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Outline

I Part 1: A refresher of dynamic agency in discrete time.

I Introduce simple repeated moral hazard model,
I Show core results from discrete time models.

I Part 2: The continuous time approach.

I Set-up of the basic principal agent model in continuous time.
I Outline of core steps to derive the optimal contract in (class of)
continuous time models.

I Discussion of techniques used to derive the optimal contract.
I Discussion of properties of the optimal contract.
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Part 1:
A "Refresher" of Dynamic Agency in Discrete Time.
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Basic Discrete Time Theory

I Model setup:

I Agent takes hidden action in time periods 1, 2, 3, ...
I Output depends on agent�s hidden action.
I Principal observes output and can commit to a long-term contract
that speci�es payments to the agent as a function of output history.

I Main �ndings:

I Optimal contract is history dependent (Rogerson 1985),
I With in�nite horizon there exists a stationary representation with
agent�s promised utility as state variable (Spear and Srivastava
1987),

I E¢ ciency is attainable if agent becomes patient (Radner 1985).
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Basic Discrete Time Theory

Simple two period model t = 1, 2:

I Risk-neutral principal and risk-averse agent with common discount rate r .

I Agent�s period utility is given by

u(Ct )� h(At ),

where At denotes e¤ort and Ct denotes monetary compensation (assume
that the agent cannot save/borrow).

I For simplicity assume that At 2 f0, 1g and h(1) =: h, h(0) = 0.
Normalize u(0) = 0.

I Output:

Yt =
�
Y+

Y�
with prob. π(At )

with prob. 1� π(At )
,

where we denote π(1) =: π and π(0) =: π � ∆π, ∆π > 0.
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Basic Discrete Time Theory

I Assume that the principal wants to implement high e¤ort in both periods.

I A contract C speci�es 2+ 22 transfers contingent on output:

I period 1 compensation C i1 = C (Y1 = Y
i ), i 2 f+,�g,

I period 2 compensation C i ,j2 = C (Y1 = Y i ,Y2 = Y j ),
i , j 2 f+,�g.

I This can be rewritten in terms of contingent utilities:

ui1 = u(C i1), i 2 f+,�g ,
ui ,j2 = u(C i ,j2 ), i , j 2 f+,�g .
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Basic Discrete Time Theory

I Incentive compatibility in t = 2 requires:

ui ,+2 � ui ,�2 � h
∆π

, i 2 f+,�g .

I Denote the expected net utility from t = 2 conditional on Y1 by

W i
2 = πui ,+2 + (1� π) ui ,�2 � h, i 2 f+,�g ,

which is called the agent�s continuation value or promised wealth.

I Incentive compatibility in t = 1 then requires:

u+1 +
1

1+ r
W+
2 �

�
u�1 +

1
1+ r

W�
2

�
� h

∆π
,

! Continuation utilities a¤ect t = 1 incentives.

! Given W i
2 , t = 1 incentives are una¤ected by u

i ,+
2 and ui ,�2 .
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Basic Discrete Time Theory

I Further, we have the t = 1 participation constraint:

W1 = π

�
u+1 +

1
1+ r

W+
2

�
+ (1� π)

�
u�1 +

1
1+ r

W�
2

�
� h.

! Continuation utilities a¤ect t = 1 participation decision.

! Given W i
2 , t = 1 participation is una¤ected by u

i ,+
2 and ui ,�2 .

I Solve the problem backwards:

1. For each W i
2 solve the second period problem,

2. Given the optimal continuation contract, solve the �rst period
problem.
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Basic Discrete Time Theory
I Proceeding in this manner one obtains:

1

u0(C i1)
= π1

1

u0(C i ,+2 )
+ (1� π1)

1

u0(C i ,�2 )

= E

"
1

u0(C i ,j2 )

�����Y1 = Y i
#
, i 2 f+,�g ,

! "Inverse Euler Equation": Agent�s inverse marginal utility is a
martingale.

! Providing incentives vs. smoothing consumption.

I Proof: Consider an optimal incentive compatible contract C .

I Construct a new contract eC that di¤ers from C only following �rst period
realization Y1 = Y+:

eu+1 = u+1 � x ,eu+,j2 = u+,j2 + (1+ r) x , j 2 f+,�g .
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Basic Discrete Time Theory

I Note that the new contract still induces high e¤ort:

I Trivial following Y1 = Y� as eu�,j2 = u�,j2 , j 2 f+,�g,
I Following Y1 = Y+ high e¤ort still optimal as (1+ r) x is constant
across outcomes eu+,+2 � eu+,�2 = u+,+2 � u+,�2 ,

I E¤ort in t = 1 is still optimal, as for i 2 f+,�g

eui1 + 1
1+ r

�
πeui ,+2 + (1� π) eui ,�2 �

= ui1 +
1

1+ r

�
πui ,+2 + (1� π) ui ,�2

�
.

I Participation still optimal as fW1 = W1.

I So for x = 0 to be optimal, it must minimize expected payments to the
agent

u�1(u+1 � x) +
1

1+ r

�
πu�1(u+,+2 + (1+ r) x)

+ (1� π) u�1(u+,�2 + (1+ r) x)

�
.�
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Basic Discrete Time Theory

I The inverse Euler equation implies that the optimal contract with full
commitment exhibits memory:

I I.e., t = 1 outcome a¤ects transfers both in t = 1 and in t = 2,
I or: Transfers in both t = 1 and t = 2 are used to provide incentives
in t = 1,

I in particular: C+1 > C
�
1 and W+

2 > W�
2 .

I Proof: Suppose by contradiction that C+,+2 = C�,+2 and C+,�2 = C�,�2 ,
then

1
u0(C+1 )

= π1
1

u0(C+,+2 )
+ (1� π1)

1

u0(C+,�2 )

= π1
1

u0(C�,+2 )
+ (1� π1)

1

u0(C�,�2 )
=

1
u0(C�1 )

,

violating the incentive constraint in t = 1.�
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Basic Discrete Time Theory

I The inverse Euler equation implies that the optimal contract tries to
"front-load" the agent�s consumption:

I Intuitively: Keeping continuation utility low ensures a high marginal
utility of consumption in t = 2 (incentives),

I If the agent had access to savings, he would save a strictly positive
amount.

I Proof:

u0(C i1) =
1

E
�

1
u 0(C i ,j2 )

����Y1 = Y i� < E
h
u0(C i ,j2 )

���Y1 = Y i i

by Jensen�s inequality, showing that u0(C ) is a submartingale.�
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Basic Discrete Time Theory

I In the in�nitely repeated relationship the optimal contract exhibits a
Markov property:

I There exists a stationary representation with agent�s continuation
utility as state variable:

Wt = Et

"
∞

∑
k=0

u(Ct+k )� h
(1+ r)k

#
.

I Intuition:

I Agent�s incentives are unchanged if we replace the continuation
contract that follows a given history with a di¤erent contract that
has the same continuation value.

I Thus, to maximize the principal�s pro�t after any history, the
continuation contract must be optimal given W .
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Basic Discrete Time Theory

I Given W , the optimal contract is then computed recursively:

F (W ) = max
u+,u�,
W +,W �

�
π
�
Y+ � u�1(u+)

�
+ (1� π)

�
Y� � u�1(u�)

�
+ 1
1+r [πF (W

+) + (1� π) F (W�)]

�
,

subject to

π

�
u+ +

1
1+ r

W+

�
� (1� π)

�
u� +

1
1+ r

W�
�

= W ,

u+ +
1

1+ r
W+ �

�
u� +

1
1+ r

W�
�

� h
∆π

.
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Basic Discrete Time Theory

I Much of the literature with in�nitely many periods has focussed on
approximation results of the �rst-best with simple contracts under no or
almost no discounting:

I As r ! 0 the principal�s per period expected pro�t converges
towards its �rst-best value.

I Intuition:

I Sample many observations, reward when "review" positive, punish
else:
! Inference e¤ect.

I Risk averse agent subject to many i.i.d. risks over time:
! By spreading rewards and punishments over time agent becomes
"perfectly diversi�ed".
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Basic Discrete Time Theory

Takeaway:

I In a dynamic model, incentives can be provided not only with current but
also with promise of future payments (deferred compensation):

I increase expected future payments after good results ("carrot"),
I decrease expected future payments after bad results ("stick").

! The optimal contract is history dependent:
! Better intertemporal risk sharing, statistical inference and punishment
options.

I With in�nite horizon there exists a stationary representation with agent�s
continuation utility as state variable.
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Part 2:
The Continuous Time Approach.
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The Setting

I Time is continuous with t 2 [0,∞).
I Risk-neutral principal and risk-averse agent with common discount rate r .

I Agent puts e¤ort A =
�
At 2

�
0,A

�
, 0 � t < ∞

	
.

I Principal does not observe e¤ort but only output:

dYt = Atdt + σdZt ,

where Z = fZt ,Ft , 0 � t < ∞g is a standard Brownian motion on
(Ω,F ,Q).

I Agent receives consumption C = fCt � 0, 0 � t < ∞g, based on
principal�s observation of output.
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The Setting

I E¤ort costs h(a), continuous, increasing and convex, with h(0) = 0 and
h0(0) > 0.

I Utility of consumption u(c), continuous, increasing and concave, with
u(0) = 0 and lim

c!∞
u0(c)! 0.

! Income e¤ect: As agent�s income increases, it becomes costlier to
compensate him for e¤ort.

! Agent can always guarantee himself a non-negative net utility by
putting zero e¤ort.
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The Setting

I Some crucial assumptions:

I Principal can commit to long-term contract,
I Agent cannot (privately) save or borrow.

I Assumptions to be relaxed later:

I Principal and agent tied together forever:
! Introduce valuable outside option for agent,
! Allow principal to replace agent at some costs.

I Career path ! promotion.
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The Principal�s Problem

I Focus on pro�t-maximizing full commitment contract at t = 0.

I An incentive compatible contract speci�es consumption stream C and
(recommended) e¤ort A to maximize principal�s (average) pro�t

EA
�
r
Z ∞

0
e�rt (At � Ct ) dt

�
,

I subject to delivering the agent an initial (average) utility of W0

W0 = E
A
�
r
Z ∞

0
e�rt (u(Ct )� h(At )) dt

�
, given e¤ort A,

I and incentive compatibility

W0 � E
eA �r Z ∞

0
e�rt

�
u(Ct )� h(Ãt )

�
dt
�
, given any e¤ort Ã.
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The Principal�s Problem

I This is a di¢ cult problem:

I Large space of possible contracts (history dependence),
I Complexity of incentive constraint:
Agent also solves a dynamic optimization problem,
! Two dynamic optimization problems embedded in one another.

I However, it is possible to reduce the problem to an optimal stochastic
control problem with agent�s continuation value as state variable and
with appropriate (local) incentive compatibility conditions.
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5 Steps to Solve for the Optimal Contract

1. De�ne agent�s continuation value fWt , 0 � t < ∞g for any C and A.
2. Using the Martingale Representation Theorem (MRT) derive the
dynamics of Wt .

3. Necessary and su¢ cient conditions for the agent�s e¤ort level to be
optimal (local incentive compatibility).

4. Using a Hamilton Jacobi Bellman (HJB) equation, conjecture an optimal
contract.

5. Verify that the conjectured contract maximizes the principal�s pro�t.
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5 Steps to Solve for the Optimal Contract

Step 1:
De�ne agent�s continuation value fWt , 0 � t < ∞g for any C and A.
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The Agent�s Continuation Value - De�nition

I In a dynamic model, incentives can be provided not only with current but
also with promise of future payments (deferred compensation):

I increase expected future payments after good results ("carrot"),
I decrease expected future payments after bad results ("stick").

! The optimal contract is history dependent.

I The agent�s continuation value keeps track of accumulated promises
and is de�ned as the agent�s total future expected utility Wt :

Wt (C ,A) = EA
�
r
Z ∞

t
e�r (s�t) (u(Cs )� h(As )) ds

����Ft� .
I Wt completely summarizes the past history and will serve as the unique
state descriptor in the optimal contract (cf. Spear and Srivastava 1987).

I Intuitively: Agent�s incentives are unchanged if continuation contract
after a given history is replaced with a di¤erent contract that has the
same continuation value.
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The Agent�s Continuation Value

I Optimal contract speci�es as a function of W :

1. Agent�s consumption ! c(W ),
2. Agent�s (recommended) e¤ort level ! a(W ),
3. How W itself changes with the realization of output ! Law of
motion of Wt driven by Yt ("pay for performance").

I Payments, recommended e¤ort and the law of motion must be consistent,
in the sense that Wt is the agent�s true continuation value ("promise
keeping").

I It must be optimal for the agent to choose recommended e¤ort level
("incentive compatibility").
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5 Steps to Solve for the Optimal Contract

Step 2:
Using the Martingale Representation Theorem (MRT) derive the dynamics
of Wt .

27 / 71



The Agent�s Continuation Value - Dynamics

I Proposition 1: For any (C ,A), Wt is the agent�s continuation value if
and only if

dWt = r (Wt � u(Ct ) + h(At )) dt + rΓt (dYt � Atdt)| {z }
=σdZ At

,

for some Ft -adapted process Γ and lims!∞ Et [e�rsWt+s ] = 0.

I Intuition: Continuation value Wt

I grows at discount rate and falls with �ow of (net) utility ("promise
keeping", "consistency"),

I responds to output innovation according to sensitivity rΓt
("incentives"),

I promises have to be paid eventually ! transversality condition.
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Method: Martingale Representation Theorem

I De�nition: M is a martingale if E [Mt+s j Ft ] = Mt .
I Theorem: Let Zt be a Brownian motion on (Ω,F ,Q) and Ft the
�ltration generated by this Brownian motion. If Mt is a martingale with
respect to this �ltration, then there is an Ft -adapted process Γ such that

Mt = M0 +
Z t
0

ΓsdZs , 0 � t � T .
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Proof of Proposition 1

I De�ne the expected (average) lifetime utility evaluated conditional on
time t information:

Vt = EA
�
r
Z ∞

0
e�r (s�t) (u(Cs )� h(As )) ds

����Ft�
= r

Z t
0
e�rs (u(Cs )� h(As )) ds + e�rtWt ,

which is a martingale under QA . ! Exercise!

I Applying MRT:

Vt = V0 + r
Z t
0
e�rsΓsσdZAs ,

where ZAt =
1
σ

�
Yt �

R t
0 Asds

�
is a Brownian motion under QA .
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Proof of Proposition 1

I Recall

Vt = r
Z t
0
e�rs (u(Cs )� h(As )) ds + e�rtWt

= V0 + r
Z t
0
e�rsΓsσdZAs .

I Di¤erentiating the two expressions for Vt

dVt = re�rt (u(Ct )� h(At )) dt � re�rtWtdt + e�rtdWt

= re�rtΓtσdZAt ,

gives the dynamics of Wt

, dWt = r (Wt � u(Ct ) + h(At )) dt + rΓt (dYt � Atdt)| {z }
=σdZ At

.
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Proof of Proposition 1

I To prove the converse, note that Vt is a martingale when the agent
follows A. So:

W0 = V0 = E [Vt ]

= E
�
r
Z t
0
e�rs (u(Cs )� h(As )) ds

�
+ E

�
e�rtWt

�
.

I The result follows by taking the limit as t ! ∞

W0 = E
�
r
Z ∞

0
e�rs (u(Cs )� h(As )) ds

�
.

I A similar argument holds for all Wt .
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5 Steps to Solve for the Optimal Contract

Step 3:
Necessary and su¢ cient conditions for the agent�s e¤ort level to be
optimal (incentive compatibility).
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Incentives
I Assume the principal wants to implement e¤ort At and recall

dWt = r (Wt � u(Ct ) + h(At )) dt + rΓt (dYt � Atdt) .

I The agent chooses his true e¤ort Ât to maximize

E [r (u(Ct )� h(At )) dt + dWt ] ,

with
dWt = ("terms una¤ected by deviation") + rΓtdYt .

I Proposition 2: A contract is incentive compatible if and only if

At 2 argmax
a2[0,A]

(Γta� h(a)) 8t � 0.

! Assuming di¤erentiability Γt enforces At > 0 if

Γt = γ(At ) = h0(At ).
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Proof of Proposition 2

I Under contract (C ,A), consider an alternative strategy Â and de�ne

V̂t = r
Z t
0
e�rs

�
u(Cs )� h(Âs )

�
ds + e�rtWt (C ,A),

the agent�s expected payo¤ from following Â until time t and A
thereafter.

I Di¤erentiating wrt t gives

dV̂t = re�rt
�
u(Ct )� h(Ât )

�
dt
�re�rt (u(Ct )� h(At )) dt
+re�rtΓt (dYt � Atdt)| {z }

=d (e�rtWt (C ,A))

= re�rt
�
h(At )� h(Ât )

�
dt + re�rtΓt (dYt � Atdt) .
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Proof of Proposition 2

I If the agent is deviating to Ât for an additional moment, then

dYt = Âtdt + σdZt ,

and

dV̂t = re�rt
��
h(At )� h(Ât )

�
+ Γt

�
Ât � At

��
dt + re�rtΓtσdZt .

I Let us now show that if any incremental deviation of this kind hurts the
agent, then the whole deviation strategy Â is worse than A ("one-shot
deviation principle").
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Proof of Proposition 2
I Claim: At is optimal for the agent if and only if:

At 2 argmax
a2[0,A]

(Γta� h(a)) 8t � 0. (1)

I Drift of V̂t :

re�rt
��

Γt Ât � h(Ât )
�
� (ΓtAt � h(At ))

�
.

I Necessity: If (1) does not hold on a set of positive measure, then choose
Ât as maximizer in (1) ! positive drift ! 9t such that

E Â
�
V̂t
�
> V̂0 = W0(C ,A).

I Su¢ ciency: If (1) does hold, then V̂t is QÂ supermartingale for any Â

W0(C ,A) = V̂0 � E Â
�
V̂∞
�
= W0(C , Â).
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5 Steps to Solve for the Optimal Contract

Step 4:
Using a Hamilton Jacobi Bellman (HJB) equation, conjecture an optimal
contract.
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The Optimal Control Problem

I We now proceed to solve the principal�s problem using dynamic
programming, with Wt as sole state variable. Intuition:

I Agent�s incentives are unchanged if we replace the continuation
contract that follows a given history with a di¤erent contract that
has the same continuation value.

I Thus, to maximize the principal�s pro�t after any history, the
continuation contract must be optimal given Wt .

I Recall evolution of Wt :

dWt = r (Wt � u(Ct ) + h(At )) dt + rΓt (dYt � Atdt) .

I The principal

I controls Wt with Ct and Γt (which enforces At ),
I must honor promises, i.e. E [e�rtWt ]! 0 as t ! ∞,
I gets a �ow of pro�ts of r (At � Ct ).
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The Optimal Control Problem

I So, we need to solve the following control problem:

F (W0) = max
�
E
�
r
Z ∞

0
e�r (u�t) (Au � Cu) du

��
,

such that

dWt = r (Wt � u(Ct ) + h(At )) dt + rΓt (dYt � Atdt) ,
W0 given,

with maximization over Ct � 0, At 2
�
0,A

�
and Γt = γ(At ) determined

from incentive compatibility.

I For a recursive formulation denote by F (Wt ) the maximal total pro�t
that the principal can attain from any incentive compatible contract at
time t after Wt has been realized.
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Deriving the HJB Equation

I Applying the dynamic programing principle, if the principal chooses Ct
and At optimally, it holds that:

F (Wt ) = Et

�
r
Z t+s
t

e�r (u�t) (Au � Cu) du + e�rsF (Wt+s )

�
.

I If Ct and At are not chosen optimally, then

F (Wt ) > Et

�
r
Z t+s
t

e�r (u�t) (Au � Cu) du + e�rsF (Wt+s )

�
.

I So, we have

F (Wt ) = max
C ,A

�
Et

�
r
Z t+s
t

e�r (u�t) (Au � Cu) du + e�rsF (Wt+s )

��
.

I We want to derive a di¤erential equation for F .
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Method: Itô�s Rule

I Theorem: Assume that the process X follows

dXt = µtdt + σtdZt ,

with µ and σ adapted processes and let f (Xt ) be a twice continuously
di¤erentiable function. Then it holds that

df (t,Xt ) =
�

∂f
∂t
+ µt

∂f
∂X

+
1
2

σ2t
∂2f
∂X 2

�
dt + σt

∂f
∂X
dZt ,

or in integral form

f (Xt ) = f (X0) +
Z t
0

�
∂f
∂t
+ µs

∂f
∂X

+
1
2

σ2s
∂2f
∂X 2

�
ds +

Z t
0

σs
∂f
∂X
dZs .
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Deriving the HJB Equation
I Recall, given Wt = W it holds that

F (W ) � Et
�
r
Z t+s
t

e�r (u�t) (Au � Cu) du + e�rsF (Wt+s )

�
,

with
dWs = r (Ws � u(Cs ) + h(As )) ds + rΓsσdZs .

I Applying Itô�s rule to e�rsF (Wt+s ) we get

e�rsF (Wt+s ) = F (W ) +
Z t+s
t

e�r (u�t)rΓuσF 0(Wu)dZu

+
Z t+s
t

e�r (u�t)
�
�rF (Wu) + r (Wu � u(Cu) + h(Au)) F 0(Wu)

+ 12 r
2Γ2uσ2F 00(Wu)

�
du.

I Substituting back in the inequality results in

0 � Et
�
r
Z t+s
t

e�r (u�t)
�
Au � Cu � F (Wu) +

1
2 rΓ

2
uσ2F 00(Wu)

+ (Wu � u(Cu) + h(Au)) F 0(Wu)

�
du
�
.
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Deriving the HJB Equation

I Now divide by s and let s ! 0, to arrive at

F (Wt ) �
At � Ct

+ (Wt � u(Ct ) + h(At )) F 0(Wt ) +
1
2 rΓ

2
t σ2F 00(Wt )

.

I This has to hold for all possible (t,Wt = W ) and we get the Hamilton
Jacobi Bellman equation (HJB)

F (W ) = max
C ,A

�
A� C

+ (W � u(C ) + h(A)) F 0(W ) + 1
2 rΓ

2σ2F 00(W )

�
,

where the maximization is over (admissible) controls C � 0 and
A 2

�
0,A

�
subject to incentive compatibility Γ = γ(A).
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The HJB - Intuition

I Assume Ct and At are chosen optimally and Wt = W is �xed.

I Since the principal discounts at rate r , his expected �ow of value at time
t must be rF (Wt )dt.

I This has to be equal to

1. the expected instantaneous �ow of output minus payments to the
agent r (At � Ct ) dt,

2. plus the expected change in the principal�s value function
E [dF (Wt )].

I Together we have

rF (W ) = max
C ,A

�
r (A� C )

+r (W � u(C ) + h(A)) F 0(W ) + 1
2 r
2γ2(A)σ2F 00(W )

�
.
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Retirement Value Function

I Always possible to retire the
agent:

I the agent puts zero
e¤ort At = 0 8t,

I the �rm does not
produce,

I the principal o¤ers
constant consumption
Ct = C 8t.

I The principal�s retirement
pro�t is

F0(u(C )) = �C ,

which is decreasing, concave
and satis�es F0(u(0)) = 0.
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Constructing an Improvement

I If W hits zero have to retire the agent, as C � 0.
I If W becomes large, then, due to income e¤ect, it becomes increasingly
costly to compensate for e¤ort, hence eventually retire the agent
optimally.

I Over the improvement interval A > 0, and the improvement curve is the
solution to the HJB

F 00(W ) = min
C ,A>0

F (W )� A+ C � (W � u(C ) + h(A)) F 0(W )
rγ2(A)σ2/2

,

subject to boundary conditions

F (0) = 0

F (Wgp) = F0(Wgp)

F 0(Wgp) = F 00(Wgp)

"value matching",

"value matching",

"smooth pasting".
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Constructing an Improvement

I A concave solution F (W ) � F0(W ) to this boundary value problem
exists and is unique.

I The concavity of F (W ) is due to the fact that retirement is ine¢ cient.
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The Optimal Contract - Summary

I F (W0) which solves the boundary value problem above is the principal�s
pro�t under the optimal contract for W0 2 [0,Wgp ].

I The agent�s promised wealth under the optimal contract follows

dWt = r (Wt � u(c(Wt )) + h(a(Wt ))) dt

+rγ(Wt ) (dYt � a(Wt )dt)

until retirement time τ where Wt hits either 0 or Wgp .

I For t < τ, Ct = c(Wt ) and At = a(Wt ) are the maximizers in the ODE
for F (W ).

I After time τ, the agent receives constant consumption Ct = �F (Wτ)
and puts zero e¤ort.
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5 Steps to Solve for the Optimal Contract

Step 5:
Verify that the conjectured contract maximizes the principal�s pro�t.
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Veri�cation

I So far optimal contract has been conjectured based on a solution of the
HJB.

I However, one should note that the HJB takes the form of a necessary
condition: "If F (W ) is the optimal value function and (C ,A) are chosen
optimally, then

I F (W ) satis�es the HJB, and
I The optimal choices of (C ,A) realize the maximum in the HJB."

I Further, implicitly made a couple of technical assumptions, in particular
on the di¤erentiability of F (W ) and the existence of optimal choices of
(C ,A).

I The veri�cation theorem below will show that the conjectured contract
indeed maximizes the principal�s pro�t (su¢ ciency).
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Veri�cation
I Consider the process

Gt = r
Z t
0
e�rs (As � Cs ) ds + e�rtF (Wt ).

I The drift of Gt is given by

re�rt
�

(At � Ct )� F (Wt )
+ (Wt � u(Ct ) + h(At )) F 0(Ws ) +

1
2 r
2Γ2t σ2F 00(Ws )

�
| {z }

�0 from HJB

,

which is zero in the conjectured contract and � 0 in any other incentive
compatible contract.

I Hence,

E
�
r
Z ∞

0
e�rt (At � Ct ) dt

�
= E [G∞] � G0 = F (W0),

with equality under the optimal contract.
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Discussion

Additional Properties of the Optimal Contract:
Initialization, optimal consumption and optimal e¤ort pro�le.
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Initialization

I Principal has all bargaining
power, W0 = W �:

F 0(W �) = 0.

I Agent has all bargaining
power, W0 = Wc :

F (Wc ) = 0.
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Discussion - Optimal E¤ort and Consumption

I From the HJB equation, e¤ort maximizes

a|{z}
output

+ h(a)F 0(W )| {z }
cost of compensating for e¤ort

+
1
2
rσ2γ(a)2F 00(W )| {z }

cost of providing incentives

.

! E¤ort typically is non-monotonic in W as

I F 0(W ) decreases in W (retirement is ine¢ cient),
I while F 00(W ) increases at least for low values of W (exposing agent
to risk is costly close to triggering retirement).

I The optimal consumption choice maximizes

�c � u(c)F 0(W ).

! When F 0(W ) � �1/u0(0), consumption is zero ("probation"). This
is the case for W 2 [0,W ��] (increase drift of W to avoid retirement).

! For W > W �� consumption is increasing in W .

55 / 71



An Example
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Discussion - Optimal E¤ort and Consumption

I Proposition 3: The drift of Wt points in the direction where F 00(W ) is
increasing, i.e., where it is cheaper to provide incentives.

I Proof: Di¤erentiating the HJB wrt W using the envelope theorem gives

(W � u(C ) + h(A))| {z }
drift of W

F 00(W ) +
1
2
rσ2γ2(A)F 000(W ) = 0. (2)

I Note next that (2) is, from Itô�s Lemma, also equal to the drift of F 0(W ).
! Together with the FOC for (interior consumption)

� 1
u0(c(W ))

= F 0(W ),

this implies that 1/u0(C ) is a martingale ("Inverse Euler Equation").

I Re�ects the fact that agent cannot save: u0(C ) is a submartingale.
! So if the agent could save he would want to do so as his marginal
utility increases in expectation.
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Contractual Environments

How do Contractual Environments A¤ect Agent�s Career?
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Contractual Environments

I Di¤erent Contractual environments:

A.) The agent can quit and pursue an outside option,
B.) the principal can replace the agent,
C.) the principal can promote the agent.

I Properties of agent�s career:

1.) Wages (back-loaded vs. front-loaded),
2.) short-term incentives (piece rates, bonuses) vs. long-term incentives

(permanent wage increases, terminations),
3.) the agent�s e¤ort in equilibrium.
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Solve the Model under Di¤erent Environments

I Principal�s generalized problem: Maximize pro�t until t = τ when the
agent quits, retires, is replaced, or promoted

E
�
r
Z τ

0
e�rt (At � Ct ) dt + e�rτF̃0 (Wτ)

�
,

subject to incentive compatibility constraint and the agent�s participation
constraint for all t � τ,

Wt � W̃ � 0.

I The principal�s pro�t function F̃ (W ) has to satisfy the same HJB as
before, but the respective environment determines the boundary
conditions:

F̃ (Wτ) = F̃0 (Wτ) .
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A.) Pro�t Function with Outside Option

I Lower retirement point is higher
than w/o outside option:

W̃ > 0.

I Principal�s pro�t is lower than w/o
outside option:

F̃ (W ) < F (W ) .
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B.) Pro�t Function with Replacement

I Retirement pro�t higher than w/o
replacement:

F̃0 (W ) = F0 (W ) +D.

I Principal�s pro�t is higher than
w/o replacement:

F̃ (W ) > F (W ) .

I Less costly to retire the agent
! upper retirement point lower
than w/o replacement:

W̃gp < Wgp .
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C.) Promotion of the Agent

I Promoting the agent to a new position

I incurs the principal training cost K ,
I increases the agent�s productivity by a factor of θ > 1,
I Increases the agent�s outside option to Wp > 0.

I With a promoted agent, the principal�s pro�t function solves

F
00
p (W ) = min

C ,A>0

Fp(W )� θA+ C � (W � u(C ) + h(A)) F 0p(W )
rγ2(A)σ2/

�
2θ2
� ,

with boundary conditions

Fp(W̃p) = 0,

Fp (Wgp) = F0 (Wgp) ,

F 0p (Wgp) = F 00 (Wgp) .
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C.) Pro�t Function after Promotion

I Lower retirement point is higher
than w/o promotion (agent now
has an outside option):

Wp > 0.

I Upper retirement point is also
higher than w/o promotion
because a trained agent is more
productive.
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C.) Pro�t Function before Promotion

I Principal must decide whether to
promote or to retire the agent:

F̃0 (W ) = max
�
F0 (W ) ,Fp (W )�K

�
.

I Here: Agent is promoted at W̃gp
where:

F̃
�
W̃gp

�
= Fp

�
W̃gp

�
�K ,

F̃ 0
�
W̃gp

�
= F 0p

�
W̃gp

�
.

I Principal�s pro�t is higher than
w/o promotion:

F̃ (W ) > F (W ) .
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1.) Front-Loaded vs. Back-Loaded Compensation

I A fully dynamic setting allows us to study when wages should be more
front-loaded and when they should be more back-loaded.

I E.g. Lazear (1979) shows that:

I The employers can strengthen an employment relationship by
o¤ering a rising wage pattern.

I By postponing pay to a later point in the agent�s career, he can be
induced to exert more e¤ort at the same costs for the principal.

I In the present setting:

I The Optimal contract trades o¤ this bene�t against costs from

I income e¤ect,
I earlier retirement, and
I distortion of agent�s consumption.
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1.) Front-Loaded vs. Back-Loaded Compensation

I Measure for how back-loaded the
agent�s compensation is:

I wage captures short-term
compensation.

I continuation value captures
long-term compensation.

! compare environments by looking
at continuation value for a given
wage.
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2.) Short-Term Incentives vs. Long-Term Incentives

I Long-term and short-term incentives have been studied individually.

I Short-term incentives:

I Holmström and Milgrom (1987) "especially well suited for
representing compensation paid over short period" (from HM 1991).

I Lazear (2000): productivity in Safelite Glass Corporation increased
by 44 % when piece rates were introduced.

I Long-term incentives:

I Lazear and Rosen (1981): incentives can be created by promotions.

I Optimal mix of short-term and long-term incentives has not been studied.
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2.) Short-Term Incentives vs. Long-Term Incentives

I Incentives are provided by tying the agent�s compensation to the project�s
risky outcome.

I Volatility of current consumption captures short-term incentives.
I Volatility of continuation value captures long-term incentives.

! Use the relative volatility of the agent�s compensation as a measure for
the dynamics of incentive provision.

I Agent has outside option ) less long-term incentives.
I Principal can replace the agent ) more long-term incentives.
I Principal can promote the agent ) more long-term incentives.
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3.) Equilibrium E¤ort Pro�le

I Higher e¤ort when the optimal
contract relies more on long-term
incentives.
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Sannikov (2008) Conclusions

I Clean and elegant method to study dynamic incentive problems.

I Linear over short periods as in Holmström and Milgrom (1987) but
nonlinear in the long run.

I How does contractual environment a¤ect dynamics.

I Next: Look at a dynamic model of �nancial contracting with
risk-neutrality (DeMarzo and Sannikov 2006).
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