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Outline

1. Solve the continuous time model with a risk-neutral agent
(DeMarzo Sannikov 2006).

2. Derive analytic comparative statics.

3. Capital structure implementation(s).

4. Asset pricing implications.
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DeMarzo and Sannikov 2006

I Time is continuous with t 2 [0,∞).
I Risk-neutral principal with discount rate r .

I Risk-neutral agent with discount rate ρ > r .

I Agent has limited liability and limited wealth, so principal has to cover
operating losses and initial set up costs K .
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DeMarzo and Sannikov 2006

I Firm produces cash �ows

dYt = µdt + σdZt ,

I with constant exogenous drift rate µ > 0,
I and Z is a standard Brownian motion.

I Principal does not observe Y but only the agent�s report

dŶt = (µ� At ) dt + σdZt .

I A � 0 represents the diversion of cash �ow by the agent.
I Agent enjoys bene�ts from diversion of λA with λ � 1.
I A revelation principle-like argument implies that it is always optimal
to implement truth telling: At = 0, t � 0.
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The Principal�s Problem

I Find the pro�t-maximizing full commitment contract at t = 0

I A contract speci�es cash payments to the agent C = fCt , t � 0g and a
stopping time τ � 0 when the �rm is liquidated and the receives scrap
value L, to maximize the principal�s pro�t

F0 = E
A=0

�Z τ

0
e�rt (µdt � dCt ) + e�rτL

�
,

I subject to delivering the agent an initial value of W0

W0 = E
A=0

�Z τ

0
e�ρtdCt + e�ρτR

�
,

I and incentive compatibility

W0 � E Ã
�Z τ

0
e�ρt �dCt + λÃtdt

�
+ e�ρτR

�
, given

�
Ãt
	
� 0.
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5 Steps to Solve for the Optimal Contract

1. De�ne agent�s continuation value Wt given a contract fC , τg if he tells
the truth

Wt = EA
�Z τ

t
e�ρ(u�t)dCu + e�ρ(τ�t)R

����Ft� . (1)

2. Represent the evolution of Wt over time.

3. Derive the incentive compatibility constraint under which the agent
reports truthfully.

4. Derive the HJB for the principal�s pro�ts F (W ).

5. Veri�cation of the conjectured contract.
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5 Steps to Solve for the Optimal Contract

Step 2:
Represent the evolution of Wt over time.
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Represent the Evolution of W over Time

I Exercise:

I De�ne t-expectation of agent�s lifetime utility Vt ,
I use MRT characterize Vt derive dWt .

I Theorem: Let Zt be a Brownian motion on (Ω,F ,Q) and Ft the
�ltration generated by this Brownian motion. If Mt is a martingale with
respect to this �ltration, then there is an Ft -adapted process Γ such that

Mt = M0 +
Z t
0

ΓsdZs , 0 � t � T .
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Evolution of Agent�s Continuation Value

I The agent�s continuation value evolves according to

dWt = ρWtdt � dCt + Γt
�
dŶt � µdt

�
.

I Principal has to honor his promises: W has to grow at the agent�s
discount rate ρ.

I W decreases with cash payments to the agent dCt .
I Sensitivity with respect to �rm�s cash �ows Γt will be used to
provide incentives.
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5 Steps to Solve for the Optimal Contract

Step 3:
Derive the local incentive compatibility constraint.

10 / 53



Local Incentive Compatibility Constraint

I Proposition 1. The truth telling contract fC , τg is incentive compatible
if and only if

Γt � λ for t � 0.

I Intuition: Assume the agent would divert cash �ows dYt � dŶt > 0

I immediate bene�t from consumption: λ
�
dYt � dŶt

�
,

I change in continuation value Wt : �Γt
�
dYt � dŶt

�
.
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Proof of Proposition 1

I The agent�s expected lifetime utility for any feasible policy with
dŶt � dYt , is given by

W0 +
Z τ

0
e�ρtλ

�
dYt � dŶt

�
�
Z τ

0
e�ρtΓt

�
dYt � dŶt

�
.

I Su¢ ciency:
If Γt � λ holds, this expression is maximized by setting dŶt = dYt 8t.

I Necessity:
Assume Γt < λ on a set of positive measure. Then the agent could gain
by setting dŶt < dYt on this set.
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5 Steps to Solve for the Optimal Contract

Step 4:
Derivation of the HJB for the principal�s value function.
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Derivation of the HJB for Principal�s Value Function

I Denote the highest pro�t that the principal can get from a contract, that
provides the agent expected payo¤ W , by

F (W ) .

I Assume for now that the principal�s value function is concave:

F 00 (W ) � 0

(this will be veri�ed later).

I Principal dislikes variation W as the agent has to be �red �which is
ine¢ cient � if W = 0.
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Optimal Compensation Policy

I Principal has two options for compensating the agent:

I Raise agent�s promised pay W at marginal costs of F 0 (W ),
I lump sum payment to the agent at marginal costs of �1.

) No cash payments as long as F 0 (W ) > �1
I De�ne the compensation threshold W by

F 0
�
W
�
= �1,

I where cash payments re�ect W at W , i.e.

dC = max
�
0,W �W

	
. (2)
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Derivation of the HJB for Principal�s Value Function

I Exercise:

I What does the evolution of Wt look like for Wt 2
�
R,W

�
?

I Derive the HJB for Wt 2
�
R,W

�
I What is the principal�s required rate of return?
I What is the instantaneous cash �ow?
I Use Itô�s lemma, derive the di¤erential dF (W ).
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Boundary Conditions

I Value matching

F (R) = L

If the agent is �red, the
principal gets liquidation
value L.
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Boundary Conditions

I Value matching

F (R) = L

I Smooth pasting

F 0
�
W
�
= �1

At compensation boundary
marginal costs of cash
payments have to match
those of raising W .
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Boundary Conditions

I Value matching

F (R) = L

I Smooth pasting

F 0
�
W
�
= �1

I Super contact

F 00
�
W
�
= 0

Ensures optimal choice of
compensation boundary W .
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Boundary Conditions

I Concavity of F re�ects
following trade o¤:

I Raising W has ambiguous
marginal e¤ect on F

+ less risk of termination
(L < µ/r)
(weaker for high W ).

� more cash payments in the
future (ρ > r)
(independent of W ).
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Relative Bargaining Power and Distribution of Surplus

I If investors are competitive,
W0 is the largest W such
that investors break even.

I Since investors make zero
pro�ts, denote this value by
W 0:

F
�
W 0

�
= K .
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Relative Bargaining Power and Distribution of Surplus

I If managers are
competitive, W0 = W �,
where

W � = argmax
W

F (W ) .

I The project is funded
initially only if

F (W �) � K .
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A Note on Commitment and Renegotiation

I It is assumed that the principal can commit to a long-term contract.

I However, the principal may want to renegotiate the contract:

I When F 0 (W ) > 0, he may not want to reduce W following a bad
cash �ow shock.

I More generally: Principal and agent would bene�t from raising W .

I This can be dealt with by imposing the restriction that F (W ) is
non-increasing:

I The optimal contract will be terminated randomly at lower boundary
W > R:

dWt = ρWt � dCt + ΓtσdZt + dPt ,

with P re�ecting W at W and the project continued with probability
dPt/ (W � R).
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5 Steps to Solve for the Optimal Contract

Step 5:
Veri�cation of the conjectured contract.
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Concavity of F(W)

I Proposition 2. For W 2 [R,W ), it holds that F 00 (W ) < 0.
I Proof.

1. Use boundary conditions to show that F 00
�
W � ε

�
< 0:

I Di¤erentiating HJB w.r.t. W yields

(r � ρ) F 0 (W ) = ρWF 00 (W ) +
1
2

λ2σ2F 000 (W ) . (3)

I Evaluating (3) in W implies

F 000(W ) = 2
ρ� r
λ2σ2

> 0,

I from which we get F 00(W � ε) < 0.
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Proof of Proposition 2
2. Assume that there is a W̃ s.t.

F 00
�
W̃
�
= 0 and

F 00 (W ) < 0 for W 2 (W̃ ,W ).
I By continuity, this implies that F 000

�
W̃
�
< 0 and, from (3),

F 0(W̃ ) = �1
2

λ2σ2

ρ� r F
000(W̃ ) > 0. (4)

I The joint surplus has to be strictly lower than �rst best:

F (W ) +W <
µ

r
,

so that, from evaluating the HJB in W̃ , we would get

F
�
W̃
�
+ W̃ � µ

r
= W̃ +

ρ

r
W̃ F 0

�
W̃
�
,

implying that F 0
�
W̃
�
< 0, contradicting (4).
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Veri�cation Theorem

I We still need to verify that the principal�s pro�ts are maximized under the
conjectured contract.

I De�ne the principal�s lifetime pro�ts for any incentive compatible
contract:

Gt =
Z t
0
e�rs (dYs � dCs ) + e�rtF (Wt ) ,

I and look at the drift of G (use Itô�s Lemma and dynamic of W )h
µ+ ρF 0 (W ) +

1
2

Γ2t σ2F 00 (W )� rF (Wt )
i

| {z }
�0

dt �
h
1+ F 0 (W )

i
| {z }

�0

dCt .

I The �rst statement holds with equality under the conjectured contract,
that is if the HJB is satis�ed.

I The second statement holds with equality if dC follows (2):
dC > 0 only if F 0 (W ) = �1.
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Veri�cation Theorem

I Therefore G is a supermartingale and a martingale under the conjectured
contract

) F (W ) provides an upper bound of the principal�s pro�ts under any
incentive compatible contract, as

E
�Z τ

0
e�rt (dYt � dCt ) + e�rτL

�
= E [Gτ ] � G0 = F (W0) ,

with equality under the optimal contract.
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Comparative Statics

Derive analytical comparative statics.
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Comparative Statics

I Discrete time: Comparative statics often analytically intractable.

I Continuous time: Characterization of optimal contract with ODE allows
for analytical comp. statics.

I E¤ect of a particular parameter θ on value function Fθ(W ) can be found
as follows:

1. Di¤erentiate the HJB and its boundary conditions with respect to θ,
keeping W �xed (envelope theorem) giving a 2nd order ODE in
∂Fθ(W )/∂θ with appropriate boundary conditions.

2. Apply a Feynman-Kac style argument to write the solution as an
expectation, which can be signed in many cases.
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Comparative Statics
I Given W the principal�s pro�t function Fθ,W (W ) solves the following
boundary value problem

rFθ,W (W ) = µ+ ρWF 0
θ,W (W ) +

1
2

λ2σ2F 00
θ,W (W ) ,

Fθ,W (R) = L, F 0
θ,W (W ) = �1.

I Di¤erentiating with respect to θ and evaluating at the pro�t maximizing
choice W = W (θ), gives

r
∂Fθ (W )

∂θ
=

∂µ

∂θ
+

∂ρ

∂θ
WF 0θ (W ) + ρW

∂

∂W
∂Fθ (W )

∂θ

+
1
2

∂λ2σ2

∂θ
F 00θ (W ) +

1
2

λ2σ2
∂2

∂W 2
∂Fθ (W )

∂θ

with boundary conditions

∂Fθ(R)
∂θ

=
∂L
∂θ
,

∂

∂W
∂Fθ

�
W
�

∂θ
= 0,

where we have used the envelope theorem
∂Fθ(W )/∂θ = ∂Fθ,W (θ)(W )/∂θ.
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Comparative Statics

I For notational simplicity, write G (W ) := ∂Fθ (W ) /∂θ, so that

rG (W ) =
∂µ

∂θ
+

∂ρ

∂θ
WF 0θ (W ) +

1
2

∂λ2σ2

∂θ
F 00θ (W )| {z }

=:g (W )

+ρWG 0(W ) +
1
2

λ2σ2G 00(W ),

G (R) =
∂L
∂θ
, G 0(W ) = 0.

I "Find the martingale": Next, de�ne

Ht =
Z t
0
e�rsg(Ws )ds + e�rtG (Wt ).
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Comparative Statics

I From Itô�s lemma

ertdHt =

�
g(Wt ) + ρWtG 0(Wt ) +

1
2
G 00(Wt )λ

2σ2 � rG (Wt )

�
dt

�G 0(Wt )dIt + G 0(Wt )λσdZt ,

showing that Ht is a martingale:

G (W0) = H0 = E [Hτ ] = E
�Z τ

0
e�rtg(Wt )dt + e�rτ

∂L
∂θ

�
.

I Plugging back the de�nition of G (W ):

∂Fθ(W )
∂θ

= E

" R τ
0 e

�rt
�

∂µ
∂θ +

∂ρ
∂θWtF 0θ (Wt ) +

1
2

∂λ2σ2

∂θ F 00θ (Wt )
�
dt

+e�rτ ∂L
∂θ

�����W0 = W

#
.
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Comparative Statics

I For comparative statics with respect to R note that the principal�s pro�t
remains unchanged if the agent�s outside option increases by dR and the
liquidation value increases by F 0(R)dR, hence:

∂F (W )
∂R

= �F 0(R)E
�
e�rτ

��W0 = W
�
.

I Given the e¤ect of θ on Fθ(W ) we get:

I the change in W from rFθ

�
W
�
+ ρW = µ,

I the change in W � from F 0(W �) = 0,
I the change in W 0 from F (W 0) = K .
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Comparative Statics
I Example:

∂F (W )
∂L

= E
�
e�rτ

��W0 = W
�
> 0,

I from rF
�
W
�
+ ρW � µ = 0 one gets

∂W
∂L

= �
rE
�
e�rτ jW0 = W

�
ρ� r < 0,

I from F 0(W �) = 0 it holds that

∂W �

∂L
= �

∂
∂W E [e

�rτ jW0 = W �]

F 00(W �)
< 0,

I from F (W 0) = K one gets

∂W 0

∂L
= �

E
�
e�rτ jW0 = W 0�
F 0(W 0)

> 0.
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Capital Structure Implementation

The optimal contract can be implemented using standard securities.
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Capital Structure Implementation

I Equity

I Equity holders receive dividend payments.
I Dividend payments are made at agent�s discretion.

I Long-term Debt

I Console bond that pays continuous coupons.
I If �rm defaults on a coupon payment, debt holders force termination.

I Credit Line

I Revolving credit line with limit W .
I Drawing down and repaying credit line is at the agent�s discretion.
I If balance on the credit line Mt exceeds W , �rm defaults and is
liquidated (creditors receive L).
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Capital Structure Implementation

I Agent has no incentives to divert cash �ows if he is entitled to fraction λ
of the �rm�s equity and has discretion over dividend payments.
(For simplicity, take λ = 1 for now.)

I Idea: Construct a capital structure that allows to use the balance on
credit line Mt as "memory device" in lieu of the original state variable Wt :

Mt = W �Wt .

I To keep the balance M positive, dividends have to be distributed once
credit line is fully repaid (Mt = 0).

I Firm is liquidated when credit line is overdrawn (Mt = W ).
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Capital Structure Implementation

I To implement our optimal contract, the balance on the credit line has to
mirror the agent�s continuation value Wt . Hence, Mt = W �Wt follows

dMt = ρMtdt| {z }
interest on c.l.

+
�
µ� ρW

�
dt| {z }

coupon payment

+ dCt|{z}
dividend

� dŶt|{z}
cash �ow

.

I Credit line charges an interest rate equal to agent�s discount rate ρ.
I Letting coupon rate be r , face value of long-term debt is equal to

D =
µ

r
� ρ

r
W = F

�
W
�
.

I Dividend payments are paid out of credit line.
I Cash in�ows are used to pay back the credit line.
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Capital Structure �Low Risk

I Debt is risky, as D > L and must trade at a discount.

I Lenders expect to earn a pro�t from credit line (charging high interest ρ),
which exactly o¤sets this discount.
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Capital Structure � Intermediate Risk

I Higher risk calls for a longer credit line (�nancial slack) and a lower level
of debt (debt is now riskless, as D < L).

I Di¤erence in set up costs K �D is �nanced by initial draw on credit line
W �W0, for which lenders charge a "fee" of (W �W0)� (K �D) > 0.
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Capital Structure �High Risk

I Negative debt: cash deposit as condition for extremely long credit line.

I Interest earned on D increases pro�tability of �rm to deter agent from
consuming credit line and defaulting.
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Comparative Statics for the Implementation

I Credit line decreases in L as �nancial slack is less valuable.

I Credit line decreases in ρ as it becomes costlier to delay compensation.

I Credit line increases in µ, σ2 to reduce probability of termination.
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Comparative Statics for the Implementation

I Firm becomes more pro�table as L and µ increase.

I Firm becomes less pro�table as R, ρ, σ and λ increase.
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Capital Structure Implementation II

Security Pricing
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Security Prices
I There is more we can say about security prices. Consider an alternative
implementation, where M̃ = W/λ denotes the �rm�s cash reserves (this
follows Biais et al. 2007)

dM̃t = ρM̃tdt + σdZt �
1
λ
dCt .

I The �rm is liquidated if its cash reserves are exhausted (Wt/λ = 0),

I the agent distributes a dividend dCt/λ when cash reserves meet an upper
bound W/λ.

I Rewrite the evolution of M̃

dM̃t = r(M̃t + µ)dt + σdZt � dCt � dPt ,

where dCt denotes the agent�s fraction of dividends and dPt payments to
bond holders and holders of external equity, respectively, with

dPt =
�
µ� (ρ� r) M̃t

�
dt +

1� λ

λ
dCt .
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Stock Price

I The market value of stocks is equal to expected dividend payments

St = Et

�Z τ

t
e�r (s�t)

1
λ
dCs

�
.

I By Itô�s formula, S
�
M̃
�
has to satisfy the following di¤erential equation

over M̃ 2 [0,W/λ]

rS
�
M̃
�
= ρM̃S 0(M̃) +

1
2

σ2S 00(M̃).

with boundary conditions

S (0) = 0,

S 0
�
W
λ

�
= 1.
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Stock Price (Testable Implications)

I Stock price S
�
M̃
�
is (a) increasing and (b) concave in cash holdings M̃.

I Intuition:

(a) An increase in cash holdings M̃ reduces probability of default and
increases probability of dividend payment.

(b) For low M̃, threat of default is more immediate ) Stock price reacts
more strongly to �rm performance when cash holdings are low.
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Stock Price (Testable Implications)

I From Itô�s formula, the stock price follows

dSt = rStdt + StσS (St ) dZt �
1
λ
dCt ,

where the volatility of S is given by

σS (s) =
σS 0

�
S�1 (s)

�
s

.

I Di¤erences to "standard" asset pricing models:

I Stock price is re�ected when dividends are paid at S
�
W/λ

�
,

I the volatility of the stock price remains strictly positive when S ! 0

SσS (S) = σS 0(M̃) > 0.

I Because SσS (S) is decreasing in S , the stock price is negatively
correlated with its volatility "Leverage e¤ect".
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Value of Bonds

I The market value of bonds is equal to expected coupon payments

Dt = Et

�Z τ

t
e�r (s�t)

�
µ� (ρ� r) M̃s

�
ds
�

I By Itô�s formula, D
�
M̃
�
has to satisfy

rD
�
M̃
�
= µ� (ρ� r) M̃s + ρM̃D 0(M̃) +

1
2

σ2D 00(M̃)

over M̃ 2 [0,W/λ] with boundary conditions

D (0) = 0,

and D 0
�
W
λ

�
= 0.
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Leverage (Testable Implications)

I The leverage ratio Dt/St is strictly decreasing in M̃t and St .

I Intuition:

I Debt value reacts less to �rm performance than stock price because
coupon is paid steadily as long as �rm operates.

I Dividend payments on the other hand are only made after su¢ ciently
positive record and thus react more strongly to �rm performance.

I Performance (cash �ow) shocks induce persistent changes in capital
structure.

I Puzzling in context of (static) trade-o¤ theory: Why do �rms not
issue or repurchase debt/equity to restore optimal capital structure?
(Welch 2004).

I Under our dynamic contract, �nancial structure is adjusted
optimally by change in market values of debt and equity.
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Default Risk (Testable Implications)

I As a measure for the risk of default at time t, de�ne the credit yield
spread ∆t by Z ∞

t
e�(r+∆t )(s�t)ds = Et

�Z τ

t
e�r (s�t)ds

�
,

I from which we get

∆t = r
Tt

1� Tt
,

where Tt = Et
h
e�r (τ�t)

i
denotes the t-expected value of one unit paid

at the time of default.
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Default Risk (Testable Implications)

I The credit yield spread is (a) decreasing and (b) convex in M̃t .

I Intuition:

(a) Higher cash reserves reduce the probability of default,
(b) e¤ect weaker for high values of M̃t : At W/λ, in�ows are paid out

as dividend and do not a¤ect default risk.

53 / 53
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