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Outline

> Part 1: A refresher of dynamic agency in discrete time.

> Introduce simple repeated moral hazard model,
» Show core results from discrete time models.

» Part 2: The continuous time approach.

» Set-up of the basic principal agent model in continuous time.

» Outline of core steps to derive the optimal contract in (class of)
continuous time models.

» Discussion of techniques used to derive the optimal contract.

» Discussion of properties of the optimal contract.
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Part 1:
A "Refresher" of Dynamic Agency in Discrete Time.



Basic Discrete Time Theory

» Model setup:

» Agent takes hidden action in time periods 1,2, 3, ...

» Output depends on agent’s hidden action.

» Principal observes output and can commit to a long-term contract
that specifies payments to the agent as a function of output history.

» Main findings:

» Optimal contract is history dependent (Rogerson 1985),

» With infinite horizon there exists a stationary representation with
agent’s promised utility as state variable (Spear and Srivastava
1987),

» Efficiency is attainable if agent becomes patient (Radner 1985).



Basic Discrete Time Theory

Simple two period model t = 1,2:

> Risk-neutral principal and risk-averse agent with common discount rate r.

> Agent's period utility is given by
U(Ct) - h(At),
where A; denotes effort and C; denotes monetary compensation (assume
that the agent cannot save/borrow).

» For simplicity assume that A; € {0,1} and h(1) =: h, h(0) = 0.
Normalize u(0) = 0.

> Output:
v, — Y+ with prob. 7t(A¢)
7\ YT with prob. 1 — mt(A)

where we denote 77(1) =: 7r and 71(0) =: T — A, At > 0.



Basic Discrete Time Theory

> Assume that the principal wants to implement high effort in both periods.

> A contract C specifies 2 + 22 transfers contingent on output:

» period 1 compensation C} = C(Yy = Y'), i € {+, -},
> period 2 compensation CyY = C(Yy = Y/, Yy = YY),
ije{+ —}

> This can be rewritten in terms of contingent utilities:

o= u(d), ie{+ -},
u = u(GY) Qe {+ -}
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Basic Discrete Time Theory
> Incentive compatibility in t = 2 requires:
i+ - h
uy —uyT > A ie{+ —-}.

» Denote the expected net utility from t = 2 conditional on Y7 by

Wi =rmuy™ +(1—m)uy” —h i€ {+ —},

which is called the agent’'s continuation value or promised wealth.

> Incentive compatibility in t = 1 then requires:

1 1 h
W5 — [ ur W, —
14+r 2 (u1+1+r 2) ATt

— Continuation utilities affect t = 1 incentives.

+
u1+

— Given W2i, t = 1 incentives are unaffected by ué’+ and uy ™
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Basic Discrete Time Theory

> Further, we have the t = 1 participation constraint:

1 1
Wy —n[uf—i—Wj} +(1—m) [u1+1+rw2} > h.

1+4+r

— Continuation utilities affect t = 1 participation decision.
— Given W2’ t = 1 participation is unaffected by ué’+ and uy .
» Solve the problem backwards:
1. For each W2i solve the second period problem,

2. Given the optimal continuation contract, solve the first period
problem.



Basic Discrete Time Theory

> Proceeding in this manner one obtains:

L T L +(1—rmy) 1
0 = 17. - 1 -
u'(C) u’(C2"+) u(CyT)
! i, ie{+ -}
= N 1 = 1 [
u'(G)
— "Inverse Euler Equation": Agent's inverse marginal utility is a

martingale.

— Providing incentives vs. smoothing consumption.
> Proof: Consider an optimal incentive compatible contract C.

» Construct a new contract C that differs from C only following first period
realization Y] = Y:

~+ +
Ul = u]. — X,

W= w1 x je{+ ).



Basic Discrete Time Theory

> Note that the new contract still induces high effort:

v

Trivial following Y1 = Y~ as Ez_'J = u2_'J,j e{+ -}
Following Y1 = Y high effort still optimal as (1+ r) x is constant
across outcomes u;' T ; T = u;' A u;’_

Effort in t = 1 is still optimal, as for i € {+, —}

v

v

P T L
ui+71—|—r(7w£’ +(1—m)uy )

= ul+— 17 (7Tu£’+ +(1—m) ué’f) .

» Participation still optimal as Wl = W.

> So for x = 0 to be optimal, it must minimize expected payments to the
agent

B 1 mu (vl T+ (14r)x)
u 1<u+—x>+1+r< F- Ry (L)Y >"
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Basic Discrete Time Theory

> The inverse Euler equation implies that the optimal contract with full
commitment exhibits memory:

» |.e., t = 1 outcome affects transfers bothint =1 and in t = 2,

» or: Transfers in both t =1 and t = 2 are used to provide incentives
int=1,

> in particular: C1+ > (; and W2Jr > W,

> Proof: Suppose by contradiction that C2+'+ = C{'Jr and C;’f =G,
then
1 1 1
= m———+(1-m)—
v (C]) e (1=m) v(C)
1 1 1
= m———+{1-m = .
e T aG S T e

violating the incentive constraint in t = 1.1
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Basic Discrete Time Theory

» The inverse Euler equation implies that the optimal contract tries to
"front-load" the agent’s consumption:

> Intuitively: Keeping continuation utility low ensures a high marginal
utility of consumption in t = 2 (incentives),

» If the agent had access to savings, he would save a strictly positive
amount.

» Proof:

1

u(Cly = < E[u'(cz"'f)‘ =Y

E{ | M= Y']

by Jensen's inequality, showing that v/(C) is a submartingale.ll



Basic Discrete Time Theory

> In the infinitely repeated relationship the optimal contract exhibits a
Markov property:

» There exists a stationary representation with agent’s continuation
utility as state variable:

Wi — [i u(Crik) —h] |

s (1+n)k
> Intuition:

» Agent’s incentives are unchanged if we replace the continuation
contract that follows a given history with a different contract that
has the same continuation value.

» Thus, to maximize the principal's profit after any history, the
continuation contract must be optimal given W.



Basic Discrete Time Theory

> Given W, the optimal contract is then computed recursively:

Fw) = e { T O Y i) )

utu, oty [TF(WH) 4+ (1= ) F(W™)]
w+ w-
subject to
T u+—|—iW+ —(1—-m)(u + . w—) = w
1+4+r 1+4r '
1

%
|

1 h
T —Wt—(u w~ .
! +1+r (u +1—|—r ) Am
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Basic Discrete Time Theory

> Much of the literature with infinitely many periods has focussed on
approximation results of the first-best with simple contracts under no or
almost no discounting:

» As r — 0 the principal’s per period expected profit converges
towards its first-best value.

» Intuition:

» Sample many observations, reward when "review" positive, punish
else:
— Inference effect.

» Risk averse agent subject to many i.i.d. risks over time:
— By spreading rewards and punishments over time agent becomes
"perfectly diversified".
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Basic Discrete Time Theory

Takeaway:

> In a dynamic model, incentives can be provided not only with current but
also with promise of future payments (deferred compensation):

» increase expected future payments after good results ("carrot"),
» decrease expected future payments after bad results ("stick").

— The optimal contract is history dependent:

— Better intertemporal risk sharing, statistical inference and punishment
options.

» With infinite horizon there exists a stationary representation with agent's
continuation utility as state variable.

16
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Part 2:
The Continuous Time Approach.



The Setting

> Time is continuous with t € [0, 00).
> Risk-neutral principal and risk-averse agent with common discount rate r.
> Agent puts effort A= {A; € [0,A] 0 <t < oo}

> Principal does not observe effort but only output:
dyt = Atdt + U'dZt,

where Z = {Z;, 7,0 < t < oo} is a standard Brownian motion on
(O, F, Q).

> Agent receives consumption C = {C; > 0,0 < t < oo}, based on
principal’s observation of output.
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The Setting

» Effort costs h(a), continuous, increasing and convex, with h(0) = 0 and
H(0) > 0.
» Utility of consumption u(c), continuous, increasing and concave, with
u(0) =0and lim u'(c)— 0.
C—00
— Income effect: As agent’s income increases, it becomes costlier to
compensate him for effort.

— Agent can always guarantee himself a non-negative net utility by
putting zero effort.
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The Setting

> Some crucial assumptions:

» Principal can commit to long-term contract,
» Agent cannot (privately) save or borrow.

> Assumptions to be relaxed later:

» Principal and agent tied together forever:
— Introduce valuable outside option for agent,
— Allow principal to replace agent at some costs.
» Career path — promotion.



The Principal’s Problem

> Focus on profit-maximizing full commitment contract at t = 0.

> An incentive compatible contract specifies consumption stream C and
(recommended) effort A to maximize principal’s (average) profit

EA {r/o e (A — C) dt} ,
> subject to delivering the agent an initial (average) utility of Wy
(o)
Wy = EA [r/ e " (u(Ce) — h(Ar)) dt] , given effort A,
0
> and incentive compatibility

Wo > A [r/O e " (u(CGt) — h(Ar)) dt] , given any effort A.



The Principal’s Problem

> This is a difficult problem:

» Large space of possible contracts (history dependence),
» Complexity of incentive constraint:
Agent also solves a dynamic optimization problem,
— Two dynamic optimization problems embedded in one another.

» However, it is possible to reduce the problem to an optimal stochastic
control problem with agent's continuation value as state variable and
with appropriate (local) incentive compatibility conditions.

N
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5 Steps to Solve for the Optimal Contract

1. Define agent’s continuation value {W;,0 <t < oo} for any C and A.

2. Using the Martingale Representation Theorem (MRT) derive the
dynamics of W;.

3. Necessary and sufficient conditions for the agent's effort level to be
optimal (local incentive compatibility).

4. Using a Hamilton Jacobi Bellman (HJB) equation, conjecture an optimal
contract.

5. Verify that the conjectured contract maximizes the principal's profit.
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5 Steps to Solve for the Optimal Contract

Step 1:
Define agent’s continuation value {Wt, 0<t< oo} for any C and A.
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The Agent's Continuation Value - Definition

> In a dynamic model, incentives can be provided not only with current but
also with promise of future payments (deferred compensation):

» increase expected future payments after good results ("carrot"),
» decrease expected future payments after bad results ("stick").

— The optimal contract is history dependent.

> The agent’s continuation value keeps track of accumulated promises
and is defined as the agent’s total future expected utility W;:

7.

W;(C,A) = EA [r/m e "7 (u(Cs) — h(As)) ds

t

> W; completely summarizes the past history and will serve as the unique
state descriptor in the optimal contract (cf. Spear and Srivastava 1987).

> Intuitively: Agent’s incentives are unchanged if continuation contract
after a given history is replaced with a different contract that has the
same continuation value.



The Agent's Continuation Value

» Optimal contract specifies as a function of W:

1. Agent’s consumption — c(W),

2. Agent's (recommended) effort level — a(W),

3. How W itself changes with the realization of output — Law of
motion of W; driven by Y; ("pay for performance").

» Payments, recommended effort and the law of motion must be consistent,
in the sense that W; is the agent’s true continuation value ("promise
keeping").

> It must be optimal for the agent to choose recommended effort level
("incentive compatibility").



5 Steps to Solve for the Optimal Contract

Step 2:
Using the Martingale Representation Theorem (MRT) derive the dynamics
of Wt.
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The Agent's Continuation Value - Dynamics

» Proposition 1: For any (C, A), W; is the agent’s continuation value if
and only if

N ——,

th =r (Wt - U(Ct) + h(At)) dt+ rl"t(dYt - Atdt),
~—
=cdZ{
for some F-adapted process T' and lims_.oo E¢ [ W;is] = 0.

» Intuition: Continuation value W4

» grows at discount rate and falls with flow of (net) utility ("promise
keeping", "consistency"),

> responds to output innovation according to sensitivity rI';
("incentives"),

» promises have to be paid eventually — transversality condition.
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Method: Martingale Representation Theorem

» Definition: M is a martingale if E [Myys| Ft] = M.

» Theorem: Let Z; be a Brownian motion on (Q, F, Q) and F; the
filtration generated by this Brownian motion. If My is a martingale with
respect to this filtration, then there is an F:-adapted process I' such that

t
Mt:M0+/ T.dZ, 0<t<T.
0
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Proof of Proposition 1

> Define the expected (average) lifetime utility evaluated conditional on
time t information:

Vi = EA [r/Ome—f(s—f) (u(Cs) — h(As)) ds

}'t]
_ r/ot e 7 (u(Co) — h(As)) ds + e " WA,

which is a martingale under QA. — Exercise!
> Applying MRT:
t
Vi = Vo + r/ e "TsodZA,
0

where ZtA = %_ (Yt — fot Asds) is a Brownian motion under Q*.
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Proof of Proposition 1
> Recall
t
Ve — r/o e (u(Cs) — h(As)) ds + e "W,
! A
_ V0+r/ e " ToodZ.
0

> Differentiating the two expressions for V;

th = re_’t (U(Ct) — h(At))dtfre_'tWtdtJre_’tth
= re "TiodZf,

gives the dynamics of W;

<~ th =r (Wt — U(Ct) + h(At)) dt+ rFt(dYt — Atdt).
| S —

=cdZ{
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Proof of Proposition 1

> To prove the converse, note that V; is a martingale when the agent
follows A. So:

Wo

Vo = E[V4]

E [r/ot e (u(Cy) — h(As)) ds} +E[e W],

> The result follows by taking the limit as t — oo
Wy = E [r/o e 1 (u(Cy) — h(As)) ds} _

» A similar argument holds for all W;.



5 Steps to Solve for the Optimal Contract

Step 3:
Necessary and sufficient conditions for the agent's effort level to be
optimal (incentive compatibility).
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Incentives

> Assume the principal wants to implement effort A; and recall
dWe = r (W — u(Ce) 4+ h(Ap)) dt + 1T (dYr — Ardt).
> The agent chooses his true effort A; to maximize
E[r(u(Ct)— h(Ar)) dt + dWy],

with
dW; = (" terms unaffected by deviation”) + rT+dYs.

> Proposition 2: A contract is incentive compatible if and only if

At € argmax (I'ta— h(a)) Vt > 0.
ac[0,A]

— Assuming differentiability I'+ enforces A; > 0 if

I} = ’)’(At) = h/(At)

34 /71



Proof of Proposition 2

» Under contract (C, A), consider an alternative strategy A and define
A t ~
U, = r/ e (u(Cs) — h(As)) ds+ e Wi (C, A),
0

the agent's expected payoff from following A until time t and A
thereafter.

» Differentiating wrt t gives

A

W = e (a(C)— h(A) de I GG )

+re_’trt (dyt — Atdt)

=d(e="tW;(C,A))
= re " (h(A¢) — h(A¢)) dt + re”""T; (dY; — Acdt).
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Proof of Proposition 2

> If the agent is deviating to A; for an additional moment, then
dY: = Aedt + 0dZ;,

and

A

dVe = re”™ [(h(A¢) — h(Ar)) + Tt (Ae — Ar)] dt + re "TrodZ;.

> Let us now show that if any incremental deviation of this kind hurts the
agent, then the whole deviation strategy A is worse than A ("one-shot
deviation principle").

36
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Proof of Proposition 2

> Claim: A is optimal for the agent if and only if:

At € argmax (I'ta— h(a)) Vt > 0. (1)
ae[O,Z]

> Drift of V4:
et ((TtA¢ — h(Ar)) — (TeAs — h(Ay))) .

> Necessity: If (1) does not hold on a set of positive measure, then choose
At as maximizer in (1) — positive drift — 3t such that

EA (V] > U = Wo(C, A).
» Sufficiency: If (1) does hold, then V; is QA supermartingale for any A

Wo(C,A) = Vo > EA [Ve] = Wo(C, A).



5 Steps to Solve for the Optimal Contract

Step 4:
Using a Hamilton Jacobi Bellman (HJB) equation, conjecture an optimal
contract.

38/71



The Optimal Control Problem

> We now proceed to solve the principal's problem using dynamic
programming, with W; as sole state variable. Intuition:

» Agent’s incentives are unchanged if we replace the continuation
contract that follows a given history with a different contract that
has the same continuation value.

» Thus, to maximize the principal's profit after any history, the
continuation contract must be optimal given W;.

» Recall evolution of W;:

dW; =r (Wt - U(Ct) + h(At)) dt+ rT'; (dYt — Atdt) .

» The principal

» controls W; with C¢ and T’y (which enforces Ay),
» must honor promises, i.e. E[e”"W;] — 0 ast — oo,
> gets a flow of profits of r (Ar — Ct).
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The Optimal Control Problem

> So, we need to solve the following control problem:

F(Wp) = max {E {r /Ooo e =t (A, - Cy) du} } :
such that

th =r (Wt — U(Ct) + h(At)) dt+ rFt (dYt - Atdt) ,
Wy given,

with maximization over C; > 0, A; € [O,ﬂ] and Ty = y(A;) determined
from incentive compatibility.

> For a recursive formulation denote by F(W;) the maximal total profit
that the principal can attain from any incentive compatible contract at
time t after W; has been realized.
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Deriving the HJB Equation

v

v

Applying the dynamic programing principle, if the principal chooses C;

and A; optimally, it holds that:

B t+s ]
F(W,) = E r/ e (=) (A, — Cy) du+ e " F(Wiss)
| Je

If C; and A; are not chosen optimally, then

t+s 1
F(Wt) > Et r/ efr<u7t) (Au — Cu) du + efrsF(WH_s)
L Jt

So, we have

t+s
F(W;) = max {Et [r/t e "= (A, — C,) du+ e_’sF(WHS)} } .

We want to derive a differential equation for F.

41 /71



Method: 1t6's Rule

» Theorem: Assume that the process X follows
dXt = ]/ltdt + U'tdZt,

with u and o adapted processes and let f(X;) be a twice continuously
differentiable function. Then it holds that

of of 1 ,9%f
df(t,Xt): |:at+‘uta)<+ O’%axz

of

5x 94t

:|dt+0’t

or in integral form

1 9%f
F(Xe) = F(Xo) +/ [ sax 2 gaﬂ}d +/ 7sax



Deriving the HJB Equation

> Recall, given Wy = W it holds that
t+s
F(W) > E {r/ e U= (A, — Cy) du+ e " F(Wess)
t

with
dWs = r (Ws — u(Cs) + h(As)) ds + rTsodZs.

> Applying It8's rule to e " F(W;ys) we get

e SF(Wiis) = F(W +/ —r(W=) Ty o F'(W,)dZ,

+/t+s - [ —rF(Wa) +r (Wy — u(Cy) + h(Ay)) F'(Wa) }du_

+3r2T202F" (W)

> Substituting back in the inequality results in

ozl [T [ M RS RS Ay )



Deriving the HJB Equation

» Now divide by s and let s — 0, to arrive at

At—Ct
F(W;) > .
(We) = + (We — u(Ce) + h(Ae)) F'(We) + 3rT202F" (W)

> This has to hold for all possible (t, Wy = W) and we get the Hamilton
Jacobi Bellman equation (HJB)

F(W) = max

where the maximization is over (admissible) controls C > 0 and
A € [0, A] subject to incentive compatibility T' = y(A).

A—C
C'A{ + (W = u(C) + h(A)) F'(W) + rT202F" (W) }
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The HJB - Intuition

> Assume C; and A; are chosen optimally and Wy = W is fixed.
> Since the principal discounts at rate r, his expected flow of value at time
t must be rF(W;)dt.
> This has to be equal to
1. the expected instantaneous flow of output minus payments to the
agent r (A — Cy) dt,
2. plus the expected change in the principal’s value function
E [dF (W;:)].
> Together we have

_ r(A=C)
F(W) _T?AX{ L1 (W — u(C) + h(A)) F'(W) + 3292 (A)rF" (W) }
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Retirement Value Function

> Always possible to retire the
agent: Profit

> the agent puts zero
effort Ay =0 Vt,

» the firm does not
produce,

» the principal offers
constant consumption

Fol

Ct - C Vt.
» The principal’s retirement
profit is
Fo(u(C)) = =C,

which is decreasing, concave
and satisfies Fy(u(0)) = 0.

=Y

46
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Constructing an Improvement

» If W hits zero have to retire the agent, as C > 0.

> If W becomes large, then, due to income effect, it becomes increasingly
costly to compensate for effort, hence eventually retire the agent
optimally.

> Over the improvement interval A > 0, and the improvement curve is the
solution to the HJB

o F(W)— A+ C— (W —u(C)+ h(A)) F'(W)
FIW) = min, r2(A)r? /2 '

subject to boundary conditions

0)=0 "value matching",
(Wgp)  "value matching”,
F'(Wgp) = F{(Wgp)  "smooth pasting”.



Constructing an Improvement

Profit

> A concave solution F(W) > Fy(W) to this boundary value problem
exists and is unique.

> The concavity of F(W) is due to the fact that retirement is inefficient.
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The Optimal Contract - Summary

> F(Wp) which solves the boundary value problem above is the principal’s
profit under the optimal contract for Wy € [0, Wpp].

> The agent’s promised wealth under the optimal contract follows
th = r(Wt—u(c(Wt))—l—h(a(Wt))) dt
+r’y(Wt) (dYt — Q(Wt)dt)
until retirement time T where W; hits either 0 or W,,.

> Fort < T, Ct = c(W;) and Ar = a(W;) are the maximizers in the ODE
for F(W).

> After time T, the agent receives constant consumption C; = —F(W¢)
and puts zero effort.
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5 Steps to Solve for the Optimal Contract

Step 5:
Verify that the conjectured contract maximizes the principal’s profit.
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Verification

So far optimal contract has been conjectured based on a solution of the
HJB.

However, one should note that the HJB takes the form of a necessary
condition: "If F(W) is the optimal value function and (C, A) are chosen
optimally, then

» F(W) satisfies the HJB, and
» The optimal choices of (C, A) realize the maximum in the HJB."

Further, implicitly made a couple of technical assumptions, in particular
on the differentiability of F(W) and the existence of optimal choices of
(C,A).

The verification theorem below will show that the conjectured contract
indeed maximizes the principal's profit (sufficiency).



Verification

» Consider the process
t
G = r/ e’ (As — Cs) ds + e EF(W,).
0

> The drift of G; is given by

—rt (At — Ct) — F(Wy)
* l: +(Wt_U(Ct)+h(At)) F/(WS)+%r2F%0’2F”(W5) ,

<0 from HJB

which is zero in the conjectured contract and < 0 in any other incentive
compatible contract.

» Hence,

E [r/ooo e " (A — Ct) dt| = E[Gw] < Gy = F(Wp),

with equality under the optimal contract.



Discussion

Additional Properties of the Optimal Contract:
Initialization, optimal consumption and optimal effort profile.
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Initialization

» Principal has all bargaining
power, Wy = W*:

F'(W*) =0.

> Agent has all bargaining
power, Wp = W,:

F(W,) = 0.

Profit

e

=Y
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Discussion - Optimal Effort and Consumption

» From the HJB equation, effort maximizes

1
a + h(a)F'(W) +  Zra?y(a)’F"(W)
tput 2

outpu

cost of compensating for effort cost of providing incentives

— Effort typically is non-monotonic in W as

» F'(W) decreases in W (retirement is inefficient),
» while F” (W) increases at least for low values of W (exposing agent
to risk is costly close to triggering retirement).

» The optimal consumption choice maximizes
—c—u(c)F'(W).

— When F'(W) > —1/4'(0), consumption is zero ("probation"). This
is the case for W € [0, W**| (increase drift of W to avoid retirement).
— For W > W*™* consumption is increasing in W.
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An Example

01

Profit
L ~_F(W) !
mw‘. Wer o
> 05
w
Fof
1
L 05
01
L 005
0 02 0-4 06 08

Effort a(W)

S 02 0-4

0 : 0-6 08
Consumption c( W)
L ) X X w
0 W02 04 0-6 0-8
Drift of W
: w
0 W#0.2 0-4 0-6 0-8
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Discussion - Optimal Effort and Consumption

»

Proposition 3: The drift of W; points in the direction where F" (W) is
increasing, i.e., where it is cheaper to provide incentives.

Proof: Differentiating the HJB wrt W using the envelope theorem gives

(W = u(C) + hA)F" (W) + 3P P(AF"(W) =0, (2)

drift of W

Note next that (2) is, from 1t6’s Lemma, also equal to the drift of F/(W).
— Together with the FOC for (interior consumption)

this implies that 1/u/(C) is a martingale ("Inverse Euler Equation").

Reflects the fact that agent cannot save: v/(C) is a submartingale.
— So if the agent could save he would want to do so as his marginal
utility increases in expectation.



Contractual Environments

How do Contractual Environments Affect Agent's Career?
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Contractual Environments

» Different Contractual environments:

A.) The agent can quit and pursue an outside option,
B.) the principal can replace the agent,
C.) the principal can promote the agent.

> Properties of agent's career:

1.) Wages (back-loaded vs. front-loaded),

2.) short-term incentives (piece rates, bonuses) vs. long-term incentives
(permanent wage increases, terminations),

3.) the agent's effort in equilibrium.



Solve the Model under Different Environments

> Principal’s generalized problem: Maximize profit until t = T when the
agent quits, retires, is replaced, or promoted

T
E {r/o e " (A — Cr) dt + e TRy (W)

subject to incentive compatibility constraint and the agent's participation
constraint for all t < T,
Wy > W >0.

» The principal’s profit function F (W) has to satisfy the same HJB as
before, but the respective environment determines the boundary

conditions: 5 5
F(Wy) = Fy (Wy).
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A.) Profit Function with Outside Option

-0-2

-04

Profit
_ _F(W)

’ ~

> Lower retirement point is higher
than w/o outside option:

W > 0.

» Principal’s profit is lower than w/o
outside option:

w F(w)<F(w).

0 W 02

04

0-6

08
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B.) Profit Function with Replacement

> Retirement profit higher than w/o
Profit replacement:

F(W)

F_o (W) =Fy (W) + D.

» Principal’s profit is higher than
w/o replacement:

04 -

F(W)>F((W).

-0-6

> Less costly to retire the agent
— upper retirement point lower
than w/o replacement:

-0-8

Wep < Wep.



C.) Promotion of the Agent

» Promoting the agent to a new position

> incurs the principal training cost K,
> increases the agent’s productivity by a factor of 6 > 1,
> Increases the agent’s outside option to W, > 0.

» With a promoted agent, the principal’s profit function solves

£ (W) = min Fp(W) —0A+C— (W —u(C)+ h(A)) F;,(W)
P o C,AI>0 r’)/2 (A)O’2/ (292) '

with boundary conditions



C.) Profit Function after Promotion

Profit

> Lower retirement point is higher
than w/o promotion (agent now
has an outside option):

W, > 0.

» Upper retirement point is also
higher than w/o promotion
because a trained agent is more
productive.
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C.) Profit Function before Promotion

> Principal must decide whether to
promote or to retire the agent:

Profit

Fo (W) = max (Fo (W), Fp (W) —K).

> Here: Agent is promoted at Wg,

where:
F_(ng) = Fp(ng)_Kr
F/(ng) = F;(ng)-

> Principal’s profit is higher than
w/o promotion:

F(wW)>F(W).
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1.) Front-Loaded vs. Back-Loaded Compensation

> A fully dynamic setting allows us to study when wages should be more
front-loaded and when they should be more back-loaded.

> E.g. Lazear (1979) shows that:
» The employers can strengthen an employment relationship by
offering a rising wage pattern.

» By postponing pay to a later point in the agent's career, he can be
induced to exert more effort at the same costs for the principal.

> In the present setting:

» The Optimal contract trades off this benefit against costs from

> income effect,
> earlier retirement, and
» distortion of agent's consumption.
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1.) Front-Loaded vs. Back-Loaded Compensation

continuation value

promotion

Teplacement

quitting _~~
1 e

7
" benchmark

wage

02

04

06

0-8

Measure for how back-loaded the
agent's compensation is:

wage captures short-term
compensation.

continuation value captures
long-term compensation.

compare environments by looking
at continuation value for a given
wage.
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2.) Short-Term Incentives vs. Long-Term Incentives

> Long-term and short-term incentives have been studied individually.

» Short-term incentives:

> Holmstrém and Milgrom (1987) "especially well suited for
representing compensation paid over short period" (from HM 1991).

> Lazear (2000): productivity in Safelite Glass Corporation increased
by 44 % when piece rates were introduced.

» Long-term incentives:

> Lazear and Rosen (1981): incentives can be created by promotions.

> Optimal mix of short-term and long-term incentives has not been studied.
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2.) Short-Term Incentives vs. Long-Term Incentives

> Incentives are provided by tying the agent's compensation to the project’s
risky outcome.

» Volatility of current consumption captures short-term incentives.
» Volatility of continuation value captures long-term incentives.

— Use the relative volatility of the agent’s compensation as a measure for
the dynamics of incentive provision.

» Agent has outside option = less long-term incentives.
» Principal can replace the agent = more long-term incentives.
» Principal can promote the agent = more long-term incentives.
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3.) Equilibrium Effort Profile

0-9

0-8

0-6

04

effort

promotion

replacement

quitting N bcnchmilfk

wage

0-8

» Higher effort when the optimal
contract relies more on long-term
incentives.
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Sannikov (2008) Conclusions

> Clean and elegant method to study dynamic incentive problems.

> Linear over short periods as in Holmstrém and Milgrom (1987) but
nonlinear in the long run.

» How does contractual environment affect dynamics.

> Next: Look at a dynamic model of financial contracting with
risk-neutrality (DeMarzo and Sannikov 2006).
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