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Extensions and Applications |

He (2009): Optimal Executive Compensation when Firm Size follows a GBM

N
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Basic Setting

Similar to DeMarzo and Sannikov (2006):

» Time is continuous with t € [0, %),
> all players are risk-neutral,

> agent has limited liability and limited wealth, so principal has to cover
operating losses and initial set up costs K.

BUT:

> Agent controls firm size instead of instantaneous cash flows,

> agent is only weakly more impatient than the principal p > r.

w
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Firm Size Follows a GBM

v

Firm size 6 > 0 follows a geometric Brownian motion
dét = At(stdt + O'(Stdzt,

where A; € {0, u} denotes the agent’s effort.

> Firm produces cash flows at rate § (i.e. 1:1 proportional to size).

> Principal discounts at rate r > u, so first best firm value as of time t is
Je'o) 5
E; [/ e_r(s_t)ésds} =t
t r—p
> When setting A; = 0, the agent enjoys shirking benefits ¢ddt.



Contracting Problem

> Upon liquidation, the principal receives scrap value LJ;.

» The principal offers the agent a contract specifying cash payments
{Ct,t > 7} and a stopping time T > 0 to maximize

£ T
Fo = EA™=H [/ e "t (§rdt — dCr) + e 7L, | .
0

Note: we implicitly assume that A; = p, t > 0 is optimal
(it has to be checked later whether this is true,
as revelation principle does not apply here).

» Where A* maximizes the agent’s expected utility
Al [T —pt At —pt
W = E / e ¥ (oGt (1= 05 ) dedt) +emRe|
0

> Observe that the problem is homogenous with respect to firm size, which
will allow us to get rid of the additional state variable J.



Agent’s Continuation Value and Incentive Compatibility

> By analogous arguments as in DeMarzo and Sannikov, the agent’s
continuation value evolves according to

dW; = oW — dC: + Ft(d(St - ‘M(stdt)
N————
:5[‘(7'C/Zt if At:()

> High effort (At = p, t > 0) is incentive compatible iff

I'i>¢/u.
~—~—
=A
> Intuition: If the agent shirks,

» he enjoys a private benefit of ¢dy,
» his continuation value is reduced by I'tptd;.

6
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Derivation of HJB for Principal’s Value Function

> Denote the highest profit that the principal can obtain, given the agent's
expected payoff is W and the current firm size is 9, by
F(5,W).

> F (8, W) is concave in W (because inefficient termination occurs when
W =0, the principal becomes "risk-averse" wrt W)

» No cash payments as long as
Fw (6, W) :=0oF /oW > —1.

» Cash payments dC cause W to reflect at the compensation
boundary W (0) defined by

Fw (6. W (5)) = —1.



Derivation of HJB for Principal’s Value Function

» Over the interval [RS8, W (8)], the principal’s value function has to
satisfy the HJB equation

/F (5, W)dt = E[ gdt, + dF((S,WZ].

required return cash flow

change in value

» This is now a PDE, as dF (6, W) involves derivatives with respect to
both state variables 6 and W!



Size Adjusted Value Function

> Using Ité's Lemma, the HJB becomes, more explicitly,

1
rF =0+ Fopd + pWFw + 5 (‘7252:”55 +2M0%8% Fyyy + )‘2‘7252FWW) '

> Use that F is homogenous in é to define principal's scaled value function
w
Of (w) = 6F (1, 5) .

> From this we immediately get the derivatives

Fs = f(w)—6f(w),
Fw = f'(w),
6Fss = —OwFsyw = ow?Fyy = w?f" (w),

which gives us the size adjusted version of the HJB.



Size Adjusted Value Function

> Over the interval [R, W], the principal’s scaled value function f (w)
satifies

(r_”>f(w>:1+(P—V)Wf/(W)+%()\—w)2t72f"(W)

with the usual boundary conditions

f(R)y = 0 value matching,
f'(w) = —1  smooth pasting,
f(w) = 0  super contact.

> And the agent’s scaled continuation value evolves according to
dw = (p — ) wdt + (A — w) 0dZ — dc,

where cash payments dc cause w to reflect at w.
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Comparison to Arithmetic Brownian setting

ABM Setting GBM Setting

Agent controls
instantaneous cash flows dY; change in cash flow rate dd;

Cash flows
unbounded from below dY} always positive d;dt
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"Free" Incentives in the GBM Setting
> Shirking benefits are equal to
A,

but instantaneous volatility of w is only
(A—w)o.

> The agent's scaled continuation value w itself provides some incentives.

> Intuition:

> w represents the agent's "stake in the firm"
> If size changes by dJ, agent's continuation value W = wd changes
by
wdd.

> If the agent’s share in the firm is sufficiently high, (w = A), the volatility
in w becomes zero (absorbing state).

= Agent’s inside stake is sufficient to provide incentives for working.



Incentive Provision in the GBM Setting

» |C requires that oW /94 = A,
> "free" incentives: w,

> remaining portion: (A —w).
r W

Cash Payment Region

Cash Payment |;
W — Wb, .f*’.

0.\
o..
5

/}.-"Q&whcn o—r

w

Continuation Payoff Region

o

13 /97



No Absorbing State with a More Impatient Agent

> [If agent is more impatient than the principal (p > r), then
w <A,
i.e. cash payments keep w from reaching the absorbing state A
> Intuition: Consider a marginal reduction of W

1. benefit: the agent is paid earlier and p —r
(strictly positive, independent of the level of w)
2. cost: the probability of termination increases
(vanishes for w = A where no future termination threat)

> Equating marginal benefits (1.) and marginal costs (2.) implies
that W = A cannot be optimal if p > r
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No Absorbing State with a More Impatient Agent
> Show this a bit more formally: Assume W = A and evaluate HIB in A —¢
/ e,
(r—=mf(A—e)=14+(p—u)(A—¢)f (/\—£)+Tf (A—c¢)
» A Taylor expansion of f and f’ yields
FA=e) = F)—F (et 3 (01)

1
ff(A—e) = f(A)+ 5f” (67) €2,
where 0; € (A —¢, A). From the boundary conditions for w, we get

2
r— e
r—p=—T5E " (0)e— " (02) (0 — ) (A—e) + " (A—e).

Letting ¢ — 0, the RHS— 0, while the LHS< 0 whenever p > r.
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Absorbing State with an Equally Patient Agent

» When principal and agent are equally patient (p = r), then
w=A
> Intuition:

» There is no cost from delaying payments to the agent
» w will be raised until marginal benefits from lower probability of
termination are zero
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Absorbing State with an Equally Patient Agent

> If w; reaches A, from then on the agent receives cash payments
des = (r —u) Ads
» His scaled continuation value, which evolves according to
dws = (r — i) wsdt — dcs + (A — ws) 0dZ = 0,

therefore remains constant at ws = A and, as there is no termination,

f(A)+A= i (first best)

> Equivalently, consider granting the agent (r — pt) A shares of the firm, so
his unscaled continuation value evolves according to

dWs = (r — ) Adsds
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More Impatient Agent and Equally Patient Agent

Scaled Value Function f (w)

~

Impatient Agent (p > r)

Equally Patient Agent (p = r)

T T T T T

Ry " "

Scaled Value Function f (w)

~

—w  First Best
I3

w* woA

Scaled Continuation Payoff w

*

w w=A
Scaled Continuation Payoff w
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Extensions and Applications |l

DeMarzo et al. (2011): Dynamic Agency and the q Theory of Investment
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Motivation

» Add dynamic agency to the standard neoclassical model of investment.
» Classic Modigliani-Miller: Optimal Investment separable from financing.

> However: External Financing often subject to frictions and financing costs
matter (Fazzari et al. 1988, Kaplan and Zingales 1997).

» Here: Frictions arising from agency problem endogenizing costs of
external financing (optimal contracts): Hayashi (1982) + DeMarzo and
Sannikov (2006).



Basic Setting

Similar to DeMarzo and Sannikov (2006):

» Time is continuous with t € [0,00).
> All players are risk-neutral, agent more impatient (o > r).

> Agent has limited liability and limited wealth, so principal has to cover
operating losses and initial set up costs K.

BUT additionally:

» Capital accumulation: Principal has access to an investment technology
increasing firm size.



Basic Setting - Technology

» Capital accumulation:
dKe = (It — 6Ke) dt

with depreciation § > 0 and investment /.

> Define growth rate (per unit of capital) before depreciation as j := /K,
so
dKe = Kq (ix — 6) dt.

> Adjustment costs G(/, K) homogeneous of degree one, i.e., total costs of
growth at rate i equal

c(NK =1+ G(I,K),

where ¢ is convex, satisfying c(0) = 0. Often choose:

c(i) =i+ %9/2.



Basic Setting - Technology

» Constant returns to scale: Output is proportional to capital stock:

dYt = Kt (dAt — C(it)dt) ,
where dA; denotes instantaneous productivity.
> Output is subject to stochastic productivity shocks:

» The instantaneous productivity process satisfies

dAt = ]/ldt + O'dZt.
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First-best Investment

> Abstracting from agency problem (Hayashi 1982):

» First best investment satisfies

C/(I-FB) _ qFB _ QFB
r+5_iFB'

» Without agency problem, average @ equals marginal g.
» Assume growth condition:

u<c(r+9),

"Firm cannot profitably grow faster than the discount rate."
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Basic Setting - Agency Problem

> Agency problem as in DeMarzo and Sannikov (2006):

» Agent risk neutral with limited funds/liability and more impatient
than firm owners (o > r).
» Can take hidden action a; € [0, 1] affecting productivity

dAt = at]/tdt + (TdZt,

» Private benefits of A (1 — a;) udt per unit of capital, with A € [0, 1].
» Firm owners observe K and Y and, hence, also | and A.

> In case of (inefficient) liquidation:

» Firm owners receive /K¢, with 0 < [ < QFB,
» Agent gets outside option of zero.
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Main Findings

Underinvestment relative to first best.
History dependent wedge between marginal g and average Q.

Investment positively correlated with (note: time-invariant investment
opportunities!):

> profits,

> past investment,

» financial slack ("maximal cash flow shock that can be sustained
without termination").

Investment decreases with firm-specific risk (note: risk neutral investors
and manager!).

Controlling for average Q, financial slack predicts investment.



Contracting Problem

> Principal offers a contract ® specifying, based on past performance (A):

» stopping time T > 0,
» cumulative payments {C;, t < T},
» investment policy {/, t < T}.

> Given @, the agent chooses {a;, t < T} to solve
T
W(®) = max E? [/ e Pt (dCi 4+ A (1 — ay) thdt)} .
0

» Firm owners choose (®, a) to solve

T
F(Ko, Wo) = maxE® [/ et (dY; — dCy) —I—e_”/KT] ,
,a 0
s.t.W(D) = Wy, (®,a) is incentive compatible.
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Agent’s Continuation Value and Incentive Compatibility

> Focus on incentive compatible contract that induces a; = 1 Vt.

> As in DeMarzo and Sannikov (2006), the agent’s continuation value in
any incentive compatible contract evolves according to

th = thdt — dCt + Fth(dAt — ]/ldt)
| —

:rdet

v

High effort (a; = 1 Vt) is incentive compatible iff

Ty > A

v

Intuition: If the agent shirks,

> he enjoys a private benefit of A (1 — a;) uKedt,
» and his continuation value is reduced by I'y (1 — a;) uKedt.

v

IC will bind in optimal contract, i.e., [t = A Vt.
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Derivation of Principal’s Value Function

> Denote the highest profit that the principal can obtain given current firm
size K and promised wealth to the agent W, by F (K, W).

> F (K, W) is homogeneous in K due to scale invariance of technology:

F(K, W) = KF(1, %) — Kf(w).

> Some properties:

» Scaled value function f(w) is concave in w,

» Possibility to compensate cash, hence, f'(w) > —1,

» Payment threshold w: Defer payments as long as w < w, pay cash
for w > w.
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Size Adjusted Value Function

> From dynamics of W; and K¢, evolution of w; on [0, W] is given by
th = (p - (It — 5)) Wtdt—f—/\U'dZt.

> The scaled value function has to satisfy the HJB equation

(p—cli)) +(i—0)f(w)
instantaneous cf growth

(W) =sup (o (i = 6)) wF'(w) + %A%f”(w)

1

change in value E[df]
with the usual boundary conditions
f0)=1, f(w)=-1, f'(w)=0.
» Liquidation is inefficient as | < QFB.

f(w) < fFB(W) = QB —w.
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Optimal Investment

> FOC for investment in HJB shows history dependence
i) = f(w)—wf(w)

Fi (K, W) = aiK <KF(1, ‘;V)) =gq.

» Intuition: "Marginal costs of investment ¢’ (i) equals current per unit
value of investment to firm owners f(w) plus the marginal effect of
decreasing the agent's per unit payoff w as the firm grows."

> Investment dynamics:

wf' (w) -0

(i(w)) T

> Intuition: In case of high performance:

i'(w) =

agent gets rewarded
his stake in the firm (w) increases
this relaxes IC constraint

>
>
>
> raises the value of investing in more capital.
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Optimal Investment

first-best: fFB(w) = QFF_w




Marginal g and Average Q

QF_B — o8
first-best: FFB(w) = QF —w
QY = 4°
QA
.
A
{
D
| fw)
|
|
0 W v
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Main Findings

» Underinvestment relative to first best.
» History dependent wedge between marginal g and average Q.

> Investment history dependent and positively correlated with w ("financial
slack"), past profits and past investment (w persistent).

> Investment decreases with firm-specific risk (comparative statics wrt Ac)
as provision of incentives becomes more costly.

» Controlling for @, financial slack predicts investment.
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Structural Estimation

> Nikolov and Schmid, 2012, "Testing Dynamic Agency Theory via
Structural Estimation."

> Use implementation of optimal contract for quadratic adjustment costs
with cash reserves, equity and long term debt for structural estimation.

> Dataset with almost 2000 firms (non-financial and non regulated) over
period 1992 to 2010.

» SMM approach, matching simulated and actual moments of distribution
of cash, investment, leverage and Tobin's Q.

> Parameters estimated using SMM: A, p, u, 0, 6 and 0 (c(i) =i+ %6’[2).
» Remaining parameters:

> Interest rate r estimated as average of one-year T-bill rate over
sample period.
» Liquidation value: | = (Tangibility + Cash)/ Total Assets.
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Structural Estimation - Results

> Reasonable matches for first moments and serial correlation, volatility
usually too low.

» Good matches for:

» level of cash,
> investment,

» Bad results for:

> leverage (model-implied leverage too high as in many dynamic
capital structure models based on tax advantage of debt),

» average Q (model-implied Q too low).

» Authors suggest that including macroeconomic conditions may
provide better results.

36
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Structural Estimation - Results

Panel A: Moments

Actual moments Simulated moments
Average cash 0.1308 0.1313
Variance of cash 0.00:47 0.0004
Serial correlation of cash 0.9177 0.7675
Average investment 0.1192 0.1005
Varianee of investment 00056 0.0002
Serial correlation of investment 0.5662 0.6827
Average Tobin's g 1.9324 1.2301
Serial correlation of Tobin'z g 0.75462 0.4841
Average Leverage 0.3463 0.6521
Serial correlation of Leverage 08047 0.7792
Covariance of cash and investment 0.0005 0.0002

37/97



Structural Estimation - Results

> All parameter estimates are significant.
> Agency parameter A = 0.423, i.e., quite substantial.
> Estimated idiosyncratic volatility o = 0.089 rather low.

> Estimates for § = 2.219 and § = 0.152 are in the range of more direct
empirical approaches.

» Managers' discount rate p = 0.045 rather high compared to investors’
rate r = 0.035.

> Expected productivity estimated at y = 0.22.
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Extensions and Applications Il

Hoffmann and Pfeil (2010): Reward for Luck in a Dynamic Agency Model
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The Reward for Luck Puzzle

> Real world compensation contracts fail to filter out exogenous shocks to
firm value.

» Bertrand and Mullainathan 2001, QJE:

Oil price shocks affect income of CEOs in the oil industry.
» Jenter and Kanaan 2008:

CEO replacement caused by negative exogenous shocks.

> Why? — potentially costly to impose more risk on agent, but no incentive
effects.

» Holmstrom 1979 Bell Journal of Economics:
"sufficient statistics result".
» Johnson and Tian 2000, JFE:
Indexed executive stock options more efficient.
» "Traditional" explanation: Managerial power approach.

» In Dynamic Context: Optimal to reward agent for "lucky" shocks that
are informative about future profitability.
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Hoffmann and Pfeil (2010) — "Reward for Luck"

Basic setting is similar to DeMarzo and Sannikov (2006):

» Time is continuous with t € [0, ),
» risk-neutral principal with discount rate r,
> risk-neutral agent with discount rate p > r,

> agent has limited liability and limited wealth, so principal has to cover
operating losses and initial set up costs K.

BUT:

> Drift rate of cash flows is subject to persistent, exogenous "lucky"
shocks.
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Cash Flow Process

> Agent's hidden action A; affects instantaneous cash flows
d¥e = (4, — A¢) dt + odZ;,
> the observable drift rate y, is subject to Poisson shocks with intensity v:
dy, = dN;.
> For simplicity, we stop the p-process after the first shock has occurred:
1l with probability vdt

/
—

in any instant [t, t + dt]: u! u! with probability 1 — vdt
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The Principal’s Problem

» Find the profit-maximizing full commitment contract at t =0

> A contract specifies cash payments to the agent C = {C¢, t > 0} and a
stopping time T > 0 when the firm is liquidated and the receives scrap
value L, to maximize principal’s profit

T
E [/ e " (p,dt —dCe) + erTL} :
0
> subject to delivering the agent an initial value of W
T
Wy = EA=0 [ / e PtdCy + ePTR] ,
0
> and incentive compatibility

~ T ~
Wy > EA [/0 e Pt (dCt +A/~4tdt) + e_pTR] , given A > 0.



Model Solution After a Shock Has Occurred

> Since there are no further shocks, the after-jump scenario is identical to
DeMarzo and Sannikov (2006).

> The agent’s continuation value W; follows
th = thdt — dCt + )quZt,
> for W: € [R,Wh] the principal’s value function F" (W) := F (yh, W)

satisfies 1
P =t pWeF, + SA%P Fiy,

with boundary conditions F/ (R) = L and cash payments reflecting W;
at Wh, where

Fhow'y = -1
h ~——h
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Model Solution Prior to the Shock — Timing

» With Poisson shocks, the timing in any instant [t, t+ dt] matters.

» This differs from the pure diffusion setting, where all processes had
continuous paths.

> Sequence of events:

1. The agent takes his action A;
(A is predictable with respect to the filtration generated by (Z, jt)).

2. There is a one-off shock to drift rate i, with probability vdt.

3. The agent receives cash payment dC; > 0
(C is adapted to to the filtration generated by (Y, j1)).

4. The principal decides whether to terminate the project
(tis a (Y, u)-measurable stopping time).
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Evolution of Agent's Continuation Value W

> Again we define the t-expectation of the agent's lifetime utility under
A=0:

t
Vi = /o e P5dCs + e Pt
which, by MRT, can be written as
ot R t
Vi =V +/ e PTs (dYs — pds) +/ e P*¥s(dNs — vds).
0 0

> Recall that P (dN; = 1) = vdt, so that E [dN; — vdt] = 0.

> Differentiating the two expressions for V' yields the evolution of W:

dW; = pWedt — dCe +T1o (d Ve — ppdt) + e (dNy — vdt).

46
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Incentive Compatibility Constraint

> The agent's continuation value evolves acording to:
dW; = pWedt — dCe +T1o (d Y — ppdt) + e (dNy — vdt).
> Truth-telling (A: = 0 for t > 0) is incentive compatible iff

FtZ)\, fOI’tZO.

> Note in particular, that ¥ does not matter for incentive compatibility.
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Left Limit of the Agent’s Continuation Value

> To apply MRT when we have Poisson shocks (jumps), the sensitivities T
and ¥ have to be predictable.

> Intuitively: ¥; denotes the agent's reward in case there is a shock in t,
BUT the size of ¥+ must not depend on whether there is a shock in t.

> For the recursive representation of the model we want to express them as
deterministic functions of the state variable.

» But W; is not predictable wrt the filtration generated by N
(Wt jumps up by ¥; if dN; = 1).
— Use the left hand limit of the agent’s continuation value (which is
predictable) as state variable:

Wi = limgys Ws.

> Intuitively, it is reflected in W; whether a drift rate shock occurred in t,
while W;- denotes the agent's continuation value before this uncertainty
is resolved.
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Derivation of the HJB for the Principal’s Value Function

> As before, the agent will receive cash payments at W/, where
Iy vii
Fw (W) -1
/ Vil
Fow(W') = 0.

> The principal’s value function has to satisfy the HJB equation

(W) dt :E[ wlde +  dF' (W) }
~— ~~ ——

N —

required return cash flow  change in value

» What is the change in value dF' (W) when there are jumps in W?
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Method: Change in Variables Formula for Jump Processes

> Assume that the process X follows
dX¢ = apdt + B,dZs + e dNg,
with a, B, and 1 predictable processes and let f(X;-) be a twice
continuously differentiable function. Then it holds that
o) = Judt 3BRoE
+[f (X +71¢) — F (Xio) } dN;

of
} dt + By 55,2t

Exercise: Apply change in variables formula to derive the differential of F!

50 /97



The HJB for the Principal’s Value Function Before a Shock

> Substituting dF!, we find that for W € [R,W’], the principal’s value
function prior to a drift rate shock has to satisfy the HJB

FW) = (W = vp) Fly (W) + A0y, (W)
+v [FP (W) = F (W),

with the usual boundary conditions

Fl(R) = L,
Fy(W) = -1,
Vil
Flow (W) = o.

> After a jump in p, the contract is replaced by optimal after-shock
contract with starting value W + 1.
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The Optimal Response to "Luck" Shocks

I

Recall that the sensitivities 1 does not have any incentive effects.
Still it is optimal because of efficiency reasons to set i > 0.

Why is that the case? Recall the fundamental trade off:

» Because of limited liability, the project has to be shut down when
W = 0 and the principal foregoes all future cash flows of the project.

» Postponing the agent's pay is costly, as the agent is more impatient
than the principal.

An increase in y means that the principal looses higher cash flows if the
project is shut down

Termination becomes "more costly" when y jumps up.

Optimal to raise W in response to a shock, making termination less likely
when it is more costly.



The Optimal Response to "Luck" Shocks

> Differentiating HJB on the last slide w.r.t.¢p yields first order condition

Fiv (W +9) = Fiy (W).
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The Optimal Response to "Luck" Shocks

> For W € [R,W'] it holds that (W) > 0.
> ldea of the proof:

1. From F"(R) = F/(R) = L and F" (W) > F! (W) for W > R it follows
that ¢ (x) > 0 for x € [R,R+¢].

2. Show that ¥ has an interior minimum (i.e. ¥’ (y) =0 and ¢” (y) > 0),
then ¢ (y) > 0.

3. Show that W" > W’, implying that lp(Wl) > 0.

. —/
> Therefore, { can never turn negative over the whole range [R, W'].
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Extensions and Applications IV

Hoffmann and Pfeil (2012): Delegated Investment in a Dynamic Agency Model
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Hoffmann and Pfeil (2012)

> Managers have to take care of day-to-day business:

» Managerial effort: Sannikov (2007),
» cash flow diversion: Biais et al. (2007), DeMarzo & Sannikov
(2006).

» But also have to take strategic actions to increase future profitability.

> This paper: Optimal dynamic contract when manager can take two
hidden actions:

a) Diversion of funds for own consumption
(transitory, short-term action).

b) Allocation of funds inside the firm: investment in future profitability
(persistent, long-term action).

56
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Investment Technology

> Investment as the choice of absorptive capacity:

"A firm's capability of assimilating new, external
information and apply it to commercial ends."

(Cohen & Levinthal 1990, Board & Meyer ter Vehn 2010)

» Unpredictable technology shocks: availability of a new technology:

» If firm is able to adopt new technology "investment success"
— high future profitability.

» If firm can not adopt new technology "investment failure"
— low future profitability.

> Probability that firm is able to adopt new technology increases with
investment (absorptive capacity).



Interaction Between the two Problems

> Cash flow diversion problem (a la DeMarzo & Sannikov 2006).

> Contract ties agent's compensation to cash flow reports to induce
truthtelling.

> Aggravates investment problem: Incentives to (mis)use funds and inflate
cash flow reports instead of investing.

> Contract ties agent's compensation also to investment outcome which
creates "agency costs of investment".
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Cash Flow Process

> Firm's cash flows net of investment /; are given by

dYt = (‘Mt — /t)dt+ (TdZt.
> The principal cannot observe cash flows dY, but has to rely on the
agent’s report dV;.

> Agent controls investment process I;, which is also not observed by
principal.

> The evolution dy, depends stochastically on the agent’s investment
choice ;.
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Evolution of Profitability

> In any instant [t, t + dt]
there is a technology shock
w.p. vdt

> If there is no shock,
profitability remains
unchanged at yu,

» If there is a shock,

> e = uwep. p (1)
(Investment success).

> g =plwp. 1—p(I%)
(Investment failure).
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Evolution of Profitability

> Note symmetry: In any instant, independent of current state y,,
> an investment success occurs with probability
vp (/t‘) dt,
» and an investment failure with probability
v(1—p(lt))dt.
> First best investment is given by
v (IFB> 1 (yh _ y’) 1
r+v '
%/_/
=A

> as u stays constant between shocks
— persistent effect of investment (as shocks are infrequent).
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Agent’s Problem

> Agent can consume only fraction A € (0, 1] of diverted cash flows.
> Risk-neutral agent is protected by limited liability and discounts at rate p.

> Given a long-term contract {U, T}, agent chooses strategy S = {Y,/} to
maximize his future income

Wo = E [/0 e Pt (dCy + A (dY: — d V)
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Principal’s Problem

> Risk-neutral principal discounts at rate r < p.
> Principal offers a long-term contract {C, T} with dC > 0.

> And specifies a recommended strategy $* = {\7*, I*} to maximize his
expected profits until replacement in T

T A
Fo=E U e Pt (dVf —dC) +e "Ly
0

> Recommended strategy S* is incentive compatible if it maximizes W.

> Revelation principle = Optimal to implement truth-telling: Y* = Y.
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Agent’s Continuation Value and Incentives

> If the agent follows S*, his continuation value follows
dW, = pWidt—dC,+T; [d% — (1) dt}
+¥ [dNE —vp (7)ot
+¥E[dNE —v (1= p (1)) dt].

1. If agent would divert cash flows

> Immediate consumption: A(dY; — dV;),
» reduction of future income: T'+(dY; — dV%).

» No incentives to divert cash flows if

Ty > A
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Agent’s Continuation Value and Incentives

> If the agent follows S*, his continuation value follows
dW, = pWidt—dC,+T; [d% — (1) dt}
+¥ [dNE —vp (7)ot
b [dN,_? —v(1—p () dt} .

2. Given I't > A, if agent would reduce I+ marginally below / would lead to

» an increases in cash flows d¥; — W grows by T'¢,
» a reduction of success Prob: vp’ (If),
» an increase of failure Prob: vp’ (If).

> No incentives to decrease /; below [ if

e < vp (I) (‘Pf - \If{?) .
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Agent’s Continuation Value and Incentives

> If the agent follows S*, his continuation value follows
dW, = pWidt—dC,+T; [d% — (1) dt}
+¥ [dNE —vp (7)ot
+¥E[dNE —v (1= p (1)) dt].

3. Increasing I+ above If: analogous but with opposite signs.

> No incentives to increase /; above [ if

e > vp (1) (‘Pf - ‘If‘g) .
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Local Incentive Compatibility

» To induce truth-telling: Tie compensation sufficiently strong to cash flow
reports
Iy > A

» To induce investment according to /*: Balance incentives based on
investment outcome with incentives based on cash flow reports

It
v oyb= L
ot v ()
> Limited liability requires that for all t,
Yi> —W,.

67 /97



Principal’s Value Function

» If agent is fired, principal
has to find a new agent:

» Search costs k,

» contract with new
agent starts at
F(WH*).

» Lower boundary
condition becomes

F'(R) = F (W*) — k.

» Compensation threshold is
determined as usual

Fi, (W’) _—

Fivw (W’) - 0
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Principal’s Value Function

> Applying the change of variable formula (noting that dN8 dN® = 0), the
principal’s value function satisfies the coupled HJB

. . . 1 .
o= =1 [pW —vp (1) 98 —v (1= p (1) | Fly + 52202 Fpy

v [FP (W 98) = FT ()] +v [FI(W 4+ ¢2) = FT (W)

> Note that all key parameters are independent of the state yi:

> Investment technology with

> marginal benefits vp'A,
» marginal costs —1.

» Underlying agency problem with

> shirking benefits A,
> discount rates r and p,
> replacement costs k.
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Parallel Shift of the Value Function(s)

0 w w

Define F (W) := F/ (W) and use that F" = F (W) + A
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Costs of Rewards and Punishments

> Contract optimally trades off costs of replacement (k)
and costs from paying the agent in the future (p > r).

» By the same logic as in Reward for Luck, it would be optimal to
keep marginal costs of compensation F, (W) constant if there is a

technology shock.
» With parallel value functions, this would imply to keep W constant,

that is, _
¥ =0.

» However, by Incentive compatibility, the agent has to be rewarded for a
success and punished for a failure:

Y€ > 0> ¥P.
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Costs of Rewards and Punishments

> Contract strikes optimal trade off between costs of replacement (k)
and costs from paying the agent in the future (p > r).

» Rewarding agent by Y& > 0 for success distorts optimal trade off:
» Too high future pay and too low firing threat after success.
> Analogous distortion from punishing agent by ¥2 < 0 for failure:

» Too low future pay and too high firing threat after failure.



Costs of Rewards and Punishments

F(w)

|
0  Punishment Reward

S|
=

No "smoothing": Fiy (W + ¢2) > Fyy (W) > Fyy (W + ¢8)
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Optimal Rewards and Punishments

v

Providing incentives for investment implies that marginal compensation
costs can not be kept constant in the event of a technology shock.

v

The best that can be achieved is to keep marginal costs constant in
expectation (keep expected distortion equal to zero)

0=p (1) [Fuw (W +9®) = Fyy (W)]+[1 = p ()] [Fw (W +$°) = Fyy (W)].

distortion after success distortion after failure

v

$& — 0ifp(l) — 1and g? — 0if p(/) — 0.
» P —0if w — 0and y? — 0if W — W.
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Optimal Investment

> Optimal Investment is determined by FOC
vp' (DA —1—MAC(I)=0

where MAC () consist of

1. Due to Incentive compatibility ()& — ¢? has to increase

(3 ;7;',39> p (1) (1=p(N)v [Fuw (W +4*) — Fiy (W +9%)] >0

This term vanishes for p (/) — 1 and for p (/) — 0
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Optimal Investment

> Optimal Investment is determined by FOC
vp' (A —1—MAC(I) =0,
where MAC () consist of:
2. Investment success triggering reward becomes more likely

vp! (1) [F (W) + & Fyy (W) — F(W + %) > 0.

—0 for p(/)—1
3. Investment failure triggering punishment becomes less likely

—vpl (1) [F (W) + 9P R (W) = F(W + y*)| <.

—0 for p(1)—0
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Optimal Investment

> Optimal Investment is determined by FOC
vp' (DA —1—MAC(I)=0

= MAC (/) will be positive for low | and negative for high /
» If, in equilibrium,

» MAC (I) =0, then | (W) = IB,
» MAC (I) > 0, then [ (W) < IB,
» MAC (I) <0, then [ (W) > IFB.

> Compare situations with different returns to investment (measured by A).



Investment Distortions

Low /P8 — underinvestment

0.052 B
[FB

0.0 : B

£ —

0.048 L
0

High 178 — overinvestment

u.s—[\
|FB
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Underinvestment if Agent is Too Poor to be Punished

Low /P8 — underinvestment

0.052
[FB

[

0.048 L
0 50

High 178 — overinvestment

07 L
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First-Best Investment at Payout Boundary

Low /P8 — underinvestment

0.052

0.048

[FB
0.05 /

High 178 — overinvestment

O

50
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Investment Depends on Past Cash Flows

Low /P8 — underinvestment
0052 B
|FB :
0.05 / |
0048 : —
0 50 W
High 178 — overinvestment
09 _[\ 4
|F8 .
07 ! .
0 50 W

dW = pWdt + AcdZ + % [dNE — vpdt] + p° [dN® — v (1 — p) ct]
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Investment Depends on Past Investment Outcome

Low /P8 — underinvestment
0052 B
|FB :
0.05 / |
0048 : —
0 50 W
High 178 — overinvestment
09 _[\ 4
|F8 .
07 ! .
0 50 W

dW = pWdt + AcdZ + & [dNE — vpdt] + p° [dN® — v (1 — p) ct]



Implications of Changes in Corporate Governance

f(w)

T
—1 =01

—-—-1=05

83 /97



Implications of Changes in Corporate Governance
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Implications of Changes in Corporate Governance
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Extensions and Applications V

Piskorski and Westerfield (2011):
Optimal Dynamic Contracts with Moral Hazard and Costly Monitoring
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Motivation

So far:

> Ex-post incentive mechanism in the form of managerial compensation.

> Reward or punish manager based on realized corporate performance (with
predefined scheme).

> (Promised) compensation and firing threat to provide incentives.

However, investors can also decide to invest resources to actively reduce
agency problems:

> Investors can monitor manager to reduce scope for shirking.

> E.g. continuous or repeated audits or direct involvement of the principal
in operations.

> Active monitoring provides an additional incentive device for the principal
and allows to reduce the likelihood of costly termination.



Basic Setting

Similar to DeMarzo and Sannikov (2006)

» Time is continuous with t € [0, c0)
> All players are risk-neutral

> Agent has limited liability and limited wealth, so principal has to cover
operating losses and initial set up costs K

BUT additionally:

> Principal has access to a (costly and stochastic) monitoring technology
allowing him to detect shirking (cf. CSV literature).
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Basic Setting

» Cash flows evolve according to
dYt = (}l — at) dt +JdZt

where a; > 0 denotes the agent's shirking process

> Agent gets private benefit from harmful hidden action (diversion, asset
misuse, etc.) at rate ar (A =1).

> Simple monitoring technology:

» Principal chooses level of monitoring m; > 0 at cost Omy,

» Monitoring gives access to a signal N indicating whether the agent
has shirked,

» N follows a Poisson process with intensity
v(me, ar — a;) = memax {0, a; — af },

where a} denotes the recommended level of shirking at t.
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Basic Setting

> Specific monitoring technology:

» Pay now to observe contemporaneous shirking, no "looking back",

> Probability of detection proportional to amount of shirking and
monitoring,

> No false positives.

> Agent's outside value:

» If fired following bad performance: R.
» If fired following discovery of shirking through monitoring:
0< Wr <R
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Contracting Problem

» The principal offers the agent an incentive compatible contract specifying:

cash payments {C;, t > 7},

recommended shirking {af, t > 7},

monitoring {m;, t > T},

and stopping times 7¢ (under-performance) and tf (detection of

shirking), with T = min {rd, rf}.

vV vy VY

» Optimal contract maximizes
— Al T
E3=? I:/ e_rt (dYt —dCy — Gmtdt) + e_rTL] ,
0
where a = {a¢, t > T} maximizes the agent’s expected utility

T
E? [/o e Pt (dC; + ardt) + e PR + e T Wp} )

91 /97



Agent’s Continuation Value and Incentive Compatibility

> If a = a", the agent’s continuation value evolves according to

th:th—dCt—agdt—l—Ft (dYt—(y—ag) df)— Ttht.
——
promise keeping pay for performance punishment for shirking

> Intensity of N; is zero as monitoring creates no false positives.

» The contract is incentive compatible iff
l"t21—‘I’tmt if a{zO,
Ft € {1 —‘I’tmt, 1} if a{ > 0.
> Intuition: If the agent diverts an additional amount edft,

> he enjoys a private benefit of edt,
> his continuation value is reduced by el';dft,
» and expected punishment is e m:dt.

> If he diverts edt less, he loses edt and W increases by el';dt.



Derivation of HJB for principal’s value function

> The problem can be simplified by noting that:

» Wilog we can focus on contracts with a” = 0 (recommended shirking
can be replaced by consumption),

» Choose ¥; = ip(W;) = W;: — WE (punish as hard as possible, "out
of equilibrium"),

» Choose I't = y(W;) =1 —¥¢my (minimize volatility of W;),

» As usual cash compensation is deferred till a threshold W is reached.

> For W e [R, W], F(W) has to satisfy the HJB equation

(W) = a0 i —Om+ pWF'(W) +% (1— (W —Wg)m)? 2F"(W)
m2=

=7(W,m)?=(1-¢(W)m)?

with the usual boundary conditions.



Optimal Monitoring
» From the HJB

F(W) = nn:g)g{y —O0m+ pWF' (W) + % (1— (W — W) m)20'2F”(W)} :

the principal chooses to monitor at rate

0 1
(W — Wg)2 a2F" (W) T W)

m =

whenever

0

F'(W) < T W W)

> So, the optimal "pay-for performance sensitivity" given b
Y Yy 8 Yy

0

(W) =1 *l/)(Wt)mt = 7(Wt — WF)U—ZF”(WL‘)-

— Monitoring allows to reduce performance based incentives and, thus,
termination probability.
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Optimal Monitoring

» From

0

’)/(Wf) =1- lp(Wf)mf == (Wt — WF)U'zF//(Wt)V

we have more monitoring/less pay-for-performance if:

> monitoring costs @ are low,
» monitoring is effective (W; — W is high),
> aversion to volatility in W; is high (F”(W;)).

» Timing and intensity of monitoring is shaped by two competing forces:

"risk of termination" and the agent’s "inside stake".

» When W decreases the risk of termination increases, while the
agent's inside stake decreases,
» Quantitative assessment needed.
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Optimal Monitoring

» The monitoring function m(W) can have two shapes depending on the
cost effectiveness of monitoring:

1. if p(R) = R — Wk is sufficiently high relative to 8, m(W) is
decreasing,
2. if (R) = R — Wk is small relative to 6, m(W) is hump-shaped

> The pay-for-performance sensitivity (W) accordingly is either increasing
or U-shaped.

> The principal will replace termination entirely by (maximal) monitoring if
the costs of inefficient termination are sufficiently high:

» JL* such that the contract exhibits termination iff L > L*.

» For L < L*, there is full monitoring at W = R (m = 1/¢y(R)), such
that F(W = R) = max {L, L*}.

» The threshold L* is (weakly) decreasing in Wg and 6.
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Comparative Statics

1 2 3 “ 5 6
1 . : :
| L=21 === L=18  L=14=L"=15.2]
=05 o 1
= S
0 . .
1 2 3 4 5 6
1 =
—_— “""
= e
-—0.5 \\\ ‘.'-.‘_.- .
01 2 4 5 6

Continuation Value: W
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