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Outline

1. Solve the continuous time model with a risk-neutral agent
(DeMarzo Sannikov 2006).

2. Derive analytic comparative statics.
3. Capital structure implementation(s).

4. Asset pricing implications.
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DeMarzo and Sannikov 2006

v

Time is continuous with t € [0, c0).

v

Risk-neutral principal with discount rate r.

v

Risk-neutral agent with discount rate p > r.

v

Agent has limited liability and limited wealth, so principal has to cover
operating losses and initial set up costs K.



DeMarzo and Sannikov 2006

» Firm produces cash flows

dYt = ]x[dt +UdZt,

» with constant exogenous drift rate u > 0,
» and Z is a standard Brownian motion.

> Principal does not observe Y but only the agent's report

d¥e = (u— Ay) dt + odZ;.

» A > 0 represents the diversion of cash flow by the agent.

» Agent enjoys benefits from diversion of AA with A < 1.

> A revelation principle-like argument implies that it is always optimal
to implement truth telling: A; =0, t > 0.



The Principal’s Problem

» Find the profit-maximizing full commitment contract at t =0

> A contract specifies cash payments to the agent C = {C¢, t > 0} and a
stopping time T > 0 when the firm is liquidated and the receives scrap
value L, to maximize the principal's profit

T
FO = EA:0 |:/ efrt (]/ldt — dCt) + erTL:| ,
0
> subject to delivering the agent an initial value of W
T
Wy = EA=0 [ / e PtdCy + ePTR] ,
0
> and incentive compatibility

W > EA UOT e " (dCi 4 AAcdt) + e_PTR} . given {A;} >0.



5 Steps to Solve for the Optimal Contract

. Define agent’s continuation value W; given a contract {C, T} if he tells
the truth

W; = EA [ [ e, + e—m—fm’ }‘t} | 1)
t

. Represent the evolution of W; over time.

. Derive the incentive compatibility constraint under which the agent
reports truthfully.

. Derive the HJB for the principal’s profits F (W).

. Verification of the conjectured contract.
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5 Steps to Solve for the Optimal Contract

Step 2:
Represent the evolution of W; over time.
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Represent the Evolution of W over Time

» Exercise:

» Define t-expectation of agent's lifetime utility V4,
» use MRT characterize V; derive dW;.

» Theorem: Let Z; be a Brownian motion on (Q, F, Q) and F; the
filtration generated by this Brownian motion. If My is a martingale with
respect to this filtration, then there is an F;-adapted process T such that

t
Mt:Mo+/ TsdZs, 0<t<T.
0



Evolution of Agent's Continuation Value

> The agent's continuation value evolves according to

dW; = pWedt — dCe + Tt (d Ve — udt) .

» Principal has to honor his promises: W has to grow at the agent's
discount rate p.

» W decreases with cash payments to the agent dC;.

» Sensitivity with respect to firm’s cash flows I';+ will be used to
provide incentives.



5 Steps to Solve for the Optimal Contract

Step 3:
Derive the local incentive compatibility constraint.
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Local Incentive Compatibility Constraint

» Proposition 1. The truth telling contract {C, T} is incentive compatible
if and only if
I't > Afort>0.

> Intuition: Assume the agent would divert cash flows dY; — d¥: >0

> immediate benefit from consumption: A (dY;: — dV%),
» change in continuation value W;: —T'¢ (dYt — d\A’t).



Proof of Proposition 1

> The agent's expected lifetime utility for any feasible policy with
dY: < dY:, is given by

Wo + /OT e PEA (dYe — d V) — /OT e P, (dY: — dVe) |

» Sufficiency:
If '+ > A holds, this expression is maximized by setting dY; = dY; Vt.

> Necessity:
Assume I't < A on a set of positive measure. Then the agent could gain
by setting dY; < dY; on this set.



5 Steps to Solve for the Optimal Contract

Step 4:
Derivation of the HJB for the principal’s value function.
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Derivation of the HJB for Principal’s Value Function

> Denote the highest profit that the principal can get from a contract, that
provides the agent expected payoff W, by

F(W).
» Assume for now that the principal’s value function is concave:
F" (W) <0

(this will be verified later).

> Principal dislikes variation W as the agent has to be fired — which is
inefficient — if W = 0.
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Optimal Compensation Policy

» Principal has two options for compensating the agent:

» Raise agent’s promised pay W at marginal costs of F' (W),
» lump sum payment to the agent at marginal costs of —1.

= No cash payments as long as F' (W) > —1

» Define the compensation threshold W by
F (W) = -1,
» where cash payments reflect W at W, i.e.

dC =max {0, W — W}. (2)



Derivation of the HJB for Principal’s Value Function

» Exercise:
» What does the evolution of W; look like for W; € [R,W]?
> Derive the HIB for W; € [R, W]

» What is the principal’s required rate of return?
> What is the instantaneous cash flow?
> Use It&'s lemma, derive the differential dF (W).
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Boundary Conditions

» Value matching

F(R)=L i
first-best: rF (W) =y —rW
If the agent is fired, the
principal gets liquidation
value L.
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Boundary Conditions

» Value matching
F(R)=L
» Smooth pasting
F' (W) = -1

At compensation boundary
marginal costs of cash
payments have to match
those of raising W.

first-best: rF (W) =y —rW




Boundary Conditions

» Value matching

F(R) =1L "

first-best: rF (W) =y —rW

» Smooth pasting W) = oW
1

Vi F (W) = j+pWF' (W) + A202F" (W

F/(W)Z—l \ (W) = p+pWF' (W) + 3 w)

> Super contact

F" (W) =0

Ensures optimal choice of
compensation boundary W.

R
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Boundary Conditions

» Concavity of F reflects
following trade off:

> Raising W has ambiguous
marginal effect on F

+ less risk of termination
(L<u/r)
(weaker for high W).

— more cash payments in the
future (o > r)
(independent of W).

first-best: rF (W) =y —rW
F(W)=u—pW

(W) = -+ pWF (W) + 202 (W)




Relative Bargaining Power and Distribution of Surplus

> If investors are competitive,

Wp is the largest W such
that investors break even.

» Since investors make zero
profits, denote this value by
wo.

F(w) =k

=

first-best: rF (W) =y —rW

F(W)=u—pW

(W) = -+ pWF (W) + 202 (W)
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Relative Bargaining Power and Distribution of Surplus

> If managers are
competitive, Wy = W*, "
where

first-best: rF (W) = pu —rW
F(W)=u—pW
*
W" = arg mvax F(W). o (W) = -+ pWF (W) + 202 (W)
> The project is funded
initially only if

F(W*) > K.




A Note on Commitment and Renegotiation

> It is assumed that the principal can commit to a long-term contract.

> However, the principal may want to renegotiate the contract:

» When F' (W) > 0, he may not want to reduce W following a bad
cash flow shock.

» More generally: Principal and agent would benefit from raising W.

> This can be dealt with by imposing the restriction that F(W) is
non-increasing:

> The optimal contract will be terminated randomly at lower boundary
W>R:

th = th — dCt —i—l"t(det +dPt,

with P reflecting W at W and the project continued with probability
dP:/ (W — R).

N
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5 Steps to Solve for the Optimal Contract

Step 5:
Verification of the conjectured contract.
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Concavity of F(W)

» Proposition 2. For W € [R, W), it holds that F"" (W) < 0.
> Proof.

1. Use boundary conditions to show that F” (W —¢) < 0:

» Differentiating HJB w.r.t. W yields
1
(r—p) F' (W) = pWF" (W) + SA**F"" (W).
» Evaluating (3) in W implies

v R
F (W)_2A202 >0,

» from which we get F”(W —¢) < 0.

(3)



Proof of Proposition 2

2. Assume that there is a W s.t.
F"(W) = O0and
F"(W) < 0for We (W, W).

> By continuity, this implies that F””/ (W) < 0 and, from (3),

» The joint surplus has to be strictly lower than first best:

F(W)+W<%,

so that, from evaluating the HJB in W, we would get
FWW)+Ww—E=w+lwr (W),
r r

implying that F' (W) < 0, contradicting (4).



Verification Theorem

We still need to verify that the principal's profits are maximized under the
conjectured contract.

Define the principal’s lifetime profits for any incentive compatible
contract:

t
G, = / e (dYs — dCs) + e TF (W),
0

and look at the drift of G (use It6's Lemma and dynamic of W)

{WrPF’ (W) + %FWF” (W) — rF(Wt)}dt— [1+ F (W)}dCt.

<0 >0

The first statement holds with equality under the conjectured contract,
that is if the HJB is satisfied.

The second statement holds with equality if dC follows (2):
dC > 0onlyif F/ (W) = —1.

N
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Verification Theorem

> Therefore G is a supermartingale and a martingale under the conjectured
contract

= F (W) provides an upper bound of the principal’s profits under any
incentive compatible contract, as

T
E U e "t (dY; —dC)+e L] = E[G] < Gy = F (W),
0

with equality under the optimal contract.
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Comparative Statics

Derive analytical comparative statics.
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Comparative Statics

> Discrete time: Comparative statics often analytically intractable.

> Continuous time: Characterization of optimal contract with ODE allows
for analytical comp. statics.

> Effect of a particular parameter 6 on value function Fg(W) can be found
as follows:

1. Differentiate the HJB and its boundary conditions with respect to 6,
keeping W fixed (envelope theorem) giving a 2"? order ODE in
dFy(W) /06 with appropriate boundary conditions.

2. Apply a Feynman-Kac style argument to write the solution as an
expectation, which can be signed in many cases.



Comparative Statics

» Given W the principal's profit function FGW(W) solves the following
boundary value problem

1
rFow (W) = y—i—pWFé’W(W)+§)\2(72FéTW(W),
Fow(R) = L Fpy(W)=—1

> Differentiating with respect to 6 and evaluating at the profit maximizing
choice W = W(8), gives

aFg(W) - a}l ap 8 aFg( )
o0~ 20 a0 WF9(W)+"WW 90
197202 1., , 0% 3R (W)
2 90 g Fo W)+ A ow2 90
with boundary conditions
dF(R) 9L 9 9F (W )—o

0 90 aW 9

where we have used the envelope theorem
oFy(W) /06 = dF, 0, W (0) (W)/BG.



Comparative Statics

> For notational simplicity, write G(W) := dFy (W) /96, so that

_ o9 132\2 2,
=:g(W)
+oWG' (W) + %/\202 G" (W),
G(R) = % G'(W) =o.

» "Find the martingale": Next, define

t
Ht:/o e "g(Ws)ds +e " G(W).
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Comparative Statics
> From Itd's lemma
e dH, = (g(Wt) + pWeG' (W) + %G”(Wt)/\202 - rG(Wt)> dt
—G'(Wy)dly + G'(Wy)AodZy,

showing that H: is a martingale:
N —rt —rraL
G(Wo) = Ho = ElH] = E | [ e g(We)de +e™ "5

> Plugging back the definition of G(W):

dFy(W)
20

- 9 9 2,2
5 et (% + BWeRy (W) + 32 R (W) e

= E
—rtdl
+e 20




Comparative Statics

» For comparative statics with respect to R note that the principal’s profit
remains unchanged if the agent’s outside option increases by dR and the
liquidation value increases by F'(R)dR, hence:

oF (W)
oR

= —FU(RE [ Wo = W],

> Given the effect of 6 on Fp(W) we get:

> the change in W from rfp (W) + pW = p,
» the change in W* from F/(W*) =0,
> the change in W0 from F(W?%) = K.
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Comparative Statics
> Example:
oF (W)

T Ele | Wo=W] >0,

> from rF (W) +pW — u = 0 one gets

oW rE[e T W = W]

5L P <0,
» from F/(W*) = 0 it holds that
W GwEle | Wo = W] -0
oL FI(W™) '
» from F(W?) = K one gets
WO Efe | Wo =W o,

oL F'(WO)
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Capital Structure Implementation

The optimal contract can be implemented using standard securities.
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Capital Structure Implementation

> Equity

» Equity holders receive dividend payments.
» Dividend payments are made at agent's discretion.

> Long-term Debt

» Console bond that pays continuous coupons.

» If firm defaults on a coupon payment, debt holders force termination.

» Credit Line

» Revolving credit line with limit W.

» Drawing down and repaying credit line is at the agent's discretion.

» If balance on the credit line M; exceeds W, firm defaults and is
liquidated (creditors receive L).
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Capital Structure Implementation

> Agent has no incentives to divert cash flows if he is entitled to fraction A
of the firm's equity and has discretion over dividend payments.
(For simplicity, take A =1 for now.)

» Idea: Construct a capital structure that allows to use the balance on

credit line M; as "memory device" in lieu of the original state variable W;:

My = W — W,.

> To keep the balance M positive, dividends have to be distributed once
credit line is fully repaid (M; = 0).

» Firm is liquidated when credit line is overdrawn (M; = W).
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Capital Structure Implementation

» To implement our optimal contract, the balance on the credit line has to

mirror the agent's continuation value W;. Hence, My = W — W; follows
dM; = pMedt  + (p—pW)dt + dC: — dV;
—— ~——— S~~~ ~~~

interest on c.I.  coupon payment dividend  cash flow

v

Credit line charges an interest rate equal to agent’s discount rate p.
Letting coupon rate be r, face value of long-term debt is equal to

v

p=E_Pw=Fw).
r r

v

Dividend payments are paid out of credit line.
Cash inflows are used to pay back the credit line.

v
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Capital Structure — Low Risk

K
RN
\
\\fF(W) =p—pW
RN
S
N
~

H ~
p ~
L debt ~

H ~

~
~
creditline W Wy

> Debt is risky, as D > L and must trade at a discount.

> Lenders expect to earn a profit from credit line (charging high interest p),
which exactly offsets this discount.
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Capital Structure — Intermediate Risk

M
N
~
\\rF(W) =u—pW
N
~
~
~
.
.
\\
K N
L N
debt]|
| BN
credit line Wo W ™~

> Higher risk calls for a longer credit line (financial slack) and a lower level
of debt (debt is now riskless, as D < L).

> Difference in set up costs K — D is financed by initial draw on credit line
W — Wy, for which lenders charge a "fee" of (W — W) — (K — D) > 0.
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Capital Structure — High Risk

K
r
~
~
\\rF(W) =pu—pW
N
~
~
~
N
“
"
K ~
L N
N
~
S W
Wy credit line \Idebt

> Negative debt: cash deposit as condition for extremely long credit line.

> Interest earned on D increases profitability of firm to deter agent from
consuming credit line and defaulting.
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Comparative Statics for the Implementation

dCl [ dD | aw* | aW?¥ | dF(W¥)
dl | A\ + | - + +
dR [[=\] = + — —
dp - + - -
du [T+ £ + + +
do [\ +[] — | + —
dA [\&/ | + | =+ —

» Credit line decreases in L as financial slack is less valuable.
> Credit line decreases in p as it becomes costlier to delay compensation.

» Credit line increases in y, 02 to reduce probability of termination.

43 /53



Comparative Statics for the Implementation

dCt | dD | dw* | dWO | dF (W?)
d | — |+ - | A
dR | — | - | + [ — -\
do [ — T[] -] - -
du | + [ £ ] +1] + +
do | + | - | £\ - -/
dA [ £ [+ ] £ N& —/

> Firm becomes more profitable as L and p increase.

> Firm becomes less profitable as R, p, o and A increase.
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Capital Structure Implementation Il

Security Pricing
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Security Prices

> There is more we can say about security prices. Consider an alternative
implementation, where M = W /A denotes the firm's cash reserves (this
follows Biais et al. 2007)

_ - 1
th = thdt + UdZt — XdCt

> The firm is liquidated if its cash reserves are exhausted (W;/A = 0),

> the agent distributes a dividend dC;/A when cash reserves meet an upper
bound W/ A.

> Rewrite the evolution of M
th = r(Mt + ]/l)dt+0'dzt — dCt — dPt,

where dC; denotes the agent'’s fraction of dividends and dP; payments to
bond holders and holders of external equity, respectively, with

_ 1—A
dP; = []/l— (p— r) Mt} dt + TdCt
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Stock Price

»> The market value of stocks is equal to expected dividend payments

T 1
St = Et |:/1L er(St)AdC5:| .

> By Ité's formula, S (/\77) has to satisfy the following differential equation
over M € [0, W/A]



Stock Price (Testable Implications)

> Stock price S (M) is (a) increasing and (b) concave in cash holdings M.

> Intuition:

(a) An increase in cash holdings M reduces probability of default and
increases probability of dividend payment.

(b) For low M, threat of default is more immediate = Stock price reacts
more strongly to firm performance when cash holdings are low.
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Stock Price (Testable Implications)
» From Itd’s formula, the stock price follows
1
dS; = rSdt + S;0° (St) dZy — TdCe,

where the volatility of S is given by

oS (57t (s
0.5 (S) _ ( ( )) _
s
» Differences to "standard" asset pricing models:

> Stock price is reflected when dividends are paid at S (W/A),
» the volatility of the stock price remains strictly positive when S — 0

S0° (S) = oS (M) > 0.

» Because So° (S) is decreasing in S, the stock price is negatively
correlated with its volatility "Leverage effect".
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Value of Bonds

» The market value of bonds is equal to expected coupon payments

Dy = E; [/T e~r(s=0) (1= (p—r) Ms] ds
t
» By Ité's formula, D (/W) has to satisfy
rD (M) =~ (p—r) Ms +pMD' (M )+ So2D" (M)

over M € [0, W /A] with boundary conditions

D(0) = o,

and D' <‘1/> = 0.



Leverage (Testable Implications)

» The leverage ratio D;/S; is strictly decreasing in M; and S;.

> Intuition:

» Debt value reacts less to firm performance than stock price because
coupon is paid steadily as long as firm operates.

» Dividend payments on the other hand are only made after sufficiently
positive record and thus react more strongly to firm performance.

> Performance (cash flow) shocks induce persistent changes in capital
structure.

» Puzzling in context of (static) trade-off theory: Why do firms not
issue or repurchase debt/equity to restore optimal capital structure?
(Welch 2004).

» Under our dynamic contract, financial structure is adjusted
optimally by change in market values of debt and equity.



Default Risk (Testable Implications)

> As a measure for the risk of default at time t, define the credit yield

spread A; by
/oo e (rtAn)(s—t) g — E; {/T er(st)ds} ’
t t

> from which we get
Tt

At = r——
t rl—Tt'

where Ty = E; [ef’(Tft)] denotes the t-expected value of one unit paid
at the time of default.
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Default Risk (Testable Implications)

» The credit yield spread is (a) decreasing and (b) convex in M;.

> Intuition:

(a) Higher cash reserves reduce the probability of default,
(b) effect weaker for high values of M;: At W /A, inflows are paid out
as dividend and do not affect default risk.
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	The Model

