Dynamic Principal Agent Models: A Continuous Time Approach Lecture II

Dynamic Financial Contracting I - The "Workhorse Model" for Finance Applications (DeMarzo and Sannikov 2006)

Florian Hoffmann Sebastian Pfeil

Stockholm April 2012 - please do not cite or circulate -

Outline

- 1. Solve the continuous time model with a risk-neutral agent (DeMarzo Sannikov 2006).
- 2. Derive analytic comparative statics.
- 3. Capital structure implementation(s).
- 4. Asset pricing implications.

DeMarzo and Sannikov 2006

- Time is continuous with $t \in [0, \infty)$.
- Risk-neutral principal with discount rate r.
- Risk-neutral agent with discount rate $\rho > r$.
- Agent has limited liability and limited wealth, so principal has to cover operating losses and initial set up costs K.

DeMarzo and Sannikov 2006

Firm produces cash flows

$$dY_t = \mu dt + \sigma dZ_t,$$

- with constant exogenous drift rate $\mu > 0$,
- ▶ and Z is a standard Brownian motion.

Principal does not observe Y but only the agent's report

$$d\hat{Y}_t = (\mu - A_t) dt + \sigma dZ_t.$$

- $A \ge 0$ represents the diversion of cash flow by the agent.
- Agent enjoys benefits from diversion of λA with $\lambda \leq 1$.
- A revelation principle-like argument implies that it is always optimal to implement truth telling: $A_t = 0, t \ge 0$.

The Principal's Problem

- Find the profit-maximizing full commitment contract at t = 0
- A contract specifies cash payments to the agent C = {Ct, t ≥ 0} and a stopping time τ ≥ 0 when the firm is liquidated and the receives scrap value L, to maximize the principal's profit

$$F_0 = E^{A=0} \left[\int_0^\tau e^{-rt} \left(\mu dt - dC_t \right) + e^{-r\tau} L \right],$$

• subject to delivering the agent an initial value of W_0

$$W_0=E^{A=0}\left[\int_0^ au e^{-
ho t}dC_t+e^{-
ho au}R
ight],$$

and incentive compatibility

$$W_0 \geq E^{\tilde{A}} \left[\int_0^{ au} e^{-
ho t} \left(dC_t + \lambda \tilde{A}_t dt
ight) + e^{-
ho au} R
ight]$$
, given $\{ \tilde{A}_t \} \geq 0$

5 Steps to Solve for the Optimal Contract

1. Define agent's continuation value W_t given a contract $\{C, \tau\}$ if he tells the truth

$$W_t = E^A \left[\int_t^\tau e^{-\rho(u-t)} dC_u + e^{-\rho(\tau-t)} R \middle| \mathcal{F}_t \right].$$
 (1)

- 2. Represent the evolution of W_t over time.
- 3. Derive the incentive compatibility constraint under which the agent reports truthfully.
- 4. Derive the HJB for the principal's profits F(W).
- 5. Verification of the conjectured contract.

5 Steps to Solve for the Optimal Contract

 $\frac{\text{Step 2:}}{\text{Represent the evolution of } W_t \text{ over time.}}$

Represent the Evolution of W over Time

Exercise:

- Define t-expectation of agent's lifetime utility Vt,
- use MRT characterize V_t derive dW_t .

• **Theorem:** Let Z_t be a Brownian motion on $(\Omega, \mathcal{F}, \mathcal{Q})$ and \mathcal{F}_t the filtration generated by this Brownian motion. If M_t is a martingale with respect to this filtration, then there is an \mathcal{F}_t -adapted process Γ such that

$$M_t = M_0 + \int_0^t \Gamma_s dZ_s, \ 0 \leq t \leq T.$$

Evolution of Agent's Continuation Value

The agent's continuation value evolves according to

$$dW_t = \rho W_t dt - dC_t + \Gamma_t \left(d \hat{Y}_t - \mu dt \right).$$

- Principal has to honor his promises: W has to grow at the agent's discount rate ρ.
- W decreases with cash payments to the agent dC_t .
- Sensitivity with respect to firm's cash flows Γ_t will be used to provide incentives.

5 Steps to Solve for the Optimal Contract

 $\frac{\text{Step 3:}}{\text{Derive the local incentive compatibility constraint.}}$

Local Incentive Compatibility Constraint

Proposition 1. The truth telling contract {C, τ} is incentive compatible if and only if

 $\Gamma_t \geq \lambda$ for $t \geq 0$.

• Intuition: Assume the agent would divert cash flows $dY_t - d\hat{Y}_t > 0$

- immediate benefit from consumption: $\lambda (dY_t d\hat{Y}_t)$,
- change in continuation value W_t : $-\Gamma_t (dY_t d\hat{Y}_t)$.

Proof of Proposition 1

▶ The agent's expected lifetime utility for any feasible policy with $d\hat{Y}_t \leq dY_t$, is given by

$$W_0 + \int_0^\tau e^{-\rho t} \lambda \left(dY_t - d\hat{Y}_t \right) - \int_0^\tau e^{-\rho t} \Gamma_t \left(dY_t - d\hat{Y}_t \right).$$

Sufficiency:

If $\Gamma_t \geq \lambda$ holds, this expression is maximized by setting $d\hat{Y}_t = dY_t \ \forall t.$

Necessity:

Assume $\Gamma_t < \lambda$ on a set of positive measure. Then the agent could gain by setting $d\hat{Y}_t < dY_t$ on this set.

5 Steps to Solve for the Optimal Contract

 $\frac{\text{Step 4:}}{\text{Derivation of the HJB for the principal's value function.}}$

Derivation of the HJB for Principal's Value Function

Denote the highest profit that the principal can get from a contract, that provides the agent expected payoff W, by

 $F\left(W
ight) .$

Assume for now that the principal's value function is concave:

 $F''(W) \leq 0$

(this will be verified later).

Principal dislikes variation W as the agent has to be fired – which is inefficient – if W = 0.

Optimal Compensation Policy

- Principal has two options for compensating the agent:
 - Raise agent's promised pay W at marginal costs of F'(W),
 - lump sum payment to the agent at marginal costs of -1.
- $\Rightarrow~$ No cash payments as long as ${\it F}'\left({\it W}
 ight) > -1$
- Define the compensation threshold \overline{W} by

$$F'\left(\overline{W}
ight)=-1$$
,

• where cash payments reflect W at \overline{W} , i.e.

$$dC = \max\left\{0, W - \overline{W}\right\}.$$
 (2)

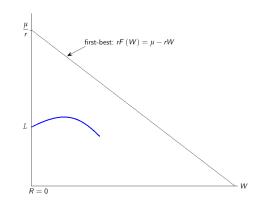
Derivation of the HJB for Principal's Value Function

- Exercise:
 - What does the evolution of W_t look like for $W_t \in [R, \overline{W}]$?
 - Derive the HJB for $W_t \in [R, \overline{W}]$
 - What is the principal's required rate of return?
 - What is the instantaneous cash flow?
 - Use Itô's lemma, derive the differential dF(W).

Value matching

$$F(R) = L$$

If the agent is fired, the principal gets liquidation value L.

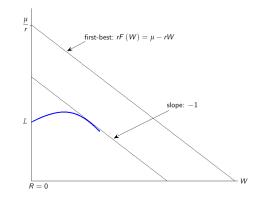


Value matching

$$F(R) = L$$

$$F'\left(\overline{W}
ight) = -1$$

At compensation boundary marginal costs of cash payments have to match those of raising *W*.



Value matching

$$F(R) = L$$

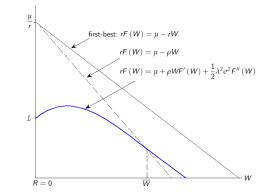
Smooth pasting

$$F'\left(\overline{W}
ight)=-1$$

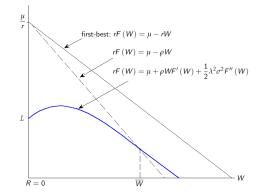
Super contact

$$F''\left(\overline{W}\right) = 0$$

Ensures optimal choice of compensation boundary \overline{W} .



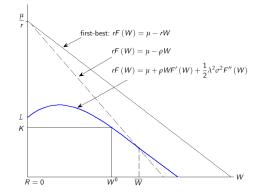
- Concavity of F reflects following trade off:
- Raising W has ambiguous marginal effect on F
- + less risk of termination $(L < \mu/r)$ (weaker for high *W*).
- more cash payments in the future $(\rho > r)$ (independent of W).



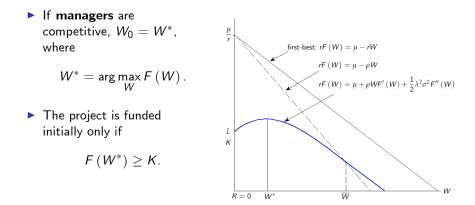
Relative Bargaining Power and Distribution of Surplus

- If investors are competitive, *W*₀ is the largest *W* such that investors break even.
- Since investors make zero profits, denote this value by W⁰:

$$F\left(W^{0}
ight)=K.$$



Relative Bargaining Power and Distribution of Surplus



A Note on Commitment and Renegotiation

- ▶ It is assumed that the principal can commit to a long-term contract.
- ▶ However, the principal may want to renegotiate the contract:
 - ▶ When F'(W) > 0, he may not want to reduce W following a bad cash flow shock.
 - More generally: Principal and agent would benefit from raising W.
- This can be dealt with by imposing the restriction that F(W) is non-increasing:

The optimal contract will be terminated randomly at lower boundary <u>W</u> > R:

$$dW_t = \rho W_t - dC_t + \Gamma_t \sigma dZ_t + dP_t,$$

with *P* reflecting *W* at \underline{W} and the project continued with probability $dP_t / (\underline{W} - R)$.

5 Steps to Solve for the Optimal Contract

Step 5: Verification of the conjectured contract.

Concavity of F(W)

- ▶ **Proposition 2.** For $W \in [R, \overline{W})$, it holds that F''(W) < 0.
- Proof.
- 1. Use boundary conditions to show that $F''(\overline{W}-\varepsilon) < 0$:
 - Differentiating HJB w.r.t. W yields

$$(r - \rho) F'(W) = \rho W F''(W) + \frac{1}{2} \lambda^2 \sigma^2 F'''(W).$$
 (3)

• Evaluating (3) in \overline{W} implies

$$F'''(\overline{W}) = 2rac{
ho - r}{\lambda^2 \sigma^2} > 0,$$

• from which we get $F''(\overline{W} - \varepsilon) < 0$.

Proof of Proposition 2

2. Assume that there is a \tilde{W} s.t.

$$egin{array}{rl} F''\left(ilde{W}
ight) &=& 0 \ {
m and} \ F''\left(W
ight) &<& 0 \ {
m for} \ W\in (ilde{W},\overline{W}). \end{array}$$

▶ By continuity, this implies that $F'''(\tilde{W}) < 0$ and, from (3),

$$F'(\tilde{W}) = -\frac{1}{2} \frac{\lambda^2 \sigma^2}{\rho - r} F'''(\tilde{W}) > 0.$$
(4)

The joint surplus has to be strictly lower than first best:

$$F(W) + W < \frac{\mu}{r}$$

so that, from evaluating the HJB in \tilde{W} , we would get

$$F\left(ilde{W}
ight)+ ilde{W}-rac{\mu}{r}= ilde{W}+rac{
ho}{r} ilde{W}F'\left(ilde{W}
ight),$$

implying that $F'(\tilde{W}) < 0$, contradicting (4).

Verification Theorem

- We still need to verify that the principal's profits are maximized under the conjectured contract.
- Define the principal's lifetime profits for any incentive compatible contract:

$$G_t = \int_0^t e^{-rs} \left(dY_s - dC_s \right) + e^{-rt} F\left(W_t \right),$$

▶ and look at the drift of G (use Itô's Lemma and dynamic of W)

$$\underbrace{\left[\frac{\mu+\rho F'\left(W\right)+\frac{1}{2}\Gamma_{t}^{2}\sigma^{2}F''\left(W\right)-rF\left(W_{t}\right)\right]}_{\leq0}dt-\underbrace{\left[1+F'\left(W\right)\right]}_{\geq0}dC_{t}.$$

- The first statement holds with equality under the conjectured contract, that is if the HJB is satisfied.
- ► The second statement holds with equality if dC follows (2): dC > 0 only if F' (W) = -1.

Verification Theorem

- Therefore G is a supermartingale and a martingale under the conjectured contract
- \Rightarrow F(W) provides an upper bound of the principal's profits under any incentive compatible contract, as

$$E\left[\int_{0}^{\tau} e^{-rt} \left(dY_{t} - dC_{t}\right) + e^{-r\tau}L\right] = E\left[G_{\tau}\right] \leq G_{0} = F\left(W_{0}\right),$$

with equality under the optimal contract.

Derive analytical comparative statics.

- Discrete time: Comparative statics often analytically intractable.
- Continuous time: Characterization of optimal contract with ODE allows for analytical comp. statics.
- Effect of a particular parameter θ on value function $F_{\theta}(W)$ can be found as follows:
 - 1. Differentiate the HJB and its boundary conditions with respect to θ , keeping \overline{W} fixed (envelope theorem) giving a 2^{nd} order ODE in $\partial F_{\theta}(W) / \partial \theta$ with appropriate boundary conditions.
 - 2. Apply a Feynman-Kac style argument to write the solution as an expectation, which can be signed in many cases.

► Given W the principal's profit function F_{θ,W}(W) solves the following boundary value problem

$$rF_{\theta,\overline{W}}(W) = \mu + \rho WF'_{\theta,\overline{W}}(W) + \frac{1}{2}\lambda^2 \sigma^2 F''_{\theta,\overline{W}}(W) + F_{\theta,\overline{W}}(R) = L, F'_{\theta,\overline{W}}(W) = -1.$$

▶ Differentiating with respect to θ and evaluating at the profit maximizing choice $\overline{W} = \overline{W}(\theta)$, gives

$$r\frac{\partial F_{\theta}(W)}{\partial \theta} = \frac{\partial \mu}{\partial \theta} + \frac{\partial \rho}{\partial \theta}WF'_{\theta}(W) + \rho W\frac{\partial}{\partial W}\frac{\partial F_{\theta}(W)}{\partial \theta} + \frac{1}{2}\frac{\partial \lambda^{2}\sigma^{2}}{\partial \theta}F''_{\theta}(W) + \frac{1}{2}\lambda^{2}\sigma^{2}\frac{\partial^{2}}{\partial W^{2}}\frac{\partial F_{\theta}(W)}{\partial \theta}$$

with boundary conditions

$$rac{\partial F_{ heta}(R)}{\partial heta} = rac{\partial L}{\partial heta}, \ rac{\partial}{\partial W} rac{\partial F_{ heta}\left(\overline{W}
ight)}{\partial heta} = 0,$$

where we have used the envelope theorem $\partial F_{\theta}(W) / \partial \theta = \partial F_{\theta, \overline{W}(\theta)}(W) / \partial \theta.$

▶ For notational simplicity, write $G(W) := \partial F_{\theta}(W) / \partial \theta$, so that

$$rG(W) = \underbrace{\frac{\partial \mu}{\partial \theta} + \frac{\partial \rho}{\partial \theta} WF'_{\theta}(W) + \frac{1}{2} \frac{\partial \lambda^2 \sigma^2}{\partial \theta} F''_{\theta}(W)}_{=:g(W)} + \rho WG'(W) + \frac{1}{2} \lambda^2 \sigma^2 G''(W),$$
$$G(R) = \frac{\partial L}{\partial \theta}, \ G'(\overline{W}) = 0.$$

"Find the martingale": Next, define

$$H_t = \int_0^t e^{-rs} g(W_s) ds + e^{-rt} G(W_t).$$

From Itô's lemma

$$e^{rt}dH_t = \left(g(W_t) + \rho W_t G'(W_t) + \frac{1}{2}G''(W_t)\lambda^2 \sigma^2 - rG(W_t)\right)dt$$
$$-G'(W_t)dI_t + G'(W_t)\lambda\sigma dZ_t,$$

showing that H_t is a martingale:

$$G(W_0) = H_0 = E[H_\tau] = E\left[\int_0^\tau e^{-rt}g(W_t)dt + e^{-r\tau}\frac{\partial L}{\partial \theta}\right].$$

• Plugging back the definition of G(W):

$$= E \begin{bmatrix} \frac{\partial F_{\theta}(W)}{\partial \theta} \\ F_{\theta}(W_{t}) + \frac{\partial P}{\partial \theta} W_{t} F_{\theta}'(W_{t}) + \frac{1}{2} \frac{\partial \lambda^{2} \sigma^{2}}{\partial \theta} F_{\theta}''(W_{t}) dt \\ + e^{-r\tau} \frac{\partial L}{\partial \theta} \end{bmatrix}$$

► For comparative statics with respect to R note that the principal's profit remains unchanged if the agent's outside option increases by dR and the liquidation value increases by F'(R)dR, hence:

$$\frac{\partial F(W)}{\partial R} = -F'(R)E\left[e^{-r\tau}\right|W_0 = W\right].$$

- Given the effect of θ on $F_{\theta}(W)$ we get:
 - the change in \overline{W} from $rF_{\theta}\left(\overline{W}\right) + \rho\overline{W} = \mu$,
 - the change in W^* from $F'(W^*) = 0$,
 - the change in W^0 from $F(W^0) = K$.

► Example:

$$\frac{\partial F(W)}{\partial L} = E\left[e^{-r\tau} \middle| W_0 = W\right] > 0,$$

▶ from $rF\left(\overline{W}\right) + \rho\overline{W} - \mu = 0$ one gets

$$\frac{\partial \overline{W}}{\partial L} = -\frac{rE\left[e^{-r\tau}|W_0 = \overline{W}\right]}{\rho - r} < 0,$$

• from $F'(W^*) = 0$ it holds that

$$\frac{\partial W^*}{\partial L} = -\frac{\frac{\partial}{\partial W} E\left[e^{-r\tau} | W_0 = W^*\right]}{F''(W^*)} < 0,$$

• from $F(W^0) = K$ one gets

$$\frac{\partial W^0}{\partial L} = -\frac{E\left[e^{-r\tau}|W_0 = W^0\right]}{F'(W^0)} > 0.$$

Capital Structure Implementation

The optimal contract can be implemented using standard securities.

Capital Structure Implementation

- Equity
 - Equity holders receive dividend payments.
 - Dividend payments are made at agent's discretion.
- Long-term Debt
 - Console bond that pays continuous coupons.
 - If firm defaults on a coupon payment, debt holders force termination.
- Credit Line
 - Revolving credit line with limit \overline{W} .
 - Drawing down and repaying credit line is at the agent's discretion.
 - ► If balance on the credit line M_t exceeds W, firm defaults and is liquidated (creditors receive L).

Capital Structure Implementation

- Agent has no incentives to divert cash flows if he is entitled to fraction λ of the firm's equity and has discretion over dividend payments. (For simplicity, take λ = 1 for now.)
- Idea: Construct a capital structure that allows to use the balance on credit line M_t as "memory device" in lieu of the original state variable W_t:

$$M_t = \overline{W} - W_t.$$

- ► To keep the balance M positive, dividends have to be distributed once credit line is fully repaid (M_t = 0).
- Firm is liquidated when credit line is overdrawn $(M_t = \overline{W})$.

Capital Structure Implementation

▶ To implement our optimal contract, the balance on the credit line has to mirror the agent's continuation value W_t . Hence, $M_t = \overline{W} - W_t$ follows

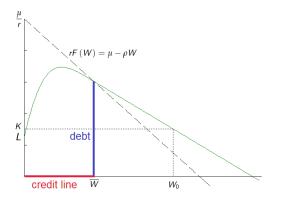
$$dM_t = \underbrace{\rho M_t dt}_{\text{interest on c.l.}} + \underbrace{(\mu - \rho \overline{W}) dt}_{\text{coupon payment}} + \underbrace{dC_t}_{\text{dividend}} - \underbrace{d\hat{Y}_t}_{\text{cash flow}}.$$

- Credit line charges an interest rate equal to agent's discount rate ρ .
- Letting coupon rate be r, face value of long-term debt is equal to

$$D = \frac{\mu}{r} - \frac{\rho}{r}\overline{W} = F(\overline{W}).$$

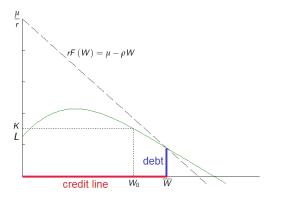
- Dividend payments are paid out of credit line.
- Cash inflows are used to pay back the credit line.

Capital Structure – Low Risk



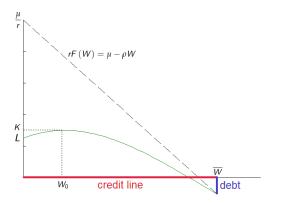
- Debt is risky, as D > L and must trade at a discount.
- Lenders expect to earn a profit from credit line (charging high interest ρ), which exactly offsets this discount.

Capital Structure – Intermediate Risk



- Higher risk calls for a longer credit line (financial slack) and a lower level of debt (debt is now riskless, as D < L).</p>
- ▶ Difference in set up costs K − D is financed by initial draw on credit line W − W₀, for which lenders charge a "fee" of (W − W₀) − (K − D) > 0.

Capital Structure – High Risk



- Negative debt: cash deposit as condition for extremely long credit line.
- Interest earned on D increases profitability of firm to deter agent from consuming credit line and defaulting.

Comparative Statics for the Implementation

	dC ^L	dD	dW^*	dW^0	$dF(W^*)$
dL	\frown	+	—	+	+
dR	(-)	—	+	—	—
dρ	-	±	—	—	—
dμ	+	±	+	+	+
$d\sigma^2$	$\left\{ +\right\}$	—	±	_	_
dλ	\±/	+	±	_	—

- Credit line decreases in *L* as financial slack is less valuable.
- Credit line decreases in ρ as it becomes costlier to delay compensation.
- Credit line increases in μ , σ^2 to reduce probability of termination.

Comparative Statics for the Implementation

	dC ^L	dD	dW^*	dW^0	$dF(W^*)$	
dL	—	+	_	Æ	4	
dR	—	—	+ /	-	- \	
dρ	—	±	- (—	-	
dμ	+	±	+	+	+	
$d\sigma^2$	+	_	± \	—	- /	
dλ	±	+	±	<u> </u>	_/	

• Firm becomes more profitable as L and μ increase.

• Firm becomes less profitable as R, ρ , σ and λ increase.

Capital Structure Implementation II

Security Pricing

Security Prices

▶ There is more we can say about security prices. Consider an alternative implementation, where $\tilde{M} = W/\lambda$ denotes the firm's cash reserves (this follows Biais et al. 2007)

$$d ilde{M}_t =
ho ilde{M}_t dt + \sigma dZ_t - rac{1}{\lambda} dC_t.$$

- The firm is liquidated if its cash reserves are exhausted $(W_t/\lambda = 0)$,
- the agent distributes a dividend dC_t/λ when cash reserves meet an upper bound W/λ.
- Rewrite the evolution of \tilde{M}

$$d\tilde{M}_t = r(\tilde{M}_t + \mu)dt + \sigma dZ_t - dC_t - dP_t,$$

where dC_t denotes the agent's fraction of dividends and dP_t payments to bond holders and holders of external equity, respectively, with

$$dP_t = \left[\mu - (\rho - r) \tilde{M}_t\right] dt + \frac{1 - \lambda}{\lambda} dC_t.$$

Stock Price

> The market value of stocks is equal to expected dividend payments

$$S_t = E_t \left[\int_t^\tau e^{-r(s-t)} \frac{1}{\lambda} dC_s \right].$$

▶ By Itô's formula, $S(\tilde{M})$ has to satisfy the following differential equation over $\tilde{M} \in [0, \overline{W}/\lambda]$

$$rS\left(\tilde{M}\right) = \rho \tilde{M}S'(\tilde{M}) + \frac{1}{2}\sigma^2 S''(\tilde{M}).$$

with boundary conditions

$$egin{array}{rcl} S\left(0
ight)&=&0,\ S'\left(rac{\overline{W}}{\lambda}
ight)&=&1. \end{array}$$

Stock Price (Testable Implications)

• Stock price $S(\tilde{M})$ is (a) increasing and (b) concave in cash holdings \tilde{M} .

Intuition:

- (a) An increase in cash holdings \tilde{M} reduces probability of default and increases probability of dividend payment.
- (b) For low \tilde{M} , threat of default is more immediate \Rightarrow Stock price reacts more strongly to firm performance when cash holdings are low.

Stock Price (Testable Implications)

From Itô's formula, the stock price follows

$$dS_{t} = rS_{t}dt + S_{t}\sigma^{S}\left(S_{t}\right)dZ_{t} - \frac{1}{\lambda}dC_{t},$$

where the volatility of S is given by

$$\sigma^{S}\left(s
ight)=rac{\sigma S^{\prime}\left(S^{-1}\left(s
ight)
ight)}{s}.$$

Differences to "standard" asset pricing models:

- Stock price is reflected when dividends are paid at $S(\overline{W}/\lambda)$,
- the volatility of the stock price remains strictly positive when S
 ightarrow 0

$$S\sigma^{S}(S) = \sigma S'(\tilde{M}) > 0.$$

► Because S\u03c6^S (S) is decreasing in S, the stock price is negatively correlated with its volatility "Leverage effect".

Value of Bonds

> The market value of bonds is equal to expected coupon payments

$$D_{t} = E_{t} \left[\int_{t}^{\tau} e^{-r(s-t)} \left[\mu - (\rho - r) \tilde{M}_{s} \right] ds \right]$$

▶ By Itô's formula, $D\left(ilde{M}
ight)$ has to satisfy

$$rD\left(\tilde{M}\right) = \mu - \left(\rho - r\right)\tilde{M}_{s} + \rho\tilde{M}D'(\tilde{M}) + \frac{1}{2}\sigma^{2}D''(\tilde{M})$$

over $\tilde{M} \in [0, \overline{W}/\lambda]$ with boundary conditions

$$D\left(0
ight) = 0,$$

and $D'\left(rac{\overline{W}}{\overline{\lambda}}
ight) = 0.$

Leverage (Testable Implications)

• The leverage ratio D_t/S_t is strictly decreasing in \tilde{M}_t and S_t .

Intuition:

- Debt value reacts less to firm performance than stock price because coupon is paid steadily as long as firm operates.
- Dividend payments on the other hand are only made after sufficiently positive record and thus react more strongly to firm performance.
- Performance (cash flow) shocks induce persistent changes in capital structure.
 - Puzzling in context of (static) trade-off theory: Why do firms not issue or repurchase debt/equity to restore optimal capital structure? (Welch 2004).
 - Under our dynamic contract, financial structure is adjusted optimally by change in market values of debt and equity.

Default Risk (Testable Implications)

As a measure for the risk of default at time t, define the credit yield spread Δ_t by

$$\int_t^{\infty} e^{-(r+\Delta_t)(s-t)} ds = E_t \left[\int_t^{\tau} e^{-r(s-t)} ds \right],$$

from which we get

$$\Delta_t = r \frac{T_t}{1 - T_t},$$

where $T_t = E_t \left[e^{-r(\tau-t)} \right]$ denotes the *t*-expected value of one unit paid at the time of default.

Default Risk (Testable Implications)

- The credit yield spread is (a) decreasing and (b) convex in \tilde{M}_t .
- Intuition:
 - (a) Higher cash reserves reduce the probability of default,
 - (b) effect weaker for high values of \tilde{M}_t : At \overline{W}/λ , inflows are paid out as dividend and do not affect default risk.