Dynamic Principal Agent Models: A Continuous Time Approach Lecture I The "Standard" Continuous Time Principal Agent Model (Sannikov 2008)

Florian Hoffmann Sebastian Pfeil

Stockholm April 2012 - please do not cite or circulate -

Outline

▶ Part 1: A refresher of dynamic agency in discrete time.

- Introduce simple repeated moral hazard model,
- Show core results from discrete time models.
- Part 2: The continuous time approach.
 - Set-up of the basic principal agent model in continuous time.
 - Outline of core steps to derive the optimal contract in (class of) continuous time models.
 - Discussion of techniques used to derive the optimal contract.
 - Discussion of properties of the optimal contract.

Part 1: A "Refresher" of Dynamic Agency in Discrete Time.

- Model setup:
 - Agent takes hidden action in time periods 1, 2, 3, ...
 - Output depends on agent's hidden action.
 - Principal observes output and can commit to a long-term contract that specifies payments to the agent as a function of output history.
- Main findings:
 - Optimal contract is history dependent (Rogerson 1985),
 - With infinite horizon there exists a stationary representation with agent's promised utility as state variable (Spear and Srivastava 1987),
 - Efficiency is attainable if agent becomes patient (Radner 1985).

Simple two period model t = 1, 2:

- ▶ Risk-neutral principal and risk-averse agent with common discount rate r.
- Agent's period utility is given by

$$u(C_t)-h(A_t),$$

where A_t denotes effort and C_t denotes monetary compensation (assume that the agent cannot save/borrow).

- For simplicity assume that $A_t \in \{0, 1\}$ and h(1) =: h, h(0) = 0. Normalize u(0) = 0.
- Output:

$$Y_t = \left\{ egin{array}{cc} Y^+ & \mbox{with prob. } \pi(A_t) \ Y^- & \mbox{with prob. } 1 - \pi(A_t) \end{array}
ight.$$
 ,

where we denote $\pi(1) =: \pi$ and $\pi(0) =: \pi - \Delta \pi$, $\Delta \pi > 0$.

- Assume that the principal wants to implement high effort in both periods.
- A contract C specifies $2 + 2^2$ transfers contingent on output:
 - period 1 compensation $C_1^i = C(Y_1 = Y^i)$, $i \in \{+, -\}$,
 - period 2 compensation $C_2^{i,j} = C(Y_1 = Y^i, Y_2 = Y^j),$ $i, j \in \{+, -\}.$
- This can be rewritten in terms of contingent utilities:

$$u_1^i = u(C_1^i), i \in \{+, -\}, u_2^{i,j} = u(C_2^{i,j}), i, j \in \{+, -\}.$$

• Incentive compatibility in t = 2 requires:

$$u_2^{i,+} - u_2^{i,-} \ge \frac{h}{\Delta \pi}, \ i \in \{+,-\}.$$

• Denote the expected net utility from t = 2 conditional on Y_1 by

$$W_2^i = \pi u_2^{i,+} + (1-\pi) u_2^{i,-} - h, \ i \in \{+,-\}$$
 ,

which is called the agent's continuation value or promised wealth.
Incentive compatibility in t = 1 then requires:

$$u_1^+ + rac{1}{1+r}W_2^+ - \left(u_1^- + rac{1}{1+r}W_2^-\right) \ge rac{h}{\Delta\pi},$$

- \rightarrow Continuation utilities affect t = 1 incentives.
- ightarrow Given $W_2^i, t = 1$ incentives are unaffected by $u_2^{i,+}$ and $u_2^{i,-}.$

• Further, we have the t = 1 participation constraint:

$$W_1 = \pi \left[u_1^+ + \frac{1}{1+r} W_2^+ \right] + (1-\pi) \left[u_1^- + \frac{1}{1+r} W_2^- \right] \ge h.$$

- ightarrow Continuation utilities affect t=1 participation decision.
- \rightarrow Given W_2^i , t = 1 participation is unaffected by $u_2^{i,+}$ and $u_2^{i,-}$.
- Solve the problem backwards:
 - 1. For each W_2^i solve the second period problem,
 - 2. Given the optimal continuation contract, solve the first period problem.

Proceeding in this manner one obtains:

$$\begin{aligned} \frac{1}{u'(C_1^i)} &= & \pi_1 \frac{1}{u'(C_2^{i,+})} + (1 - \pi_1) \frac{1}{u'(C_2^{i,-})} \\ &= & E\left[\frac{1}{u'(C_2^{i,j})} \middle| Y_1 = Y^i\right], \ i \in \{+,-\}, \end{aligned}$$

 \rightarrow "Inverse Euler Equation": Agent's inverse marginal utility is a martingale.

 \rightarrow Providing incentives vs. smoothing consumption.

- **Proof:** Consider an optimal incentive compatible contract *C*.
- Construct a new contract C̃ that differs from C only following first period realization Y₁ = Y⁺:

$$\begin{aligned} \widetilde{u}_1^+ &= u_1^+ - x, \\ \widetilde{u}_2^{+,j} &= u_2^{+,j} + (1+r) \, x, \ j \in \{+,-\} \, . \end{aligned}$$

Note that the new contract still induces high effort:

- Trivial following $Y_1 = Y^-$ as $\tilde{u}_2^{-,j} = u_2^{-,j}$, $j \in \{+, -\}$,
- ► Following $Y_1 = Y^+$ high effort still optimal as (1 + r)x is constant across outcomes $\tilde{u}_2^{+,+} \tilde{u}_2^{+,-} = u_2^{+,+} u_2^{+,-}$,
- Effort in t = 1 is still optimal, as for $i \in \{+, -\}$

$$\widetilde{u}_{1}^{i} + \frac{1}{1+r} \left(\pi \widetilde{u}_{2}^{i,+} + (1-\pi) \widetilde{u}_{2}^{i,-} \right)$$
$$= u_{1}^{i} + \frac{1}{1+r} \left(\pi u_{2}^{i,+} + (1-\pi) u_{2}^{i,-} \right)$$

- Participation still optimal as $\widetilde{W}_1 = W_1$.
- So for x = 0 to be optimal, it must minimize expected payments to the agent

$$u^{-1}(u_1^+ - x) + \frac{1}{1+r} \left(\begin{array}{c} \pi u^{-1}(u_2^{+,+} + (1+r)x) \\ + (1-\pi) u^{-1}(u_2^{+,-} + (1+r)x) \end{array} \right) . \blacksquare$$

- The inverse Euler equation implies that the optimal contract with full commitment exhibits memory:
 - I.e., t = 1 outcome affects transfers both in t = 1 and in t = 2,
 - ▶ or: Transfers in both t = 1 and t = 2 are used to provide incentives in t = 1,
 - in particular: $C_1^+ > C_1^-$ and $W_2^+ > W_2^-$.
- ▶ **Proof:** Suppose by contradiction that $C_2^{+,+} = C_2^{-,+}$ and $C_2^{+,-} = C_2^{-,-}$, then

$$\begin{aligned} \frac{1}{u'(C_1^+)} &= & \pi_1 \frac{1}{u'(C_2^{+,+})} + (1 - \pi_1) \frac{1}{u'(C_2^{+,-})} \\ &= & \pi_1 \frac{1}{u'(C_2^{-,+})} + (1 - \pi_1) \frac{1}{u'(C_2^{-,-})} = \frac{1}{u'(C_1^-)}, \end{aligned}$$

violating the incentive constraint in t = 1.

- The inverse Euler equation implies that the optimal contract tries to "front-load" the agent's consumption:
 - Intuitively: Keeping continuation utility low ensures a high marginal utility of consumption in t = 2 (incentives),
 - If the agent had access to savings, he would save a strictly positive amount.
- Proof:

$$u'(C_1^i) = \frac{1}{E\left[\frac{1}{u'(C_2^{i,j})} \middle| Y_1 = Y^i\right]} < E\left[u'(C_2^{i,j}) \middle| Y_1 = Y^i\right]$$

by Jensen's inequality, showing that u'(C) is a submartingale.

- In the infinitely repeated relationship the optimal contract exhibits a Markov property:
 - There exists a stationary representation with agent's continuation utility as state variable:

$$W_t = E_t \left[\sum_{k=0}^{\infty} \frac{u(C_{t+k}) - h}{(1+r)^k} \right]$$

Intuition:

- Agent's incentives are unchanged if we replace the continuation contract that follows a given history with a different contract that has the same continuation value.
- ► Thus, to maximize the principal's profit after any history, the continuation contract must be optimal given *W*.

• Given W, the optimal contract is then computed recursively:

$$F(W) = \max_{\substack{u^+, u^-, \\ W^+, W^-}} \left\{ \begin{array}{c} \pi \left(Y^+ - u^{-1}(u^+) \right) + (1 - \pi) \left(Y^- - u^{-1}(u^-) \right) \\ + \frac{1}{1 + r} \left[\pi F(W^+) + (1 - \pi) F(W^-) \right] \end{array} \right\},$$

subject to

$$\begin{aligned} \pi \left(u^{+} + \frac{1}{1+r} W^{+} \right) - (1-\pi) \left(u^{-} + \frac{1}{1+r} W^{-} \right) &= W, \\ u^{+} + \frac{1}{1+r} W^{+} - \left(u^{-} + \frac{1}{1+r} W^{-} \right) &\geq \frac{h}{\Delta \pi}. \end{aligned}$$

- Much of the literature with infinitely many periods has focussed on approximation results of the first-best with simple contracts under no or almost no discounting:
 - As r → 0 the principal's per period expected profit converges towards its first-best value.
- Intuition:
 - Sample many observations, reward when "review" positive, punish else:
 - \rightarrow Inference effect.
 - Risk averse agent subject to many i.i.d. risks over time:
 - \rightarrow By spreading rewards and punishments over time agent becomes "perfectly diversified".

Takeaway:

- In a dynamic model, incentives can be provided not only with current but also with promise of future payments (deferred compensation):
 - increase expected future payments after good results ("carrot"),
 - decrease expected future payments after bad results ("stick").
 - \rightarrow The optimal contract is **history dependent**:
 - \rightarrow Better intertemporal risk sharing, statistical inference and punishment options.
- With infinite horizon there exists a stationary representation with agent's continuation utility as state variable.

Part 2: The Continuous Time Approach.

The Setting

- Time is continuous with $t \in [0, \infty)$.
- Risk-neutral principal and risk-averse agent with common discount rate r.
- Agent puts effort $A = \{A_t \in [0, \overline{A}], 0 \le t < \infty\}.$
- Principal does not observe effort but only output:

$$dY_t = A_t dt + \sigma dZ_t,$$

where $Z = \{Z_t, \mathcal{F}_t, 0 \leq t < \infty\}$ is a standard Brownian motion on $(\Omega, \mathcal{F}, \mathcal{Q})$.

Agent receives consumption C = {Ct ≥ 0, 0 ≤ t < ∞}, based on principal's observation of output.</p>

The Setting

- Effort costs h(a), continuous, increasing and convex, with h(0) = 0 and h'(0) > 0.
- ▶ Utility of consumption u(c), continuous, increasing and concave, with u(0) = 0 and $\lim_{c \to \infty} u'(c) \to 0$.
 - \rightarrow Income effect: As agent's income increases, it becomes costlier to compensate him for effort.
 - \rightarrow Agent can always guarantee himself a **non-negative net utility** by putting zero effort.

The Setting

Some crucial assumptions:

- Principal can commit to long-term contract,
- Agent cannot (privately) save or borrow.
- Assumptions to be relaxed later:
 - Principal and agent tied together forever:
 - \rightarrow Introduce valuable outside option for agent,
 - \rightarrow Allow principal to replace agent at some costs.
 - Career path \rightarrow promotion.

The Principal's Problem

- Focus on profit-maximizing full commitment contract at t = 0.
- An incentive compatible contract specifies consumption stream C and (recommended) effort A to maximize principal's (average) profit

$$E^{A}\left[r\int_{0}^{\infty}e^{-rt}\left(A_{t}-C_{t}\right)dt\right],$$

• subject to delivering the agent an initial (average) utility of W_0

$$W_0 = E^A \left[r \int_0^\infty e^{-rt} \left(u(C_t) - h(A_t) \right) dt \right]$$
, given effort A,

and incentive compatibility

$$W_0 \geq E^{\widetilde{A}}\left[r\int_0^\infty e^{-rt}\left(u(C_t) - h(\widetilde{A}_t)\right)dt
ight]$$
, given any effort \widetilde{A}_t

The Principal's Problem

- This is a difficult problem:
 - Large space of possible contracts (history dependence),
- However, it is possible to reduce the problem to an optimal stochastic control problem with agent's continuation value as state variable and with appropriate (local) incentive compatibility conditions.

5 Steps to Solve for the Optimal Contract

- 1. Define agent's continuation value $\{W_t, 0 \le t < \infty\}$ for any C and A.
- 2. Using the Martingale Representation Theorem (MRT) derive the dynamics of W_t .
- 3. Necessary and sufficient conditions for the agent's effort level to be optimal (local incentive compatibility).
- 4. Using a Hamilton Jacobi Bellman (HJB) equation, conjecture an optimal contract.
- 5. Verify that the conjectured contract maximizes the principal's profit.

5 Steps to Solve for the Optimal Contract

 $\frac{\text{Step 1:}}{\text{Define agent's continuation value }} \{ W_t, 0 \le t < \infty \} \text{ for any } C \text{ and } A.$

The Agent's Continuation Value - Definition

- In a dynamic model, incentives can be provided not only with current but also with promise of future payments (deferred compensation):
 - increase expected future payments after good results ("carrot"),
 - decrease expected future payments after bad results ("stick").
 - \rightarrow The optimal contract is history dependent.
- The agent's continuation value keeps track of accumulated promises and is defined as the agent's total future expected utility W_t:

$$W_t(C, A) = E^A \left[r \int_t^\infty e^{-r(s-t)} \left(u(C_s) - h(A_s) \right) ds \middle| \mathcal{F}_t \right].$$

- W_t completely summarizes the past history and will serve as the unique state descriptor in the optimal contract (cf. Spear and Srivastava 1987).
- Intuitively: Agent's incentives are unchanged if continuation contract after a given history is replaced with a different contract that has the same continuation value.

The Agent's Continuation Value

Optimal contract specifies as a function of W:

- 1. Agent's consumption $\rightarrow c(W)$,
- 2. Agent's (recommended) effort level $\rightarrow a(W)$,
- 3. How W itself changes with the realization of output \rightarrow Law of motion of W_t driven by Y_t ("pay for performance").
- Payments, recommended effort and the law of motion must be consistent, in the sense that W_t is the agent's true continuation value ("promise keeping").
- It must be optimal for the agent to choose recommended effort level ("incentive compatibility").

5 Steps to Solve for the Optimal Contract

Step 2: Using the Martingale Representation Theorem (MRT) derive the dynamics of W_t .

The Agent's Continuation Value - Dynamics

Proposition 1: For any (C, A), W_t is the agent's continuation value if and only if

$$dW_t = r \left(W_t - u(C_t) + h(A_t) \right) dt + r \Gamma_t \underbrace{\left(\frac{dY_t - A_t dt}{e^{\sigma dZ_t^A}} \right)}_{= \sigma dZ_t^A},$$

for some \mathcal{F}_t -adapted process Γ and $\lim_{s\to\infty} E_t \left[e^{-rs} W_{t+s} \right] = 0$.

- Intuition: Continuation value W_t
 - grows at discount rate and falls with flow of (net) utility ("promise keeping", "consistency"),
 - responds to output innovation according to sensitivity rΓ_t ("incentives"),
 - \blacktriangleright promises have to be paid eventually \rightarrow transversality condition.

Method: Martingale Representation Theorem

- **Definition:** *M* is a martingale if $E[M_{t+s}|\mathcal{F}_t] = M_t$.
- ▶ **Theorem:** Let Z_t be a Brownian motion on $(\Omega, \mathcal{F}, \mathcal{Q})$ and \mathcal{F}_t the filtration generated by this Brownian motion. If M_t is a martingale with respect to this filtration, then there is an \mathcal{F}_t -adapted process Γ such that

$$M_t = M_0 + \int_0^t \Gamma_s dZ_s, \ 0 \leq t \leq T.$$

Define the expected (average) lifetime utility evaluated conditional on time t information:

$$V_t = E^A \left[r \int_0^\infty e^{-r(s-t)} \left(u(C_s) - h(A_s) \right) ds \middle| \mathcal{F}_t \right] \\ = r \int_0^t e^{-rs} \left(u(C_s) - h(A_s) \right) ds + e^{-rt} W_t,$$

which is a martingale under \mathcal{Q}^A . \rightarrow *Exercise*!

Applying MRT:

$$V_t = V_0 + r \int_0^t e^{-rs} \Gamma_s \sigma dZ_s^A,$$

where $Z_t^A = \frac{1}{\sigma} \left(Y_t - \int_0^t A_s ds \right)$ is a Brownian motion under Q^A .

Recall

$$V_t = r \int_0^t e^{-rs} (u(C_s) - h(A_s)) \, ds + e^{-rt} W_t$$

= $V_0 + r \int_0^t e^{-rs} \Gamma_s \sigma dZ_s^A$.

• Differentiating the two expressions for V_t

$$dV_t = re^{-rt} (u(C_t) - h(A_t)) dt - re^{-rt} W_t dt + e^{-rt} dW_t$$

= $re^{-rt} \Gamma_t \sigma dZ_t^A$,

gives the dynamics of W_t

$$\Leftrightarrow dW_t = r \left(W_t - u(C_t) + h(A_t) \right) dt + r \Gamma_t \underbrace{\left(\frac{dY_t - A_t dt}{dt} \right)}_{=\sigma dZ_t^A}$$

To prove the converse, note that V_t is a martingale when the agent follows A. So:

$$W_0 = V_0 = E[V_t]$$

= $E\left[r\int_0^t e^{-rs}\left(u(C_s) - h(A_s)\right)ds\right] + E\left[e^{-rt}W_t\right].$

 \blacktriangleright The result follows by taking the limit as $t \to \infty$

$$W_0 = E\left[r\int_0^\infty e^{-rs}\left(u(C_s) - h(A_s)\right)ds\right].$$

► A similar argument holds for all W_t.

5 Steps to Solve for the Optimal Contract

Step 3:

Necessary and sufficient conditions for the agent's effort level to be optimal (incentive compatibility).

Incentives

• Assume the principal wants to implement effort A_t and recall

$$dW_t = r \left(W_t - u(C_t) + h(A_t) \right) dt + r \Gamma_t \left(dY_t - A_t dt \right).$$

• The agent chooses his true effort \hat{A}_t to maximize

$$E[r(u(C_t)-h(A_t))dt+dW_t]$$
,

with

$$dW_t = ("terms unaffected by deviation") + r\Gamma_t dY_t.$$

Proposition 2: A contract is incentive compatible if and only if

$$egin{aligned} \mathcal{A}_t \in rg\max_{a \in \left[0, \overline{\mathcal{A}}
ight]} \left(\Gamma_t a - h(a)
ight) \ orall t \geq 0. \end{aligned}$$

 \rightarrow Assuming differentiability Γ_t enforces $A_t > 0$ if

$$\Gamma_t = \gamma(A_t) = h'(A_t).$$

• Under contract (C, A), consider an alternative strategy \hat{A} and define

$$\hat{V}_t = r \int_0^t e^{-rs} \left(u(C_s) - h(\hat{A}_s) \right) ds + e^{-rt} W_t(C, A),$$

the agent's expected payoff from following \hat{A} until time t and A thereafter.

Differentiating wrt t gives

$$d\hat{V}_{t} = re^{-rt} \left(u(C_{t}) - h(\hat{A}_{t}) \right) dt \underbrace{-re^{-rt} \left(u(C_{t}) - h(A_{t}) \right) dt}_{= d(e^{-rt}W_{t}(C,A))}$$
$$= re^{-rt} \left(h(A_{t}) - h(\hat{A}_{t}) \right) dt + re^{-rt}\Gamma_{t} \left(dY_{t} - A_{t}dt \right).$$

• If the agent is deviating to \hat{A}_t for an additional moment, then

$$dY_t = \hat{A}_t dt + \sigma dZ_t$$
,

and

$$d\hat{V}_t = re^{-rt} \left[\left(h(A_t) - h(\hat{A}_t) \right) + \Gamma_t \left(\hat{A}_t - A_t \right) \right] dt + re^{-rt} \Gamma_t \sigma dZ_t.$$

Let us now show that if any incremental deviation of this kind hurts the agent, then the whole deviation strategy is worse than A ("one-shot deviation principle").

Claim: A_t is optimal for the agent if and only if:

$$A_t \in \underset{a \in [0,\overline{A}]}{\arg \max} \left(\Gamma_t a - h(a) \right) \ \forall t \ge 0.$$
(1)

• Drift of \hat{V}_t :

$$re^{-rt}\left(\left(\Gamma_t\hat{A}_t-h(\hat{A}_t)\right)-\left(\Gamma_tA_t-h(A_t)\right)\right).$$

▶ Necessity: If (1) does not hold on a set of positive measure, then choose \hat{A}_t as maximizer in (1) → positive drift → $\exists t$ such that

$$E^{\hat{A}}[\hat{V}_t] > \hat{V}_0 = W_0(C, A).$$

• Sufficiency: If (1) does hold, then \hat{V}_t is $\mathcal{Q}^{\hat{A}}$ supermartingale for any \hat{A}

$$W_0(C, A) = \hat{V}_0 \ge E^{\hat{A}} \left[\hat{V}_{\infty} \right] = W_0(C, \hat{A}).$$

5 Steps to Solve for the Optimal Contract

Step 4: Using a Hamilton Jacobi Bellman (HJB) equation, conjecture an optimal contract.

The Optimal Control Problem

- We now proceed to solve the principal's problem using dynamic programming, with W_t as sole state variable. Intuition:
 - Agent's incentives are unchanged if we replace the continuation contract that follows a given history with a different contract that has the same continuation value.
 - ► Thus, to maximize the principal's profit after any history, the continuation contract must be optimal given *W*_t.
- Recall evolution of W_t:

$$dW_t = r\left(W_t - u(C_t) + h(A_t)\right) dt + r\Gamma_t \left(dY_t - A_t dt\right).$$

The principal

- controls W_t with C_t and Γ_t (which enforces A_t),
- must honor promises, i.e. $E[e^{-rt}W_t] \rightarrow 0$ as $t \rightarrow \infty$,
- gets a flow of profits of $r(A_t C_t)$.

The Optimal Control Problem

So, we need to solve the following control problem:

$$F(W_0) = \max\left\{E\left[r\int_0^\infty e^{-r(u-t)}\left(A_u - C_u\right)du\right]\right\},\,$$

such that

$$dW_t = r \left(W_t - u(C_t) + h(A_t) \right) dt + r\Gamma_t \left(dY_t - A_t dt \right),$$

 W_0 given,

with maximization over $C_t \ge 0$, $A_t \in [0, \overline{A}]$ and $\Gamma_t = \gamma(A_t)$ determined from incentive compatibility.

For a recursive formulation denote by $F(W_t)$ the maximal total profit that the principal can attain from any incentive compatible contract at time t after W_t has been realized.

Deriving the HJB Equation

Applying the dynamic programing principle, if the principal chooses C_t and A_t optimally, it holds that:

$$F(W_t) = E_t \left[r \int_t^{t+s} e^{-r(u-t)} \left(A_u - C_u \right) du + e^{-rs} F(W_{t+s}) \right].$$

• If C_t and A_t are not chosen optimally, then

$$F(W_t) > E_t \left[r \int_t^{t+s} e^{-r(u-t)} \left(A_u - C_u \right) du + e^{-rs} F(W_{t+s}) \right]$$

So, we have

$$F(W_t) = \max_{C,A} \left\{ E_t \left[r \int_t^{t+s} e^{-r(u-t)} \left(A_u - C_u \right) du + e^{-rs} F(W_{t+s}) \right] \right\}.$$

We want to derive a differential equation for F.

Method: Itô's Rule

Theorem: Assume that the process X follows

$$dX_t = \mu_t dt + \sigma_t dZ_t$$
,

with μ and σ adapted processes and let $f(X_t)$ be a twice continuously differentiable function. Then it holds that

$$df(t, X_t) = \left[\frac{\partial f}{\partial t} + \mu_t \frac{\partial f}{\partial X} + \frac{1}{2}\sigma_t^2 \frac{\partial^2 f}{\partial X^2}\right] dt + \sigma_t \frac{\partial f}{\partial X} dZ_t,$$

or in integral form

$$f(X_t) = f(X_0) + \int_0^t \left[\frac{\partial f}{\partial t} + \mu_s \frac{\partial f}{\partial X} + \frac{1}{2}\sigma_s^2 \frac{\partial^2 f}{\partial X^2}\right] ds + \int_0^t \sigma_s \frac{\partial f}{\partial X} dZ_s.$$

Deriving the HJB Equation

• Recall, given $W_t = W$ it holds that

$$F(W) \geq E_t \left[r \int_t^{t+s} e^{-r(u-t)} \left(A_u - C_u \right) du + e^{-rs} F(W_{t+s}) \right],$$

with

$$dW_s = r\left(W_s - u(C_s) + h(A_s)\right) ds + r\Gamma_s \sigma dZ_s.$$

• Applying Itô's rule to $e^{-rs}F(W_{t+s})$ we get

$$e^{-rs}F(W_{t+s}) = F(W) + \int_{t}^{t+s} e^{-r(u-t)} r\Gamma_{u}\sigma F'(W_{u})dZ_{u} + \int_{t}^{t+s} e^{-r(u-t)} \begin{bmatrix} -rF(W_{u}) + r(W_{u} - u(C_{u}) + h(A_{u}))F'(W_{u}) \\ + \frac{1}{2}r^{2}\Gamma_{u}^{2}\sigma^{2}F''(W_{u}) \end{bmatrix} du.$$

Substituting back in the inequality results in

$$0 \ge E_t \left[r \int_t^{t+s} e^{-r(u-t)} \left[\begin{array}{c} A_u - C_u - F(W_u) + \frac{1}{2} r \Gamma_u^2 \sigma^2 F''(W_u) \\ + (W_u - u(C_u) + h(A_u)) F'(W_u) \end{array} \right] du \right].$$

Deriving the HJB Equation

1

• Now divide by s and let $s \rightarrow 0$, to arrive at

$$F(W_t) \ge \frac{A_t - C_t}{+ (W_t - u(C_t) + h(A_t)) F'(W_t) + \frac{1}{2} r \Gamma_t^2 \sigma^2 F''(W_t)}$$

► This has to hold for all possible (t, W_t = W) and we get the Hamilton Jacobi Bellman equation (HJB)

$$F(W) = \max_{C,A} \left\{ \begin{array}{c} A - C \\ + (W - u(C) + h(A)) F'(W) + \frac{1}{2}r\Gamma^2\sigma^2 F''(W) \end{array} \right\},$$

where the maximization is over (admissible) controls $C \ge 0$ and $A \in [0, \overline{A}]$ subject to incentive compatibility $\Gamma = \gamma(A)$.

The HJB - Intuition

- Assume C_t and A_t are chosen optimally and $W_t = W$ is fixed.
- Since the principal discounts at rate r, his expected flow of value at time t must be rF(Wt)dt.
- This has to be equal to
 - 1. the expected instantaneous flow of output minus payments to the agent $r (A_t C_t) dt$,
 - 2. plus the expected change in the principal's value function $E[dF(W_t)]$.
- Together we have

$$rF(W) = \max_{C,A} \left\{ \begin{array}{c} r(A-C) \\ +r(W-u(C)+h(A))F'(W) + \frac{1}{2}r^2\gamma^2(A)\sigma^2F''(W) \end{array} \right\}$$

Retirement Value Function

- Always possible to retire the agent:
 - the agent puts zero effort $A_t = 0 \ \forall t$,
 - the firm does not produce,
 - ► the principal offers constant consumption C_t = C ∀t.
- The principal's retirement profit is

$$F_0(u(C)) = -C,$$

which is decreasing, concave and satisfies $F_0(u(0)) = 0$.

Constructing an Improvement

- If W hits zero have to retire the agent, as $C \ge 0$.
- If W becomes large, then, due to income effect, it becomes increasingly costly to compensate for effort, hence eventually retire the agent optimally.
- Over the improvement interval A > 0, and the improvement curve is the solution to the HJB

$$F''(W) = \min_{C,A>0} \frac{F(W) - A + C - (W - u(C) + h(A))F'(W)}{r\gamma^2(A)\sigma^2/2},$$

subject to boundary conditions

$$\begin{split} F(0) &= 0 & \text{"value matching",} \\ F(W_{gp}) &= F_0(W_{gp}) & \text{"value matching",} \\ F'(W_{gp}) &= F_0'(W_{gp}) & \text{"smooth pasting".} \end{split}$$

Constructing an Improvement

- A concave solution F(W) ≥ F₀(W) to this boundary value problem exists and is unique.
- The concavity of F(W) is due to the fact that retirement is inefficient.

The Optimal Contract - Summary

- F(W₀) which solves the boundary value problem above is the principal's profit under the optimal contract for W₀ ∈ [0, W_{gp}].
- The agent's promised wealth under the optimal contract follows

$$dW_t = r(W_t - u(c(W_t)) + h(a(W_t))) dt$$

+r\gamma(W_t) (dY_t - a(W_t)dt)

until retirement time τ where W_t hits either 0 or W_{gp} .

- For t < τ, C_t = c(W_t) and A_t = a(W_t) are the maximizers in the ODE for F(W).
- After time τ , the agent receives constant consumption $C_t = -F(W_\tau)$ and puts zero effort.

5 Steps to Solve for the Optimal Contract

 $\frac{\text{Step 5:}}{\text{Verify that the conjectured contract maximizes the principal's profit.}$

Verification

- So far optimal contract has been conjectured based on a solution of the HJB.
- ► However, one should note that the HJB takes the form of a necessary condition: "If F(W) is the optimal value function and (C, A) are chosen optimally, then
 - F(W) satisfies the HJB, and
 - ▶ The optimal choices of (C, A) realize the maximum in the HJB."
- Further, implicitly made a couple of technical assumptions, in particular on the differentiability of F(W) and the existence of optimal choices of (C, A).
- The verification theorem below will show that the conjectured contract indeed maximizes the principal's profit (sufficiency).

Verification

Consider the process

$$G_t = r \int_0^t e^{-rs} \left(A_s - C_s \right) ds + e^{-rt} F(W_t).$$

• The drift of G_t is given by

$$re^{-rt}\underbrace{\left[\begin{array}{c} (A_t - C_t) - F(W_t) \\ + (W_t - u(C_t) + h(A_t))F'(W_s) + \frac{1}{2}r^2\Gamma_t^2\sigma^2F''(W_s) \end{array}\right]}_{\leq 0 \text{ from HJB}},$$

which is zero in the conjectured contract and ≤ 0 in any other incentive compatible contract.

Hence,

$$E\left[r\int_0^\infty e^{-rt}\left(A_t-C_t\right)dt\right]=E\left[G_\infty\right]\leq G_0=F(W_0),$$

with equality under the optimal contract.

Discussion

Additional Properties of the Optimal Contract: Initialization, optimal consumption and optimal effort profile.

Initialization

Principal has all bargaining power, W₀ = W*:

$$F'(W^*)=0.$$

 Agent has all bargaining power, W₀ = W_c:

$$F(W_c)=0.$$

Profit

Discussion - Optimal Effort and Consumption

▶ From the HJB equation, effort maximizes

 \rightarrow Effort typically is non-monotonic in W as

• F'(W) decreases in W (retirement is inefficient),

- ▶ while F''(W) increases at least for low values of W (exposing agent to risk is costly close to triggering retirement).
- The optimal consumption choice maximizes

$$-c-u(c)F'(W).$$

→ When $F'(W) \ge -1/u'(0)$, consumption is zero ("probation"). This is the case for $W \in [0, W^{**}]$ (increase drift of W to avoid retirement). → For $W > W^{**}$ consumption is increasing in W.

An Example

56 / 71

Discussion - Optimal Effort and Consumption

- ▶ **Proposition 3:** The drift of W_t points in the direction where F''(W) is increasing, i.e., where it is cheaper to provide incentives.
- > Proof: Differentiating the HJB wrt W using the envelope theorem gives

$$\underbrace{(W-u(C)+h(A))}_{drift of W}F''(W) + \frac{1}{2}r\sigma^2\gamma^2(A)F'''(W) = 0.$$
(2)

Note next that (2) is, from Itô's Lemma, also equal to the drift of F'(W). → Together with the FOC for (interior consumption)

$$-\frac{1}{u'(c(W))}=F'(W),$$

this implies that 1/u'(C) is a martingale ("Inverse Euler Equation").

- Reflects the fact that agent cannot save: u'(C) is a submartingale.
 - \rightarrow So if the agent could save he would want to do so as his marginal utility increases in expectation.

Contractual Environments

How do Contractual Environments Affect Agent's Career?

Contractual Environments

Different Contractual environments:

- A.) The agent can quit and pursue an outside option,
- B.) the principal can replace the agent,
- C.) the principal can promote the agent.
- Properties of agent's career:
 - 1.) Wages (back-loaded vs. front-loaded),
 - 2.) short-term incentives (piece rates, bonuses) vs. long-term incentives (permanent wage increases, terminations),
 - 3.) the agent's effort in equilibrium.

Solve the Model under Different Environments

Principal's generalized problem: Maximize profit until t = \u03c0 when the agent quits, retires, is replaced, or promoted

$$E\left[r\int_{0}^{\tau}e^{-rt}\left(A_{t}-C_{t}\right)dt+e^{-r\tau}\tilde{F}_{0}\left(W_{\tau}\right)\right],$$

subject to incentive compatibility constraint and the agent's participation constraint for all $t \leq \tau$,

$$W_t \geq \tilde{W} \geq 0.$$

The principal's profit function *F*(*W*) has to satisfy the same HJB as before, but the respective environment determines the boundary conditions:

$$\tilde{F}(W_{\tau}) = \tilde{F}_0(W_{\tau})$$
.

A.) Profit Function with Outside Option

 Lower retirement point is higher than w/o outside option:

 $\tilde{W} > 0.$

 Principal's profit is **lower** than w/o outside option:

 $\tilde{F}(W) < F(W)$.

B.) Profit Function with Replacement

 Retirement profit higher than w/o replacement:

$$\tilde{F}_0(W) = F_0(W) + D.$$

Principal's profit is higher than w/o replacement:

 $\tilde{F}(W) > F(W).$

► Less costly to retire the agent → upper retirement point lower than w/o replacement:

$$ilde{W}_{gp} < W_{gp}$$
 .

C.) Promotion of the Agent

- Promoting the agent to a new position
 - ▶ incurs the principal training cost K,
 - increases the agent's productivity by a factor of $\theta > 1$,
 - Increases the agent's outside option to $W_p > 0$.

With a promoted agent, the principal's profit function solves

$$F_{p}^{\prime\prime}(W) = \min_{C,A>0} \frac{F_{p}(W) - \theta A + C - (W - u(C) + h(A)) F_{p}^{\prime}(W)}{r\gamma^{2}(A)\sigma^{2}/\left(2\theta^{2}\right)},$$

with boundary conditions

$$\begin{array}{rcl} F_{p}(\tilde{W}_{p}) & = & 0, \\ F_{p}(W_{gp}) & = & F_{0}(W_{gp}), \\ F'_{p}(W_{gp}) & = & F'_{0}(W_{gp}). \end{array}$$

C.) Profit Function after Promotion

Lower retirement point is higher than w/o promotion (agent now has an outside option):

$$W_p > 0.$$

 Upper retirement point is also higher than w/o promotion because a trained agent is more productive.

C.) Profit Function before Promotion

Principal must decide whether to promote or to retire the agent:

$$ilde{F}_{0}\left(W
ight)=\max\left(F_{0}\left(W
ight)$$
 , $F_{p}\left(W
ight)-K
ight)$.

 Here: Agent is promoted at *W*_{gp} where:

$$\begin{split} \tilde{F}\left(\tilde{W}_{gp}\right) &= F_p\left(\tilde{W}_{gp}\right) - K, \\ \tilde{F}'\left(\tilde{W}_{gp}\right) &= F'_p\left(\tilde{W}_{gp}\right). \end{split}$$

 Principal's profit is higher than w/o promotion:

$$\tilde{F}(W) > F(W)$$
.

1.) Front-Loaded vs. Back-Loaded Compensation

- A fully dynamic setting allows us to study when wages should be more front-loaded and when they should be more back-loaded.
- E.g. Lazear (1979) shows that:
 - The employers can strengthen an employment relationship by offering a rising wage pattern.
 - By postponing pay to a later point in the agent's career, he can be induced to exert more effort at the same costs for the principal.
- In the present setting:
 - The Optimal contract trades off this benefit against costs from
 - income effect,
 - earlier retirement, and
 - distortion of agent's consumption.

1.) Front-Loaded vs. Back-Loaded Compensation

- Measure for how back-loaded the agent's compensation is:
- wage captures short-term compensation.
- continuation value captures long-term compensation.
- → compare environments by looking at continuation value for a given wage.

2.) Short-Term Incentives vs. Long-Term Incentives

Long-term and short-term incentives have been studied individually.

- Short-term incentives:
 - Holmström and Milgrom (1987) "especially well suited for representing compensation paid over short period" (from HM 1991).
 - Lazear (2000): productivity in Safelite Glass Corporation increased by 44 % when piece rates were introduced.
- Long-term incentives:
 - ▶ Lazear and Rosen (1981): incentives can be created by promotions.

Optimal mix of short-term and long-term incentives has not been studied.

2.) Short-Term Incentives vs. Long-Term Incentives

- Incentives are provided by tying the agent's compensation to the project's risky outcome.
 - Volatility of current consumption captures short-term incentives.
 - Volatility of continuation value captures long-term incentives.
- $\rightarrow\,$ Use the relative volatility of the agent's compensation as a measure for the dynamics of incentive provision.
 - ► Agent has **outside option** ⇒ **less** long-term incentives.
 - Principal can **replace** the agent \Rightarrow **more** long-term incentives.
 - ▶ Principal can **promote** the agent ⇒ **more** long-term incentives.

3.) Equilibrium Effort Profile

 Higher effort when the optimal contract relies more on long-term incentives.

Sannikov (2008) Conclusions

- Clean and elegant method to study dynamic incentive problems.
- Linear over short periods as in Holmström and Milgrom (1987) but nonlinear in the long run.
- How does contractual environment affect dynamics.
- Next: Look at a dynamic model of financial contracting with risk-neutrality (DeMarzo and Sannikov 2006).