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Extensions and Applications I

He (2009): Optimal Executive Compensation when Firm Size follows a GBM
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Basic Setting

Similar to DeMarzo and Sannikov (2006):

I Time is continuous with t 2 [0,∞),
I all players are risk-neutral,

I agent has limited liability and limited wealth, so principal has to cover
operating losses and initial set up costs K .

BUT:

I Agent controls �rm size instead of instantaneous cash �ows,

I agent is only weakly more impatient than the principal ρ � r .
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Firm Size Follows a GBM

I Firm size δ � 0 follows a geometric Brownian motion

dδt = Atδtdt + σδtdZt ,

where At 2 f0, µg denotes the agent�s e¤ort.
I Firm produces cash �ows at rate δ (i.e. 1:1 proportional to size).

I Principal discounts at rate r > µ, so �rst best �rm value as of time t is

Et

�Z ∞

t
e�r (s�t)δsds

�
=

δt
r � µ

.

I When setting At = 0, the agent enjoys shirking bene�ts φδtdt.
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Contracting Problem

I Upon liquidation, the principal receives scrap value Lδt .

I The principal o¤ers the agent a contract specifying cash payments
fCt , t � τg and a stopping time τ � 0 to maximize

F0 = E
A�=µ

�Z τ

0
e�rt (δtdt � dCt ) + e�rτLδτ

�
.

Note: we implicitly assume that At = µ, t � 0 is optimal
(it has to be checked later whether this is true,
as revelation principle does not apply here).

I Where A� maximizes the agent�s expected utility

W0 = E
A
�Z τ

0
e�ρt

�
dCt + φ

�
1� At

µ

�
δtdt

�
+ e�ρτRδτ

�
.

I Observe that the problem is homogenous with respect to �rm size, which
will allow us to get rid of the additional state variable δ.
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Agent�s Continuation Value and Incentive Compatibility

I By analogous arguments as in DeMarzo and Sannikov, the agent�s
continuation value evolves according to

dWt = ρWt � dCt + Γt (dδt � µδtdt)| {z }
=δtσdZt if At=0

.

I High e¤ort (At = µ, t � 0) is incentive compatible i¤

Γt � φ/µ|{z}
:=λ

.

I Intuition: If the agent shirks,

I he enjoys a private bene�t of φδt ,
I his continuation value is reduced by Γtµδt .
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Derivation of HJB for Principal�s Value Function

I Denote the highest pro�t that the principal can obtain, given the agent�s
expected payo¤ is W and the current �rm size is δ, by

F (δ,W ) .

I F (δ,W ) is concave in W (because ine¢ cient termination occurs when
W = 0, the principal becomes "risk-averse" wrt W )

I No cash payments as long as

FW (δ,W ) := ∂F/∂W > �1.

I Cash payments dC cause W to re�ect at the compensation
boundary W (δ) de�ned by

FW
�
δ,W (δ)

�
= �1.
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Derivation of HJB for Principal�s Value Function

I Over the interval
�
Rδ,W (δ)

�
, the principal�s value function has to

satisfy the HJB equation

rF (δ,W ) dt| {z }
required return

= E
h

δdt|{z}
cash �ow

+ dF (δ,W )| {z }
change in value

i
.

I This is now a PDE, as dF (δ,W ) involves derivatives with respect to
both state variables δ and W !
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Size Adjusted Value Function

I Using Itô�s Lemma, the HJB becomes, more explicitly,

rF = δ+ Fδµδ+ ρWFW +
1
2

�
σ2δ2Fδδ + 2λσ2δ2FδW + λ2σ2δ2FWW

�
.

I Use that F is homogenous in δ to de�ne principal�s scaled value function

δf (w) = δF
�
1,
W
δ

�
.

I From this we immediately get the derivatives

Fδ = f (w)� δf 0 (w) ,

FW = f 0 (w) ,

δFδδ = �δwFδW = δw2FWW = w2f 00 (w) ,

which gives us the size adjusted version of the HJB.
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Size Adjusted Value Function

I Over the interval [R,w ], the principal�s scaled value function f (w)
sati�es

(r � µ) f (w) = 1+ (ρ� µ)wf 0 (w) +
1
2
(λ� w)2 σ2f 00 (w)

with the usual boundary conditions

f (R) = 0 value matching,

f 0 (w) = �1 smooth pasting,

f 00 (w) = 0 super contact.

I And the agent�s scaled continuation value evolves according to

dw = (ρ� µ)wdt + (λ� w) σdZ � dc ,

where cash payments dc cause w to re�ect at w .
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Comparison to Arithmetic Brownian setting

ABM Setting GBM Setting

Agent controls
instantaneous cash �ows dYt change in cash �ow rate dδt

Cash �ows
unbounded from below dYt always positive δtdt
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"Free" Incentives in the GBM Setting

I Shirking bene�ts are equal to
λ,

but instantaneous volatility of w is only

(λ� w) σ.

I The agent�s scaled continuation value w itself provides some incentives.

I Intuition:

I w represents the agent�s "stake in the �rm"
I If size changes by dδ, agent�s continuation value W = wδ changes
by

wdδ.

I If the agent�s share in the �rm is su¢ ciently high, (w = λ), the volatility
in w becomes zero (absorbing state).

) Agent�s inside stake is su¢ cient to provide incentives for working.
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Incentive Provision in the GBM Setting
I IC requires that ∂W/∂δ = λ,

I "free" incentives: w ,

I remaining portion: (λ� w).
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No Absorbing State with a More Impatient Agent

I If agent is more impatient than the principal (ρ > r), then

w < λ,

i.e. cash payments keep w from reaching the absorbing state λ

I Intuition: Consider a marginal reduction of w

1. bene�t: the agent is paid earlier and ρ� r
(strictly positive, independent of the level of w)

2. cost: the probability of termination increases
(vanishes for w = λ where no future termination threat)

I Equating marginal bene�ts (1.) and marginal costs (2.) implies
that w = λ cannot be optimal if ρ > r
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No Absorbing State with a More Impatient Agent

I Show this a bit more formally: Assume w = λ and evaluate HJB in λ� ε

(r � µ) f (λ� ε) = 1+ (ρ� µ) (λ� ε) f 0 (λ� ε) +
ε2σ2

2
f 00 (λ� ε)

I A Taylor expansion of f and f 0 yields

f (λ� ε) = f (λ)� f 0 (λ) ε+
1
2
f 00 (θ1) ε2

f 0 (λ� ε) = f 0 (λ) +
1
2
f 00 (θ2) ε2,

where θi 2 (λ� ε,λ). From the boundary conditions for w , we get

r � ρ = � r � µ

2
f 00 (θ1) ε� f 00 (θ2) (ρ� µ) (λ� ε) +

εσ2

2
f 00 (λ� ε) .

Letting ε ! 0, the RHS! 0, while the LHS< 0 whenever ρ > r .
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Absorbing State with an Equally Patient Agent

I When principal and agent are equally patient (ρ = r), then

w = λ

I Intuition:

I There is no cost from delaying payments to the agent
I w will be raised until marginal bene�ts from lower probability of
termination are zero
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Absorbing State with an Equally Patient Agent

I If wt reaches λ, from then on the agent receives cash payments

dcs = (r � µ) λds

I His scaled continuation value, which evolves according to

dws = (r � µ)wsdt � dcs + (λ� ws ) σdZ = 0,

therefore remains constant at ws = λ and, as there is no termination,

f (λ) + λ =
1

r � µ
(�rst best)

I Equivalently, consider granting the agent (r � µ) λ shares of the �rm, so
his unscaled continuation value evolves according to

dWs = (r � µ) λδsds
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More Impatient Agent and Equally Patient Agent
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Extensions and Applications II

DeMarzo et al. (2011): Dynamic Agency and the q Theory of Investment
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Motivation

I Add dynamic agency to the standard neoclassical model of investment.

I Classic Modigliani-Miller: Optimal Investment separable from �nancing.

I However: External Financing often subject to frictions and �nancing costs
matter (Fazzari et al. 1988, Kaplan and Zingales 1997).

I Here: Frictions arising from agency problem endogenizing costs of
external �nancing (optimal contracts): Hayashi (1982) + DeMarzo and
Sannikov (2006).
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Basic Setting

Similar to DeMarzo and Sannikov (2006):

I Time is continuous with t 2 [0,∞).
I All players are risk-neutral, agent more impatient (ρ > r).

I Agent has limited liability and limited wealth, so principal has to cover
operating losses and initial set up costs K .

BUT additionally:

I Capital accumulation: Principal has access to an investment technology
increasing �rm size.
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Basic Setting - Technology

I Capital accumulation:
dKt = (It � δKt ) dt

with depreciation δ � 0 and investment I .
I De�ne growth rate (per unit of capital) before depreciation as i := I/K ,
so

dKt = Kt (it � δ) dt.

I Adjustment costs G (I ,K ) homogeneous of degree one, i.e., total costs of
growth at rate i equal

c(i)K := I + G (I ,K ),

where c is convex, satisfying c(0) = 0. Often choose:

c(i) = i +
1
2

θi2.
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Basic Setting - Technology

I Constant returns to scale: Output is proportional to capital stock:

dYt = Kt (dAt � c(it )dt) ,

where dAt denotes instantaneous productivity.

I Output is subject to stochastic productivity shocks:

I The instantaneous productivity process satis�es

dAt = µdt + σdZt .
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First-best Investment

I Abstracting from agency problem (Hayashi 1982):

I First best investment satis�es

c 0(iFB ) = qFB = QFB ,

qFB = QFB =
µ� c(iFB )
r + δ� iFB .

I Without agency problem, average Q equals marginal q.
I Assume growth condition:

µ < c(r + δ),

"Firm cannot pro�tably grow faster than the discount rate."
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Basic Setting - Agency Problem

I Agency problem as in DeMarzo and Sannikov (2006):

I Agent risk neutral with limited funds/liability and more impatient
than �rm owners (ρ > r).

I Can take hidden action at 2 [0, 1] a¤ecting productivity

dAt = atµdt + σdZt ,

I Private bene�ts of λ (1� at ) µdt per unit of capital, with λ 2 [0, 1].
I Firm owners observe K and Y and, hence, also I and A.

I In case of (ine¢ cient) liquidation:

I Firm owners receive lKt , with 0 � l < QFB ,
I Agent gets outside option of zero.
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Main Findings

I Underinvestment relative to �rst best.

I History dependent wedge between marginal q and average Q.

I Investment positively correlated with (note: time-invariant investment
opportunities!):

I pro�ts,
I past investment,
I �nancial slack ("maximal cash �ow shock that can be sustained
without termination").

I Investment decreases with �rm-speci�c risk (note: risk neutral investors
and manager!).

I Controlling for average Q, �nancial slack predicts investment.
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Contracting Problem

I Principal o¤ers a contract Φ specifying, based on past performance (A):

I stopping time τ � 0,
I cumulative payments fCt , t � τg,
I investment policy fIt , t � τg.

I Given Φ, the agent chooses fat , t � τg to solve

W (Φ) = max
a
E a
�Z τ

0
e�ρt (dCt + λ (1� at ) µKtdt)

�
.

I Firm owners choose (Φ, a) to solve

F (K0,W0) = max
Φ,a

E a
�Z τ

0
e�rt (dYt � dCt ) + e�rτ lKτ

�
,

s.t.W (Φ) = W0, (Φ, a) is incentive compatible.
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Agent�s Continuation Value and Incentive Compatibility

I Focus on incentive compatible contract that induces at = 1 8t.
I As in DeMarzo and Sannikov (2006), the agent�s continuation value in
any incentive compatible contract evolves according to

dWt = ρWtdt � dCt + ΓtKt (dAt � µdt)| {z }
=σdZt

.

I High e¤ort (at = 1 8t) is incentive compatible i¤

Γt � λ.

I Intuition: If the agent shirks,

I he enjoys a private bene�t of λ (1� at ) µKtdt,
I and his continuation value is reduced by Γt (1� at ) µKtdt.

I IC will bind in optimal contract, i.e., Γt = λ 8t.
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Derivation of Principal�s Value Function

I Denote the highest pro�t that the principal can obtain given current �rm
size K and promised wealth to the agent W , by F (K ,W ).

I F (K ,W ) is homogeneous in K due to scale invariance of technology:

F (K ,W ) = KF (1,
W
K
) = Kf (w).

I Some properties:

I Scaled value function f (w) is concave in w ,
I Possibility to compensate cash, hence, f 0(w) � �1,
I Payment threshold w : Defer payments as long as w � w , pay cash
for w > w .
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Size Adjusted Value Function
I From dynamics of Wt and Kt , evolution of wt on [0,w ] is given by

dwt = (ρ� (it � δ))wtdt + λσdZt .

I The scaled value function has to satisfy the HJB equation

rf (w) = sup
i

8>>>>><>>>>>:

(µ� c(i))| {z }
instantaneous cf

+ (i � δ) f (w)| {z }
growth

+(ρ� (i � δ))wf 0(w) +
1
2

λ2σ2f 00(w)| {z }
change in value E [df ]

9>>>>>=>>>>>;
.

with the usual boundary conditions

f (0) = l , f 0(w) = �1, f 00(w) = 0.

I Liquidation is ine¢ cient as l < QFB :

f (w) < f FB (w) = QFB � w .
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Optimal Investment
I FOC for investment in HJB shows history dependence

c 0(i) = f (w)� wf 0(w)

= FK (K ,W ) =
∂

∂K

�
KF (1,

W
K
)

�
= q.

I Intuition: "Marginal costs of investment c 0(i) equals current per unit
value of investment to �rm owners f (w) plus the marginal e¤ect of
decreasing the agent�s per unit payo¤ w as the �rm grows."

I Investment dynamics:

i 0(w) = � wf 00(w)
c 00(i(w))

� 0.

I Intuition: In case of high performance:

I agent gets rewarded
I his stake in the �rm (w) increases
I this relaxes IC constraint
I raises the value of investing in more capital.
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Optimal Investment
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Marginal q and Average Q

33 / 97



Main Findings

I Underinvestment relative to �rst best.

I History dependent wedge between marginal q and average Q.

I Investment history dependent and positively correlated with w ("�nancial
slack"), past pro�ts and past investment (w persistent).

I Investment decreases with �rm-speci�c risk (comparative statics wrt λσ)
as provision of incentives becomes more costly.

I Controlling for Q, �nancial slack predicts investment.

34 / 97



Structural Estimation

I Nikolov and Schmid, 2012, "Testing Dynamic Agency Theory via
Structural Estimation."

I Use implementation of optimal contract for quadratic adjustment costs
with cash reserves, equity and long term debt for structural estimation.

I Dataset with almost 2000 �rms (non-�nancial and non regulated) over
period 1992 to 2010.

I SMM approach, matching simulated and actual moments of distribution
of cash, investment, leverage and Tobin�s Q.

I Parameters estimated using SMM: λ, ρ, µ, σ, δ and θ (c(i) = i + 1
2 θi2).

I Remaining parameters:

I Interest rate r estimated as average of one-year T-bill rate over
sample period.

I Liquidation value: l = (Tangibility + Cash)/Total Assets.
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Structural Estimation - Results

I Reasonable matches for �rst moments and serial correlation, volatility
usually too low.

I Good matches for:

I level of cash,
I investment,

I Bad results for:

I leverage (model-implied leverage too high as in many dynamic
capital structure models based on tax advantage of debt),

I average Q (model-implied Q too low).
I Authors suggest that including macroeconomic conditions may
provide better results.
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Structural Estimation - Results
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Structural Estimation - Results

I All parameter estimates are signi�cant.

I Agency parameter λ = 0.423, i.e., quite substantial.

I Estimated idiosyncratic volatility σ = 0.089 rather low.

I Estimates for θ = 2.219 and δ = 0.152 are in the range of more direct
empirical approaches.

I Managers�discount rate ρ = 0.045 rather high compared to investors�
rate r = 0.035.

I Expected productivity estimated at µ = 0.22.
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Extensions and Applications III

Ho¤mann and Pfeil (2010): Reward for Luck in a Dynamic Agency Model
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The Reward for Luck Puzzle

I Real world compensation contracts fail to �lter out exogenous shocks to
�rm value.

I Bertrand and Mullainathan 2001, QJE:
Oil price shocks a¤ect income of CEOs in the oil industry.

I Jenter and Kanaan 2008:
CEO replacement caused by negative exogenous shocks.

I Why? �potentially costly to impose more risk on agent, but no incentive
e¤ects.

I Holmström 1979 Bell Journal of Economics:
"su¢ cient statistics result".

I Johnson and Tian 2000, JFE:
Indexed executive stock options more e¢ cient.

I "Traditional" explanation: Managerial power approach.

I In Dynamic Context: Optimal to reward agent for "lucky" shocks that
are informative about future pro�tability.
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Ho¤mann and Pfeil (2010) �"Reward for Luck"

Basic setting is similar to DeMarzo and Sannikov (2006):

I Time is continuous with t 2 [0,∞),
I risk-neutral principal with discount rate r ,

I risk-neutral agent with discount rate ρ > r ,

I agent has limited liability and limited wealth, so principal has to cover
operating losses and initial set up costs K .

BUT:

I Drift rate of cash �ows is subject to persistent, exogenous "lucky"
shocks.
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Cash Flow Process

I Agent�s hidden action At a¤ects instantaneous cash �ows

dŶt = (µt � At ) dt + σdZt ,

I the observable drift rate µt is subject to Poisson shocks with intensity ν:

dµt = dNt .

I For simplicity, we stop the µ-process after the �rst shock has occurred:

µh with probability νdt
%

in any instant [t, t + dt]: µl ! µl with probability 1� νdt
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The Principal�s Problem

I Find the pro�t-maximizing full commitment contract at t = 0

I A contract speci�es cash payments to the agent C = fCt , t � 0g and a
stopping time τ � 0 when the �rm is liquidated and the receives scrap
value L, to maximize principal�s pro�t

E
�Z τ

0
e�rt (µtdt � dCt ) + e�rτL

�
,

I subject to delivering the agent an initial value of W0

W0 = E
A=0

�Z τ

0
e�ρtdCt + e�ρτR

�
,

I and incentive compatibility

W0 � E Ã
�Z τ

0
e�ρt �dCt + λÃtdt

�
+ e�ρτR

�
, given Ã � 0.
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Model Solution After a Shock Has Occurred

I Since there are no further shocks, the after-jump scenario is identical to
DeMarzo and Sannikov (2006).

I The agent�s continuation value Wt follows

dWt = ρWtdt � dCt + λσdZt ,

I for Wt 2 [R,W
h
] the principal�s value function F h (W ) := F

�
µh ,W

�
satis�es

rF h = µh + ρWtF hW +
1
2

λ2σ2F hWW ,

with boundary conditions F h (R) = L and cash payments re�ecting Wt

at W
h
, where

F hW (W
h
) = �1

F hWW (W
h
) = 0.

44 / 97



Model Solution Prior to the Shock �Timing

I With Poisson shocks, the timing in any instant [t, t + dt] matters.

I This di¤ers from the pure di¤usion setting, where all processes had
continuous paths.

I Sequence of events:

1. The agent takes his action At
(A is predictable with respect to the �ltration generated by (Z , µ)).

2. There is a one-o¤ shock to drift rate µt with probability νdt.

3. The agent receives cash payment dCt � 0
(C is adapted to to the �ltration generated by (Y , µ)).

4. The principal decides whether to terminate the project
(τ is a (Y , µ)-measurable stopping time).
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Evolution of Agent�s Continuation Value W

I Again we de�ne the t-expectation of the agent�s lifetime utility under
A = 0:

Vt =
Z t
0
e�ρsdCs + e�ρtWt ,

which, by MRT, can be written as

Vt = V0 +
Z t
0
e�ρsΓs

�
dŶs � µsds

�
+
Z t
0
e�ρsΨs

�
dNs � νds

�
.

I Recall that P (dNt = 1) = νdt, so that E [dNt � νdt] = 0.

I Di¤erentiating the two expressions for V yields the evolution of W :

dWt = ρWtdt � dCt + Γtσ
�
dŶt � µtdt

�
+Ψt

�
dNt � νdt

�
.
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Incentive Compatibility Constraint

I The agent�s continuation value evolves acording to:

dWt = ρWtdt � dCt + Γtσ
�
dŶt � µtdt

�
+Ψt

�
dNt � νdt

�
.

I Truth-telling (At = 0 for t � 0) is incentive compatible i¤

Γt � λ, for t � 0.

I Note in particular, that Ψ does not matter for incentive compatibility.
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Left Limit of the Agent�s Continuation Value

I To apply MRT when we have Poisson shocks (jumps), the sensitivities Γ
and Ψ have to be predictable.

I Intuitively: Ψt denotes the agent�s reward in case there is a shock in t,
BUT the size of Ψt must not depend on whether there is a shock in t.

I For the recursive representation of the model we want to express them as
deterministic functions of the state variable.

I But Wt is not predictable wrt the �ltration generated by N
(Wt jumps up by Ψt if dNt = 1).

! Use the left hand limit of the agent�s continuation value (which is
predictable) as state variable:

Wt� := lims"t Ws .

I Intuitively, it is re�ected in Wt whether a drift rate shock occurred in t,
while Wt� denotes the agent�s continuation value before this uncertainty
is resolved.
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Derivation of the HJB for the Principal�s Value Function

I As before, the agent will receive cash payments at W
l
, where

F lW (W
l
) = �1,

F lWW (W
l
) = 0.

I The principal�s value function has to satisfy the HJB equation

rF l (W ) dt| {z }
required return

= E
h

µldt|{z}
cash �ow

+ dF l (W )| {z }
change in value

i
.

I What is the change in value dF l (W ) when there are jumps in W ?
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Method: Change in Variables Formula for Jump Processes

I Assume that the process X follows

dXt = αtdt + βtdZt + πtdNt ,

with α, β, and π predictable processes and let f (Xt�) be a twice
continuously di¤erentiable function. Then it holds that

df (Xt�) =

�
αt

∂f
∂X

+
1
2

β2t
∂2f
∂X 2

�
dt + βt

∂f
∂X
dZt

+
h
f (Xt� + πt )� f (Xt�)

i
dNt

Exercise: Apply change in variables formula to derive the di¤erential of F l
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The HJB for the Principal�s Value Function Before a Shock

I Substituting dF l , we �nd that for W 2 [R,W l
], the principal�s value

function prior to a drift rate shock has to satisfy the HJB

rF l (W ) = µl + (ρW � νψ) F lW (W ) +
1
2

λ2σ2F lWW (W )

+ν
h
F h (W + ψ)� F l (W )

i
,

with the usual boundary conditions

F l (R) = L,

F lW (W
l
) = �1,

F lWW (W
l
) = 0.

I After a jump in µ, the contract is replaced by optimal after-shock
contract with starting value W + ψ.
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The Optimal Response to "Luck" Shocks

I Recall that the sensitivities ψ does not have any incentive e¤ects.

I Still it is optimal because of e¢ ciency reasons to set ψ > 0.

I Why is that the case? Recall the fundamental trade o¤:

I Because of limited liability, the project has to be shut down when
W = 0 and the principal foregoes all future cash �ows of the project.

I Postponing the agent�s pay is costly, as the agent is more impatient
than the principal.

I An increase in µ means that the principal looses higher cash �ows if the
project is shut down

=) Termination becomes "more costly" when µ jumps up.

=) Optimal to raise W in response to a shock, making termination less likely
when it is more costly.
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The Optimal Response to "Luck" Shocks
I Di¤erentiating HJB on the last slide w.r.t.ψ yields �rst order condition

F hW (W + ψ) = F lW (W ) .
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The Optimal Response to "Luck" Shocks

I For W 2 [R,W l
] it holds that ψ (W ) > 0.

I Idea of the proof:

1. From F h (R) = F l (R) = L and F h (W ) > F l (W ) for W > R it follows
that ψ (x) > 0 for x 2 [R,R + ε] .

2. Show that ψ has an interior minimum (i.e. ψ0 (y) = 0 and ψ00 (y) > 0),
then ψ (y) � 0.

3. Show that W
h
> W

l
, implying that ψ(W

l
) > 0.

I Therefore, ψ can never turn negative over the whole range [R,W
l
].
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Extensions and Applications IV

Ho¤mann and Pfeil (2012): Delegated Investment in a Dynamic Agency Model
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Ho¤mann and Pfeil (2012)

I Managers have to take care of day-to-day business:

I Managerial e¤ort: Sannikov (2007),
I cash �ow diversion: Biais et al. (2007), DeMarzo & Sannikov
(2006).

I But also have to take strategic actions to increase future pro�tability.

I This paper: Optimal dynamic contract when manager can take two
hidden actions:

a) Diversion of funds for own consumption
(transitory, short-term action).

b) Allocation of funds inside the �rm: investment in future pro�tability
(persistent, long-term action).
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Investment Technology

I Investment as the choice of absorptive capacity:

"A �rm�s capability of assimilating new, external
information and apply it to commercial ends."

(Cohen & Levinthal 1990, Board & Meyer ter Vehn 2010)

I Unpredictable technology shocks: availability of a new technology:

I If �rm is able to adopt new technology "investment success"
! high future pro�tability.

I If �rm can not adopt new technology "investment failure"
! low future pro�tability.

I Probability that �rm is able to adopt new technology increases with
investment (absorptive capacity).
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Interaction Between the two Problems

I Cash �ow diversion problem (à la DeMarzo & Sannikov 2006).

I Contract ties agent�s compensation to cash �ow reports to induce
truthtelling.

I Aggravates investment problem: Incentives to (mis)use funds and in�ate
cash �ow reports instead of investing.

I Contract ties agent�s compensation also to investment outcome which
creates "agency costs of investment".
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Cash Flow Process

I Firm�s cash �ows net of investment It are given by

dYt = (µt � It )dt + σdZt .

I The principal cannot observe cash �ows dYt , but has to rely on the
agent�s report dŶt .

I Agent controls investment process It , which is also not observed by
principal.

I The evolution dµt depends stochastically on the agent�s investment
choice It .
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Evolution of Pro�tability

I In any instant [t, t + dt]
there is a technology shock
w.p. νdt

I If there is no shock,
pro�tability remains
unchanged at µt

I If there is a shock,

I µt+ = µh w.p. p (I �)
(Investment success).

I µt+ = µl w.p. 1� p (I �)
(Investment failure).

[t]
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Evolution of Pro�tability

I Note symmetry: In any instant, independent of current state µt ,

I an investment success occurs with probability

νp (It ) dt,

I and an investment failure with probability

ν (1� p (It )) dt.

I First best investment is given by

νp0
�
IFB

� 1
r + ν

�
µh � µl

�
| {z }

:=∆

= 1,

I as µ stays constant between shocks
! persistent e¤ect of investment (as shocks are infrequent).
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Agent�s Problem

I Agent can consume only fraction λ 2 (0, 1] of diverted cash �ows.
I Risk-neutral agent is protected by limited liability and discounts at rate ρ.

I Given a long-term contract fU, τg, agent chooses strategy S = fŶ , Ig to
maximize his future income

W0 = E
�Z τ

0
e�ρt �dCt + λ

�
dYt � dŶt

���
.
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Principal�s Problem

I Risk-neutral principal discounts at rate r < ρ.

I Principal o¤ers a long-term contract fC , τg with dC � 0.
I And speci�es a recommended strategy S� = fŶ �, I �g to maximize his
expected pro�ts until replacement in τ

F0 = E
�Z τ

0
e�ρt �dŶ �t � dCt�+ e�rτLτ

�
.

I Recommended strategy S� is incentive compatible if it maximizes W0.

I Revelation principle =) Optimal to implement truth-telling: Ŷ � = Y .
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Agent�s Continuation Value and Incentives

I If the agent follows S�, his continuation value follows

dWt = ρWtdt � dCt + Γt
h
dŶt � (µt � I �t ) dt

i
+Ψgt

h
dNgt � νp (I �t ) dt

i
+Ψbt

h
dNbt � ν (1� p (I �t )) dt

i
.

1. If agent would divert cash �ows

I Immediate consumption: λ(dYt � dŶt ),
I reduction of future income: Γt (dYt � dŶt ).

I No incentives to divert cash �ows if

Γt � λ.
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Agent�s Continuation Value and Incentives

I If the agent follows S�, his continuation value follows

dWt = ρWtdt � dCt + Γt
h
dŶt � (µt � I �t ) dt

i
+Ψgt

h
dNgt � νp (I �t ) dt

i
+Ψbt

h
dNbt � ν (1� p (I �t )) dt

i
.

2. Given Γt � λ, if agent would reduce It marginally below I �t would lead to

I an increases in cash �ows dŶt ! W grows by Γt ,
I a reduction of success Prob: νp0 (I �t ),
I an increase of failure Prob: νp0 (I �t ).

I No incentives to decrease It below I �t if

Γt � νp0 (I �t )
�

Ψgt �Ψbt
�
.
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Agent�s Continuation Value and Incentives

I If the agent follows S�, his continuation value follows

dWt = ρWtdt � dCt + Γt
h
dŶt � (µt � I �t ) dt

i
+Ψgt

h
dNgt � νp (I �t ) dt

i
+Ψbt

h
dNbt � ν (1� p (I �t )) dt

i
.

3. Increasing It above I �t : analogous but with opposite signs.

I No incentives to increase It above I �t if

Γt � νp0 (I �t )
�

Ψgt �Ψbt
�
.
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Local Incentive Compatibility

I To induce truth-telling: Tie compensation su¢ ciently strong to cash �ow
reports

Γt � λ.

I To induce investment according to I �: Balance incentives based on
investment outcome with incentives based on cash �ow reports

Ψgt �Ψbt =
Γt

νp0 (I �t )
.

I Limited liability requires that for all t,

Ψit � �Wt .
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Principal�s Value Function

I If agent is �red, principal
has to �nd a new agent:

I Search costs k,
I contract with new
agent starts at
F (W �).

I Lower boundary
condition becomes

F i (R) = F i (W �)� k.

I Compensation threshold is
determined as usual

F iW
�
W
i
�

= �1,

F iWW
�
W
i
�

= 0.
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Principal�s Value Function

I Applying the change of variable formula (noting that dNg dNb = 0), the
principal�s value function satis�es the coupled HJB

rF i = µi � I +
h
ρW � νp (I )ψg � ν (1� p (I ))ψb

i
F iW +

1
2

λ2σ2F iWW

+ν
h
F h (W + ψg )� F i (W )

i
+ ν

h
F l (W + ψb)� F i (W )

i
.

I Note that all key parameters are independent of the state µi :

I Investment technology with

I marginal bene�ts νp0∆,
I marginal costs �1.

I Underlying agency problem with

I shirking bene�ts λ,
I discount rates r and ρ,
I replacement costs k .
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Parallel Shift of the Value Function(s)

De�ne F (W ) := F l (W ) and use that F h = F (W ) + ∆
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Costs of Rewards and Punishments

I Contract optimally trades o¤ costs of replacement (k)
and costs from paying the agent in the future (ρ > r).

I By the same logic as in Reward for Luck, it would be optimal to
keep marginal costs of compensation FW (W ) constant if there is a
technology shock.

I With parallel value functions, this would imply to keep W constant,
that is,

Ψi = 0.

I However, by Incentive compatibility, the agent has to be rewarded for a
success and punished for a failure:

Ψg > 0 > Ψb .
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Costs of Rewards and Punishments

I Contract strikes optimal trade o¤ between costs of replacement (k)
and costs from paying the agent in the future (ρ > r).

I Rewarding agent by Ψg > 0 for success distorts optimal trade o¤:

I Too high future pay and too low �ring threat after success.

I Analogous distortion from punishing agent by Ψb < 0 for failure:

I Too low future pay and too high �ring threat after failure.

72 / 97



Costs of Rewards and Punishments

No "smoothing": FW (W + ψb) > FW (W ) > FW (W + ψg )
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Optimal Rewards and Punishments

I Providing incentives for investment implies that marginal compensation
costs can not be kept constant in the event of a technology shock.

I The best that can be achieved is to keep marginal costs constant in
expectation (keep expected distortion equal to zero)

0 = p (I ) [FW (W + ψg )� FW (W )]| {z }
distortion after success

+[1� p (I )] [FW (W + ψb)� FW (W )]| {z }
distortion after failure

.

I ψg ! 0 if p (I )! 1 and ψb ! 0 if p (I )! 0.

I ψb ! 0 if w ! 0 and ψb ! 0 if W ! W .
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Optimal Investment

I Optimal Investment is determined by FOC

νp0 (I )∆� 1�MAC (I ) = 0

where MAC (I ) consist of

1. Due to Incentive compatibility ψg � ψb has to increase 
λ

ν

�p00 (I )
p0 (I )2

!
p (I ) (1� p (I )) ν

h
FW (W + ψb)� FW (W + ψg )

i
� 0

This term vanishes for p (I )! 1 and for p (I )! 0
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Optimal Investment

I Optimal Investment is determined by FOC

νp0 (I )∆� 1�MAC (I ) = 0,

where MAC (I ) consist of:

2. Investment success triggering reward becomes more likely

νp0 (I )
h
F (W ) + ψgFW (W )� F (W + ψg )

i
| {z }

!0 for p(I )!1

� 0.

3. Investment failure triggering punishment becomes less likely

�νp0 (I )
h
F (W ) + ψbFW (W )� F (W + ψb)

i
| {z }

!0 for p(I )!0

� 0.
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Optimal Investment

I Optimal Investment is determined by FOC

νp0 (I )∆� 1�MAC (I ) = 0

=) MAC (I ) will be positive for low I and negative for high I

I If, in equilibrium,

I MAC (I ) = 0, then I (W ) = IFB ,
I MAC (I ) > 0, then I (W ) < IFB ,
I MAC (I ) < 0, then I (W ) > IFB .

I Compare situations with di¤erent returns to investment (measured by ∆).
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Investment Distortions
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Underinvestment if Agent is Too Poor to be Punished
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First-Best Investment at Payout Boundary
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Investment Depends on Past Cash Flows

dW = ρWdt + λσdZ + ψg [dNg � νpdt] + ψb
h
dNb � ν (1� p) dt

i
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Investment Depends on Past Investment Outcome

dW = ρWdt + λσdZ + ψg [dNg � νpdt] + ψb
h
dNb � ν (1� p) dt

i
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Implications of Changes in Corporate Governance
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Implications of Changes in Corporate Governance
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Implications of Changes in Corporate Governance
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Extensions and Applications V

Piskorski and Wester�eld (2011):
Optimal Dynamic Contracts with Moral Hazard and Costly Monitoring
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Motivation

So far:

I Ex-post incentive mechanism in the form of managerial compensation.

I Reward or punish manager based on realized corporate performance (with
prede�ned scheme).

I (Promised) compensation and �ring threat to provide incentives.

However, investors can also decide to invest resources to actively reduce
agency problems:

I Investors can monitor manager to reduce scope for shirking.

I E.g. continuous or repeated audits or direct involvement of the principal
in operations.

I Active monitoring provides an additional incentive device for the principal
and allows to reduce the likelihood of costly termination.
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Basic Setting

Similar to DeMarzo and Sannikov (2006)

I Time is continuous with t 2 [0,∞)
I All players are risk-neutral

I Agent has limited liability and limited wealth, so principal has to cover
operating losses and initial set up costs K

BUT additionally:

I Principal has access to a (costly and stochastic) monitoring technology
allowing him to detect shirking (cf. CSV literature).
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Basic Setting

I Cash �ows evolve according to

dYt = (µ� at ) dt + σdZt

where at � 0 denotes the agent�s shirking process
I Agent gets private bene�t from harmful hidden action (diversion, asset
misuse, etc.) at rate at (λ = 1).

I Simple monitoring technology:

I Principal chooses level of monitoring mt � 0 at cost θmt ,
I Monitoring gives access to a signal N indicating whether the agent
has shirked,

I N follows a Poisson process with intensity

ν(mt , at � art ) = mt max f0, at � art g ,

where art denotes the recommended level of shirking at t.
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Basic Setting

I Speci�c monitoring technology:

I Pay now to observe contemporaneous shirking, no "looking back",
I Probability of detection proportional to amount of shirking and
monitoring,

I No false positives.

I Agent�s outside value:

I If �red following bad performance: R.
I If �red following discovery of shirking through monitoring:
0 � WF � R.
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Contracting Problem

I The principal o¤ers the agent an incentive compatible contract specifying:

I cash payments fCt , t � τg,
I recommended shirking fart , t � τg,
I monitoring fmt , t � τg,
I and stopping times τd (under-performance) and τf (detection of

shirking), with τ = min
n

τd , τf
o
.

I Optimal contract maximizes

E a=a
r
�Z τ

0
e�rt (dYt � dCt � θmtdt) + e�rτL

�
,

where a = fat , t � τg maximizes the agent�s expected utility

E a
�Z τ

0
e�ρt (dCt + atdt) + e�ρτdR + e�ρτfWF

�
.
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Agent�s Continuation Value and Incentive Compatibility

I If a = ar , the agent�s continuation value evolves according to

dWt = ρWt � dCt � artdt| {z }
promise keeping

+Γt (dYt � (µ� art ) dt)| {z }
pay for performance

� ΨtdNt .| {z }
punishment for shirking

I Intensity of Nt is zero as monitoring creates no false positives.

I The contract is incentive compatible i¤

Γt � 1�Ψtmt
Γt 2 f1�Ψtmt , 1g

if art = 0,
if art > 0.

I Intuition: If the agent diverts an additional amount edt,

I he enjoys a private bene�t of edt,
I his continuation value is reduced by eΓtdt,
I and expected punishment is eΨtmtdt.

I If he diverts edt less, he loses edt and W increases by eΓtdt.
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Derivation of HJB for principal�s value function

I The problem can be simpli�ed by noting that:

I Wlog we can focus on contracts with ar = 0 (recommended shirking
can be replaced by consumption),

I Choose Ψt = ψ(Wt ) = Wt �WF (punish as hard as possible, "out
of equilibrium"),

I Choose Γt = γ(Wt ) = 1�Ψtmt (minimize volatility of Wt ),
I As usual cash compensation is deferred till a threshold W is reached.

I For W 2
�
R,W

�
, F (W ) has to satisfy the HJB equation

rF (W ) = max
m�0

8>><>>:µ� θm+ ρWF 0(W ) +
1
2
(1� (W �WF )m)

2| {z }
=γ(W ,m)2=(1�ψ(W )m)2

σ2F 00(W )

9>>=>>; ,
with the usual boundary conditions.
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Optimal Monitoring
I From the HJB

rF (W ) = max
m�0

�
µ� θm+ ρWF 0(W ) +

1
2
(1� (W �WF )m)

2 σ2F 00(W )
�
,

the principal chooses to monitor at rate

m =
θ

(W �WF )
2 σ2F 00(W )

+
1

(W �WF )
,

whenever

F 00(W ) < � θ

σ2 (W �WF )
.

I So, the optimal "pay-for performance sensitivity" given by

γ(Wt ) = 1� ψ(Wt )mt = �
θ

(Wt �WF ) σ2F 00(Wt )
.

! Monitoring allows to reduce performance based incentives and, thus,
termination probability.
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Optimal Monitoring

I From

γ(Wt ) = 1� ψ(Wt )mt = �
θ

(Wt �WF ) σ2F 00(Wt )
,

we have more monitoring/less pay-for-performance if:

I monitoring costs θ are low,
I monitoring is e¤ective (Wt �WF is high),
I aversion to volatility in Wt is high (F 00(Wt )).

I Timing and intensity of monitoring is shaped by two competing forces:
"risk of termination" and the agent�s "inside stake".

I When W decreases the risk of termination increases, while the
agent�s inside stake decreases,

I Quantitative assessment needed.
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Optimal Monitoring

I The monitoring function m(W ) can have two shapes depending on the
cost e¤ectiveness of monitoring:

1. if ψ(R) = R �WF is su¢ ciently high relative to θ, m(W ) is
decreasing,

2. if ψ(R) = R �WF is small relative to θ, m(W ) is hump-shaped

I The pay-for-performance sensitivity γ(W ) accordingly is either increasing
or U-shaped.

I The principal will replace termination entirely by (maximal) monitoring if
the costs of ine¢ cient termination are su¢ ciently high:

I 9L� such that the contract exhibits termination i¤ L > L�.
I For L < L�, there is full monitoring at W = R (m = 1/ψ(R)), such
that F (W = R) = max fL, L�g.

I The threshold L� is (weakly) decreasing in WF and θ.
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Comparative Statics

97 / 97


	The Model

