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Motivation

I So far we have discussed models that are formulated directly in
continuous time and studied how to solve these using martingale
techniques.

I Still, several other models are formulated in discrete time e.g. Quadrini
(2004), Clementi and Hopenhayn (2006), DeMarzo and Fishman (2007).

I Natural question: Convergence of discrete time models to continuous
time limit:

I Build intuition (make precise timing and info structure within each
period, "extensive form"),

I Show some advantages of cont. time modelling.
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Outline

1. The discrete time model:

I Setup,
I Static model,
I Optimal Contract with equally patient and impatient agent.

2. The continuous time limit:

I Convergence Results,
I Discussion and robustness.

Note: We will not provide detailed proofs of the results in this part of the
lecture. The discussion will be on an intuitive level. Rigorous proofs of the
presented results can be found in Biais et al. (2004, 2007).
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Part 1:
The Discrete Time Model.
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Model Setup

I Time is discrete with periods of length h > 0 indexed by n 2 N, so real
time is t = nh.

I Risk-neutral principal with discount rate r .

I Risk-neutral agent with discount rate ρ � r .
I Project can be managed by agent only and requires initial investment of
K � 0.

I Agent is protected by limited liability and has limited wealth B < K .
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Model Setup

I Project yields a stream of i.i.d. cash �ows yhnh :

yhnh =
�
yh+ = µh+ σε+

p
h

yh� = µh+ σε�
p
h

with prob. p
with prob. 1� p ,

with ε+ =
q
1�p
p and ε� = �

q
p
1�p , so

E
h
yhnh
i
= µh,

Var
h
yhnh
i
= σ2h.

I Assume h small enough such that yh� < 0 ("operating expenses").

I Liquidation value and agent�s outside option equal zero.
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Model Setup

I Principal does not observe yhnh directly, but only the agent�s report byhnh .
! Cash �ow diversion problem.

I Agent pro�ts at rate λ 2 (0, 1] from any unit diverted.

I Agency problem is "severe" for h close enough to zero:

pλ
�
yh+ � yh�

�
| {z }

expected bene�t from diversion

> µh|{z}
expected cash �ow

.

! Project can not be �nanced in the static model ("credit rationing")
for B = 0.

I Note: The formal analysis of this cash �ow diversion model is identical to
a hidden e¤ort model with binary e¤ort choice and private bene�ts from
shirking, if it is optimal to request e¤ort in all contingencies.
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Detour: The Static Model

I Let us have a look at the one-shot version of this model.

I Agent has to borrow K from investors in order to run the project (B = 0
for simplicity).

I The project generates cash �ow of y+ > 0 with probability p, while with
prob (1� p) cash �ow is y� < y+.

I Running the project is e¢ cient, i.e., it has a positive NPV:

µh = py+ + (1� p) y� > K .
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Detour: The Static Model

I Focus on truthtelling contracts (revelation principle): Agent delivers true
cash �ow to investors and receives a contingent transfer c+, c� � 0.

I If the principal did not request truthtelling, his expected pro�t would be

µh�K| {z }
net cash �ow

� pλ (y+ � y�)| {z }
utility from diversion

� p (1� λ) (y+ � y�)| {z }
cost of diversion

,

which is smaller than what can be achieved under truthtelling.

I The agent tells the truth if

c+ � λ(y+ � y�) + c�.

I Optimal to set c� = 0, so, pλ (y+ � y�) is minimum rent required
to induce truthtelling.
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Detour: The Static Model

I Accordingly, the maximum (expected) income for investors is

µh� pλ (y+ � y�) .

I This is consistent with the investors�participation constraint if and only if

µh� pλ (y+ � y�) � K .

! Credit rationing in the static model if the agency problem is "severe".

I Financing problem is relaxed if:

I Agent has initial wealth B > 0,
I Randomization over setting up the �rm is allowed.
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Detour: The Static Model

I With B > 0, agent needs to raise only K � B:

I Still optimal to set c� = 0 and the agent�s incentive and
participation constraints imply

c+ � max
�

λ(y+ � y�),
B
p

�
.

I So, the principal participates if

µh� pmax
�

λ(y+ � y�),
B
p

�
� K � B.

I Agent�s "stake" in the �rm relaxes the �nancing problem.
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Detour: The Static Model
I Randomization further relaxes the problem:

I Consider a small value of B for which �nancing with prob 1 is not
feasible (the incentive constraint binds).

I Starting the �rm with prob x is feasible if

x (µh� pλ(y+ � y�)) � xK � B.

! Maximal initial "scale" of project:

x = min
�

B
K � (µh� pλ(y+ � y�))

, 1
�
.

I Takeaway:

I Credit rationing in static model if agency problem is severe.
I Agent�s wealth and the possibility for randomization relax the
�nancing problem.

I Next: Repeated interaction may allow �nancing even if agency
problem is severe and agent has no initial wealth.
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The Dynamic Model - Timing

I Back to the dynamic model (stationary, in�nite horizon case).

I At any date nh, given the history of reports
nbyhmhon�1m=0

:

1. The project is continued with probability xhnh ,
2. The principal pays operating costs �yh�,
3. Given yhnh , the agent reports byhnh and makes payment byhnh � yh� to
the principal,

4. Based on
nbyhmhonm=0 the principal makes payment chnh � 0 to the

agent.
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The Recursive Formulation

I The optimal long-term contract will be derived using dynamic
programming with agent�s expected discounted utility as only state
variable (stationary case).

I Given continuation value w , the optimal contract speci�es:

1. Continuation probability x 2 [0, 1],
2. Contingent transfers (c+, c�) 2 R2+,
3. Contingent continuation values (w+,w�) 2 R2+.
! Limited liability:

(LL) c+,� � 0, w+,� � 0.

I From the revelation principle it is w.l.o.g. to require truthful reporting.
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The Principal�s Problem
I Denote by F h(w) the principal�s value function solving

F h(w) = max
x
c+,�
w+,�

(
x

"
µh� pc+ � (1� p) c� +

pF h(w+) + (1� p) F h(w�)
1+ rh

#)
,

subject to (LL), consistency ("promise keeping")

(PK ) w = x
�
pc+ + (1� p) c� +

pw+ + (1� p)w�
1+ ρh

�
,

and incentive compatibility

(IC ) c+ +
w+
1+ ρh

� c� +
w�
1+ ρh

+ λ
�
yh+ � yh�

�
.

I Compare with static IC: Possibility of deferred payment (the promise of
future rents) relaxes incentive constraint.
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An Alternative Representation
I Denote the social surplus for all w � 0 by V h(w) = w + F h(w), which
is independent of current transfers.

I The principal�s problem can then be rewritten as

V h(w) = max
x ,w+,w�

8<:x
24 µh+ pV h(w+)+(1�p)V h(w�)

1+rh

� (ρ�r )h[pw++(1�p)w� ]
(1+rh)(1+ρh)

359=; ,
subject to

w � x
�
w�
1+ ρh

+ pλ
�
yh+ � yh�

��
,

w � x
�
pw+ + (1� p)w�

1+ ρh

�
.

I It requires some work to eliminate c+,� from the constraints (without
adding much intuition), see Biais (2007) Lemma 1 for a proof.
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Solution to the Bellman Equation

Proposition 1: There exists a unique continuous and bounded solution
V h(w) to this programming problem, which is

(i) non-decreasing, concave and vanishes at zero,

(ii) linear over the region w 2
h
0,wh,l

�
, where the project is continued with

probability w/wh,l ,

(iii) strictly increasing over
h
wh,l ,wh,m

�
, with continuation probability of 1,

(iv) constant over
h
wh,m ,∞

�
, with continuation probability of 1.
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The Social Surplus
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Intuition for Proposition 1

I Immediate from limited liability and

w � x
�
w�
1+ ρh

+ pλ
�
yh+ � yh�

��
,

that for w < pλ
�
yh+ � yh�

�
liquidation must occur with positive

probability. As liquidation is ine¢ cient, it arises only for low values of the
agent�s continuation value, w < wh,l .

I The solution vanishes at zero because at w = 0 it is impossible to
incentivize the agent for truthtelling ("too poor to be punished").

I The solution is non-decreasing, as a higher w reduces the risk of
liquidation (bene�t of deferred compensation).

I The solution is concave as the risk of ine¢ cient liquidation endogenously
creates an aversion to variations in w .
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Intuition for Proposition 1

I If agent�s stake in the company is large enough (w � wh,m) there is no
need to further defer compensation. Both constraints are slack and w+,�
are chosen to solve

max

(
µh+

pV h(w+) + (1� p)V h(w�)
1+ rh

� (ρ� r) h [pw+ + (1� p)w�]
(1+ rh) (1+ ρh)

)
.

I Optimality implies that w+ = w� =: wh,r , which is de�ned by

wh,r 2 argmax
w

�
V h(w)� (ρ� r) hw

(1+ ρh)

�
,

! V h(w) is constant for w � wh,m .
I Optimal contract for large w crucially depends on relative impatience:

I If ρ = r , boundary wh,r = wh,m is absorbing,
I If ρ > r , re�ecting boundary wh,r < wh,m .
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The Optimal Contract with Equally Patient Agent

I Intuitively, when ρ = r there are no costs in delaying compensation and
recapitalizing the promised rewards at rate r .

! Never optimal to make direct payments before enough pro�ts have
been accumulated to �nance the incentive costs without ever relying on
the liquidation threat.

I The present value of these incentive costs is given by

wh,mρ=r =
∞

∑
n=0

�
1

1+ rh

�n
pλ
�
yh+ � yh�

�
=
1+ rh
rh

pλ
�
yh+ � yh�

�
| {z }

=σ
p
h/
p
p(1�p)

.

I If wh,mρ=r is reached, �rm is operated with certainty forever (�rst-best).

I As limh!0 w
h,m
ρ=r = ∞, the case with ρ = r is not viable for continuous

time analysis.
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The Optimal Contract with Equally Patient Agent

Proposition 2: Suppose ρ = r , then wh,lρ=r and w
h,m
ρ=r are given by:

wh,lρ=r = pλ(yh+ � yh�),

wh,mρ=r =
1+ rh
rh

pλ(yh+ � yh�),

and the optimal contract is characterized as follows:

x w+ w� c+ c�
w 2 (0,wh,lρ=r ) w/wh,lρ=r > w 0 0 0

w 2 [wh,lρ=r ,w
h,m
ρ=r ) 1 > w < w � 0 0

wh,mρ=r 1 wh,mρ=r wh,mρ=r λ(yh+ � yh�) 0

w+ = minf(1+ r) [wx + (1� p) λ(yh+ � yh�)],wh,mr=ρg,
w� = (1+ r) [w � pλ(yh+ � yh�)],

c+ = maxfw � (wh,mρ=r � λ(yh+ � yh�)), 0g.
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The Optimal Contract
I From now on assume ρ > r .

I Recall the constraints restricting w+ and w�:

w � x
�
w�
1+ ρh

+ pλ
�
yh+ � yh�

��
,

w � x
�
pw+ + (1� p)w�

1+ ρh

�
.

I For w � wh,m both constraints are slack and it is optimal to set
w+ = w� = wh,r , which, assuming di¤erentiability, satis�es

V h0(wh,r ) =
(ρ� r) h
(1+ ρh)

> 0.

I At wh,m only the �rst constraint is just binding, implying that

wh,m =
wh,r

1+ ρh
+ pλ

�
yh+ � yh�

�
.
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The Optimal Contract

I For wh,d := wh,m � λ
�
yh+ � yh�

�
� w � wh,m only the �rst constraint

is binding. Thus, it is optimal to set w+ = wh,r and

w� = (1+ ρh)
h
w � pλ

�
yh+ � yh�

�i
.

I For w 2
h
wh,l ,wh,d

�
both constraints are binding and

w+ = (1+ ρh)
h
w + (1� p) λ

�
yh+ � yh�

�i
,

w� = (1+ ρh)
h
w � pλ

�
yh+ � yh�

�i
.

I Finally, for w < wh,l there is positive probability of termination. (As for
wh,m there is also no closed form solution for wh,l in this case.)
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The Optimal Contract
I Given w+ and w�, one can then obtain the transfers c+,� from the
constraints of the original problem (IC) and (PK):

c+ = max
n
w � wh,d , 0

o
,

c� = max
n
w � wh,m , 0

o
.

I By construction, wh,r < wh,m is a re�ecting boundary for w , i.e., once
w � wh,r it stays smaller than wh,r forever.

I Intuition: As ρ > r it is no longer optimal to wait till the agent�s stake in
the �rm is large enough to reduce the probability of termination to zero.
! Increase termination probability for earlier consumption,
! "Immiserization":

I Proposition 3: When ρ > r the �rm is liquidated with probability one in
the long run:

lim
n!∞

n

∏
j=1

xnh = 0, a.s.

25 / 45



The Optimal Contract
Proposition 4: The optimal contract is characterized by two regimes:

(i) If w 2 [0,wh,l ), the project is continued with probability x = w/wh,l

and liquidated with probability 1� x. If the project is continued, the
optimal contract starting at w/x = wh,l is immediately executed.

(ii) If w 2 [wh,l ,∞), the project is continued with probability 1. The
optimal continuation utilities are given by

w+ = min
n
(1+ ρh)

h
w + (1� p) λ

�
yh+ � yh�

�i
,wh,r

o
,

w� = min
n
(1+ ρh)

h
w � pλ

�
yh+ � yh�

�i
,wh,r

o
,

while the optimal current transfers are given by

c+ = max
n
w � wh,d , 0

o
,

c� = max
n
w � wh,m , 0

o
.
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The Optimal Contract
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The Optimal Contract - Initialization

I From
V h(w) = F (w) + w ,

1. If the �nanciers have all bargaining power they choose wh,F0 such
that

d
dw
F h(wh,F0 ) = 0

() d
dw
V h(wh,F0 ) = 1,

2. If the entrepreneur has all the bargaining power, he chooses the
highest wh,E0 such that

F (wh,E0 ) = K � B
() V h(wh,E0 ) = wh,E0 +K � B.
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The Optimal Contract - Initialization
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The Dynamics of w

I Recall the cash �ow process

yhnh =
�
yh+ = µh+ σε+

p
h

yh� = µh+ σε�
p
h

with prob. p
with prob. 1� p ,

with ε+ =
q
1�p
p and ε� = �

q
p
1�p , so

E
h
yhnh
i
= µh,

Var
h
yhnh
i
= σ2h.

I This implies that the innovation εn =
�
yhnh � En�1

h
yhnh

i�
/σ
p
h is a

martingale di¤erence as
En�1 [εn ] = 0.
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The Dynamics of w

I Now, consider w 2
h
wh,l ,wh,d

i
, i.e., no liquidation and no transfers.

Then the optimal contract implies that between these thresholds it holds
that

wh(n+1)h = (1+ ρh)

26664whnh + λ
�
yhnh � µh

�
| {z }
=σεn

p
h

37775
,

wh(n+1)h
(1+ ρh)

� whnh = λσεn
p
h.

I So whnh is a discounted martingale and its sensitivity to the cash �ow
innovation is equal to λ, which measures the severity of the agency
problem.
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The Optimal Contract with Downsizing

I Convenient for implementation to interpret x as an irreversible downsizing
factor:

When x < 1, a fraction 1� x of the project is liquidated.
I Assume constant returns to scale: Cash �ows and utilities are scaled
down by factor x .

I Both w and vh(w) are then "size adjusted".

I Downsizing decision:

I For w 2 [wh,l ,∞), no downsizing,
I For w 2 [0,wh,l ), �rm is scaled down by x = w/wh,l and
continuation contract starts at size adjusted continuation utility
w/x = wh,l .
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Implementation

I Implementation with cash reserves, stocks and bonds (limited liability).

I All values in size adjusted terms, with �rm size at beginning of period n
equal to ∏n�1

i=0 x
h
ih .

I The �rm holds cash reserves m on an account with interest rate r :

mhnh =
whnh
λh
,

with λh = (1+ ρh) λ/ (1+ rh).

I The manager holds fraction λ of stocks, investors hold (1� λ) of stocks
and all bonds.
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Implementation
I If m 2

h
0,wh,l/λh

�
, the �rm is scaled down by x = m/

�
wh,l/λh

�
,

I If m 2
h
wh,l/λh ,wh,r/λh

i
, following a success, stocks distribute a

size-adjusted dividend

e = max

(
λhm

λ
� wh,d

λ
, 0

)
,

and bonds distribute a size-adjusted coupon

b = µh� (ρ� r) hm
1+ rh

.

I Given this de�nitions, starting at mh0 = w
h
0 /λh the cash holdings evolve

according to

mh(n+1)h = (1+ rh)
�
mhnh + y

h
nh � bhnh � ehnh

�
,

which is equivalent to the evolution of whnh derived above.
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Part 2:
The Continuous Time Limit.
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Convergence of the Value Functions

I Consider again w 2
h
wh,l ,wh,d

i
such that the continuation utility of the

agent evolves according to

wh(n+1)h = (1+ ρh)
h
whnh + λσεn

p
h
i
.

I Then, for (ew ,eε) 2 f(w+, ε+) , (w�, ε�)g Taylor approximation yields
V h(ew) = V h(w)+�ρhw + λσeεph�V h0(w)+ λ2σ2eε2h

2
V h00(w)+ o(h).

I Substituting this into the Bellman equation, one obtains the following
approximation:

rV h(w) � µ� (ρ� r)w + ρwV h0(w) +
λ2σ2

2
V h00(w).
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Convergence of the Value Functions
Proposition 5: As h goes to 0, the value function V h converges uniformly
to the unique solution V to the free boundary problem

rV (W ) =

(
µ� (ρ� r)W + ρWV 0(W ) + λ2σ2

2 V 00(W )

rV (Wm)

if W 2 [0,Wm ]

if W 2 (Wm ,∞)
,

with boundary conditions

V (0) = 0,

V 0(Wm) = 0,

V 00(Wm) = 0.

It holds that

lim
h!0

wh,l = 0,

lim
h!0

wh,d = lim
h!0

wh,r = lim
h!0

wh,m = Wm .
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Convergence of the Value Functions
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Convergence of Cash Flows

I The total revenue generated by the project up to any date nh prior to
liquidation is

Y hnh = µ (n+ 1) h+ σ
n

∑
i=0

εi
p
h.

I This converges for h! 0 to the arithmetic Brownian motion

Yt = µt + σZt .
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Convergence of the Optimal Contracts
I Recall: For w 2

h
wh,l ,wh,d

i
the agent�s utility evolves with constant

growth rate and volatility according to

wh(n+1)h = (1+ ρh)
h
whnh + λσεn

p
h
i
.

I Further,

lim
h!0

wh,l = 0,

lim
h!0

wh,d = lim
h!0

wh,r = lim
h!0

wh,m = Wm .

I Proposition 6: As h! 0, the process wh converges to the solution W
to the re�ected di¤usion problem

dWt = ρWtdt + λσdZt � dCt ,
Wt � Wm ,

Ct =
Z t
0
1fWs=W mgdCs ,

for all t 2 [0, τ], where τ = inf ft � 0 : Wt = 0g < ∞, a.s.
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Convergence of the Optimal Contracts

Proposition 7: Let F (W ) = V (W )�W denote the �nanciers�utility given a
promised utility W for the entrepreneur in the continuous time limit of the
model. Then, for any W 2 [0,Wm ],

W = E (W ,0)
�Z τ

0
e�ρtdCt

�
,

F (W ) = E (W ,0)
�Z τ

0
e�rt (µdt � dCt )

�
,

where E (W ,0) is the expectation operator induced by the process (W ,C )
starting at (W , 0).
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Discussion

I Results show that continuous time analysis of cash �ow diversion model
in DeMarzo and Sannikov (2006) arises as the limit of a discrete time
cash �ow diversion model.

I Crucial: Cash Flows follow a binomial process.

I Sadzik and Stacchetti (2012) show dependence of continuous time limit
on information structure in a richer setting:

I Risk aversion,
I Hidden action and hidden information,
I General noise distribution.

I Finding: The continuous time solution in Sannikov (2008) emerges as the
limit of discrete time solution in the pure hidden action case if the
variance of the likelihood ratio of the noise distribution is equal to 1
(normal distribution).
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Discussion

I Consider a discrete time analogue to Sannikov (2008).

I In each period t = 0,∆, 2∆, ...:

I Agent chooses hidden e¤ort at with e¤ort costs h(at ),
I Both parties observe cash �ows yt = at + εt ,
I Principal chooses wage ct � 0.

I Noise term εt i.i.d with density g(εt ).
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Discussion
I Denote the principal�s value function by F∆(w). Then F∆(w) converges
to the solution of the following boundary value problem

F (W ) = sup
a,c

�
(a� c) + (W � (u(c)� h(a))) F 0(W ) + rθ(a, h(a))

2
F 00(W )

�
,

with boundary conditions

F (0) = 0,

F (W gp) = F0(W
gp) = �u�1(W gp),

F 0(W gp) = F 00(W
gp).

I The term θ(a, h(a)) is given by

θ(a, h(a)) =
(h0(a))2

VLR(gε)
,

where VLR denotes the variance of the likelihood ratio ("informativeness"
of public signal).
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Discussion
I In particular, we have

VLR(gε) =
Z �g 0(ε)

g(ε)

�2
g(ε)dε =

Z
(g 0(ε))2

g(ε)
dε.

I When ε is normally distributed, then

θ(a, h(a)) =
σ2 (h0(a))2

1
,

establishing the equivalence to Sannikov (2008).

I When x has bounded support and density g(ε) = 1� jεj, with jεj � 1,
then

θ(a, h(a)) =
σ2 (h0(a))2

∞
,

and one can achieve the �rst best.

I Costs of incentives θ are decreasing in VLR. Thus, F (W ) is increasing in
VLR for any W .
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