would do, validating the too-low price level. That’s active fiscal policy.

To see the argument explicitly, it helps as always to start with the simplest environment: The government issues no debt $\{B_t\} = 0$, and utility of money is bounded, $u_m(m) = 0$ for $m \geq m_{sat}$. Start having entered this region. With $u_m = 0$, the nominal interest rate must be zero $i = 0$. The difference equation for money holdings (19.18) reduces to $P_{t+1}/P_t = \beta$, deflation at the real interest rate. Money holdings themselves are arbitrary so long as $m > m_{sat}$.

The household budget constraint (19.10) in goods-market equilibrium $c_t = y_t$ reduces to

$$\frac{M_t - M_{t-1}}{P_t} = -s_t.$$ \hfill (27.1)

In this model, monetary policy is fiscal policy. With no debt, deficits are financed entirely by printing money. Contrariwise, any increase or decrease in money must come from seigniorage. A helicopter drop counts as a deficit.

The present value budget constraint (19.12) in goods and financial market equilibrium reads

$$\frac{M_{t-1}}{P_t} = \sum_{j=0}^{T} \beta^j s_{t+j} + \beta^{T+1} \frac{M_{t+T}}{P_{t+T+1}}.$$ \hfill (27.1)

If you substitute (27.1) and $P_{t+1}/P_t = \beta$, this equation just says final money equals
initial money plus added money.

\[
\frac{M_{t-1}}{P_t} = \sum_{j=0}^{T} \beta^j \left(\frac{-M_{t+j} - M_{t+j-1}}{P_{t+j}} \right) + \beta^{T+1} \frac{M_{t+T}}{P_{t+T+1}}
\]

The final term grows at rate \((1 + \mu)^T\). The final, transversality condition is violated. The present value of surpluses explodes to negative infinity.

This government just showers money on people. With positive money growth and such helicopter deficits, money piles up. But with neither a utility benefit of money nor taxes to pay, people don’t want to let money pile up forever. They would prefer to lower money holdings, and increase consumption throughout time. Removing goods market equilibrium, the consumer’s budget constraint is

\[
\frac{M_{t-1}}{P_t} = \sum_{j=0}^{T} \beta^j \left(s_{t+j} + c_{t+j} - y \right) + \beta^{T+1} \frac{M_{t+T}}{P_{t+T+1}}.
\]

Facing prices \(\{P_t\}\), a real interest rate \(\beta^{-1}\), endowment \(y\), and surpluses \(\{s_t\}\), the consumer would prefer to raise consumption at all dates, holding less money.

This is clearly fiscal theory logic. You can’t support a positive value of debt \(M_{t-1}/P_t\) with endlessly negative surpluses. Money is debt here, as money has no utility and any explicit debt would have a zero interest rate on these price level paths.

A passive fiscal policy in this circumstance would adjust surpluses so that the present value equation holds, for any given initial price level. Thus, a passive policy must have at some point positive surpluses. And with monetary policy indistinguishable from fiscal policy, that means we must in this model have a negative money growth rate \(M_{t+1} - M_t < 0\).

More generally, there is no equilibrium initial price level, with perpetually positive money growth, perpetually negative surpluses, and no liquidity value \(u_m = 0\), whether fiscal policy is active or passive.

Indeed, a government that finances itself exclusively with non-interest paying money, or equivalently perpetually zero nominal interest rates on debt, is a good fiscal theory exercise. Such a government can have a determinate price level, even with no money
demand at all. The nominal interest rate stays at zero, prices decline at the real rate
to generate a positive return. But the present value of surpluses must be positive,
meaning enough periods of negative money growth and positive surplus to soak up money issued in periods of positive money growth and negative surplus, so the
nominal money supply is eventually constant or declining.

27.1.2 No violation with open market operations

Adding debt explicitly adds a different possibility. Maintaining enough money so
\(u_m = 0 \), money and debt are perfect substitutes, so the above analysis holds with
\(M_t \) simply denoting the sum \(M_t + B_t \). But now we have another possibility for
interpreting the instruction to let money keep growing: Rather than grow money by
printing it and handing it out, money may be increased by open market operations
that exchange money for debt. This is the conventional interpretation of monetary
policy after all. In this case the transversality condition is not violated in the first
place.

Now with goods \(c_t = y_t \) and asset market equilibrium \(Q_t = 1 \), the household’s period
budget constraint (19.10) leads to

\[
\frac{B_{t-1} + M_{t-1}}{P_t} = \frac{B_t + M_t}{P_t} + s_t
\]

and the present value condition (19.12) is

\[
\frac{M_{t-1} + B_{t-1}}{P_t} = \sum_{j=0}^{T} \beta^j s_{t+j} + \beta^{T+1} \frac{M_{t+T} + B_{t+T}}{P_t+T+1} = \sum_{j=0}^{T} \beta^j s_{t+j} + \frac{M_{t+T} + B_{t+T}}{P_t}.
\]

For simplicity, let the primary surplus be constant,

\[
s_t = s = (1 - \beta) \frac{B_{t-1} + M_{t-1}}{P_t}
\]

which yields a constant real total debt,

\[
\frac{B_t + M_t}{P_{t+1}} = \frac{B_{t-1} + M_{t-1}}{P_t}
\]

and steadily declining nominal debt

\[
B_t + M_t = \beta (B_{t-1} + M_{t-1}).
\]
Interpret the policy of perpetual money growth $M_{t+1}/M_t = 1+\mu$ as one commanding the central bank to undertake open-market operations, issuing money and buying debt. Now, despite ever increasing money, the total value of government debt is the same, and the transversality condition holds. The transversality condition applies to the sum of the two forms of (here perfect substitutes) of government debt. Yes, the individual quantities of money and debt explode in opposite directions. In particular, nominal debt becomes

$$B_t + M_t = \beta^t (B_0 + M_0)$$

$$B_t = \beta^t (B_0 + M_0) - (1 + \mu)^t M_0.$$

The second term grows without bound, so government debt becomes negative. The government issues more and more money, using the result first to buy its own debt back, and then to invest in a larger and larger sovereign wealth fund.

27.1.3 Optimality with valued money

In the case that the marginal utility of money does not decline to zero $u_m > 0$, the analysis is more subtle. The ever-growing money supply may not actually violate the transversality condition.

To see the issue, consider the last period of a finite-time version of the model. Since the world ends at time $T+1$, we normally conclude that the consumer leaves no money or debt outstanding $M_T + B_T = 0$. The last period budget constraint reads

$$\frac{B_{T-1} + M_{T-1}}{P_T} = \frac{Q_T B_T + M_T}{P_T} + (s_T + c_T - y_T).$$

(27.2)

It seems that $M_T > 0$ is suboptimal, as the consumer could raise consumption c_T instead.

But this is a mistake. It is worth keeping some money M_T, as it enters utility at time T, even though money is useless the next morning $T+1$. The first-order conditions in this last period are, from max $u(c_T, M_T/P_T)$ s.t. (27.2),

$$u_c(c_T, M_T/P_T) = u_m(c_T, M_T/P_T).$$

Positive and finite marginal utility of consumption means positive and finite marginal utility of money, and hence a positive and finite money demand.
Likewise, the consumer may be happy even with exploding quantities of money. Consider one of the deflationary equilibria. The consumer’s iterated budget constraint is

\[\frac{M_{t-1}}{P_t} = \sum_{j=0}^{T} \beta^j \left[\frac{i_{t+j} M_{t+j}}{1 + i_{t+j} P_{t+j}} + s_{t+j} + c_{t+j} - y \right] + \beta^{T+1} \frac{M_{t+T}}{P_{t+T+1}}. \]

Ask again what the consumer’s full optimum choice of consumption and money holdings is, facing prices \(\{P_t\} \), income \(y \), surpluses \(\{s_t\} \) and real interest rates \(\beta^{-1} \) and nominal interest rates \(\{i_t\} \). The optimal intertemporal allocation of consumption will be flat, so in place of \(c_t = y \), the consumer may choose \(c_t = y + \Delta c \). Optimal money demand will still obey

\[\frac{u_m(y + \Delta c, M_t/P_t)}{u_c(y + \Delta c, M_t/P_t)} = 1 - \frac{1}{1 + i_t}. \]

With separable utility

\[\frac{u_m(M_t/P_t)}{u_c(y + \Delta c)} = 1 - \frac{1}{1 + i_t}. \]

Now, higher consumption means the marginal utility of consumption declines. Hence, the marginal utility of money must also decline, and desired real money holdings must rise. Debt has no value per se, so unequivocally people are willing to hold less debt if they can to finance consumption. But money has value, so lowering money holdings to increase consumption does not immediately raise utility.

27.1.4 Deflationary equilibria literature

I offer a quick survey of the vast literature on deflationary equilibria with alternative specifications of the money in utility function.

The closing example of the last section leads one hungry for more. What if utility is non-separable? What exactly is the correct transversality condition? This question gives rise to a large literature. The general consensus is as I have described – for money growth between negative of the real rate and zero, \(-\delta \leq \mu < 0\), there are multiple deflationary equilibria. For non-negative money growth, this fiscal (transversality condition violation) argument sometimes rules them out.

However, this result remains contentious. General transversality conditions for this classic model are not well established. Since limiting properties of the utility function also matter – the value of money – analysis involves a good deal of mathematical
horsepower, for example [Ekeland and Scheinkman (1986), Kamihigashi (2000)]. As
often, general proofs make assumptions contrary to practice, such as bounded utility.
Utility non-separable between consumption and money is plausible, as it disentangles
risk aversion from money demand elasticity, but complicates the analysis. In one
survey, [Buiter and Siebert (2007)] write:

A striking feature of the current and past macroeconomic literature
on deflationary bubbles is the divergence of opinion over the correct spec-
ification of both the transversality condition in models where money is
the only financial asset and the correct specification of the transversality
and long-run solvency, or “no-Ponzi-game,” conditions in models where
there are both money and bonds.

They offer a lucid and concise review of widely-varying, and differing published
opinions, including [Brock (1974), Brock (1975), Obstfeld and Rogoff (1983), Obstfeld
and Rogoff (1986), Ljungqvist and Sargent (2000), Woodford (2003)] and many others
one might turn to for guidance here including [Matsuyama (1990), Matsuyama (1991),
Woodford (1994)]. Opinion differs on whether there are two conditions, one for money
and one for bonds, or one condition, for aggregate terminal wealth.

The conclusion of [Buiter and Siebert (2007)] mirrors the claim I started with,

We demonstrate that deflationary bubbles cannot occur when money
growth is strictly positive ($\mu > 1$). We show, however, that when the
money supply is contracting, but at a lower rate than the discount fac-
tor ($\beta < \mu < 1$) deflationary bubbles can occur; indeed, any separable
utility function satisfying the usual regularity conditions can produce a
deflationary bubble.

However, even they do not get the last word. In particular, they write

” deflationary bubbles accompanied by strictly positive money growth
in Woodford (2003) and Benhabib et. al. (2002a) cannot exist.”

This statement appears to invalidate my previous analysis, such as Figure [16.2]. But
that analysis didn’t have any money at all, and it followed an interest rate target in
which, if there is money, it can grow at a slow rate. Moreover the point of [Benhabib,
Schmitt-Grohé, and Uribe (2002)] was exactly that by adding unbacked money or
debt growth, an essentially fiscal policy, they could escape the deflation. [Woodford
(1994)] explores these issues in detail in a cash and credit good cash in advance model,
with interest-elastic money demand. His central point is that an interest rate target
allows the zero-bound equilibrium, in a way that a money-growth target does not do. The debate will continue.

Even the classic source on optimization Chiang (1992) writes “their [transversality conditions] validity is sometimes called into question... it is only fair to warn the reader... that there exists a controversy surrounding this aspect of infinite-horizon problems.” (p. 102) “Many writers consider the question of infinite-horizon transversality conditions to be in an unsettled state.” (p. 243.) He goes on to set straight several counterexamples, many from the economics literature.

Footnote 1 in Woodford (1994) offers a concise survey of multiple equilibrium issues in money-in-utility models, essentially documenting that there is no consensus general statement: “But while several authors have addressed aspects of this problem...no very general treatment exists for that class of models.” Bassetto and Sargent (2020) also summarize nicely “...for many interesting preference specifications it [difference equation (19.21)] has many solutions. The lack of a nominal anchor comes from the lack of a boundary condition for equation (38) [my (19.21)]. The only candidate for such a boundary condition is the government budget balance.”

I don’t pursue the issue further, because the model, though a subject of a large literature – constant money growth, no debt, no surpluses, a definite money demand – is not interesting.

27.2 Pruning inflationary equilibria

Now we turn to the equilibria with increasing inflation, to the right of the steady state in Figure [27.1]. Since money holdings decline, there is no transversality condition issue. Instead, appeal is made to the same sorts of equilibrium-selection ideas as we saw for inflationary equilibria of active-money passive-fiscal interest-rate models.

27.2.1 Timing conventions in the inflationary equilibria

The inflationary equilibria explode in finite time. They are nonetheless valid equilibria. This behavior is an unrealistic feature of the discrete-time timing conventions, which result in $u_m/u_c = i/(1 + i)$ rather than $u_m/u_c = i$ which results from the continuous time model. I introduce a modification of the utility function which gives
the latter first order condition, and removes jumps to infinite price level in finite time.

Examine the inflationary equilibria of the difference equation \((19.23)\),

\[
\left(\frac{P_{t+1}y}{M_{t+1}} \right) = \left(\frac{P_t y}{M_t} \right) \left[1 - \theta \left(\frac{P_t y}{M_t} \right)^\gamma \right] \left[1 - \theta \left(\frac{P_t y}{M_t} \right)^\gamma \right].
\] \hspace{1cm} (27.3)

For \(P_0 y/M_0 > PM/M\), the price level eventually explodes to infinity finite time. The denominator goes to zero or worse. One might hope to eliminate inflationary equilibria on this basis.

There is nothing theoretically wrong with this result. Since money is just an argument of the utility function in an endowment economy, the economy can trundle along with \(c_t = y\) and no money. A path that starts with little inflation, goes to hyperinflation, and in finite time demonetizes, is a valid equilibrium of the model. First order conditions and budget constraints hold all the way to the infinite price level and beyond.

In fact, this consideration means there is not a continuum of inflationary equilibria, but a countable number, and the denominator of \((27.3)\) goes exactly to zero but not below. If consumers know that the price level will be infinite at time \(T + 1\), then money demand at time \(T\) is

\[M_t = P_t y \left(\frac{1}{\theta} \right)^{-\frac{1}{\gamma}}.\]

so the last period price level is

\[P_T = \frac{M_T y}{\theta^{-\frac{1}{\gamma}}}.\]

People are happy to hold this much money for a day, even knowing money will be useless tomorrow. We work back from this terminal condition to find \(P_0 y/M_0\). For each such \(T\) there is a different \(P_0 y/M_0\).

This is the specification, with demonetization in finite time, studied in the classic models that attempt to fix these multiple equilibria, \cite{Obstfeld and Rogoff (1983), Obstfeld and Rogoff (1986)}, which we will examine below. These authors add additional elements to the policy mix to try to trim the inflationary equilibria, which they would not need to do if the equilibria weren’t valid in the first place.
Nonetheless, demonetization in finite time feels weird, and it is. It results from a pathology of the discrete-time formulation of the model. This is not a good model for studying money demand in high-inflation economies, for this and many other reasons.

In this discrete-time setup, the money demand function is

\[M_t = P_t y_t \left(\frac{1}{\bar{\theta} (1 + i_t)} \right)^{-\frac{1}{\gamma}}. \]

(27.4)

In the continuous-time version of the model, outlined below, we have instead

\[M_t = P_t y_t \left(\frac{i_t}{\bar{\theta}} \right)^{-\frac{1}{\gamma}}. \]

(27.5)

For small \(i_t \), the difference between \(i_t \) and \(i_t / (1 + i_t) \) is minor. However, for large \(i_t \), it is not minor. As inflation and interest rates approach infinity, real money demand \(M_t/P_t \) in (27.4) approaches a constant, while real money demand in (27.5) smoothly approaches zero. In the discrete-time model, it is worth holding money for one day, even if that money will be worthless the next morning. Interest is only paid overnight, so there is no opportunity cost for holding money for one day, and the price level is constant during the day.

This behavior is not realistic. In times of very large inflation, interest is paid even during literal days, to say nothing of the month, quarter, or year periods for which we usually apply these models, and prices rise hour by hour. You cannot hold money for any discrete period of time without an opportunity cost. The continuous time first order conditions (27.5) reflect this fact.

The best approach is to actually use the continuous-time model, in which pathologies due to timing conventions do not arise. We can however derive a money demand (27.5) in this discrete-time model by modifying the utility function to

\[u \left(c_t, \frac{M_t}{P_t} \right) = \frac{c_t^{1-\gamma}}{1-\gamma} + \frac{\theta}{1-\gamma} \frac{1}{1 + i_t} \left(\frac{M_t}{P_t} \right)^{1-\gamma}. \]

Now, the first order condition

\[\frac{u_m(t)}{u_c(t)} = \frac{i_t}{1 + i_t} \]

becomes, in equilibrium \(c_t = y_t \), (27.5).
The \(i_t \) vs. \(i_t/(1 + i_t) \) really belongs in the budget constraint – the fact that you cannot, in reality, use money without interest cost or inflation during the day. But it’s awkward at this stage to change the budget constraint we have used throughout the book, and discrete time utility doesn’t mix well with a continuous time budget constraint. So, I add the \(1/(1 + i_t) \) to the preferences as a shortcut to get the continuous-time first order condition and limiting behavior out of the discrete time model. The preferences are an indirect utility for some unstated transactions model anyway, and if we allow the price level \(P_t \) into preferences, we can’t object to an intertemporal price \(i_t \) as well.

Repeating the previous analysis with the alternative timing convention, we obtain almost exactly the same results for small interest rates \(i \), but a smooth limit for high interest rates, and in particular a continuum of inflationary equilibria that go on forever, without demonetizing in finite time. The difference equation is, in place of (19.21),

\[
\theta \left(\frac{M_t}{P_t y} \right)^{-\gamma} = \frac{1}{\beta} \frac{P_{t+1}}{P_t} - 1 = \frac{1}{\beta} \left(\frac{M_t}{P_t y} \right) / \left(\frac{M_{t+1}}{P_{t+1} y} \right) \frac{M_{t+1}}{M_t} - 1.
\]

The steady state for money holdings is

\[
\theta \left(\frac{M}{P y} \right)^{-\gamma} = (1 + \delta)(1 + \mu) - 1.
\]

and in place of (19.23),

\[
\left(\frac{P_{t+1} y}{M_{t+1}} \right) = \left(\frac{P_t y}{M_t} \right) \left[1 + \theta \left(\frac{P_t y}{M_t} \right)^{\gamma} \right] \left[1 + \theta \left(\frac{P_t y}{M_t} \right)^{\gamma} \right].
\]

Having \(1 + \theta \left(\frac{P_t y}{M_t} \right)^{\gamma} \) in the numerator rather than \(1 - \theta \left(\frac{P_t y}{M_t} \right)^{\gamma} \) in the denominator makes little difference for small values of \(P_t y/M_t \) but means that the price level never goes to infinity in finite time. Figure 19.1 is visually indistinguishable in the plotted range, but no longer spikes up to infinite \(P_{t+1} y/M_{t+1} \) at a finite \(P_t y/M_t \),

This timing seems to me like a better way to put the continuous-time model in discrete time. I present the traditional model in the text more for consistency with other sources, as the point of this section is that the model does not work. But I would use this formulation or the continuous time version if I were to use the model for serious analysis.
As I criticized deflationary equilibria for angels-on-heads-of-pins study of limits with immense money holdings, so too here one should not make too much of a model’s handling of money demand in 10^{15} inflation.

27.2.2 The Obstfeld-Rogoff fix for inflationary equilibria

I review the famous Obstfeld and Rogoff (1983) fix for inflationary equilibria. Obstfeld and Rogoff specify that the government stands ready to redeem money for goods (gold) at a very high price level. Crucially, they specify that the government refuses to sell money for goods at the same price. Therefore, the government disallows the recovery in real money holdings that follows the ends of inflations, ruling out an equilibrium in which the equilibrium is stopped.

On deeper analysis, however, I find that the modification does not rule out the original equilibrium in which the price level jumps to infinity.

Obstfeld and Rogoff add to the specification of monetary policy regime that at some very high price level the central bank implements a partial commodity standard.

Obstfeld and Rogoff (1983) write:

Speculative paths can be eliminated... provided the government fractionally backs the currency by standing ready to redeem each dollar for a small amount of capital.

Obstfeld and Rogoff’s model is based on backing with capital, which is hard to imagine in practice. What are the independent real units of capital? But as they make clear, capital is a stand-in for a commodity or gold standard: Footnote 17: “We analyze capital backing rather than gold backing here in order to avoid modeling the role of gold in consumption and/or production. But our results would clearly carry over to a model in which currency is redeemable in terms of gold.” A foreign exchange peg could work the same way. I study a simplified model in which the government backs the currency with the consumption good, which it obtains by lump-sum taxes.

Based on the Section 16.10 analysis of similar devices to stop multiple equilibria in models with interest rate targets, two natural questions or objections arise: First,
such a commodity standard or real backing is the fiscal theory, it is an active fiscal policy, not an alternative to fiscal theory and a defense of purely monetary price level determination. To make this commitment, the government has to have the capital, commodity, gold, foreign exchange or the ability to tax to get it, either now or in the credible future. Indeed, Obstfeld and Rogoff write (p. 684):

“Feasibility of the government’s policy requires that the government have access to sufficient reserves of capital to purchase the entire money stock M at the support price ε.”

This observation is not a criticism: Obstfeld and Rogoff wrote a decade before Leeper wrote, and the active/passive distinction was ever considered. They were not trying to rescue price level determination without fiscal underpinnings, and did not claim to do so. They might have been, in 1983, perfectly happy to interpret their result as a joint monetary-fiscal policy regime, with the fiscal part of the regime important for equilibrium selection. At the time, the important question was whether any regime could determine the price level. The distinction is important now, however, for us to understand and categorize their result. And we should not cite them for showing something they did not claim to show.

More deeply, though, their proposal runs afoul of the earlier conundrum – the difference between stopping an inflation and ruling out an equilibrium. An inflation breaks out, and gets worse and worse. At some point – maybe when the dollar is worth one cent of its original value – the commodity standard kicks in. That stops the inflation, and the economy continues on that, fiscally-determined, gold-standard enforced, price level. Great, but the inflation, its end, and the new commodity standard are all part of an equilibrium.

How did they rule out the equilibrium path? There must be a blow-up-the-world threat or inconsistent policy in there somewhere. (This section simplifies Cochrane (2011a) p. 609 ff. Obstfeld and Rogoff (2021) is a response to that paper. I hope this clearer presentation settles the issue, but one never knows.)

Obstfeld and Rogoff use the model we have been studying, with separable utility, the standard discrete-time timing conventions, and constant endowment. The first order conditions, in equilibrium, lead to the same difference equation, (19.18), which they write

$$
\frac{u'(y)}{P_t} - \frac{v'(M/P_t)}{P_t} = \beta \frac{u'(y)}{P_{t+1}}.
$$

(This is their equation (4), p. 678. In case you want to refer to the original, I use
their notation, $u'(c)$ and $v'(m)$ in place of my $u_c(c)$ and $u_m(m).$) They specify a constant money supply $M,$ and denote the corresponding steady state by $\bar{P},$

$$\frac{u'(y)}{\bar{P}} - \frac{v'(M/\bar{P})}{\bar{P}} = \beta \frac{u'(y)}{\bar{P}}.$$

Hyperinflationary equilibria occur in finite time, as discussed above, an artifact of the discrete-time timing convention. Such an equilibrium ends with

$$P_{T+1} = P_{T+2} = \ldots = \infty.$$

The price level at time T is then

$$v'\left(\frac{M}{\bar{P}_T}\right) = v'\left(\frac{M}{\bar{P}}\right) = u'(y).$$

The second equality defines $\bar{P},$ the price level if people know money will be worthless the following period. (This is \bar{P} with a short bar on top, where the steady state (27.6) is \bar{P} with a long bar on top. Again, I use Obstfeld and Rogoff’s notation in case you want to refer to the original.)

We find earlier price levels by working back with (27.6). Each T generates a different potential value of P_0 and a different equilibrium path.

Figure 27.2 plots this path, labeled “$\varepsilon = 0.$” The figure plots $m_t = M/P_t$ with $M = 1$ for clarity, so the jump to $P_{T+1} = \infty$ is a jump of $m_{T+1} = M/P_{T+1}$ to zero.

There is nothing wrong with these equilibria, and that is Obstfeld and Rogoff’s whole point. We need something else to rule them out. Obstfeld and Rogoff make a small change (p. 684):

“the government promises to redeem each dollar bill for ε units of capital but does not offer to sell money for capital.”

I specify equivalently that the government promises to redeem each dollar for ε units of the consumption good, which it obtains by a lump-sum tax. Therefore, it seems that by arbitrage the equilibrium price level cannot be higher than

$$\bar{P} \equiv 1/\varepsilon.$$

Here’s Obstfeld and Rogoff’s central claim that with this extra provision, hyperinflationary equilibrium paths are ruled out (p. 685):
Figure 27.2: Hyperinflations in the Obstfeld-Rogoff model. "$\varepsilon = 0$" gives the hyperinflation equilibrium that we wish to rule out. "$\varepsilon = 0.5$" gives the equilibrium when the government offers to redeem money for ε consumption goods. "Redemption value" plots $M\varepsilon$, the value of money guaranteed by the government’s redemption promise. "Two-way conversion" gives the equilibrium that results if the government offers to buy as well as to sell the commodity. The lower horizontal line indicates M/\bar{P}, money holdings at the price level where people are willing to hold money for one period though it is useless the next period. $u'(y) = 1, M = 1, \beta = 1/2, v(m) = m^{-1/2}$.

Suppose that $\{P_t\}$ is an equilibrium path with $P_0 > \bar{P}$. Let $P_T = \max\left\{P_t | P_t < \bar{P}\right\}$. By (14) [my (27.6)] P_T must be below \bar{P}, so that $u'(y) - v'(M/P_T) > 0$ while P_{T+1} must exceed P_T and therefore equal \bar{P}. But there is no $M_{T+1} \leq M$ such that $u'(y) - v'(M_{T+1}/\bar{P}) \geq 0$. Thus there is no price level P_{T+2} satisfying (14) and $\{P_t\}$ is not an equilibrium path.

The line marked “$\varepsilon = 0.5$” in Figure 27.2 plots this path. If there were a final period with $P_T = \bar{P}$, as previously hypothesized, now people would be able to turn their money in at value ε after using it. Money is more valuable. So P_T must be less than \bar{P}, and M/P_T higher than \bar{P} as shown. But that is fine, and everything is fine up to
and including period T. The issue is (again) just what happens on day $T + 1$ when
the redemption promise first kicks in.

Now, you might think that after the commodity standard becomes effective, we sim-
ply move to a new equilibrium with $P_t = \overline{P} = 1/\varepsilon$ forever, as graphed in the “two-way
conversion” line of Figure 27.2. We switch on a gold standard or foreign exchange
peg, and the fiscal resources to 100% back that peg. Inflation stops. But again, stopping the inflation does not rule out the equilibrium. Quite the opposite: stop-
ing the inflation simply and transparently makes the equilibrium more reasonable
to rationally expect in the first place.

Here the second part of the p. 684 specification is crucial: the government “does not
offer to sell money for capital.” (My emphasis.) In an inflation, with high nominal
interest rates, real money demand M/P is low. When inflation ends, and interest
rates perforce return to low values, real money demand increases. Governments that
stop inflations can, and do, continue to print a lot of money as real money demand
recovers. They want equilibrium to form, they want first-order and market-clearing
conditions to hold, they want a successful stabilization. They do not want to set
things up so that no equilibrium can form, whatever that means. Governments on
the gold standard or foreign exchange peg sometimes refuse to give you gold or
foreign exchange when you bring in money, but governments on the gold standard
don’t refuse give you money when you bring them gold! This one does.

Indeed, if the government offered a conventional, two-way commodity standard, con-
ditional on reaching a high price level \overline{P}, we would in fact see $P_t = \overline{P} = 1/\varepsilon$ for
t = $T + 1$, $T + 2$, ... People would bring in as much of the commodity (capital) as
needed to obtain enough money so this price level would be the new steady state,
as graphed. The inflation and its end would unequivocally be an equilibrium. I
emphasize this point because many readers seem to think this is what Obstfeld and
Rogoff do. It is not.

Obstfeld and Rogoff’s government refuses to increase the money stock, despite the
huge seigniorage opportunity, and despite the crying money demand of its citizens,
even if they bring gold to the window. This threat is the heart of the equilibrium-
selection concept, and it is what rules out the \overline{P} equilibrium and its antecedents.

In this case, however, I believe even this conclusion is incorrect. The one-way redemp-
tion is not sufficient to rule out equilibrium after the inflation. Obstfeld and Rogoff
left out the possibility that $P_{T+1} = \infty$, and people redeem all their money

Before we add the redemption promise, $P_{T+1} = \infty$ is an equilibrium, despite peo-
ple's crying demand for money, despite \(v'(M/P_{T+1}) \gg u'(y) \), including even an
infinite \(v'(M/P_{T+1}) = \infty \) or \(v(M/P_{T+1}) = -\infty \). Why do people not demand
more money? Are they not similarly off the first order condition? It appears so
\(- u'(y) - v'(M_{T+1}/P_{T+1}) < 0\), mirroring the above p. 685 quote. But this condition
does not apply when \(P_{T+1} = \infty \). When \(P_{T+1} < \infty \), an increase in nominal money
\(M_{T+1} \) raises real money holdings \(M_{T+1}/P_{T+1} \), and so the consumer can consider
trading of some consumption good for some real money, by buying nominal money.
But when \(P_{T+1} = \infty \), buying extra nominal money does not give any increase in
real money, nor any decrease in the marginal utility of consumption. At \(P_{T+1} = \infty \),
there is no available tradeoff between consumption goods and real money holdings.
The full first order condition requires \([u'(y) - v'(M_{T+1}/P_{T+1})]/P_{T+1} \geq 0 \), and the
numerator can be negative when the denominator is infinite. Obstfeld and Rogoff’s
\(A(m) \) and \(B(m) \) lines intersect again at \(m = 0 \). Prices are given to consumers who
then choose demands. You take price limits first.

Now, let us see how the redemption promise modifies this logic. Indeed, no finite
price level \(P_{T+1} \) is an equilibrium. But the arbitrage argument fails at \(P_{T+1} = \infty \),
for the same reason that the more-money-demand argument failed. At \(P_{T+1} = \infty \),
and \(P_{T+2}, \text{etc., } = \infty \) the optimal thing for consumers to do is to turn in all their
money for the redemption value \(M_{T}/\overline{P} = M/\overline{P} \). There is no point in holding on to
worthless money.

One might argue the latter point – perhaps an infinite price level means one can get an
infinite amount of money for a finite amount of the good, and we start a debate about
limits. But if we have accepted, as Obstfeld and Rogoff have, that \(P_{T+1} = \infty \) is the
correct equilibrium without the redemption option, then the redemption option does
not change that fact. Without the redemption option, consumers holding endowment
\(y \) and money \(M \) would really like to sell some of their endowment to get some
additional real money holdings. We decided that at \(P_{T+1} = \infty \) they can’t get any
additional real money holdings. With the redemption option, consumers first redeem
their money, and then show up the goods market with endowment \(y + M/\overline{P} \) to get
additional real money. If they couldn’t trade goods for real money before, they can’t
do it now.

Put another way, a government promise to exchange one good for another at a set
rate only determines the relative price of those goods if the consumer holds an interior
amount of the goods. Obstfeld and Rogoff’s specification that the government does
not sell money for goods, \(M_t \leq M \), means that the price level can be lower than the
peg, \(P_t < \overline{P} \), if people are at the constraint \(M_t = M \). Similarly, however, the limit
27.2. PRUNING INFLATIONARY EQUILIBRIA

$M_t \geq 0$ means that the price level can exceed the peg, $P_t > \bar{P}$, if people are at the constraint $M_t = 0$.

In sum, the jump to zero value of money, and infinite price level, in this model, is not removed by the government’s promise to redeem money for a small amount of consumption good (or capital.)

Moving back, the redemption guarantee does affect the price level at time T. Previously, people held money at time T for its utility at T, even knowing it would be worthless at time $T + 1$. Now, they hold money at T for its value at that time period, and also its redemption value at time $T + 1$. In the presence of a redemption promise, the first order condition at time T, in equilibrium $c_t = y$ and $M_T = M_t$ becomes

$$\frac{u_c(y)}{P_T} - u_m \left(\frac{M}{P_T} \right) \frac{1}{P_T} = \max \left[\frac{\beta u'(y)}{\bar{P}}, \frac{\beta u'(y)}{P_{T+1}} \right].$$

With the latter term zero at time T, the redemption value of the former term remains. This effect gives a small decrease in the price level $P_T < \bar{P}$ and $M/P_T > M/\bar{P}$.

The dashed line in Figure 27.2 presents the equilibrium with the redemption guarantee, labeled “$\varepsilon = 0.5$.” Time $T + 1$ and beyond have price levels $P_t = \infty$. The time T price level is now a little lower, and time T real money M/P_T a little higher than before, because of the redemption value of money at time $T + 1$. The dashed line marked “redemption value” gives the value M/\bar{P} that the consumer receives from the government at time $T + 1$. This is not M_{T+1}/P_{T+1} since that is $0/\infty$. But drawing this redemption value on the graph in place of a market value of money, you can see how values propagate back in this equilibrium. Obstfeld and Rogoff study this point, with $M_{T+1} = M$ and $P_{T+1} = \bar{P}$ as the last point of their economy. However, they claim that this point is not an equilibrium, and with that claim seek to rule out the path leading to it. My view here is that the point below it is the equilibrium, with $M_{T+1} = 0$ and $P_{T+1} = \infty$, and the path leading to that point remains valid.

A key to my equilibrium is that monetary policy allows de-monetization, for people to cash in their money. We could rule out this equilibrium by having monetary policy also insist that $M_{T+1} = M$. The combination of $M_T = M$ and the redemption guarantee would indeed be a policy setting for which no equilibrium can form, and we saw in Section 16.10 several proposals that amount to such “inconsistent” policy. But we dismissed inconsistent policy before, e.g., insisting simultaneously on an interest rate rule $i = \phi \pi$ together with a money growth rule that requires a lower interest rate. In my reading, Obstfeld and Rogoff do not specify an inconsistent policy. They do allow the government to undershoot the money growth target if people want to
redemption of their money. Alas, by specifying a consistent policy, they do not rule out multiple equilibria.

(In this treatment, I assume that people tender their money M_{t-1} to the government at the beginning of period t. [Cochrane (2011a)] makes the opposite timing assumption, which leads to the same answer but in a more, and unnecessarily complex, way.)

[Obstfeld and Rogoff (2021)] respond, calling this analysis an “error.” Their central rejoinder is

“The last Euler equation requires money to have no value on date $T+1$; that is, the price level jumps from a finite P_T to $P_{T+1} = \infty$. But the government’s promise to redeem money remains good on date $T+1$: Any individual who deviates from the proposed equilibrium and instead carries 1 into period $T+1$ will be able to sell it on the market to other agents at any real price less than or equal to $1/P = \varepsilon$ because they, in turn, can then sell the 1 to the government for ε-in-output. That simple arbitrage argument implies that the market price of money on date $T+1$ simply cannot be zero. It will be at least ε and so the true price level, measured in terms of money, will be at most P; not ∞.”

Here, I believe Obstfeld and Rogoff deviate from the definition of Walrasian equilibrium. An equilibrium is a set of prices (here, a price-level sequence) and an allocation such that consumers maximize utility given the price level sequence and markets clear. Given a price level sequence such that $P_{T+1} = \infty$, it is optimal for consumers to sell all their money to the government at time T. This is an equilibrium, in the conventional definition of Walrasian equilibrium.

Somehow the price level is ∞ yet there is also an opportunity to “deviate from equilibrium” and have the price level equal P at the same time. The rules of Walrasian equilibrium are simple – there is one $\{P_T\}$ we talk about maximization given that sequence of prices.

More charitably, Obstfeld and Rogoff are perhaps introducing a different more expanded definition of equilibrium, introducing informally some game-theoretic concept in which consumers don’t just maximize given prices, but they can take individual “deviations from equilibrium,” in which P_{T+1} for everyone else is ∞, but I can get $1/\varepsilon$, and so on. The language “deviate from equilibrium” here, and later “individual agents would have a strong incentive to deviate from this alleged (Nash) equilibrium” adds to that interpretation.
27.2. PRUNING INFLATIONARY EQUILIBRIA

But Obstfeld and Rogoff (1983) didn’t say anything about a larger Nash equilibrium concept. And my rejoinder is only that a Walrasian equilibrium exists. This is a potentially interesting extension of their work. But if so, the logic is that my critiques is right about Obstfeld and Rogoff (1983), but the problem can be solved with an enlarged game-theoretic definition of equilibrium.

27.2.3 Interpreting Obstfeld and Rogoff

Whether or not one accepts my analysis of Obstfeld and Rogoff, it does not achieve a full price level determination with passive policy, ready to use for analyzing data or policy. The fix is fiscal, as it requires the government to have enough commodity on hand, and the government refuses the seigniorage opportunities of money demand after stopping inflation. The fix does not represent a commitment that our or any other government makes or has made, so it represents at best a policy proposal rather than a basis for description of current or historical policy. None of this is criticism, as Obstfeld and Rogoff did not claim otherwise. It is only a warning not to cite them for results they did not claim to offer.

We should not overemphasize the latter minor disagreement. 99% of the importance of Obstfeld and Rogoff’s analysis for our quest does not depend on it, and can grant their view that the inflationary equilibria are ruled out.

The main point: many authors quickly cite Obstfeld and Rogoff as showing that all multiple equilibrium problems are solved, and a small chance that governments would stop inflation by reverting to a gold standard at very high inflation restores price level determinacy by monetary policy alone. This is not what their result, even taken at face value, accomplishes.

First, it is a joint fiscal-monetary theory, not an alternative that rescues monetary price level determination with fully passive policy. The government must have the gold, and must not change the backstop redemption promise in response to observed prices. The government must also refuse the siren song of seigniorage that a two-way gold standard implies. If they are correct, the result challenges the generality of our earlier finding that fiscal backstops with locally passive fiscal policies do not suffice, but it is not a passive policy.

Second, the government’s refusal to take gold in return for new money is the central ingredient for ruling out inflationary equilibrium paths. Obstfeld and Rogoff’s proposal is not a simple reversion to the gold or commodity standard, which applies
both ways! After the backstop price level is reached, inflation stops, and real money
demand expands. If the government accommodates this demand, allowing people to
bring gold in for new money, and thus allowing the steady state to re-form around
the new price level \overline{P} then we successfully transition to a steady price level.

Third, this latter feature really makes the suggestion at best a proposal for threats
future central banks might make, not a suggestion for how current central banks
behave or are expected by anyone to behave. There is not a whiff of this commitment
on the Federal Reserve’s website. Many governments have stopped inflations with
joint monetary-fiscal reforms. Some of those have even included gold standards or
exchange rate pegs. But, as beautifully documented in Sargent (1982b), all such
governments have allowed and indeed encouraged the natural recovery of nominal
and hence real money holdings once inflation has stopped. No central bank has
ever announced that it would refuse to take gold in return for new currency in a
stabilization!

Fourth, ex-post, a promise not to take gold (or foreign exchange) in return for cur-
cency, and therefore to forbid equilibrium from forming, whatever that means, is
disastrous for the government and central bank’s objectives. Citizens are clamoring
for the central bank to satisfy a money shortage. The treasury eyes a golden oppor-
tunity for non-inflationary seigniorage. Would any central bank, ex-post, inflict a
non-formation-of-equilibrium on an economy?

A one-way gold standard, which rules out equilibrium formation, is not a credible
specification of what people currently or historically expect of our central banks.

Finally, of course, it specifies a money growth target which our central banks do
not follow. And it depends crucially on discrete-time conventions with a last day of
money holding, not the continuous time model’s smooth approach to inflation.

In these ways, if Obstfeld and Rogoff’s claim to rule out inflationary paths is correct,
it does not rescue $MV(i) = Py$ with passive fiscal policy as a viable framework
for current or historical monetary policy analysis. That too is not a criticism of
Obstfeld and Rogoff – they intended it as a piece of pure theory, and did not claim
that current central banks follow their policy, or that people expect it. They write
(p. 676) “Speculative paths can be eliminated...” Can, not are.

You may object that we do not see hyperinflations with constant money growth. All
hyperinflations occur with immense money growth. Does that not show the inflation-
ary equilibria are invalid? I agree that this observation shows the model that allows
inflationary multiple equilibria with constant money growth is wrong, and incom-
27.2. PRUNING INFLATIONARY EQUILIBRIA

It needs another ingredient. In my view there is a different missing ingredient: Fiscal theory picks the price level path. Observed hyperinflations are all fiscal, that occur when the fiscal backing of the non-inflationary both disappears.

I spent a lot of time on this one paper, because so many authors casually cite Obstfeld and Rogoff as having solved all these problems and rescued $MV(i) = Py$ as a purely monetary price level determination, even with $V(i)$, and in a realistic way that we can use in analysis of actual economies. Even their claimed result does not achieve this goal – nor was it intended to do so. I spend more time because with an unconventional reading of a cited paper I think it’s important to be extra careful – how am I right and the other 461 Google scholar citers wrong? But that criticism just adds to the same bottom line for our purposes here.

27.2.4 Nonseparable utility and more indeterminacy

Utility nonseparable between money and consumption is possible, and plausible. In this case, it is possible that our constant money growth model leads to multiple stable equilibria around the steady state. The phase diagram of Figure [19.1] can cut from above at the steady state.

A CES money in the utility function separates the interest elasticity of money demand from risk aversion. It also parameterizes how money growth distorts the relationship between consumption and interest rates.

When utility is non-separable between consumption and money, with $u_{mc}(c_t, m_t) \neq 0$,

our first order conditions (19.15)-(19.16),

$$Q_t = \frac{1}{1 + i_t} = E_t \left(\beta \frac{u_c(c_{t+1}, m_{t+1})}{u_c(c_t, m_t)} \frac{P_t}{P_{t+1}} \right)$$ \hspace{1cm} (27.7)

$$u_m(c_t, m_t) = \frac{i_t}{1 + i_t} = 1 - Q_t$$ \hspace{1cm} (27.8)

no longer separate so cleanly.

The marginal rate of substitution or discount factor for asset pricing in (27.7) now contains money holdings as well as consumption. The usual approximation, precise
in continuous time gives
\[
\beta \frac{u_c(c_{t+1}, m_{t+1})}{u_c(c_t, m_t)} \approx 1 - \delta - \gamma \Delta c_{t+1} - \eta \Delta m_{t+1}.
\]
\[
rf \approx \delta + \gamma E_t(\Delta c_{t+1}) + \eta E_t(\Delta m_{t+1})
\]
\[
\gamma = -\frac{cu_{cc}}{uc} ; \eta = -\frac{u_{cm}}{ue}.
\]

The relation between interest rates and consumption growth is distorted by money. Covariances with money growth will drive risk premia. Expected money growth will drive a wedge between risk free rates and expected consumption growth.

A nonseparable utility, in which variation in some additional variable moves the discount factor along with consumption growth, is widespread in finance. One can categorize almost all of the innovations in macro-finance as nonseparable utilities in which some variable other than consumption growth affects the discount factor (Cochrane (2017a).) Habits, housing, durable goods, recursive non-state-separable utility, and many others are of this form.

A nonseparable utility is also considered a realistic specification for money in the utility function. Money should be essential, in some sense, to procuring consumption. The point of money is not to enjoy Scrooge McDuck swims in it, but because money makes purchasing consumption and selling endowments easier. That thought leads to a nonseparable utility. Cash-in-advance models typically lead to an equivalent representation as a nonseparable money in the utility function. In order to consume tomorrow, you must hold money overnight from today to tomorrow, and thereby consumption tomorrow gains an extra cost, the foregone interest.

With constant consumption as in our example, nonseparable utility means that changes in real money growth change the nominal interest rate, and thereby change the price level dynamics that result from (27.8).

We can now have multiple stable equilibria around the steady state, so we have indeterminacy even without worrying about transversality conditions or the zero cost of money. This is due to the money growth being an additional variable that moves the discount factor. The dynamics of the interest rate and consumption growth are affected by money growth, and this induces a wedge between the risk free rate and the expected consumption growth.

\[
\frac{d\Lambda_t}{\Lambda_t} = \frac{d\left[e^{-\delta t} u_c(c_t, m_t)\right]}{e^{-\delta t} u_c(c_t, m_t)}
\]
\[
= -\delta dt + \frac{c_t u_{cc}}{u_c} \frac{dc_t}{ct} + \frac{m_t u_{cm}}{u_c} \frac{dm_t}{mt} (+\text{Ito terms}).
\]
interest rate state. The phase diagram Figure 19.1 can cut from above rather than below. (Obstfeld (1984) makes this point in a delightfully concise 5 page paper. Why don’t journals publish papers like this any more?)

Suppose

\[u(c_t, m_t) = -c_t^{-a} m_t^{-b} \]

Now,

\[u_c(c_t, m_t) = ac_t^{-a-1} m_t^b \]
\[u_m(c_t, m_t) = bc_t^a m_t^{-b-1} \]

so the first order conditions give

\[\frac{c_t b}{m_t a} = 1 - \beta \left(\frac{c_{t+1}}{c_t} \right)^{-a-1} \left(\frac{m_{t+1}}{m_t} \right)^{-b} \frac{P_t}{P_{t+1}}. \]

In equilibrium with money growth \(\mu \) and endowment \(y = 1 \), then,

\[\frac{b}{m_t a} = 1 - \beta \left(\frac{m_{t+1}}{m_t} \right)^{-b} \frac{P_t}{P_{t+1}}. \]

\[\frac{b}{a m_t} = 1 - \frac{1}{(1 + \delta)(1 + \mu)} \left(\frac{m_{t+1}}{m_t} \right)^{1-b}. \]

\[\frac{m_{t+1}}{m_t} = \left[(1 + \delta)(1 + \mu) \left(1 - \frac{b}{a m_t} \right) \right]^{\frac{1}{1-\delta}}. \]

The steady state is

\[1 = (1 + \delta)(1 + \mu) \left(1 - \frac{b}{a m_t} \right). \]

In terms of the steady state,

\[\frac{m_{t+1}}{m_t} = \left[\frac{1 - \frac{b}{a m_t}}{1 - \frac{b}{a m}} \right]^{\frac{1}{1-\delta}}. \]

Near the steady state,

\[\frac{m_{t+1}}{m_t} \approx 1 + \frac{d}{dm_t} \left\{ \left[\frac{1 - \frac{b}{a m_t}}{1 - \frac{b}{a m}} \right]^{\frac{1}{1-\delta}} \right\}_{m_t=m} (m_t - m). \]
\[\frac{m_{t+1}}{m_t} \approx 1 + \frac{b}{a} \frac{1}{1 - b} \frac{(m_t - m)}{m^2}. \]

The coefficient multiplying the last term is negative for
\[b > 1. \]

In that case, dynamics are stable around the steady state, giving multiple stable equilibria that unquestionably satisfy the transversality condition!

A CES specification is also useful as it lets us separate intertemporal substitution from the interest elasticity of money demand, but maintaining the useful proportionality of money to nominal income. If

\[u(c_t, M_t/P_t) = \left[c_t^\rho + \theta(M_t/P_t)^\rho \right]^{\frac{1 - \gamma}{\rho}} - 1 \]

then we have

\[u_c(y_t, M_t/P_t) = \left[y_t^\rho + \theta(M_t/P_t)^\rho \right]^{\frac{1 - \gamma - \rho}{\rho}} y_t^{\rho - 1} \]

so asset prices are driven by

\[\Lambda_{t+1} \Lambda_t = \beta \left[1 + \theta \left(\frac{M_{t+1}}{P_{t+1} y_{t+1}} \right)^\rho \right]^{\frac{1 - \gamma - \rho}{\rho}} \left(\frac{y_{t+1}}{y_t} \right)^{-\gamma}. \]

A monetary distortion modifies the standard power utility formula. Growth in real money balances accompanies higher real interest rates, as does growth in consumption. With constant real money \(M/(P y) \), we have the usual power utility formula with risk aversion \(\gamma \).

The money first order condition is

\[u_m(y_t, M_t/P_t) = \left[y_t^\rho + \theta \left(\frac{M_t}{P_t} \right)^\rho \right]^{\frac{1 - \gamma - \rho}{\rho}} \theta \left(\frac{M_t}{P_t} \right)^{\rho - 1} \]
so the money demand function \((19.16)\) becomes

\[
\frac{\theta \left(\frac{M_t}{P_t} \right)}{y_t^{\rho-1}} = \frac{i_t}{1 + i_t}
\]

\[
M_t = P_t y_t \left(\frac{1}{\theta} \frac{i_t}{1 + i_t} \right)^{\frac{1}{\rho-1}}.
\]

Here too we have a unit income elasticity and an interest elasticity governed by the separate parameter \(\rho\).

27.3 Uniqueness in cash in advance models

This section adds to points and literature discussed in Section \([19.5.5]\) on multiple equilibria in cash-in-advance models.

Woodford (1994) studies a cash in advance economy with cash and credit goods, so it has an interest-elastic money demand. He shows that a constant money growth policy typically leaves multiple equilibria, and always does so if money supports negative inflation at the interest rate and a zero rate, but an interest rate peg can have a unique equilibrium, even if the rate is pegged at zero. He concludes that the Friedman rule can be supported by an interest rate peg, but not a money growth target.

With the advantages of hindsight, Woodford’s result is deeply fiscal. Woodford’s money growth policy is financed by lump sum taxes or transfers, rebating all seigniorage to households. In the money growth model, Woodford specifies that households receive a nominal transfer equal to money printing, \(H_t = M_t - M_{t-1}\) (p. 350). For the interest rate target, Woodford specifies instead that “the government chooses a deterministic [and later “exogenous” sequence \(\{h_t\}\) for real net transfers to the private sector.” With the advantages of hindsight, we recognize instantly the fiscal theory of monetary policy at work in the latter case, and a passive fiscal policy in the former.

Woodford’s core result, then, is that an active fiscal policy can overturn Sargent and Wallace (1975) indeterminacy of interest rate pegs. Indeed, (p. 378):

“The failure of homogeneity in (3.3) [the result that an interest rate peg leads to determinate inflation] does depend upon the specification of fiscal policy here; in particular, any process \(\{M_t\}\) satisfying (3.1)-(3.2)
can be made to be an equilibrium consistent with an interest rate peg if net transfers $\{H_t\}$ are assumed to vary with the sunspot state in the way necessary to satisfy the intertemporal budget constraint. On the other hand, the kind of fiscal policy specification required to preserve homogeneity is a very special one; the particular case considered here (real net transfers constant over time and unaffected by the path of nominal variables) is simple to analyze but is hardly the only kind of specification for which the intertemporal budget constraint causes the equilibrium conditions to be inhomogeneous.”

and p. 373,

“For the increase or decrease in the money supply that would be necessary to accommodate a given change in the current price level carries with it a change in the net indebtedness of the government to the private sector, which will affect the budget constraints of consumers and so have a real effect on the economy... It is this second source of inhomogeneity that is relevant for the representative consumer economy considered here.”

Followed by footnote 19,

“Leeper (1991) similarly obtains determinacy due to the intertemporal budget constraint in the case of a variety of types of interest rate policies, in the context of a linear model”

If this is not terribly clear, keep in mind this paper was written just around the time Leeper’s foundational “active and passive” [Leeper (1991)] was published, and long before Woodford’s “fiscal requirements for price stability,” [Woodford (2001a)].
Chapter 28

Money in continuous time

It’s easy to get hung up on the timing conventions of discrete time models. For that reason, it is usually much simpler in the end to present these models in continuous time.

The utility function is

\[\max E \int_{t=0}^{\infty} e^{-\delta t} u(c_t, M_t/P_t) dt. \]

The present-value budget constraint is

\[B_0 + M_0/P_0 = \int_{t=0}^{\infty} e^{-\int_{s=0}^{t} r_s ds} \left[c_t - y_t + s_t + (i_t - i_t^m) M_t/P_t \right] dt \]

where

\[r_t = i_t - \frac{dP_t}{P_t} \]

and \(s \) denotes real net taxes paid, and thus the real government primary surplus. This budget constraint is the present value form of

\[d(B_t + M_t) = i_t B_t + i_t^m M_t + P_t(y_t - c_t - s_t). \]

Introducing a multiplier \(\lambda \) on the present value budget constraint, we have

\[\frac{\partial}{\partial c_t} : e^{-\delta t} u_c(t) = \lambda e^{-\int_{s=0}^{t} r_s ds}, \]
where \((t)\) means \((ct, Mt/P_t)\). Differentiating with respect to time,

\[
-\delta e^{-\delta t}u_c(t) + e^{-\delta t}u_{cc}(t) \frac{dc_t}{dt} + e^{-\delta t}u_{cm}(t) \frac{dm_t}{dt} = -\lambda r_t e^{-\int_{s=0}^{t} r_s ds}
\]

where \(m_t \equiv Mt/P_t\). Dividing by \(e^{-\delta t}u_c(t)\), we obtain the intertemporal first order condition:

\[
-\frac{c_t u_{cc}(t)}{u_c(t)} \frac{dc_t}{c_t} - \frac{m_t u_{cm}(t)}{u_c(t)} \frac{dm_t}{m_t} = (r_t - \delta) dt.
\] (28.1)

The first-order condition with respect to \(M\) is

\[
\frac{\partial}{\partial M_t} : e^{-\delta t}u_m(t) \frac{1}{P_t} = \lambda e^{-\int_{s=0}^{t} r_s ds} \left(i_t - i_t^m \right) \frac{1}{P_t}
\]

\[
e^{-\delta t}u_m(t) = e^{-\delta t}u_c(t) (i_t - i_t^m)
\]

\[
\frac{u_m(t)}{u_c(t)} = i_t - i_t^m.
\] (28.2)

The last equation is the usual money demand curve.

Thus, an equilibrium \(c_t = y_t\) satisfies

\[
-\frac{c_t u_{cc}(t)}{u_c(t)} \frac{dc_t}{c_t} - \frac{m_t u_{cm}(t)}{u_c(t)} \frac{dm_t}{m_t} = -\delta dt + \left(i_t - \frac{dP_t}{P_t} \right) dt
\] (28.3)

\[
\frac{u_m(t)}{u_c(t)} = i_t - i_t^m
\] (28.4)

\[
\frac{B_0 + M_0}{P_0} = \int_{t=0}^{\infty} e^{-\int_{s=0}^{t} r_s ds} \left[s_t + (i_t - i_t^m) \frac{M_t}{P_t} \right] dt.
\] (28.5)

28.1 CES functional form

I use a standard money in the utility function specification with a CES functional form,

\[
u(c_t, m_t) = \frac{1}{1-\gamma} \left[c_t^{1-\theta} + \alpha m_t^{1-\theta} \right]^{\frac{1-\gamma}{1-\theta}}.
\]

I use the notation \(m = M/P\), with capital letters for nominal and lowercase letters for real quantities.
This CES functional form nests three important special cases. Perfect substitutes is the case $\theta = 0$:

$$u(c_t, m_t) = \frac{1}{1 - \gamma} [c_t + \alpha m_t]^{1-\gamma}.$$

The Cobb-Douglas case is $\theta \rightarrow 1$:

$$u(c_t, m_t) \rightarrow \frac{1}{1 - \gamma} \left[c_t^{\frac{1}{\gamma}} m_t^{\frac{\alpha}{\gamma}} \right]^{1-\gamma}. \quad (28.6)$$

The monetarist limit is $\theta \rightarrow \infty$:

$$u(c_t, m_t) \rightarrow \frac{1}{1 - \gamma} [\min (c_t, \alpha m_t)]^{1-\gamma}.$$

I call it the monetarist limit because money demand is then $M_t/P_t = c_t/\alpha$, i.e. $\alpha = 1/V$ is constant, and the interest elasticity is zero. The separable case is $\theta = \gamma$:

$$u(c_t, m_t) = \frac{1}{1 - \gamma} [c_t^{1-\gamma} + \alpha m_t^{1-\gamma}].$$

In the separable case, u_c is independent of m, so money has no effect on the intertemporal substitution relation, and hence on inflation and output dynamics in a new-Keynesian model under an interest rate target. Terms in $(\theta - \gamma)$ or $(\sigma - \xi)$ with $\sigma = 1/\gamma$ and $\xi = 1/\theta$ will characterize deviations from the separable case, how much the marginal utility of consumption is affected by money.

With this functional form, the derivatives are

$$u_c = \left[c_t^{1-\gamma} + \alpha m_t^{1-\gamma} \right]^{\frac{\theta-\gamma}{\theta}} c_t^{-\theta}$$

$$u_m = \left[c_t^{1-\gamma} + \alpha m_t^{1-\gamma} \right]^{\frac{\theta-\gamma}{\theta}} \alpha m_t^{-\theta}.$$

Equilibrium condition (28.4) becomes

$$\frac{u_m(t)}{u_c(t)} = \alpha \left(\frac{m_t}{c_t} \right)^{-\theta} = i_t - i_t^m. \quad (28.7)$$

The second derivative with respect to consumption is

$$\frac{u_{cc}}{u_c} = (\theta - \gamma) \left[c_t^{1-\theta} + \alpha m_t^{1-\theta} \right] c_t^{-\theta} - \theta c_t^{-1}.$$
\[-\frac{cu_{cc}}{u_c} = -(\theta - \gamma) \frac{c_t^{1-\theta} - \theta [c_t^{1-\theta} + \alpha m_t^{1-\theta}]}{c_t^{1-\theta} + \alpha m_t^{1-\theta}}\]

\[-\frac{cu_{cc}}{u_c} = \frac{\gamma c_t^{1-\theta} + \theta \alpha m_t^{1-\theta}}{c_t^{1-\theta} + \alpha m_t^{1-\theta}}\]

\[-\frac{cu_{cc}}{u_c} = \gamma \frac{1 + \frac{\theta \alpha}{\gamma} \left(\frac{m_t}{c_t} \right)^{1-\theta}}{1 + \alpha \left(\frac{m_t}{c_t} \right)^{1-\theta}}.\]

The cross derivative is

\[\frac{m u_{cm}}{u_c} = (\theta - \gamma) \frac{\alpha m_t^{1-\theta}}{c_t^{1-\theta} + \alpha m_t^{1-\theta}}\]

\[= (\theta - \gamma) \frac{\alpha \left(\frac{m_t}{c_t} \right)^{1-\theta}}{1 + \alpha \left(\frac{m_t}{c_t} \right)^{1-\theta}}.\]

or, using (28.7)

\[\frac{m u_{cm}}{u_c} = (\theta - \gamma) \frac{\left(\frac{m_t}{c_t} \right) (i_t - i_t^m)}{1 + \left(\frac{m_t}{c_t} \right) (i_t - i_t^m)}.\]

28.1.1 Money demand

Money demand (28.7) can be written

\[\frac{m_t}{c_t} = \left(\frac{1}{\alpha} \right)^{-\xi} (i_t - i_t^m)^{-\xi}.\] (28.8)

where \(\xi = 1/\theta\) becomes the interest elasticity of money demand, in log form, and \(\alpha\) governs the overall level of money demand.

The steady state obeys

\[\frac{m}{c} = \left(\frac{1}{\alpha} \right)^{-\xi} (i - i^m)^{-\xi}.\] (28.9)
so we can write money demand (28.8) in terms of steady state real money as
\[
\frac{m_t}{c_t} = \left(\frac{\bar{m}}{c} \right) \left(\frac{i_t - i_t^m}{\bar{c} - i_t^m} \right)^{-\xi},
\]
(28.10)
avoiding the parameter \(\alpha\). (Throughout, numbers without time subscripts denote steady state values.)

The product \(\frac{m}{c} (i - i^m)\), the interest cost of holding money, appears in many subsequent expressions. It is
\[
\frac{m}{c} (i - i^m) = \left(\frac{1}{\alpha} \right)^{-\xi} (i - i^m)^{1-\xi}.
\]
With \(\xi < 1\), as interest rates go to zero this interest cost goes to zero as well.

28.1.2 Intertemporal Substitution

The first order condition for the intertemporal allocation of consumption (28.3) is
\[
-\frac{c_t u_{ct}(t)}{u_c(t)} \frac{dc_t}{c_t} - \frac{m_t u_{cm}(t)}{u_c(t)} \frac{dm_t}{m_t} = -\delta dt + (i_t - \pi_t) dt
\]
where \(\pi_t = \frac{dP_t}{P_t}\) is inflation. This equation shows us how, with nonseparable utility, monetary policy can distort the allocation of consumption over time, in a way not captured by the usual interest rate effect. That is the central goal here.

In the case of complements, \(u_{cm} > 0\) (more money raises the marginal utility of consumption), larger money growth makes it easier to consume in the future relative to the present, and acts like a higher interest rate, inducing higher consumption growth.

Substituting in the CES derivatives,
\[
\gamma \frac{1 + \frac{\theta}{\gamma} \alpha \left(\frac{m_t}{c_t} \right)^{1-\theta} dc_t}{1 + \alpha \left(\frac{m_t}{c_t} \right)^{1-\theta}} = (\theta - \gamma) \frac{\alpha \left(\frac{m_t}{c_t} \right)^{1-\theta} dm_t}{1 + \alpha \left(\frac{m_t}{c_t} \right)^{1-\theta}} = -\delta dt + (i_t - \pi_t) dt
\]
and using (28.7) to eliminate \(\alpha\)
\[
\gamma \frac{1 + \frac{\theta}{\gamma} \left(\frac{m_t}{c_t} \right) \left(i_t - i_t^m \right) dc_t}{1 + \left(\frac{m_t}{c_t} \right) \left(i_t - i_t^m \right) c_t} = (\theta - \gamma) \frac{\left(\frac{m_t}{c_t} \right) \left(i_t - i_t^m \right) dm_t}{1 + \left(\frac{m_t}{c_t} \right) \left(i_t - i_t^m \right) m_t} = -\delta dt + (i_t - \pi_t) dt.
\]
(28.11)
We can make this expression prettier as

\[
\gamma \frac{dc_t}{ct} + (\theta - \gamma) \frac{1}{1 + \left(\frac{m_t}{c_t} \right) (i_t - i_t^m)} \left(\frac{dc_t}{ct} - \frac{dm_t}{m_t} \right) = -\delta dt + (i_t - \pi_t) dt.
\]

Re-expressing in terms of the intertemporal substitution elasticity \(\sigma = 1/\gamma \) and interest elasticity of money demand \(\xi = 1/\theta \), and multiplying by \(\sigma \),

\[
\frac{dc_t}{ct} + \left(\frac{\sigma - \xi}{\xi} \right) \left(\frac{m_t}{c_t} \right) \frac{(i_t - i_t^m)}{(i_t - i_t^m)} \left(\frac{dc_t}{ct} - \frac{dm_t}{m_t} \right) = -\delta \sigma dt + \sigma (i_t - \pi_t) dt. \tag{28.12}
\]

We want to substitute interest rates for money. To that end, differentiate the money demand curve

\[
m_t = \left(\frac{m}{c} \right) (i - i^m)^{-\xi}
\]

\[
\frac{m_t}{c_t} \left(\frac{dm_t}{m_t} - \frac{dc_t}{ct} \right) = \xi \left(\frac{m}{c_t} \right) \left(\frac{(i_t - i_t^m)}{(i - i^m)} \right)^{-\xi} \frac{d (i_t - i_t^m)}{i_t - i_t^m}
\]

\[
\left(\frac{dc_t}{ct} - \frac{dm_t}{m_t} \right) = \xi \left(\frac{m}{c_t} \right) \left(\frac{(i_t - i_t^m)}{(i - i^m)} \right)^{-\xi} \frac{d (i_t - i_t^m)}{i_t - i_t^m}.
\]

Substituting,

\[
\frac{dc_t}{ct} + \left(\frac{\sigma - \xi}{\xi} \right) \left(\frac{m_t}{c_t} \right) \frac{(i_t - i_t^m)}{(i_t - i_t^m)} \left(\frac{m}{m_t} \right) \left(\frac{(i_t - i_t^m)}{(i_t - i_t^m)} \right)^{-\xi} \frac{d (i_t - i_t^m)}{i_t - i_t^m} = -\delta \sigma dt + \sigma (i_t - \pi_t) dt
\]

\[
\frac{dc_t}{ct} + \left(\frac{\sigma - \xi}{\xi} \right) \frac{m}{c} \left(\frac{1}{1 + \left(\frac{m_t}{c_t} \right) (i_t - i_t^m)} \right) \left(\frac{(i_t - i_t^m)}{(i - i^m)} \right)^{-\xi} \frac{d (i_t - i_t^m)}{i_t - i_t^m} = -\delta \sigma dt + \sigma (i_t - \pi_t) dt.
\]

With \(x_t = \log c_t \), \(dx_t = dc_t/c_t m \), approximating around a steady state, and approximating that the interest cost of holding money is small, \((\frac{m}{c}) (i - i^m) << 1 \), we obtain the intertemporal substitution condition modified by interest costs,

\[
\frac{dx_t}{dt} + \left(\frac{\sigma - \xi}{\xi} \right) \frac{m}{c} \frac{d (i_t - i_t^m)}{dt} = \sigma (i_t - \pi_t). \tag{28.13}
\]
28.1. CES FUNCTIONAL FORM

In discrete time,

\[E_t x_{t+1} - x_t + (\sigma - \xi) \left(\frac{m}{c} \right) \left[E_t (i_{t+1} - \tilde{i}_{t+1}^m) - (i_t - \tilde{i}_t^m) \right] = \sigma (i_t - E_t \pi_{t+1}). \]

For models with monetary control, one wants an IS curve expressed in terms of the monetary aggregate. From (28.12), with the same approximations and \(\tilde{m} = \log(m) \),

\[dx_t + \left(\frac{\sigma - \xi}{\xi} \right) \left(\frac{m}{c} \right) (i - i^m) \left(\frac{dx_t}{dt} - \frac{d\tilde{m}_t}{dt} \right) = \sigma (i_t - \pi_t) dt. \] (28.14)

In discrete time,

\[(E_t x_{t+1} - x_t) + \left(\frac{\sigma - \xi}{\xi} \right) \left(\frac{m}{c} \right) (i - i^m) [(E_t x_{t+1} - x_t) - E_t (\tilde{m}_{t+1} - \tilde{m}_t)] = \sigma (i_t - \pi_t). \] (28.15)

28.1.3 A Hamiltonian Approach

Obstfeld (1984) presents this model cleanly, using the standard continuous time, Hamiltonian approach to optimization. The objective is

\[\max \int_0^{\infty} e^{-\delta t} \left[u(c_t) + v(m_t) \right] dt \]

where \(m_t = M_t/P_t \) is real money holdings. The constraint is

\[\dot{m}_t = (y_t - c_t - s_t) - m_t \frac{\dot{P}_t}{P_t}. \] (28.16)

(Nominal money piles up when income is greater than consumption less net tax payments.

\[dM_t = (y_t - c_t - s_t) P_t dt. \]

Use the definition \(m_t \equiv M_t/P_t \) take the time derivative.) The current value Hamiltonian is

\[H = u(c_t) + v(m_t) + \mu \left[(y_t - c_t - s_t) - m_t \frac{\dot{P}_t}{P_t} \right]. \]

The first order conditions are therefore

\[\frac{\partial H}{dc} = 0 : u'(c_t) = \mu_t \]
\[- \frac{\partial H}{dm} : \dot{\mu}_t - \delta \mu_t = -v'(m_t) + \mu_t \frac{\dot{P}_t}{P_t} \]

\[\frac{\partial H}{d\mu} = 0 : \dot{m}_t = (y_t - c_t - s_t) - m_t \frac{\dot{P}_t}{P_t} \]

\[\lim_{t \to \infty} e^{-\delta t} m_t \mu_t = 0. \quad (28.17)\]

1. Substituting out \(\mu\), we can write the familiar money demand conditions.

\[\frac{v'(m_t)}{u'(c_t)} = -\frac{\dot{\mu}_t}{\mu_t} + \delta + \frac{\dot{P}_t}{P_t} = i_t. \]

2. When consumption is constant, \(\dot{\mu} = 0\), the risk free rate is \(r = \delta\). If we add a risk free real investment, then \(r_f = \delta - \frac{\dot{\mu}_t}{\mu_t}\). Either way, the right-hand side equals the nominal interest rate. (28.17) becomes the transversality condition, which says that the discounted real value of money may not grow faster than the interest rate.

\[\lim_{t \to \infty} e^{-\delta t} u'(c_t) m_t = 0. \]