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Chapter 1

Stochastic Optimal Control

1.1 An Example

Let us consider an economic agent over a fixed time interval [0, T ]. At time
t = 0 the agent is endowed with initial wealth x0 and his/her problem is how to
allocate investments and consumption over the given time horizon. We assume
that the agent’s investment opportunities are the following.

• The agent can invest money in the bank at the deterministic short rate of
interest r, i.e. he/she has access to the risk free asset B with

dB = rBdt. (1.1)

• The agent can invest in a risky asset with price process St, where we
assume that the S-dynamics are given by a standard Black–Scholes model

dS = αSdt + σSdW. (1.2)

We denote the agent’s relative portfolio weights at time t by u0
t (for the riskless

asset), and u1
t (for the risky asset) respectively. His/her consumption rate at

time t is denoted by ct.
We restrict the consumer’s investment–consumption strategies to be self-

financing, and as usual we assume that we live in a world where continuous
trading and unlimited short selling is possible. If we denote the wealth of the
consumer at time t by Xt, it now follows from general portfolio theory that
(after a slight rearrangement of terms) the X-dynamics are given by

dXt = Xt

[
u0

t r + u1
t α
]
dt− ctdt + u1

t σXtdWt. (1.3)

The object of the agent is to choose a portfolio–consumption strategy in such
a way as to maximize his/her total utility over [0, T ], and we assume that this
utility is given by

E

[∫ T

0

F (t, ct)dt + Φ(XT )

]
, (1.4)

11



12 CHAPTER 1. STOCHASTIC OPTIMAL CONTROL

where F is the instantaneous utility function for consumption, whereas Φ is a
“legacy” function which measures the utility of having some money left at the
end of the period.

A natural constraint on consumption is the condition

ct ≥ 0, ∀t ≥ 0, (1.5)

and we also have of course the constraint

u0
t + u1

t = 1, ∀t ≥ 0. (1.6)

Depending upon the actual situation we may be forced to impose other con-
straints (it may, say, be natural to demand that the consumer’s wealth never
becomes negative), but we will not do this at the moment.

We may now formally state the consumer’s utility maximization problem as
follows.

max
u0, u1, c

E

[∫ T

0

F (t, ct)dt + Φ(XT )

]
(1.7)

dXt = Xt

[
u0

t r + u1
t α
]
dt− ctdt + u1

t σXtdWt, (1.8)
X0 = x0, (1.9)
ct ≥ 0, ∀t ≥ 0, (1.10)
u0

t + u1
t = 1, ∀t ≥ 0. (1.11)

A problem of this kind is known as a stochastic optimal control problem.
In this context the process X is called the state process (or state variable),
the processes u0, u1, c are called control processes, and we have a number of
control constraints. In the next sections we will study a fairly general class
of stochastic optimal control problems. The method used is that of dynamic
programming, and at the end of the chapter we will solve a version of the
problem above.

1.2 The Formal Problem

We now go on to study a fairly general class of optimal control problems. To
this end, let µ(t, x, u) and σ(t, x, u) be given functions of the form

µ : R+ ×Rn ×Rk → Rn,

σ : R+ ×Rn ×Rk → Rn×d.

For a given point x0 ∈ Rn we will consider the following controlled stochas-
tic differential equation.

dXt = µ (t, Xt, ut) dt + σ (t, Xt, ut) dWt, (1.12)
X0 = x0. (1.13)
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We view the n-dimensional process X as a state process, which we are
trying to “control” (or “steer”). We can (partly) control the state process X
by choosing the k-dimensional control process u in a suitable way. W is a d-
dimensional Wiener process, and we must now try to give a precise mathematical
meaning to the formal expressions (1.12)–(1.13).

Remark 1.2.1 In this chapter, where we will work under a fixed measure, all
Wiener processes are denoted by the letter W .

Our first modelling problem concerns the class of admissible control pro-
cesses. In most concrete cases it is natural to require that the control process
u is adapted to the X process. In other words, at time t the value ut of the
control process is only allowed to “depend” on past observed values of the state
process X. One natural way to obtain an adapted control process is by choosing
a deterministic function g(t, x)

g : R+ ×Rn → Rk,

and then defining the control process u by

ut = g (t, Xt) .

Such a function g is called a feedback control law , and in the sequel we will
restrict ourselves to consider only feedback control laws. For mnemo-technical
purposes we will often denote control laws by u(t, x), rather than g(t, x), and
write ut = u(t, Xt). We use boldface in order to indicate that u is a function.
In contrast to this we use the notation u (italics) to denote the value of a control
at a certain time. Thus u denotes a mapping, whereas u denotes a point in Rk.

Suppose now that we have chosen a fixed control law u(t, x). Then we can
insert u into (1.12) to obtain the standard SDE

dXt = µ (t, Xt,u(t, Xt)) dt + σ (t, Xt,u(t, Xt)) dWt. (1.14)

In most concrete cases we also have to satisfy some control constraints,
and we model this by taking as given a fixed subset U ⊆ Rk and requiring that
ut ∈ U for each t. We can now define the class of admissible control laws.

Definition 1.2.1 A control law u is called admissible if

• u(t, x) ∈ U for all t ∈ R+ and all x ∈ Rn.

• For any given initial point (t, x) the SDE

dXs = µ (s,Xs,u(s,Xs)) ds + σ (s,Xs,u(s,Xs)) dWs,

Xt = x

has a unique solution.

The class of admissible control laws is denoted by U .
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For a given control law u, the solution process X will of course depend on
the initial value x, as well as on the chosen control law u. To be precise we
should therefore denote the process X by Xx,u, but sometimes we will suppress
x or u. We note that eqn (1.14) looks rather messy, and since we will also
have to deal with the Itô formula in connection with (1.14) we need some more
streamlined notation.

Definition 1.2.2 Consider eqn (1.14), and let ′ denote matrix transpose.

• For any fixed vector u ∈ Rk, the functions µu, σu and Cu are defined by

µu(t, x) = µ(t, x, u),
σu(t, x) = σ(t, x, u),
Cu(t, x) = σ(t, x, u)σ(t, x, u)′.

• For any control law u, the functions µu, σu, Cu(t, x) and Fu(t, x) are
defined by

µu(t, x) = µ(t, x,u(t, x)),
σu(t, x) = σ(t, x,u(t, x)),
Cu(t, x) = σ(t, x,u(t, x))σ(t, x,u(t, x))′,
Fu(t, x) = F (t, x,u(t, x)).

• For any fixed vector u ∈ Rk, the partial differential operator Au is defined
by

Au =
n∑

i=1

µu
i (t, x)

∂

∂xi
+

1
2

n∑
i,j=1

Cu
ij(t, x)

∂2

∂xi∂xj
.

• For any control law u, the partial differential operator Au is defined by

Au =
n∑

i=1

µu
i (t, x)

∂

∂xi
+

1
2

n∑
i,j=1

Cu
ij(t, x)

∂2

∂xi∂xj
.

Given a control law u we will sometimes write eqn (1.14) in a convenient
shorthand notation as

dXu
t = µudt + σudWt. (1.15)

For a given control law u with a corresponding controlled process Xu we
will also often use the shorthand notation ut instead of the clumsier expression
u (t, Xu

t ).
The reader should be aware of the fact that the existence assumption in

the definition above is not at all an innocent one. In many cases it is natural
to consider control laws which are “rapidly varying”, i.e. feedback laws u(t, x)
which are very irregular as functions of the state variable x. Inserting such an
irregular control law into the state dynamics will easily give us a very irregular
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drift function µ (t, x,u(t, x)) (as a function of x), and we may find ourselves
outside the nice standard Lipschitz situation, thus leaving us with a highly
nontrivial existence problem. The reader is referred to the literature for details.

We now go on to the objective function of the control problem, and therefore
we consider as given a pair of functions

F : R+ ×Rn ×Rk → R,

Φ : Rn → R.

Now we define the value function of our problem as the function

J0 : U → R,

defined by

J0(u) = E

[∫ T

0

F (t, Xu
t ,ut)dt + Φ (Xu

T )

]
,

where Xu is the solution to (1.14) with the given initial condition X0 = x0.
Our formal problem can thus be written as that of maximizing J0(u) over

all u ∈ U , and we define the optimal value Ĵ0 by

Ĵ0 = sup
u∈U

J0(u).

If there exists an admissible control law û with the property that

J0(û) = Ĵ0,

then we say that û is an optimal control law for the given problem. Note that,
as for any optimization problem, the optimal law may not exist. For a given
concrete control problem our main objective is of course to find the optimal
control law (if it exists), or at least to learn something about the qualitative
behavior of the optimal law.

1.3 The Hamilton–Jacobi–Bellman Equation

Given an optimal control problem we have two natural questions to answer:

(a) Does there exist an optimal control law?

(b) Given that an optimal control exists, how do we find it?

In this text we will mainly be concerned with problem (b) above, and the
methodology used will be that of dynamic programming. The main idea
is to embed our original problem into a much larger class of problems, and then
to tie all these problems together with a partial differential equation (PDE)
known as the Hamilton–Jacobi–Bellman equation. The control problem is then
shown to be equivalent to the problem of finding a solution to the HJB equation.
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We will now describe the embedding procedure, and for that purpose we
choose a fixed point t in time, with 0 ≤ t ≤ T . We also choose a fixed point
x in the state space, i.e. x ∈ Rn. For this fixed pair (t, x) we now define the
following control problem.

Definition 1.3.1 The control problem P(t, x) is defined as the problem to max-
imize

Et,x

[∫ T

t

F (s,Xu
s ,us)ds + Φ (Xu

T )

]
, (1.16)

given the dynamics

dXu
s = µ (s,Xu

s ,u(s,Xu
s )) ds + σ (s,Xu

s ,u(s,Xu
s )) dWs, (1.17)

Xt = x, (1.18)

and the constraints

u(s, y) ∈ U, ∀(s, y) ∈ [t, T ]×Rn. (1.19)

Observe that we use the notation s and y above because the letters t and x
are already used to denote the fixed chosen point (t, x).

We note that in terms of the definition above, our original problem is the
problem P(0, x0). A somewhat drastic interpretation of the problem P(t, x) is
that you have fallen asleep at time zero. Suddenly you wake up, noticing that
the time now is t and that your state process while you were asleep has moved
to the point x. You now try to do as well as possible under the circumstances,
so you want to maximize your utility over the remaining time, given the fact
that you start at time t in the state x.

We now define the value function and the optimal value function.

Definition 1.3.2

• The value function

J : R+ ×Rn × U → R

is defined by

J (t, x,u) = E

[∫ T

t

F (s,Xu
s ,us)ds + Φ (Xu

T )

]

given the dynamics (1.17)–(1.18).

• The optimal value function

V : R+ ×Rn → R

is defined by
V (t, x) = sup

u∈U
J (t, x,u).
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Thus J (t, x,u) is the expected utility of using the control law u over the
time interval [t, T ], given the fact that you start in state x at time t. The optimal
value function gives you the optimal expected utility over [t, T ] under the same
initial conditions.

The main object of interest for us is the optimal value function, and we
now go on to derive a PDE for V . It should be noted that this derivation is
largely heuristic. We make some rather strong regularity assumptions, and we
disregard a number of technical problems. We will comment on these problems
later, but to see exactly which problems we are ignoring we now make some
basic assumptions.

Assumption 1.3.1 We assume the following.

1. There exists an optimal control law û.

2. The optimal value function V is regular in the sense that V ∈ C1,2.

3. A number of limiting procedures in the following arguments can be justified.

We now go on to derive the PDE, and to this end we fix (t, x) ∈ (0, T ) ×
Rn. Furthermore we choose a real number h (interpreted as a “small” time
increment) such that t + h < T . We choose a fixed but arbitrary control law u,
and define the control law u? by

u?(s, y) =
{

u(s, y), (s, y) ∈ [t, t + h]×Rn

û(s, y), (s, y) ∈ (t + h, T ]×Rn.

In other words, if we use u? then we use the arbitrary control u during the time
interval [t, t + h], and then we switch to the optimal control law during the rest
of the time period.

The whole idea of dynamic programming actually boils down to the following
procedure.

• First, given the point (t, x) as above, we consider the following two strate-
gies over the time interval [t, T ]:

Strategy I. Use the optimal law û.

Strategy II. Use the control law u? defined above.

• We then compute the expected utilities obtained by the respective strate-
gies.

• Finally, using the obvious fact that Strategy I by definition has to be at
least as good as Strategy II, and letting h tend to zero, we obtain our
fundamental PDE.

We now carry out this program.

Expected utility for strategy I: This is trivial, since by definition the utility
is the optimal one given by J (t, x, û) = V (t, x).
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Expected utility for strategy II: We divide the time interval [t, T ] into two
parts, the intervals [t, t + h] and (t + h, T ] respectively.

• The expected utility, using Strategy II, for the interval [t, t + h) is
given by

Et,x

[∫ t+h

t

F (s,Xu
s ,us) ds

]
.

• In the interval [t + h, T ] we observe that at time t + h we will be
in the (stochastic) state Xu

t+h. Since, by definition, we will use the
optimal strategy during the entire interval [t + h, T ] we see that the
remaining expected utility at time t + h is given by V (t + h, Xu

t+h).
Thus the expected utility over the interval [t + h, T ], conditional on
the fact that at time t we are in state x, is given by

Et,x

[
V (t + h, Xu

t+h)
]
.

Thus the total expected utility for Strategy II is

Et,x

[∫ t+h

t

F (s,Xu
s ,us) ds + V (t + h, Xu

t+h)

]
.

Comparing the strategies: We now go on to compare the two strategies,
and since by definition Strategy I is the optimal one, we must have the
inequality

V (t, x) ≥ Et,x

[∫ t+h

t

F (s,Xu
s ,us) ds + V (t + h, Xu

t+h)

]
. (1.20)

We also note that the inequality sign is due to the fact that the arbitrarily
chosen control law u which we use on the interval [t, t + h] need not be
the optimal one. In particular we have the following obvious fact.

Remark 1.3.1 We have equality in (1.20) if and only if the control law
u is an optimal law û. (Note that the optimal law does not have to be
unique.)

Since, by assumption, V is smooth we now use the Itô formula to obtain
(with obvious notation)

V (t + h, Xu
t+h) = V (t, x) +

∫ t+h

t

{
∂V

∂t
(s,Xu

s ) +AuV (s,Xu
s )
}

ds

+
∫ t+h

t

∇xV (s,Xu
s )σudWs. (1.21)

If we apply the expectation operator Et,x to this equation, and assume
enough integrability, then the stochastic integral will vanish. We can then
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insert the resulting equation into the inequality (1.20). The term V (t, x)
will cancel, leaving us with the inequality

Et,x

[∫ t+h

t

[
F (s,Xu

s ,us) +
∂V

∂t
(s,Xu

s ) +AuV (s,Xu
s )
]

ds

]
≤ 0. (1.22)

Going to the limit: Now we divide by h, move h within the expectation and
let h tend to zero. Assuming enough regularity to allow us to take the
limit within the expectation, using the fundamental theorem of integral
calculus, and recalling that Xt = x, we get

F (t, x, u) +
∂V

∂t
(t, x) +AuV (t, x) ≤ 0, (1.23)

where u denotes the value of the law u evaluated at (t, x), i.e. u = u(t, x).

Since the control law u was arbitrary, this inequality will hold for all
choices of u ∈ U , and we will have equality if and only if u = û(t, x). We
thus have the following equation

∂V

∂t
(t, x) + sup

u∈U
{F (t, x, u) +AuV (t, x)} = 0.

During the discussion the point (t, x) was fixed, but since it was chosen
as an arbitrary point we see that the equation holds in fact for all (t, x) ∈
(0, T )×Rn. Thus we have a (nonstandard type of) PDE, and we obviously
need some boundary conditions. One such condition is easily obtained,
since we obviously (why?) have V (T, x) = Φ(x) for all x ∈ Rn. We have
now arrived at our goal, namely the Hamilton–Jacobi–Bellman equation,
(often referred to as the HJB equation.)

Theorem 1.3.1 (Hamilton–Jacobi–Bellman equation) Under Assumption
1.3.1, the following hold.

1. V satisfies the Hamilton–Jacobi–Bellman equation
∂V

∂t
(t, x) + sup

u∈U
{F (t, x, u) +AuV (t, x)} = 0, ∀(t, x) ∈ (0, T )×Rn

V (T, x) = Φ(x), ∀x ∈ Rn.

2. For each (t, x) ∈ [0, T ] × Rn the supremum in the HJB equation above is
attained by u = û(t, x).

Remark 1.3.2 By going through the arguments above, it is easily seen that we
may allow the constraint set U to be time- and state-dependent. If we thus have
control constraints of the form

u(t, x) ∈ U(t, x), ∀t, x

then the HJB equation still holds with the obvious modification of the supremum
part.
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It is important to note that this theorem has the form of a necessary
condition. It says that if V is the optimal value function, and if û is the optimal
control, then V satisfies the HJB equation, and û(t, x) realizes the supremum
in the equation. We also note that Assumption 1.3.1 is an ad hoc assumption.
One would prefer to have conditions in terms of the initial data µ, σ, F and Φ
which would guarantee that Assumption 1.3.1 is satisfied. This can in fact be
done, but at a fairly high price in terms of technical complexity. The reader is
referred to the specialist literature.

A gratifying, and perhaps surprising, fact is that the HJB equation also acts
as a sufficient condition for the optimal control problem. This result is known
as the verification theorem for dynamic programming, and we will use it
repeatedly below. Note that, as opposed to the necessary conditions above, the
verification theorem is very easy to prove rigorously.

Theorem 1.3.2 (Verification theorem) Suppose that we have two functions
H(t, x) and g(t, x), such that

• H is sufficiently integrable (see Remark 1.3.4 below), and solves the HJB
equation

∂H

∂t
(t, x) + sup

u∈U
{F (t, x, u) +AuH(t, x)} = 0, ∀(t, x) ∈ (0, T )×Rn

H(T, x) = Φ(x), ∀x ∈ Rn.

• The function g is an admissible control law.

• For each fixed (t, x), the supremum in the expression

sup
u∈U

{F (t, x, u) +AuH(t, x)}

is attained by the choice u = g(t, x).

Then the following hold.

1. The optimal value function V to the control problem is given by

V (t, x) = H(t, x).

2. There exists an optimal control law û, and in fact û(t, x) = g(t, x).

Remark 1.3.3 Note that we have used the letter H (instead of V ) in the HJB
equation above. This is because the letter V by definition denotes the optimal
value function.

Proof. Assume that H and g are given as above. Now choose an arbitrary
control law u ∈ U , and fix a point (t, x). We define the process Xu on the time
interval [t, T ] as the solution to the equation

dXu
s = µu (s,Xu

s ) ds + σu (s,Xu
s ) dWs,

Xt = x.
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Inserting the process Xu into the function H and using the Itô formula we
obtain

H(T,Xu
T ) = H(t, x) +

∫ T

t

{
∂H

∂t
(s,Xu

s ) + (AuH) (s,Xu
s )
}

ds

+
∫ T

t

∇xH(s,Xu
s )σu(s,Xu

s )dWs.

Since H solves the HJB equation we see that

∂H

∂t
(t, x) + F (t, x, u) +AuH(t, x) ≤ 0

for all u ∈ U , and thus we have, for each s and P -a.s, the inequality

∂H

∂t
(s,Xu

s ) + (AuH) (s,Xu
s ) ≤ −Fu(s,Xu

s ).

From the boundary condition for the HJB equation we also have H(T,Xu
T ) =

Φ(Xu
T ), so we obtain the inequality

H(t, x) ≥
∫ T

t

Fu(s,Xu
s )ds + Φ(Xu

T )−
∫ T

t

∇xH(s,Xu
s )σudWs.

Taking expectations, and assuming enough integrability, we make the stochastic
integral vanish, leaving us with the inequality

H(t, x) ≥ Et,x

[∫ T

t

Fu(s,Xu
s )ds + Φ(Xu

T )

]
= J (t, x,u).

Since the control law u was arbitrarily chosen this gives us

H(t, x) ≥ sup
u∈U

J (t, x,u) = V (t, x). (1.24)

To obtain the reverse inequality we choose the specific control law u(t, x) =
g(t, x). Going through the same calculations as above, and using the fact that
by assumption we have

∂H

∂t
(t, x) + F g(t, x) +AgH(t, x) = 0,

we obtain the equality

H(t, x) = Et,x

[∫ T

t

F g(s,Xg
s )ds + Φ(Xg

T )

]
= J (t, x,g). (1.25)

On the other hand we have the trivial inequality

V (t, x) ≥ J (t, x,g), (1.26)
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so, using (1.24)–(1.26), we obtain

H(t, x) ≥ V (t, x) ≥ J (t, x,g) = H(t, x).

This shows that in fact

H(t, x) = V (t, x) = J (t, x,g),

which proves that H = V , and that gs is the optimal control law.

Remark 1.3.4 The assumption that H is “sufficiently integrable” in the the-
orem above is made in order for the stochastic integral in the proof to have
expected value zero. This will be the case if, for example, H satisifes the condi-
tion

∇xH(s,Xu
s )σu(s,Xu

s ) ∈ £2,

for all admissible control laws.

Remark 1.3.5 Sometimes, instead of a maximization problem, we consider a
minimization problem. Of course we now make the obvious definitions for the
value function and the optimal value function. It is then easily seen that all the
results above still hold if the expression

sup
u∈U

{F (t, x, u) +AuV (t, x)}

in the HJB equation is replaced by the expression

inf
u∈U

{F (t, x, u) +AuV (t, x)} .

Remark 1.3.6 In the Verification Theorem we may allow the control constraint
set U to be state and time dependent, i.e. of the form U(t, x).

1.4 Handling the HJB Equation

In this section we will describe the actual handling of the HJB equation, and
in the next section we will study a classical example—the linear quadratic reg-
ulator. We thus consider our standard optimal control problem with the corre-
sponding HJB equation:

∂V

∂t
(t, x) + sup

u∈U
{F (t, x, u) +AuV (t, x)} = 0,

V (T, x) = Φ(x).
(1.27)

Schematically we now proceed as follows.

1. Consider the HJB equation as a PDE for an unknown function V .
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2. Fix an arbitrary point (t, x) ∈ [0, T ] × Rn and solve, for this fixed choice
of (t, x), the static optimization problem

max
u∈U

[F (t, x, u) +AuV (t, x)] .

Note that in this problem u is the only variable, whereas t and x are
considered to be fixed parameters. The functions F , µ, σ and V are
considered as given.

3. The optimal choice of u, denoted by û, will of course depend on our choice
of t and x, but it will also depend on the function V and its various
partial derivatives (which are hiding under the sign AuV ). To highlight
these dependencies we write û as

û = û (t, x;V ) . (1.28)

4. The function û (t, x;V ) is our candidate for the optimal control law, but
since we do not know V this description is incomplete. Therefore we
substitute the expression for û in (1.28) into the PDE (1.27), giving us
the PDE

∂V

∂t
(t, x) + F û(t, x) +AûV (t, x) = 0, (1.29)

V (T, x) = Φ(x). (1.30)

5. Now we solve the PDE above! (See the remark below.) Then we put the
solution V into expression (1.28). Using the verification theorem 1.3.2 we
can now identify V as the optimal value function, and û as the optimal
control law.

Remark 1.4.1 The hard work of dynamic programming consists in solving the
highly nonlinear PDE in step 5 above. There are of course no general analytic
methods available for this, so the number of known optimal control problems with
an analytic solution is very small indeed. In an actual case one usually tries to
guess a solution, i.e. we typically make an ansatz for V , parameterized by a
finite number of parameters, and then we use the PDE in order to identify the
parameters. The making of an ansatz is often helped by the intuitive observation
that if there is an analytical solution to the problem, then it seems likely that
V inherits some structural properties from the boundary function Φ as well as
from the instantaneous utility function F .

For a general problem there is thus very little hope of obtaining an analytic
solution, and it is worth pointing out that many of the known solved control
problems have, to some extent, been “rigged” in order to be analytically solvable.
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1.5 Optimal Consumption and Investment

1.5.1 A Generalization

In many concrete applications, in particular in economics, it is natural to con-
sider an optimal control problem, where the state variable is constrained to stay
within a prespecified domain. As an example it may be reasonable to demand
that the wealth of an investor is never allowed to become negative. We will now
generalize our class of optimal control problems to allow for such considerations.

Let us therefore consider the following controlled SDE

dXt = µ (t, Xt, ut) dt + σ (t, Xt, ut) dWt, (1.31)
X0 = x0, (1.32)

where as before we impose the control constraint ut ∈ U . We also consider as
given a fixed time interval [0, T ], and a fixed domain D ⊆ [0, T ]× Rn, and the
basic idea is that when the state process hits the boundary ∂D of D, then the
activity is at an end. It is thus natural to define the stopping time τ by

τ = inf {t ≥ 0 |(t, Xt) ∈ ∂D} ∧ T,

where x ∧ y = min[x, y]. We consider as given an instantaneous utility function
F (t, x, u) and a “bequest function” Φ(t, x), i.e. a mapping Φ : ∂D → R. The
control problem to be considered is that of maximizing

E

[∫ τ

0

F (s,Xu
s ,us)ds + Φ (τ,Xu

τ )
]

. (1.33)

In order for this problem to be interesting we have to demand that X0 ∈ D, and
the interpretation is that when we hit the boundary ∂D, the game is over and
we obtain the bequest Φ (τ,Xτ ). We see immediately that our earlier situation
corresponds to the case when D = [0, T ] × Rn and when Φ is constant in the
t-variable.

In order to analyze our present problem we may proceed as in the previous
sections, introducing the value function and the optimal value function exactly
as before. The only new technical problem encountered is that of considering
a stochastic integral with a stochastic limit of integration. Since this will take
us outside the scope of the present text we will confine ourselves to giving the
results. The proofs are (modulo the technicalities mentioned above) exactly as
before.

Theorem 1.5.1 (HJB equation) Assume that

• The optimal value function V is in C1,2.

• An optimal law û exists.

Then the following hold.
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1. V satisifies the HJB equation
∂V

∂t
(t, x) + sup

u∈U
{F (t, x, u) +AuV (t, x)} = 0, ∀(t, x) ∈ D

V (t, x) = Φ(t, x), ∀(t, x) ∈ ∂D.

2. For each (t, x) ∈ D the supremum in the HJB equation above is attained
by u = û(t, x).

Theorem 1.5.2 (Verification theorem) Suppose that we have two functions
H(t, x) and g(t, x), such that

• H is sufficiently integrable, and solves the HJB equation
∂H

∂t
(t, x) + sup

u∈U
{F (t, x, u) +AuH(t, x)} = 0, ∀(t, x) ∈ D

H(t, x) = Φ(t, x), ∀(t, x) ∈ ∂D.

• The function g is an admissible control law.

• For each fixed (t, x), the supremum in the expression

sup
u∈U

{F (t, x, u) +AuH(t, x)}

is attained by the choice u = g(t, x).

Then the following hold.

1. The optimal value function V to the control problem is given by

V (t, x) = H(t, x).

2. There exists an optimal control law û, and in fact û(t, x) = g(t, x).

1.5.2 Optimal Consumption

In order to illustrate the technique we will now go back to the optimal consump-
tion problem at the beginning of the chapter. We thus consider the problem of
maximizing

E

[∫ T

0

F (t, ct)dt + Φ(XT )

]
, (1.34)

given the wealth dynamics

dXt = Xt

[
u0

t r + u1
t α
]
dt− ctdt + u1σXtdWt. (1.35)
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As usual we impose the control constraints

ct ≥ 0, ∀t ≥ 0,

u0
t + u1

t = 1, ∀t ≥ 0.

In a control problem of this kind it is important to be aware of the fact
that one may quite easily formulate a nonsensical problem. To take a simple
example, suppose that we have Φ = 0, and suppose that F is increasing and
unbounded in the c-variable. Then the problem above degenerates completely.
It does not possess an optimal solution at all, and the reason is of course that the
consumer can increase his/her utility to any given level by simply consuming an
arbitrarily large amount at every t. The consequence of this hedonistic behavior
is of course the fact that the wealth process will, with very high probability,
become negative, but this is neither prohibited by the control constraints, nor
punished by any bequest function.

An elegant way out of this dilemma is to choose the domain D of the pre-
ceding section as D = [0, T ]× {x |x > 0}. With τ defined as above this means,
in concrete terms, that

τ = inf {t > 0 |Xt = 0} ∧ T.

A natural objective function in this case is thus given by

E

[∫ τ

0

F (t, ct)dt

]
, (1.36)

which automatically ensures that when the consumer has no wealth, then all
activity is terminated.

We will now analyze this problem in some detail. Firstly we notice that we
can get rid of the constraint u0

t + u1
t = 1 by defining a new control variable w

as w = u1, and then substituting 1−w for u0. This gives us the state dynamics

dXt = wt [α− r]Xtdt + (rXt − ct) dt + wtσXtdWt, (1.37)

and the corresponding HJB equation is
∂V

∂t
+ sup

c≥0,w∈R

{
F (t, c) + wx(α− r)

∂V

∂x
+ (rx− c)

∂V

∂x
+

1
2
x2w2σ2 ∂2V

∂x2

}
= 0,

V (T, x) = 0,

V (t, 0) = 0.

We now specialize our example to the case when F is of the form

F (t, c) = e−δtcγ ,

where 0 < γ < 1. The economic reasoning behind this is that we now have
an infinite marginal utility at c = 0. This will force the optimal consumption
plan to be positive throughout the planning period, a fact which will facilitate



1.5. OPTIMAL CONSUMPTION AND INVESTMENT 27

the analytical treatment of the problem. In terms of Remark 1.4.1 we are thus
“rigging” the problem.

The static optimization problem to be solved w.r.t. c and w is thus that of
maximizing

e−δtcγ + wx(α− r)
∂V

∂x
+ (rx− c)

∂V

∂x
+

1
2
x2w2σ2 ∂2V

∂x2
,

and, assuming an interior solution, the first order conditions are

γcγ−1 = eδtVx, (1.38)

w =
−Vx

x · Vxx
· α− r

σ2
, (1.39)

where we have used subscripts to denote partial derivatives.
We again see that in order to implement the optimal consumption–investment

plan (1.38)–(1.39) we need to know the optimal value function V . We therefore
suggest a trial solution (see Remark 1.4.1), and in view of the shape of the
instantaneous utility function it is natural to try a V -function of the form

V (t, x) = e−δth(t)xγ , (1.40)

where, because of the boundary conditions, we must demand that

h(T ) = 0. (1.41)

Given a V of this form we have (using · to denote the time derivative)

∂V

∂t
= e−δtḣxγ − δe−δthxγ , (1.42)

∂V

∂x
= γe−δthxγ−1, (1.43)

∂2V

∂x2
= γ(γ − 1)e−δthxγ−2. (1.44)

Inserting these expressions into (1.38)–(1.39) we get

ŵ(t, x) =
α− r

σ2(1− γ)
, (1.45)

ĉ(t, x) = xh(t)−1/(1−γ). (1.46)

This looks very promising: we see that the candidate optimal portfolio is con-
stant and that the candidate optimal consumption rule is linear in the wealth
variable. In order to use the verification theorem we now want to show that a
V -function of the form (1.40) actually solves the HJB equation. We therefore
substitute the expressions (1.42)–(1.46) into the HJB equation. This gives us
the equation

xγ
{

ḣ(t) + Ah(t) + Bh(t)−γ/(1−γ)
}

= 0,
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where the constants A and B are given by

A =
γ(α− r)2

σ2(1− γ)
+ rγ − 1

2
γ(α− r)2

σ2(1− γ)
− δ

B = 1− γ.

If this equation is to hold for all x and all t, then we see that h must solve the
ODE

ḣ(t) + Ah(t) + Bh(t)−γ/(1−γ) = 0, (1.47)
h(T ) = 0. (1.48)

An equation of this kind is known as a Bernoulli equation, and it can be
solved explicitly (see the exercises).

Summing up, we have shown that if we define V as in (1.40) with h defined
as the solution to (1.47)–(1.48), and if we define ŵ and ĉ by (1.45)–(1.46), then
V satisfies the HJB equation, and ŵ, ĉ attain the supremum in the equation.
The verification theorem then tells us that we have indeed found the optimal
solution.

1.6 The Mutual Fund Theorems

In this section we will briefly go through the “Merton mutual fund theorems”,
originally presented in Merton (1971).

1.6.1 The Case with No Risk Free Asset

We consider a financial market with n asset prices S1, . . . , Sn. To start with we
do not assume the existence of a risk free asset, and we assume that the price
vector process S(t) has the following dynamics under the objective measure P .

dS = D(S)αdt + D(S)σdW. (1.49)

Here W is a k-dimensional standard Wiener process, α is an n-vector, σ is an
n× k matrix, and D(S) is the diagonal matrix

D(S) = diag[S1, . . . , Sn].

In more pedestrian terms this means that

dSi = Siαidt + SiσidW,

where σi is the ith row of the matrix σ.
We denote the investment strategy (relative portfolio) by w, and the con-

sumption plan by c. If the pair (w, c) is self-financing, then it follows from
the S-dynamics above, and from Lemma ??, that the dynamics of the wealth
process X are given by

dX = Xw′αdt− cdt + Xw′σdW. (1.50)
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We also take as given an instantaneous utility function F (t, c), and we basically
want to maximize

E

[∫ T

0

F (t, ct)dt

]
where T is some given time horizon. In order not to formulate a degenerate
problem we also impose the condition that wealth is not allowed to become
negative, and as before this is dealt with by introducing the stopping time

τ = inf {t > 0 | Xt = 0} ∧ T.

Our formal problem is then that of maximizing

E

[∫ τ

0

F (t, ct)dt

]
given the dynamics (1.49)–(1.50), and subject to the control constraints

n∑
1

wi = 1, (1.51)

c ≥ 0. (1.52)

Instead of (1.51) it is convenient to write

e′w = 1,

where e is the vector in Rn which has the number 1 in all components, i.e.
e′ = (1, . . . , 1).

The HJB equation for this problem now becomes
∂V

∂t
(t, x, s) + sup

e′w=1, c≥0
{F (t, c) +Ac,wV (t, x, s)} = 0,

V (T, x, s) = 0,

V (t, 0, s) = 0.

In the general case, when the parameters α and σ are allowed to be functions
of the price vector process S, the term Ac,wV (t, x, s) turns out to be rather
forbidding (see Merton’s original paper). It will in fact involve partial derivatives
to the second order with respect to all the variables x, s1, . . . , sn.

If, however, we assume that α and σ are deterministic and constant over
time, then we see by inspection that the wealth process X is a Markov process,
and since the price processes do not appear, neither in the objective function nor
in the definition of the stopping time, we draw the conclusion that in this case
X itself will act as the state process, and we may forget about the underlying
S-process completely.

Under these assumptions we may thus write the optimal value function as
V (t, x), with no s-dependence, and after some easy calculations the term Ac,wV
turns out to be

Ac,wV = xw′α
∂V

∂x
− c

∂V

∂x
+

1
2
x2w′Σw

∂2V

∂x2
,
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where the matrix Σ is given by

Σ = σσ′.

We now summarize our assumptions.

Assumption 1.6.1 We assume that

• The vector α is constant and deterministic.

• The matrix σ is constant and deterministic.

• The matrix σ has rank n, and in particular the matrix Σ = σσ′ is positive
definite and invertible.

We note that, in terms of contingent claims analysis, the last assumption
means that the market is complete. Denoting partial derivatives by subscripts
we now have the following HJB equation

Vt(t, x) + sup
w′e=1, c≥0

{
F (t, c) + (xw′α− c)Vx(t, x) +

1
2
x2w′ΣwVxx(t, x)

}
= 0,

V (T, x) = 0,

V (t, 0) = 0.

If we relax the constraint w′e = 1, the Lagrange function for the static opti-
mization problem is given by

L = F (t, c) + (xw′α− c)Vx(t, x) +
1
2
x2w′ΣwVxx(t, x) + λ (1− w′e) .

Assuming the problem to be regular enough for an interior solution we see that
the first order condition for c is

∂F

∂c
(t, c) = Vx(t, x).

The first order condition for w is

xα′Vx + x2Vxxw′Σ = λe′,

so we can solve for w in order to obtain

ŵ = Σ−1

[
λ

x2Vxx
e− xVx

x2Vxx
α

]
. (1.53)

Using the relation e′w = 1 this gives λ as

λ =
x2Vxx + xVxe′Σ−1α

e′Σ−1e
,

and inserting this into (1.53) gives us, after some manipulation,

ŵ =
1

e′Σ−1e
Σ−1e +

Vx

xVxx
Σ−1

[
e′Σ−1α

e′Σ−1e
e− α

]
. (1.54)
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To see more clearly what is going on we can write this expression as

ŵ(t) = g + Y (t)h, (1.55)

where the fixed vectors g and h are given by

g =
1

e′Σ−1e
Σ−1e, (1.56)

h = Σ−1

[
e′Σ−1α

e′Σ−1e
e− α

]
, (1.57)

whereas Y is given by

Y (t) =
Vx(t, X(t))

X(t)Vxx(t, X(t))
. (1.58)

Thus we see that the optimal portfolio is moving stochastically along the one-
dimensional “optimal portfolio line”

g + sh,

in the (n− 1)-dimensional “portfolio hyperplane” ∆, where

∆ = {w ∈ Rn |e′w = 1} .

We now make the obvious geometric observation that if we fix two points on
the optimal portfolio line, say the points wa = g+ah and wb = g+bh, then any
point w on the line can be written as an affine combination of the basis points
wa and wb. An easy calculation shows that if ws = g + sh then we can write

ws = µwa + (1− µ)wb,

where
µ =

s− b

a− b
.

The point of all this is that we now have an interesting economic interpretation
of the optimality results above. Let us thus fix wa and wb as above on the
optimal portfolio line. Since these points are in the portfolio plane ∆ we can
interpret them as the relative portfolios of two fixed mutual funds. We may
then write (1.55) as

ŵ(t) = µ(t)wa + (1− µ(t))wb, (1.59)

with

µ(t) =
Y (t)− b

a− b
.

Thus we see that the optimal portfolio ŵ can be obtained as a“super portfolio”
where we allocate resources between two fixed mutual funds.

Theorem 1.6.1 (Mutual fund theorem) Assume that the problem is regu-
lar enough to allow for an interior solution. Then there exists a one-dimensional
parameterized family of mutual funds, given by ws = g + sh, where g and h are
defined by (1.56)–(1.57), such that the following hold.
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1. For each fixed s the relative portfolio ws stays fixed over time.

2. For any fixed choice of a 6= b the optimal portfolio ŵ(t) is, for all values
of t, obtained by allocating all resources between the fixed funds wa and
wb, i.e.

ŵ(t) = µa(t)wa + µb(t)wb,

µa(t) + µb(t) = 1.

3. The relative proportions (µa, µb) of the portfolio wealth allocated to wa and
wb respectively are given by

µa(t) =
Y (t)− b

a− b
,

µb(t) =
a− Y (t)

a− b
,

where Y is given by (1.58).

1.6.2 The Case with a Risk Free Asset

Again we consider the model

dS = D(S)αdt + D(S)σdW (t), (1.60)

with the same assumptions as in the preceding section. We now also take as
given the standard risk free asset B with dynamics

dB = rBdt.

Formally we can denote this as a new asset by subscript zero, i.e. B = S0, and
then we can consider relative portfolios of the form w = (w0, w1, . . . , wn)′ where
of course

∑n
0 wi = 1. Since B will play such a special role it will, however, be

convenient to eliminate w0 by the relation

w0 = 1−
n∑
1

wi,

and then use the letter w to denote the portfolio weight vector for the risky
assets only. Thus we use the notation

w = (w1, . . . , wn)′,

and we note that this truncated portfolio vector is allowed to take any value in
Rn.

Given this notation it is easily seen that the dynamics of a self-financing
portfolio are given by

dX = X ·

{
n∑
1

wiαi +

(
1−

n∑
1

wi

)
r

}
dt− cdt + X · w′σdW.
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That is,
dX = X · w′(α− re)dt + (rX − c)dt + X · w′σdW, (1.61)

where as before e ∈ Rn denotes the vector (1, 1, . . . , 1)′.
The HJB equation now becomes

Vt(t, x) + sup
c≥0,w∈Rn

{F (t, c) +Ac,wV (t, x)} = 0,

V (T, x) = 0,

V (t, 0) = 0,

where

AcV = xw′(α− re)Vx(t, x) + (rx− c)Vx(t, x) +
1
2
x2w′ΣwVxx(t, x).

The first order conditions for the static optimization problem are

∂F

∂c
(t, c) = Vx(t, x),

ŵ = − Vx

xVxx
Σ−1(α− re),

and again we have a geometrically obvious economic interpretation.

Theorem 1.6.2 (Mutual fund theorem) Given assumptions as above, the
following hold.

1. The optimal portfolio consists of an allocation between two fixed mutual
funds w0 and wf .

2. The fund w0 consists only of the risk free asset.

3. The fund wf consists only of the risky assets, and is given by

wf = Σ−1(α− re).

4. At each t the optimal relative allocation of wealth between the funds is
given by

µf (t) = − Vx(t, X(t))
X(t)Vxx(t, X(t))

,

µ0(t) = 1− µf (t).

Note that this result is not a corollary of the corresponding result from the
previous section. Firstly it was an essential ingredient in the previous results
that the volatility matrix of the price vector was invertible. In the case with a
riskless asset the volatility matrix for the entire price vector (B,S1, . . . , Sn) is of
course degenerate, since its first row (having subscript zero) is identically equal
to zero. Secondly, even if one assumes the results from the previous section, i.e.
that the optimal portfolio is built up from two fixed portfolios, it is not at all
obvious that one of these basis portfolios can be chosen so as to consist of the
risk free asset alone.
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1.7 Exercises

Exercise 1.1 Solve the problem of maximizing logarithmic utility

E

[∫ T

0

e−δt ln(ct)dt + K · ln(XT )

]
,

given the usual wealth dynamics

dXt = Xt

[
u0

t r + u1
t α
]
dt− ctdt + u1σXtdWt,

and the usual control constraints

ct ≥ 0, ∀t ≥ 0,

u0
t + u1

t = 1, ∀t ≥ 0.

Exercise 1.2 A Bernoulli equation is an ODE of the form

ẋt + Atxt + Btx
α
t = 0,

where A and B are deterministic functions of time and α is a constant.
If α = 1 this is a linear equation, and can thus easily be solved. Now consider

the case α 6= 1 and introduce the new variable y by

yt = x1−α
t .

Show that y satisfies the linear equation

ẏt + (1− α)Atyt + (1− α)Bt = 0.

Exercise 1.3 Use the previous exercise in order to solve (1.47)–(1.48) explic-
itly.

Exercise 1.4 Consider as before state process dynamics

dXt = µ (t, Xt, ut) dt + σ (t, Xt, ut) dWt

and the usual restrictions for u. Our entire derivation of the HJB equation has
so far been based on the fact that the objective function is of the form∫ T

0

F (t, Xt, ut)dt + Φ(XT ).

Sometimes it is natural to consider other criteria, like the expected exponential
utilitycriterion

E

[
exp

{∫ T

0

F (t, Xt, ut)dt + Φ(XT )

}]
.
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For this case we define the optimal value function as the supremum of

Et,x

[
exp

{∫ T

t

F (s,Xs, us)dt + Φ(XT )

}]
.

Follow the reasoning in Section 1.3 in order to show that the HJB equation for
the expected exponential utility criterion is given by

∂V

∂t
(t, x) + sup

u
{V (t, x)F (t, x, u) +AuV (t, x)} = 0,

V (T, x) = eΦ(x).

Exercise 1.5 Solve the problem to minimize

E

[
exp

{∫ T

0

u2
t dt + X2

T

}]

given the scalar dynamics

dX = (ax + u)dt + σdW

where the control u is scalar and there are no control constraints.
Hint: Make the ansatz

V (t, x) = eA(t)x2+B(t).

Exercise 1.6 Study the general linear–exponential–qudratic control problem of
minimizing

E

[
exp

{∫ T

0

{X ′
tQXt + u′tRut} dt + X ′

T HXT

}]

given the dynamics

dXt = {AXt + But} dt + CdWt.

Exercise 1.7 The object of this exercise is to connect optimal control to mar-
tingale theory. Consider therefore a general control problem of minimizing

E

[∫ T

0

F (t, Xu
t ,ut)dt + Φ (Xu

T )

]

given the dynamics

dXt = µ (t, Xt, ut) dt + σ (t, Xt, ut) dWt,

and the constraints
u(t, x) ∈ U.
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Now, for any control law u, define the total cost process C(t;u) by

C(t;u) =
∫ t

0

F (s,Xu
s ,us)ds + Et,Xu

t

[∫ T

t

F (s,Xu
s ,us)dt + Φ (Xu

T )

]
,

i.e.

C(t;u) =
∫ t

0

F (s,Xu
s ,us)ds + J (t, Xu

t ,u).

Use the HJB equation in order to prove the following claims.

(a) If u is an arbitrary control law, then C is a submartingale.

(b) If u is optimal, then C is a martingale.

1.8 Notes

Standard references on optimal control are [14] and [27]. A very clear expo-
sition can be found in [31]. For more recent work, using viscosity solutions,
see [15]. The classical papers on optimal consumption are [29] and [30]. For
optimal trading under constraints, and its relation to derivative pricing see [7]
and references therein.



Chapter 2

The Martingale Approach
to Optimal Investment

In Chapter 1 we studied optimal investment and consumption problems, using
dynamic programming. This approach transforms the original stochastic opti-
mal control problem into the problem of solving a non linear deterministic PDE,
namely the Hamilton-Jacobi-Bellman equation, so the probabilistic nature of the
problem disappears as soon as we have formulated the HJB equation.

In this chapter we will present an alternative method of solving optimal in-
vestment problems. This method is commonly referred to as ”the martingale
approach” and it has the advantage that it is in some sense more direct and
more probabilistic than dynamic programming, and we do not need to assume a
Markovian structure. It should be noted however, that while dynamic program-
ming can be applied to any Markovian stochastic optimal control problem, the
martingale approach is only applicable to financial portfolio problems, and in
order to get explicit results we also typically need to assume market complete-
ness.

2.1 Generalities

We consider a financial market living on a stochastic basis (Ω,F ,F, P ), where
P is the objective probability measure. The basis carries an n-dimensional P -
Wiener process W , and the filtration F is the one generated by the W process
so F = FW .

The financial market under consideration consists of n non-dividend paying
risky assets (“stocks”) with price processes S1, . . . , Sn, and a bank account with
price process B. The formal assumptions concerning the price dynamics are as
follows.

Assumption 2.1.1 We assume the following.

37
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• The risky asset prices have P -dynamics given by

dSi
t = αi

tS
i
tdt + Si

tσ
i
tdWt, i = 1, . . . , n. (2.1)

Here α1, . . . , αn are assumed to be F-adapted scalar processes, and σi, . . . , σn

are FW -adapted d-dimensional row vector processes.

• The short rate r is assumed to be constant, i.e. the bank account has
dynamics given by

dBt = rBtdt.

Remark 2.1.1 Note that we do not make any Markovian assumptions, so in
particular the process α and σ are allowed to be arbitrary adapted path dependent
processes.Of particular interest is of course the Markovian case i.e. when α and
σ are deterministic functions of t and St so αt = αt(St) and σt = σt(St).

Defining the stock vector process S by

S =

 S1

...
Sn

 ,

the rate of return vector process α by

α =

 α1

...
αn

 ,

and the volatility matrix σ by

σ =

−σ1−
...

−σn−

 ,

we can write the stock price dynamics as

dSt = D(St)αtdt + D(St)σtdWt,

where D(S) denotes the diagonal matrix with S1, . . . , Sn on the diagonal.
We will need an important assumption concerning the volatility matrix.

Assumption 2.1.2 We assume that with probability one the volatility matrix
σ(t) is non-singular for all t.

The point of this assumption is the following result, the proof of which is
obvious.

Proposition 2.1.1 Under the assumptions above, the market model is com-
plete.



2.2. THE BASIC IDEA 39

2.2 The Basic Idea

Let us consider an investor with initial capital x and a utility function U for
terminal wealth. For any self financing portfolio, we denote the corresponding
portfolio value process by X and our problem is to maximize expected utility

EP [U(XT )] ,

over the class of self financing adapted portfolios with the initial condition
X(0) = x.

In Chapter 1 we viewed this as a dynamic optimization problem and at-
tacked it by using dynamic programming. A different way of formulating the
problem is however as follows. Define KT as the set of contingent T -claims
which can be replicated by a self financing portfolio with initial capital x. Then
our basic problem can be formulated as the static problem

max
XT

EP [U(XT )]

subject to the static constraint

XT ∈ KT .

In this formulation, the focus is not on the optimal portfolio strategy but instead
on the terminal wealth XT . We now have the following important observation,
which follows immediately from the market completeness.

Proposition 2.2.1 With assumptions as above, the following conditions are
equivalent for any random variable XT ∈ FT .

XT ∈ KT . (2.2)

e−rT EQ [XT ] = x. (2.3)

The implication of this simple observation is that we can now decouple the
problem of determining the optimal terminal wealth profile from the problem
of determining the optimal portfolio. Schematically we proceed as follows.

• Instead of solving the dynamic control problem, we solve the static prob-
lem

max
XT∈FT

EP [U(XT )] (2.4)

subject to the budget constraint

e−rT EQ [XT ] = x, (2.5)

where x is the initial wealth, and Q is the unique martingale measure.

• Given the optimal wealth profile X̂T , we can (in principle) compute the
corresponding generating portfolio using martingale representation results.
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2.3 The Optimal Terminal Wealth

The static problem (2.4) with the constraint (2.5) can easily be solved using
Lagrange relaxation. We start by rewriting the budget constraint (2.5) as

e−rT EP [LT X] = x,

where L is the likelihood process between P and Q, i.e.,

Lt =
dQ

dP
, on Ft.

We now relax the budget constraint to obtain the Lagrangian

L = EP [U(X)]− λ
(
e−rT EP [LT X]− x

)
,

so
L =

∫
Ω

{
U(X(ω))− λ

[
e−rT LT (ω)X(ω)− x

]}
dP (ω).

It now remains to maximize the unconstrained Lagrangian over XT , but this
is trivial: Since we have no constraints we can maximize L for each ω. The
optimality condition is

U ′(XT ) = λe−rT LT

so the optimal wealth profile is given by

X̂T = F (λMT ) , (2.6)

where M is the stochastic discount factor defined as usual by

Mt = B−1
t Lt,

and F is the functional inverse of the utility function U , so F = (U ′)−1.
We do in fact have an explicit expression for the Radon-Nikodym derivative

LT above. From the price dynamics (2.1) and the Girsanov Theorem it is easily
seen that the L dynamics are given by

dLt =
{
σ−1

t (r− αt)
}′

dWt,

L0 = 1,

where ′ denotes transpose, and r denotes the n-column vector with r in each
component. We thus have the explicit formula

Lt = exp
{∫ t

0

{
σ−1

s (r− αs)
}′

dWs −
1
2

∫ t

0

‖σ−1
s (r− αs)‖2ds

}
, (2.7)

where ′ denotes transpose. We collect our results in a proposition.

Proposition 2.3.1 Under the assumptions above, the optimal terminal wealth
profile X̂T is given by

X̂T = F (λMT ) . (2.8)
The stochastic discount factor is defined by Mt = B−1

t Lt, thelikelihood process
L is given by (2.7), and the Lagrange multiplier λ is determined by the budget
constraint (2.5). The function F is the inverse of the marginal utility function
U ′.
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2.4 The Optimal Portfolio

In the previous section we saw that we could, in principle quite easily, derive a
closed form expression form the optimal terminal wealth X̂T . The next step is
to determine the optimal portfolio strategy, i.e. the portfolio which generates
X̂T . The general idea for how to do this is in fact quite simple, although it may
be difficult to carry it out in a concrete case. It relies on using the martingale
representation Theorem and works as follows.

If we denote the vector of relative portfolio weights on the n risky assets by
ut = (u1

t , . . . , u
n
t ), then it is easy to see that the dynamics of the induced wealth

process X are given by

dXt = Xtutαtdt + Xt(1− ut1)rdt + XtutσtdWt,

where 1 denotes the column vector in Rn with 1 in every position. If we now
define the normalized process Z as

Zt =
Xt

Bt
= e−rtXt,

then we know from general theory that Z is a Q martingale. From the Itô
formula we have

dZt = Ztut {αt − r1} t + ZtutσtdWt,

and, since we know that the diffusion part is unchanged under a Girsanov trans-
formation, the Q dynamics of Z are

dZt = ZtutσtdWQ
t , (2.9)

where WQ is a Q-Wiener process. We can now proceed along the following
lines, w here X̂T is given by Proposition 2.3.1.

1. Define the process Z by

Zt = EQ
[
e−rT X̂T

∣∣∣Ft

]
.

2. Since Z is a Q martingale it follows from the Martingale Representation
Theorem that Z has dynamics of the form

dZt = htdWQ
t , (2.10)

for some adapted process h.

3. Comparing (2.10) with (2.9) we can determine the portfolio strategy u,
which generates X̂T by solving the equation

Ztutσt = ht,

for every t. Since σt was assumed to be invertible for every t, this is easily
done and we can now collect our results.
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Proposition 2.4.1 The vector process û of optimal portfolio weights on the
risky assets is given by

ût =
1
Zt

htσ
−1
t , (2.11)

where h is given, through the Martingale Representation Theorem, by (2.10).

We see that we can ”in principle” determine the optimal portfolio strategy û.
For a concrete model, the result of Proposition 2.4.1 does, however, not lead
directly to a closed form expression for û. The reason is that the formula
(2.11) involves the process h which is provided by the martingale representation
theorem. That theorem, however, is an existence theorem, so we know that h
exists, but we typically do not know what it looks like. To obtain closed form
expressions, we therefore have to make some further model assumptions, and
typically we will have to assume a Markovian structure. In the next chapter we
will study the problem of determining the optimal portfolio in some detail, but
for the moment we will be content to exemplify by studying the simple case of
log utility.

2.5 Log utility

The simplest of all utility functions is log utility where the utility function is
given by

U(x) = ln(x).

This implies that

F (y) =
1
y
.

From (2.8)we thus see that the optimal terminal wealth is given by the expression

X̂T =
1
λ

M−1
T .

The Lagrange multiplier is easily determined from the budget constraint

EP
[
MT · X̂T

]
= x,

so we obtain
X̂T = xM−1

T .

We can in fact compute, not only the terminal optimal wealth, but also the
entire optimal portfolio process. From risk neutral valuation we have

X̂t =
1

Mt
EP

[
MT · X̂T

∣∣∣Ft

]
,

which immediately gives us the optimal portfolio process as

X̂t = xM−1
t .

We have thus proved the following result.
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Proposition 2.5.1 For log utility, and without any assumptions on the asset
price dynamics, the optimal terminal wealth is given by

X̂T = xM−1
T , (2.12)

and the optimal portfolio process is given by

X̂t = xM−1
t . (2.13)

This implies that optimal portfolio for log utility is myopic in the sense that
the value process X̂t = xM−1

t which is optimal for maximizing log utility with
time horizon T , is in fact also optimal for maximizing log utility for every time
horizon.

We now go on to determine the optimal portfolio, and for simplicity we
restricty ourseles to the scalar case.

Assumption 2.5.1 We assume that, under P , the stock price dynamics are
given by

dSt = Stαtdt + StσtdWt, (2.14)

where mean rate of return α and the volatility σ are adapted processes. We
denote the portfolio weight on S by u.

In order to determine the optimal portfolio weight û we do as follows.
From general theory we know that the X̂-dynamics are of the form

X̂t = (· · ·)dt + utX̂tσtsWt

where we do not care about the dt-term.
We then recall that the dynamics of M are of the form

dMt = −rtMtdt + ϕtMtdWt,

where the Girsanov kernel ϕ is given by

ϕt =
rt − αt

σt
.

Using the M dynamics, and applying the Ito formula to (2.13), we obtain

dX̂t = (· · ·)dt− X̂tϕtdWt.

Comparing the two expressions for dX̂t allows us to identify û, and we have
proved the following result.

Proposition 2.5.2 For log utility, the optimal portfolio weight on the risky
asset is given by

ût =
αt − rt

σ2
t

.
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2.6 Exercises

Exercise 2.1 In this exercise we will see how intermediate consumption can be
handled by the martingale approach. We make the assumptions of Section 2.1
and the problem is to maximize

EP

[∫ T

0

g(s, cs)ds + U(XT )

]
over the class of self financing portfolios with initial wealth x. Here c is the con-
sumption rate for a consumption good with unit price, so c denotes consumption
rate in terms of dollars per unit time. The function g is the local utility of
consumption, U is utility of terminal wealth, and X is portfolio wealth.

(a) Convince yourself that the appropriate budget constraint is given by

EQ

[∫ T

0

e−rscsds + e−rT XT

]
= x.

(b) Show that the first order condition for the optimal terminal wealth and the
optimal consumption plan are given by

ĉt = G(λe−rtLt),
X̂X = F (λe−rT LT ),

where G = (g′)−1, F = (U ′)−1, L is the usual likelihood process, and λ is
a Lagrange multiplier.

Exercise 2.2 Consider the setup in the previous exercise and assume that g(c) =
ln(c) and U(x) = a ln(x), where a is a positive constant. Compute the optimal
consumption plan, and the optimal terminal wealth profile.

Exercise 2.3 Consider the log-optimal portfolio given by Proposition 2.5.1 as

Xt = ertxL−1
t .

Show that this portfolio is the “P numeraire portfolio” in the sense that if Π
is the arbitrage free price process for any asset in the economy, underlying or
derivative, then the normalized asset price

Πt

X t

is a martingale under the objective probability measure P .

2.7 Notes

The basic papers for the martingale approach to optimal investment problems
see [21] and [4] for the complete market case. The theory for the (much harder)
incomplete market case were developed in [23], and [25]. A very readable
overview of convex duality theory for the incomplete market case, containing an
extensive bibliography, is given in [33].



Chapter 3

Connections between DynP
and MG

In this chapter we study a rather simple consumption/investment model within
a Black-Scholes framework. We then attack this problem using dynamic pro-
gramming (henceforth DynP) as well as by the martingale approach (henceforth
MG) and we investigate how these approaches are related. The results can be
generalized to much more complicated settings and we will use them repeatedly
in our study of equilibrium models.

3.1 The model

We consider a standard Black-Scholes model of the form

dSt = αStdt + σStdWt,

dBt = rBtdt

and the problem is that of maximizing expected utility of the form

EP

[∫ T

0

U(t, ct)dt + Φ(XT )

]

with the usual portfolio dynamics

dXt = Xtut(α− r)dt + (rXt − ct)dt + XtutσdWt

where we have used the notation

Xt = portfolio value,
ct = consumption rate,
ut = weight on the risky asset.
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We impose no restrictions on u, we require that c is nonnegative, and we handle
non negativity of X in the usual way by introducing the stopping time

τ = inf {t ≥ 0 : Xt = 0} ,

and replacing T by τ in the integral above. We make the usual convexity
assumptions about Φ and and U , and we also assume that the problem is “nice”
in the sense that there exists an optimal solution satisfying the HJB equation,
that the Verification Theorem is in force, and that the optimal consumption is
interior.

3.2 Dynamic programming

The HJB equation for the optimal value function V (t, x) is given by

Vt + sup
(c,u)

{
U(t, c) + xu(α− r)Vx + (rx− c)Vx +

1
2
x2u2σ2Vxx

}
= 0, (3.1)

V (T, x) = Φ(x)
V (t, 0) = 0.

From the first order condition we obtain

Uc(t, c) = Vx(t, x), (3.2)

û(t, x) = − (α− r)
σ2

· Vx(t, x)
xVxx(t, x)

. (3.3)

where c in the first equation really is ĉ(t, x).
Plugging the expression for û into the HJB equation gives us the PDE

Vt + U(t, ĉ) + (rx− ĉ)Vx −
1
2

(α− r)2

σ2
· V 2

x

Vxx
= 0, (3.4)

with the same bundary conditions as above.
Note that equation (3.4) is a non-linear PDE. The term Vx enters in a

non-linear way in the expression for ĉ and, even disregarding that nonlinearity,
we have the highly nonlinear term V 2

x

Vxx
. Solving a linear PDE is hard enough

and solving a non-linear PDE is of course even harder, so this is a matter of
some concern. It is thus natural to ask whether it is possible to remove at least
the second nonlinearity by a clever and/or natural change of variables.

3.3 The martingale approach

By applying the usual arguments we see that the original problem is equivalent
to the problem of maximizing the expected utility

EP

[∫ T

0

U(t, ct)dt + Φ(XT )

]
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over all consumption processes c and terminal wealth profiles XT , under the
budget constraint

EP

[∫ T

0

e−rtLtctdt + e−rT LT XT

]
, (3.5)

where L is the likelihood process

Lt =
dQ

dP
, on Ft,

with dynamics {
dLt = LtϕtdWt,

L0 = 1

and where the Girsanov kernel ϕ is given by

ϕt =
r − α

σ
.

The Lagrangian for this problem is

EP

[∫ T

0

{
U(t, ct)− λe−rtLtct

}
dt + Φ(XT )− e−rT λLT XT

]
+ λx0

where λ is the Lagrange multiplier and x0 the initial wealth. The first order
conditions are

Uc(t, c) = λMt, (3.6)
Φ′(XT ) = λMT . (3.7)

where M denotes the stochastic discount factor (SDF), defined by

Mt = B−1
t Lt.

Denoting the the inverse of Φ′ by F and the inverse (in the c-variable) of Uc by
G we can write the optimality conditions on the form

ĉt = G(t, λMt), (3.8)
X̂T = F (λMT ). (3.9)

We now have our first connection between the DynP and the MG approach.

Proposition 3.3.1 With notation as above we have

Vx(t, X̂t) = λMt, (3.10)

In other words: Along the optimal trajectory, the indirect marginal utility is (up
to a scaling factor) given by the stochastic discount factor process. Furthermore,
the Lagrange multiplier λ is given by

λ = Vx(0, x0).
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Proof. The result follows immediately from (3.2) and (3.6).

This fact will of course hold also for much more complicated models, in-
cluding equilibrium models. Recalling this simple result will often simplify the
reading of journal articles. As an example, we have the following Corollary,
which is trivial, but which looks very deep if one is unaware of the MG ap-
proach.

Corollary 3.3.1 Let V be the solution of the HJB equation. We then have

EP

[∫ T

0

Vx(t, X̂t) · ĉtdt + Vx(T, X̂t) · X̂T

]
= Vx(0, x0)x0.

Proof. This is just the budget constraint (3.5), suitable rewritten.

3.4 The basic PDE in the MG approach

The martingale approach of the previous section looks very nice, but there are,
seemingly, some major shortcomings.

• We have no explicit expression for the optimal portfolio weight ût.

• The formula (3.8), for the optimal consumption is very nice, but it is
expressed in the “dual” state variable Z = λD, rather than as a feedback
control in the “primal” state variable x.

• We would also like to have an explicit expression for the optimal wealth
process X̂t.

In order to attack these problems, we first note that the multiplier λ is
determined by the budget constraint

EQ

[∫ T

0

e−rtG(t, λMt)dt + e−rT F (λMT )

]
= x0.

so from now on we assume that we have computed λ. Furthermore we define
the process Z by

Zt = λMt, (3.11)

so we have

ĉt = G(t, Zt), (3.12)
X̂T = F (ZT ). (3.13)

The general strategy is roughly as follows, where for notational simplicity
we let Xt and ct denote the optimal value process and the optimal consumption
process respectively.
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1. From risk neutral valuation is easy to see that Xt is of the form

Xt = H(t, Zt)

where H satisfies a Kolmogorov backward equation.

2. Using Ito on H we can compute dX.

3. We also know that the X dynamics are of the form

dXt = (. . .) dt + utXtσdWt. (3.14)

4. Comparing these two expressions for dX we can identify the optimal
weight u from the diffusion part of dX.

5. We now have c and u expressed as functions of the dual variable z, so we
invert the formula x = H(t, z) to obtain z = K(t, x). Substituting this
into the formulas for u and c will give us u and c as feedback controls in
the primal state variable x.

6. Finally, we investigate what the Kolmogorov equation above looks like in
the new variable x.

We now carry out this program and start by noticing that from risk neutral
valuation and the formulas (3.12)-(3.13), we have

Xt = EQ

[∫ T

t

e−r(s−t)G(s, Zs)ds + e−r(T−t)F (ZT )

∣∣∣∣∣Ft

]
. (3.15)

This allows us to conclude that Xt can be expressed as

Xt = H(t, Zt)

where H, defined by,

H(t, z) = EQ
t,z

[∫ T

t

e−r(s−t)G(s, Zs)ds + e−r(T−t)F (ZT )

]
satisfies a Kolmogorov equation. To find this equation we need, however, to
have the Q dynamics of Z. Since Z = B−1

t Lt and the L dynamics are

dLt = LtϕtdWt,

we see that the P dynamics of Z are

dZt = −rZtdt + ZtϕdWt

where ϕ is the Girsanov kernel. By the Girsanov Theorem we thus obtain the
Q dynamics as

dZt = Zt

(
ϕ2 − r

)
dt + ZtϕdWQ

t .
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We now have the following Kolmogorov equation, which is the basic PDE in the
martingale approach. Ht + z(ϕ2 − r)Hz +

1
2
ϕ2z2Hzz + c(t, z)− rH = 0,

H(T, z) = F (z).
(3.16)

For mnemotechnical purposes we have here used the notation

c(t, z) = G(t, z).

Having solved the Kolmogorov equation we can use Ito to obtain the X dynamics
as

dXt = (. . .) dt + Hz(t, Zt)ZtϕdWt.

and, comparing this with (3.14) we obtain the optimal portfolio weight as

u(t, z) =
ϕ

σ
· zHz(t, z)

H(t, z)
.

We can summarize our findings so far.

Proposition 3.4.1 Defining the process Z by Zt = λMt we have the following
formulas for the optimal wealth, consumption, and portfolio weight.

X̂t = H(t, Zt), (3.17)
ĉ(t, z) = G(t, z), (3.18)

û(t, z) =
ϕ

σ
· zHz(t, z)

H(t, z)
. (3.19)

The function H is defined by

H(t, z) = EQ
t,z

[∫ T

t

e−r(s−t)ĉsds + e−r(T−t)X̂T

]
(3.20)

and satisfies the PDE (3.16).

Remark 3.4.1 In the application of the MG approach above we have neglected
to take into account the constraint that we are not allowed to go short in physical
investment, i.e ut ≥ 0. This constraint implies that the market is not really
complete, so formally we are not allowed to use the MG approach. A way
out of this predicament is to formally relax the positivity constraint on physical
investement. We then have a complete market model and we are free to use the
MG approach. If the optimal u in this extended model is positive then we have
obviously also found the optimum for the original model. In a concrete case we
thus have to check that û above is in fact positive.
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3.5 An alternative representation of H

The function H in (3.20) is written as an expectation under Q. Using the
stochastic discount factor M we can of course also write it as the P -expectation

H(t, Zt) =
1

Mt
EP

t,Zt

[∫ T

t

Msĉsds + MT X̂T

]

or, equivalently, as

H(t, z) =
1
z
EP

t,z

[∫ T

t

Zsĉsds + ZT X̂T

]
so

H(t, z) =
1
z
H0(t, z)

where H0 satisfies the PDE H0
t − rzH0

z +
1
2
ϕ2z2H0

zz + zG(t, z) = 0,

H0(T, z) = zF (z).
(3.21)

3.6 The connection between Kolmogorov and
HJB

Looking at Proposition 3.4.1 we see that, in one sense, our control problem
is completely solved. We have determined the optimal wealth, portfolio, and
consumption, up to the solution of the PDE (3.16). There are, however, two
remaining problems to be studied.

• In Proposition 3.4.1 the optimal controls are determined in terms of the
variable z. From an applied point of view it would be much more natural
to have the controls expressed as feedback controls in the wealth variable
x.

• The Kolmogorov equation (3.16) is a linear PDE for H, but the HJB
equation is non-linear for V . It seems natural to expect that there must
be some relation between these equations.

It is, in principle, not hard to obtain expressions for the optimal controls as
feedback controls in the x-variable. We have the relation

x = H(t, z),

and if this can be inverted in the z variable, we can express z as

z = K(t, x).
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We can then simply substitute this into the formulas above to obtain

ĉ(t, x) = G(t, K(t, x)), (3.22)

û(t, x) =
ϕ

σ
· K(t, x)Hz(t, K(t, x))

H(t, K(t, x))
. (3.23)

It is now natural to investigate what the relevant PDE for K(t, x) looks like.
To do this we recall that by definition we have

H(t, K(T, x)) = x,

for all x. Differentiating this identity once in the t variable and twice in the x
variable gives us, after some reshuffling, the following relations.

Ht = −Kt

Kx
, Hz =

1
Kx

, Hzz = −Kxx

K3
x

.

If we plug these relations into the Kolmogorov equation (3.16) we obtain the
PDE 

Kt + (rx− c)Kx +
1
2
ϕ2K2 Kxx

K2
x

+ (r − ϕ2)K = 0,

K(T, x) = Φ′(x),
(3.24)

where the boundary condition follows from the relation

K(T, F (z)) = z,

plus the property that F = (Φ′)−1.
To understand the nature of this PDE we recall that from Proposition 3.3.1

we have
Vx(t, X̂t) = Zt,

and since we also have
Zt = K(t, X̂t)

this implies that we must have the interpretation

K(t, x) = Vx(t, x).

If we want to double-check this, we can differentiate the HJB equation

Vt + U(t, ĉ) + (rx− ĉ)Vx −
1
2

(α− r)2

σ2
· V 2

x

Vxx
= 0,

in the x variable, while using the optimality condition (3.2) or, equivalently,
use the Envelope Theorem on the original HJB equation (3.1). Defining K by
K = Vx will then again give us (3.24).

We summarize our results as follows.
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Proposition 3.6.1 With notation as above we have the following results.

• The process Zt = λMt has the representation

Zt = Vx(t, X̂t).

• The optimal wealth process is given by

X̂t = H(t, Zt),

where the function H is defined by the Kolmogorov equation (3.16).

• The formulas for the optimal portfolio and consumption in Proposition
3.4.1 are mapped into the formulas (3.2)-(3.3) by the change of variable

x = H(t, z),
z = K(t, x),

where K is the functional inverse of H in the z variable.

• We have the identification

K(t, x) = Vx(t, x).

• After the variable change z = K(t, x), the Kolmogorov equation (3.16)
transforms into the PDE (3.24) for K. Since K = Vx this equation is
identical to the PDE for Vx one obtains by differentiating the HJB equation
(3.4) w.r.t. the x variable.

3.7 Concluding remarks

From the analysis above we see that there are advantages and disadvantages for
the DynP as well as for the MG approach. Schematically, the situation is as
follows.

• Using DynP we end up with the highly non linear HJB equation (3.4),
which can be very difficult to solve.

• On the positive side for DynP, the controls are expressed directly in the
natural state variable x.

• For the MG approach, the relevant PDE is much easier than the corre-
sponding HJB equation for DynP. This is a big advantage.

• On the negative side for the MH approach, the optimal controls are ex-
pressed in the dual variable z instead of the wealth variable x, and in order
to express the controls in the x variable, we need to invert the function H
above.
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3.8 Exercises

Exercise 3.1 This exercise is a review of (the scalar version of) the Envelope
Theorem. Consider two smooth functions f : R2 → and g : R2 → R. For any
fixed a ∈ R we study the problem

max
x

f(x, a)

s.t. the constraint
g(x, a) ≤ 0.

We are thus viewing x as the variable and a as a parameter. We assume that for
each a there is a unique optimal x which we denote by x̂(a), and we assume that
x̂ is smooth as a function of a. We furthermore assume that the constraint is
binding for all relevant values of a, and that the usual “constraint qualifications”
are satisfied, so the Lagrangian

L = f(x, a)− λg(x, a)

has a stationary point at x̂(a). Now define the optimal value function F by

F (a) = f(x̂(a), a).

(i) Use the first order conditions on L and the fact that we have g(x̂(a), a) = 0
for all a, in order to prove that

dF

da
(a) =

∂f

∂a
(x̂(a), a)− λ

∂f

∂a
(x̂(a), a)

(ii) Use the result in (i) to verify that in the unconstrained case we have

dF

da
(a) =

∂f

∂a
(x̂(a), a)

(iii) Now study a problem of the form

max
x

f(x)

s.t. the constraint
h(x) ≤ a.

Use the result in (i) to show that

dF

da
(a) = λ.

Exercise 3.2 Use the Envelope Theorem in order to differentiate the HJB equa-
tion (3.1) w.r.t. the x variable. Define K by K = Vx and check that K, thus
defined, will indeed satisfy the PDE (3.24).
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Chapter 4

A Simple Production Model

We now go on to analyze the simplest possible equilibrium model in a production
economy, first using DynP and then using the MG approach.

4.1 The Model

The model is formally almost exactly the same as in the previous section, but the
interpretation is somewhat different. We start with some formal assumptions
which are typical for this theory.

Assumption 4.1.1 We assume that there exists a constant returns to scale
physical production technology process S with dynamics

dSt = αStdt + StσdWt. (4.1)

The economic agents can invest unlimited positive amounts in this technology,
but since it is a matter of physical investment, short positions are not allowed.

This assumption is perhaps not completely clear, so we need a more precise
interpretation, and it runs basically as follows, where, for simplicity, I will refer
to the consumption good as “dollars”, but always with the provision that these
“dollars” can be invested as well as consumed.

• At any time t you are allowed to invest dollars in the production process.

• If you, at time t0, invest q dollars, and wait until time t1 then you will
receive the amount of

q · St1

St0

in dollars. In particular we see that the return on the investment is linear
in q, hence the term “constant returns to scale”.

• Since this is a matter of physical investment, shortselling is not allowed.
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Remark 4.1.1 A moment of reflections shows that, from a purely formal point
of view, investment in the technology S is in fact equivalent to the possibility
of investing in a risky asset with price process S, but again with the constraint
that shortselling is not allowed.

We also need a risk free asset, and this is provided by the next assumption.

Assumption 4.1.2 We assume that there exists a risk free asset in zero net
supply with dynamics

dBt = rtBtdt,

where r is the short rate process, which will be determined endogenously. The
risk free rate r is assumed to be of the form

rt = r(t, Xt)

where X denotes portfolio value.

Interpreting the production technology S as above, the wealth dynamics will
be given, exactly as before, by

dXt = Xtut(α− r)dt + (rtXt − ct)dt + XtutσdWt.

Finally we need an economic agent.

Assumption 4.1.3 We assume that there exists a representative agent who
wishes to maximize the usual expected utility

EP

[∫ T

0

U(t, ct)dt + Φ(XT )

]
.

4.2 Equilibrium

We now go on to study equilibrium in our model. Intuitively this is a situation
where the agent is optimal and the market clears for the risk free asset, i.e. the
optimal weight on the risky investment is 1.

Definition 4.2.1 An equilibrium of the model is a triple {ĉ(t, x), û(t, x), r(t, x)}
of real valued functions such that the following hold.

1. Given the risk free rate process r(t, Xt), the optimal consumption and
investment are given by ĉ and û respectively.

2. The market clears for the risk free asset, i.e.

û(t, x) ≡ 1.
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In order to determine the equilibrium risk free rate, we now go on to study
the optimal consumption/investment problem for the representative agent. A
moments reflection will then convince you that, for the utility maximization
problem, all formulas in Section 3 are still valid with the modification that r is
replaced by r(t, x) and discount factors of the form e−r(T−t) are replaced by

Bt

BT
= e

−
∫ T

t
r(u,Xu)du

The HJB equation again reads as

Vt + U(t, ĉ) + (rx− ĉ)Vx −
1
2

(α− r)2

σ2
· V 2

x

Vxx
= 0, (4.2)

where now r is shorthand for r(t, x). The optimal consumption and weight are
given by

Uc(t, ĉ) = Vx(t, x), (4.3)

û(t, x) = − (α− r)
σ2

· Vx(t, x)
xVxx(t, x)

. (4.4)

Using the equilibrium condition ût ≡ 1 we obtain the main result.

Proposition 4.2.1 In equilibrium the following hold.

• The equilibrium short rate is given by r(t, X̂t) where

r(t, x) = α + σ2 xVxx(t, x)
Vx(t, x)

. (4.5)

• The dynamics of the equilibrium wealth process are

dX̂t =
(
αX̂t − ĉt

)
dt + X̂tσdWt. (4.6)

• The Girsanov kernel has the form ϕ(t, X̂t) where

ϕ(t, x) =
r(t, x)− α

σ
, (4.7)

or, alternatively,

ϕ(t, x) = σ
xVxx(t, x)
Vx(t, x)

. (4.8)

• The optimal value function V is determined by the HJB equation Vt + U(t, ĉ) + (αx− ĉ)Vx +
1
2
σ2x2Vxx = 0,

V (T, x) = Φ(x).
(4.9)

where ĉ is determined by (4.3).

Note that although the HJB equation (4.2) for the (non equilibrium) optimal
consumption/investment problem is highly non linear, the equilibrium PDE
(4.9) is drastically simplified and we see that, apart from the ĉ term, it is in fact
linear. As we will see in the next section, this is (of course) not a coincidence.
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4.3 Introducing a central planner

So far we have assumed that the economic setting is that of a representative
agent investing and consuming in a market, and we have studied the equilibrium
for that market.

An alternative to this setup is when, instead of a representative agent, we
consider a central planner. The difference between these two concepts is that
the central planner does not have access to a financial market, and in particular
he/she does not have access to the risk free asset B.

The optimization problem for the central planner is simply that of maxi-
mizing expected utility when everything that is not consumed is invested in
the production process. This obviously sounds very much like the problem of
a representative agent who, in equilibrium, does not invest anything in the risk
free asset, so a very natural conjecture is that the equilibrium consumption of
the representative agent coincides with the optimal consumption of the central
planner. We will see.

The formal problem of the central planner is to maximize

EP

[∫ T

0

U(t, ct)dt + Φ(XT )

]
.

given the wealth dynamics

dXt = (αXt − ct)dt + σXtdWt.

The HJB equation for this problem is Vt + sup
c

{
U(t, c) + (αx− c)Vx +

1
2
σ2x2Vxx

}
= 0,

V (T, x) = Φ(x).

with the usual first order condition

Uc(t, c) = Vx(t, x).

Substituting the optimal c we thus obtain the PDE Vt + U(t, ĉ) + (αx− ĉ)Vx +
1
2
σ2x2Vxx = 0,

V (T, x) = Φ(x).

and we see that this is identical to (4.9). We have thus proved the following
result.

Proposition 4.3.1 Given assumptions as above, the following hold.

• The optimal consumption for the central planner coincides with the equi-
librium consumption of the representative agent.
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• The optimal wealth process for the central planner is identical with the
equilibrium wealth process for the representative agent.

This result implies in particular that the following scheme is valid.

• Solve the (fairly simple) problem for the central planner, thus providing
us with the optimal value function V .

• Define the “shadow interest rate” r by (4.5).

• Now forget about the central planner and consider the optimal consump-
tion/investment problem of a representative agent with access to the pro-
duction technology S and a risk free asset B with dynamics

dBt = r(t, Xt)Btdt

where r is defined as above.

• The economy will then be in equilibrium, so û = 1, and we will recover
the optimal consumption and wealth processes of the central planner.

4.4 The martingale approach

In order to analyze the equilibrium problem using the martingale approach we
need to modify our assumption about the short rate ever so slightly. We thus
assume that, apart from the production technology S, the agent can invest in a
risk free asset with a short rate process of the form

rt = r(t, Zt).

Note the difference with the earlier assumption rt = r(t, Xt), and see Remark
4.4.2 for comments on no shortselling.

Recalling the results from Proposition 3.4.1 we obtain the optimal wealth,
consumption, and portfolio weight as

X̂t = H(t, Zt),
Uc(t, ĉ) = Zt,

ĉ(t, z) = G(t, z),

û(t, z) =
ϕ

σ
· zHz(t, z)

H(t, z)
.

where H has the interpretation

H(t, z) = EQ
t,z

[∫ T

t

B−1
s ĉsds + B−1

T X̂T

]
(4.10)
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and thus solves the PDE Ht + z(ϕ2 − r)Hz +
1
2
ϕ2z2Hzz + G(t, z)− rH = 0,

H(T, z) = F (z),
(4.11)

and where the Girsanov kernel as usual is given by

ϕ =
r − α

σ
.

The equilibrium condition û = 1 gives us the Girsanov kernel ϕ and the
equilibrium rate r as

ϕ(t, z) = σ
H(t, z)

zHz(t, z)
, (4.12)

r(t, z) = α + σ2 H(t, z)
zHz(t, z)

. (4.13)

This looks nice and easy, but in order to compute ϕ and r we must of course
solve the PDE (4.11) for H. On the surface, this PDE looks reasonable nice,
but in order to solve it we must of course substitute (4.12)-(4.13) into (4.11).
We then have the following result.

Proposition 4.4.1 The equilibrium interest rate and the Girsanov kernel are
given by

r(t, z) = α + σ2 H(t, z)
zHz(t, z)

. (4.14)

ϕ(t, z) = σ
H(t, z)

zHz(t, z)
, (4.15)

where H, defined by,

H(t, z) = EQ
t,z

[∫ T

t

Bt

Bs
ĉsds +

Bt

BT
X̂T

]
(4.16)

solves the PDE Ht − αzHz +
1
2
σ2 H2

H2
z

Hzz + G− (α + σ2)H = 0,

H(T, z) = F (z).
(4.17)

Remark 4.4.1 Note that the equilibrium condition introduces a nonlinearity
into the PDE for the MG approach.
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We may again argue as in Section 3.6, and perform a change of variable by
the prescription

x = H(t, z) z = K(t, x).

Exactly like in Section 3.6 we can then derive the following PDE for K.

Kt + (α + σ2)xKx − ĉKx +
1
2
σ2x2Kxx = 0. (4.18)

As in Section 3.6 we also have the indentification

K(t, x) = Vx(t, x),

and equation (4.18) for K can also be derived by differentiating the PDE (4.9)
in the x variable.

As in Section 3.5 we can give an alternative representation of H.

Proposition 4.4.2 The equilibrium interest rate and the Girsanov kernel are
given by

r(t, z) = α + σ2 H(t, z)
zHz(t, z)

. (4.19)

ϕ(t, z) = σ
H(t, z)

zHz(t, z)
, (4.20)

where the function H is given by

H(t, z) =
1
z
EP

t,z

[∫ T

t

Zsĉsds + ZT X̂T

]
so

H(t, z) =
1
z
H0(t, z)

where H0 satisfies the PDE H0
t − rzH0

z +
1
2
ϕ2z2H0

zz + zG(t, z) = 0,

H0(T, z) = zF (z).
(4.21)

Remark 4.4.2 Fore this type of production model we are facing the problem
that if our process S has the interpretation of physical investment, then we
have a shortselling constraint, the market becomes incomplete, and we are not
formally allowed to use the MG approach. There seems to exist at lest two ways
to handle this problem.

• We accept the reality of the shortselling constraint and interpret the results
above as the equilibrium results in an extended model where shortselling is
formally allowed. Since there is in fact no shortselling in equilibrium we
then conclude that the extended equilibrium is indeed also an equilibrium
for the original model. This, however, leaves open the question whether
there can exist an equilibrium in the original model, which is not an equi-
librium in the extended model.
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• We gloss over the problem, abstain from even mentioning it, and hope
that it will disappear. This seems to be a rather common strategy in the
literature.

4.5 Introducing a central planner

In the DynP approach we introduced, with considerable success, a central plan-
ner who maximized expected utility of wealth and consumption

EP

[∫ T

0

U(t, ct)dt + Φ(XT )

]
.

given the wealth dynamics

dXt = (αXt − ct)dt + σXtdWt.

The important assumption here is that the central planner does not have access
to the risk free asset B. This obviously implies that the market is incomplete
so, as far as I understand, this implies that we cannot use the usual MG ap-
proach. It should be mentioned, however, that Kramkov and Schachermayer
has developed a very deep duality theory also for incomplete markets, and it
would be interesting to see what one can say about the problem of the central
planner using their theory.

4.6 Concluding remarks

In Section 3 we found that the Komogorov PDE in the MG approach had a much
simpler structure than the HJB equation for the DynP apporach. It seems,
however, that this advantage of the MG approach over the DynP approach
vanishes completely when we move from the pure optimization model to the
equilibrium model. Equation (4.17) for H does not at all look easier than the
HJB equation (4.9).

4.7 Exercises

Exercise 4.1 Consider the case when Φ(x) = 0, and

U(t, c) = e−δt ln(c).

(a) Analyze this case using DynP and the Ansatz

V (t, x) = f(t) ln(x) + g(t),

(b) Analyze the same problem using the martingale method, by applying Propo-
sition 4.4.2.
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Exercise 4.2 Analyze the case of power utility, i.e. when

U(t, c) = e−δt c1−β

1− β

for β > 0.

4.8 Notes

The model in this section is a simple special case of the general production
model of [5].
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Chapter 5

The CIR Factor Model

We now go on to analyze a simple version of the Cox-Ingersoll-Ross model as
described in [5].

5.1 The model

In the model some objects are assumed to be given exogenously whereas other
objects are determined by equilibrium, and we also have economic agents.

5.1.1 Exogenous objects

We start with the exogenous objects.

Assumption 5.1.1 The following objects are considered as given a priori.

1. A 2-dimensional Wiener process W .

2. A scalar factor process Y of the form

dYt = µ(Yt)dt + σ(Yt)dWt (5.1)

where µ is a scalar real valued function and σ is a 2-dimensional row
vector function.

3. A constant returns to scale production technology process S with dynamics

dSt = α(Yt)Stdt + Stγ(Yt)dWt (5.2)

The interpretation of this is that Y is a process which in some way influences
the economy. It could for example describe the weather. The interpretation of
the production technology is as in Chapter 4 and we have again a shortselling
constraint.

67
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5.1.2 Endogenous objects

In this model we also have some processes which are to be determined endoge-
nously in equilibrium. They are as follows, where we use the notation

Xt = the portfolio value at time t,

to be more precisely defined below.

1. A risk free asset B, in zero net supply, with dynamics

dBt = rtBtdt

where the risk free rate r is assumed to be of the form

rt = r(t, Xt, Yt).

2. A financial derivative process F (t, Xt, Yt), in zero net supply, defined in
terms of X and Y , without dividends and with dynamics of the form

dF = βFdt + FhdWt

where β and h are of the form

β = β(t, Xt, Yt), h = h(t, Xt, Yt),

and will be determined in equilibrium.

We also need an important assumption.

Assumption 5.1.2 We assume that the 2× 2 diffusion matrix(
−γ−
−h−

)
is invertible P -a.s. for all t

The implication of this assumption is that, apart from the shortselling constraint
ofr S, the market consisting of S, F , and B is complete.

5.1.3 Economic agents

The basic assumption in [5] is that there are a finite number of agents with
identical initial capital, identical beliefs about the world, and identical prefer-
ences. In the present complete market setting this implies that we may as well
consider a single representative agent. The object of the agent is (loosely) to
maximize expected utility of the form

EP

[∫ T

0

U(t, ct, Yt)dt

]
where c is the consumption rate (measured in dollars per time unit) and U is
the utility function.
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5.2 The portfolio problem

In this section we discuss the relevant portfolio theory, formulate the agent’s
optimal control problem and derive the relevant HJB equation.

5.2.1 Portfolio dynamics

The agent can invest in S, F , and B and. We will use the following notation

X = portfolio market value,
a = portfolio weight on S,

b = portfolio weight on F ,

1− a− b = portfolio weight on B

Using standard theory we see that the portfolio dynamics are given by

dXt = atXt
dSt

St
+ btXt

dFt

Ft
+ (1− at − bt)Xt

dBt

Bt
− ctdt

where, for simplicity of notation, lower case index t always indicates running
time, but where other variables are suppressed. This gives us the portfolio
dynamics as

dXt = Xt {a(α− r) + b(β − r)} dt + (rXt − c) dt + Xt {aγ + bh} dWt, (5.3)

and we write this more compactly as

dXt = Xtm(t, Xt, Yt, ut)dt− ctdt + Xtg(t, Xt, Yt, ut)dWt, (5.4)

where we use the shorthand notation

u = (a, b),

and where m and g are defined by

m = a [α− r] + b [β − r] + r, (5.5)
g = aγ + bh. (5.6)

5.2.2 The control problem and the HJB equation

The control problem for the agent is to maximize

EP

[∫ τ

0

U(t, ct, Yt)dt

]
where

τ = inf {t ≥ 0 : Xt = 0} ∧ T

subject to the portfolio dynamics
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dXt = Xtm(t, Xt, Yt, ut)dt− ctdt + Xtg(t, Xt, Yt, ut)dWt,

and the control constraints

c ≥ 0, a ≥ 0.

The HJB equation for this is straightforward and reads as
Vt + sup

c,u
{U + AuV } = 0,

V (T, x) = 0,

V (t, 0) = 0,

(5.7)

where the infinitesimal operator Au is defined by

AuV = (xm− c)Vx + µVy +
1
2
x2g2Vxx +

1
2
σ2Vyy + xgσVxy.

Here, for the vectors σ and g in R2, we have used the notation

σg = (σ, g),
g2 = ‖g‖2,
σ2 = ‖σ‖2

where (σ, g) denotes inner product.

5.3 Equilibrium

Since B and F are in zero net supply, we have the following definition of equi-
librium.

Definition 5.3.1 An equilibrium is a list of processes

{r, β, h, a, b, c, V }

such that (V, a, b, c) solves the HJB equation given (r, β, h), and the market
clearing conditions

at = 1, bt = 0.

are satisfied.

We will now study the implications of the equilibrium conditions on the short
rate r and the dynamics of F . We do this by studying the first order conditions
for optimality in the HJB equations, with the equilibrium conditions in force.
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The first order conditions, with the equilibrium conditions a = 1 and b = 0
inserted, are easily seen to be as follows.

(a) x(α− r)Vx + x2γ2Vxx + xγσVxy = 0, (5.8)

(b) x(β − r)Vx + x2γhVxx + xσhVxy = 0, (5.9)

(c) Uc = Vx, (5.10)

where (a) indicates that it is the FOC for a etc.
Substituting these conditions into the HJB equation and the portfolio dy-

namics, will give us the following result.

Proposition 5.3.1 (The Equilibrium HJB Equation) In equilibrium, the
following hold.

• The HJB equations takes the form
Vt + U(t, ĉ) + (αx− ĉ)Vx + µVy +

1
2
x2γ2Vxx +

1
2
σ2Vyy + xσγVxy = 0

V (T, x, y) = 0

V (t, 0, y) = 0
(5.11)

where ĉ is determined by (5.10).

• The equilibrium portfolio dynamics are given by

dX̂t = (αX̂t − ĉt)dt + X̂tγdWt (5.12)

Remark 5.3.1 We will see below that “everything” in the model, like the risk
free rate, the Girsanvo kernel, risk premia etc, is determined by the equilibrium
optimal value function V . It is then important, and perhaps surprising, to note
that the equilibrium HJB equation (5.11) is completely determined by exoge-
nous data, i.e. by the Y and S dynamics. In other words, the equilibrium
short rate, risk premia etc, do not depend on the particular choice of derivative
F that we use in order to complete the market.

5.4 The short rate and the risk premium for F

From the FOC (5.8) for a we immediately obtain our first main result.

Proposition 5.4.1 The equilibrium short rate r(t, x, y) is given by

r = α + γ2 xVxx

Vx
+ γσ

Vxy

Vx
(5.13)
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With obvious notation we can write this as

r = α−
(
−xVxx

Vx

)
V ar

(
dX

X

)
−
(
−Vxy

Vx

)
Cov

[
dX

X
, dY

]
. (5.14)

From the equilibrium optimality condition (5.10) for b we have the following
result.

Proposition 5.4.2 The risk premium for F in equilibrium is given by

β − r = −
[
xVxx

Vx
γh +

Vxy

Vx
σh

]
(5.15)

5.5 The martingale measure and the SDF

Since every equilibrium must be arbitrage free, we can in fact push the analysis
further. We denote by ϕ the Girsanov kernel for the likelihood process L = dQ

dP ,
so L has dynamics

dLt = LtϕtdWt.

We know from arbitrage theory that the martingale conditions for S and F are

r = α + γϕ,

r = β + hϕ

On the other hand we have, from (5.13) and (5.15),

r = α +
{

xVxx

Vx
γ +

Vxy

Vx
σ

}
γ,

r = β +
{

xVxx

Vx
γ +

Vxy

Vx
σ

}
h

Using Assumption 5.1.2 we can thus solve for the vector ϕ to obtain the following
important result.

Proposition 5.5.1 The Girsanov kernel ϕ is given by

ϕ =
xVxx

Vx
γ +

Vxy

Vx
σ. (5.16)

From our earlier experiences with the martingale approach we also expect
to have the relation

Vx(t, Xt, Yt) = λMt,

along the equilibrium X-path, where M is the stochastic discount factor

Mt = B−1
t Lt,

and λ is the Lagrange multiplier, which can be written as

λ = Vx(0, X0, Y0).
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This result is clear from general martingale theory theory, but one can also
derive it using a more bare hands approach by forst recalling that the dynamics
of Zt = λMt are given by

dZt = −rZtdt + ZtϕdWt,

with ϕ as in (5.16). We can then use the Ito formula on Vx and the envelope
theorem on the HJB equation in equilibrium to compute dVx. This is quite
messy, but after lengthy calculations we obtain

dVx = −rVxdt + VxϕdWt.

Comparing this with the Z dynamics above gives us the following result.

Proposition 5.5.2 The stochastic discount factor in equilibrium is given by

Mt =
Vx(t, Xt, Yt)
Vx(0, X0, Y0)

. (5.17)

5.6 Risk neutral valuation

We now go on to derive the relevant theory of risk neutral valuation within the
model. This can be done in (at least) two ways:

• We can follow the argument in [5] and use PDE techniques.

• We can use more general arbitrage theory using martingale measures.

To illustrate the difference we will in fact present both argument, and we start
with the martingale argument. The reader will notice that the modern martin-
gale argument is considerably more streamlined the the traditional PDE argu-
ment.

5.6.1 The martingale argument

From general arbitrage theory we then immediately have the standard risk neu-
tral valuation formula

F (t, x, y) = EQ
t,x,y

[
e
−
∫ T

t
rsds

H(XT , YT )
]

(5.18)

where H is the contract function for F . We have already determined the Gir-
sanov kernel ϕ by (5.16) so the equilibrium Q-dynamics of X and Y are given
by

dX̂t = X̂t [α + γϕ] dt− ĉtdt + X̂tγdWQ
t ,

dYt = [µ + σϕ] dt + σdWQ
t .
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We thus deduce that the pricing function F is the solution of the PDE
Ft + Fxx(α + γϕ)− cFx +

1
2
x2γ2Fxx

+Fy(µ + σϕ) +
1
2
Fyyσ2 + xFxyσγ − rF = 0

F (T, x, y) = H(x, y)

(5.19)

which is Kolmogorov backward equation for the expectation above.

5.6.2 The PDE argument

Using the Ito formula to compute dF and comparing with the dynamics

dF = Fβdt + FhdWt

allows us to identify β as

β =
1
F

{
Ft + (αx− c)Fx + µFy +

1
2
x2γ2Fxx +

1
2
σ2Fyy + xσγFxy

}
(5.20)

On the other hand we have
β − r = −ϕh

with ϕ again given by (5.16), and

h =
1
F
{xFxγ + Fyσ} (5.21)

so we have

β = r − 1
F
{xFxγϕ + Fyσϕ} (5.22)

Comparing the expressions (5.20) and (5.22) for β gives us the basic pricing
PDE 

Ft + Fxx(α + γϕ)− cFx +
1
2
x2γ2Fxx

+Fy(µ + σϕ) +
1
2
Fyyσ2 + xFxyσγ − rF = 0

F (T, x, y) = H(x, y)

(5.23)

which is (of course) identical to (5.19). Using Feynman-Kac we then obtain the
standard risk neutral valuation formula as

F (t, x, y) = EQ
t,x,y

[
e
−
∫ T

t
rsds

H(XT , YT )
]

(5.24)
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5.7 Another formula for ϕ

We recall the formula
ϕ =

xVxx

Vx
γ +

Vxy

Vx
σ

for the Girsanov kernel. We also recall from the first order condition (5.10) for
consumption, that

Uc = Vx.

Let us now specialize to the case when the utility function has the form

U(t, c, y) = e−δtU(c) (5.25)

Along the equilibrium path we then have

Vx = e−δtU ′(ĉ)

and differentiating this equation proves the following result.

Proposition 5.7.1 Under the assumption (5.25), the Girsanov kernel is given
by

ϕ =
U ′′(ĉ)
U ′(ĉ)

{xĉxγ + ĉyσ}

5.8 Introducing a central planner

As in Section 4.3 we now introduce a central planner into the economy. This
means that there is no market for B and F , so the central planner only chooses
the consumption rate, invests everything into S, and the problem is thus to
maximize

EP

[∫ τ

0

U(t, ct, Yt)dt + Φ(XT )
]

subject to the dynamics

dXt = (αXt − c)dt + Xtγdt,

dYt = µ(Yt)dt + σ(Yt)dWt

and the constraint c ≥ 0.
The Bellman equation for this problem is
Vt + sup

c

{
U + (αx− c)Vx + µVy +

1
2
γ2x2Vxx +

1
2
σ2Vyy + xσγVxy

}
= 0

V (T, x) = Φ(x)

V (t, 0) = 0

We now see that this is exactly the equilibrium Bellman equation (5.11) in the
CIR model. We thus have the following result.
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Proposition 5.8.1 Given assumptions as above, the following hold.

• The optimal consumption for the central planner coincides with the equi-
librium consumption of the representative agent.

• The optimal wealth process for the central planner is identical with the
equilibrium wealth process for the representative agent.

This result implies in particular that the following scheme is valid.

• Solve the (fairly simple) problem for the central planner, thus providing
us with the optimal value function V .

• Define the “shadow interest rate” r by (5.13), and the Girsanov kernel ϕ
by (5.16).

• For a derivative with contract function H, define F by (5.24).

• Define and h and β by (5.21)-(5.22).

• The F dynamics will now be

dF = βFdt + FhdWt.

• Now forget about the central planner and consider the optimal consump-
tion/investment problem of a representative agent with access to the pro-
duction technology S, the derivative F and the risk free asset B with
dynamics

dBt = r(t, Xt)Btdt

where r is defined as above.

• The economy will then be in equilibrium, so a = 1, b = 0 and we will re-
cover the optimal consumption and wealth processes of the central planner.

5.9 The martingale approach

We now study the equilibrium problem above using martingale techniques. Ap-
plying the usual arguments we then want to maximize expected utility

EP

[∫ τ

0

U(t, ct, Yt)dt + Φ(XT )
]

given the budget constraint

EP

[∫ τ

0

ctMtdt + XT MT

]
= x0

where, as usual, M is the stochastic discount factor defined by

Mt = B−1
t Lt,
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and L is the likelihood process L = dQ/dP . We note that M will be determined
endogenously in equilibrium. The Lagrangian for this problem is

EP

[∫ T

0

{U − Ztct} dt + Φ(XT )− ZtXT

]
+ λx0

where
Zt = λMt.

The first order conditions are

Uc(t, ĉt, Yt) = Zt, (5.26)
Φ′(X̂T ) = ZT , (5.27)

and, comparing (5.26) with (5.10) we have our first result.

Proposition 5.9.1 In equilibrium we have the identification

Vx(t, X̂t, Yt) = λMt,

where
λ = Vx(0, x0, y0)

Denoting the inverse of Uc(t, c, y) in the c variable by G(t, z, y) and the
inverse of Φ′ by F we can express the optimal consumption and optimal terminal
wealth profile as

ĉ(t, z, y) = G(t, z, y),
X̂T = F (ZT ).

At this point we need a small assumption in order to obtain a Markovian struc-
ture.

Assumption 5.9.1 We assume that the equilibrium short rate r and the equi-
librium Girsanov kernel ϕ have the form

r = r(t, Zt, Yy),
ϕ = ϕ(t, Zt, Yt).

We can now apply risk neutral valuation to obtain the optimal wealth process
X (for notational convenience we write X instead of X̂).

Xt = EQ

[∫ T

t

e
−
∫ s

t
rudu

G(s, Zs, Ys)ds + e
−
∫ T

t
rudu

F (ZT )

∣∣∣∣∣Ft

]

and the Markovian structure allows us to express X as

Xt = H(t, Zt, Yt)
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where H solves a Kolmogorov equation. In order to find this equation we need
the Q dynamics of Z, and these are easily obtained as

dZt = (ϕ2 − r)Ztdt + ZtϕdWQ
t .

The Kolmogorov equation is now{
Ht +AH + G− rH = 0,

H(T, x, y) = F (z)

where the infinitesimal operator A is defined by

AH = (ϕ2 − r)zHz + (µ + σϕ)Hy +
1
2
ϕ2z2Hzz +

1
2
σ2Hyy + ϕσHzy

We now proceed exactly as in Section 4.4 and use Ito to express the X dynamics
as

dXt = (. . .)dt + {ZtHzϕ + Hyσ} dWt

On the other hand, we know from general theory that the X dynamics in equi-
librium are given by

dXt = (. . .)dt + XtγdWt,

so, using Xt = H(t, Zt, Yt) we obtain

zHzϕ + Hyσ = Hγ,

giving us

ϕ =
H

zHz
γ − Hy

zHz
σ.

The martingale condition for S is obviously

r = α + ϕγ,

which is our formula for the equilibrium interest rate. We may now summarize.

Proposition 5.9.2 The equilibrium interest rate r(t, z, y) and Girsanov kernel
ϕ(t, z, y) are given by

r = α +
H

zHz
γ2 − Hy

zHz
σγ, (5.28)

ϕ =
H

zHz
γ − Hy

zHz
σ, . (5.29)

Here the function H(t, z, y) is determined by the PDE{
Ht +AH + G− rH = 0,

H(T, z, y) = F (z)
(5.30)

with A is defined by

AH = (ϕ2 − r)zHz + (µ + σϕ)Hy +
1
2
ϕ2z2Hzz +

1
2
σ2Hyy + ϕσHzy

and r and ϕ replaced by the formulas (5.28)-(5.29).
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As in the Section 3.5 we have an alternative representation of H.

Proposition 5.9.3 The function H can also be written as

H(t, z, y) =
1
z
H0(t, z, y)

where H0 is given by

H0(t, z, y) = EP
t,z,y

[∫ T

t

Zsĉs + ZT X̂T

]
,

and solves the PDE H0
t − rzH0

z + µH0
y +

1
2
ϕ2z2H0

zz +
1
2
σ2H0

yy + ϕσH0
zy + zG = 0,

H0(T, z, y) = zF (z)

Remark 5.9.1 Inserting (5.28)-(5.29) into any of the PDE:s above will result
in a really horrible PDE, and I am rather at a loss to see how to proceed with
that object.

5.10 Exercises

Exercise 5.1 Assume that the utility function U does not depend on y and has
the form

U(t, c) = e−δt 1
1− β

c1−β

where β and δ are positive real numbers. We also assume that Φ = 0.

(a) Prove that optimal value function V (t, x, y) has the form

V (t, x, y) = U(t, x)f(t, y)

with U as above, where f satisfies the PDE ft + [µ + σγ(1− β)] fy +
σ2

2
fyy + βf1− 1

β +
[
α(1− β)− δ − 1

2
γ2β(1− β)

]
f = 0,

f(T, y) = 0

(b) Compute (in terms of f) the equilibrium interest rate r and the Girsanov
kernel ϕ. Note that they do not depend on the x-variable.

Exercise 5.2 With Φ = 0, assume and that we have log utility, i.e.

U(t, c, y) = e−δt ln(c),
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(a) Show that the HJB equation has a solution of the form

V (t, x, y) = e−δtf(t, y) ln(x) + e−δtg(t, y)

and derive the relevant PDE:s for f and g.

(b) Solve the PDE for f and derive explicit expressions for r and ϕ.

(c) Use the martingale approach and compute the function H of Section 5.9.

(d) Use H to derive explicit expressions for r and ϕ, and compare with (b).

5.11 Notes

This model studied above is a special case of the the model presented in [5],
where the authors also allow for several production processes, but where only
PDE methods are used. A very general multi-agent equilibrium model, allowing
for several production processes, as well as endowments, is studied in detail in
[22].



Chapter 6

The CIR Interest Rate
Model

We now specialize to the model in [6]. In this model the authors study power
utility, but all concrete formulas are actually derived under the assumption of
log utility, i.e.

U(t, c, y) = e−δt ln(c),

so we restrict ourselves to this particular case.

6.1 Dynamic programming

Given the assumption of log utility, it is easy to see that the HJB equation has
a solution of the form

V (t, x, y) = e−δtf(t, y) ln(x) + e−δtg(t, y)

and we obtain the following PDE for f . ft + µfy +
1
2
σ2fyy − δf + 1 = 0,

F (T, y) = 0.

Using Feynman-Kac it is easily seen that f is given by the formula

f(t, y) =
1
δ

[
1− e−δ(T−t)

]
.

so we have
xVxx

Vx
= −1,

Vxy

Vx
= 0,

and plugging this into the formula (5.13) gives us the short rate as

r(t, y) = α(y)− γ2(y).
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In view of this formula it is now natural to specialize further by assuming that

α(y) = α · y,

γ(y) = γ · √y.

which means that the S dynamics are of the form

dSt = αStYtdy + γSt

√
YtdWt

This gives us
r(t, y) = (α− γ2)y,

Now, in order to have a positive Y process, which is necessary for
√

Yt to make
sense, we introduce the assumption that the Y dynamics are of the form

dYt = {AYt + B} dt + σ
√

YtdWt (6.1)

where A, B and σ are positive constants so in the earlier notation we have

µ(y) = Ay + B,

σ(y) = σ
√

y.

and, using (5.16) for the Girsanov kernel, we have proved the following result.

Proposition 6.1.1 For the CIR II model described above the following hold.

• The short rate is given by

r(t, Yt) = (α− γ2)Yt.

• The short rate dynamics under P are

drt = [A + B0] dt + σ0
√

rtdWt,

where

B0 = (α− γ2)B,

σ0 =
√

α− γ2σ.

• The Girsanov kernel is given by

ϕ(t, y) = −γ
√

y.

• The Q dynamics of r are

drt = [A0rt + B0] dt + σ0
√

rtdWQ
t

where
A0 = A− γσ

√
α− γ2.

Remark 6.1.1 The condition guaranteeing that the Y equation has a positive
solution is

2A ≥ σ2.

This will also guarantee that the SDE for the short rate has a positive solution.
In order to have a positive short rate we obviously also need to assume that

α ≥ γ2.
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6.2 Martingale analysis

The problem is to maximize expected utility

EP

[∫ T

0

e−δt ln(ct)dt

]
subject to the budget constraint

EP

[∫ T

0

Mtctdt

]
= x0

Performing the usual calculations, we obtain the optimal consumption as

ĉt = λ−1M−1
t e−δt.

From Section 5.9 we recall the function H, defined by

H(t, z, y) = EQ
t,z,y

[∫ T

t

Bt

Bs
ĉsds

]
.

We can also write this as

H(t, z, y) =
1

Mt
EP

t,z,y

[∫ T

t

Msĉsds

]
.

Inserting the expression for ĉ and recalling that Zt = λMt gives us the formula

H(t, z, y) =
1
z
g(t)

where
g(t) =

1
δ

{
e−δt − e−δT

}
From (5.28) we recall the formula

r = α +
H

zHz
γ2 − Hy

zHz
σγ,

so we obtain
r(t, y) = α(y)− γ2(y),

and we can proceed as in Section 6.1.

6.3 Exercises

Exercise 6.1 This exercise shows that you can basically generate an arbitrarily
chosen process as the short rate in a CIR model with log utility.

Consider the CIR setting above with log utility, but with production dynamics
of the form

dSt = StYtdt + γStdWt,

where γ is a real number and Y is an arbitrary process. Compute the short rate.
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6.4 Notes

The model in this section is the one presented in [6].



Chapter 7

Endowment Equilibrium 1:
Unit Net Supply

In the previous chapters we have studied equilibrium models in economies with
a production technology. An alternative to that setup is to model an economy
where each agent is exogenously endowed with a stream of income/consuption.
This can be done in several ways, and we start with the simplest one, charac-
terized by unit net supply of risky assets.

7.1 The model

In the model some objects are assumed to be given exogenously whereas other
objects are determined by equilibrium, and we also have economic agents.

7.1.1 Exogenous objects

We start with the exogenous objects.

Assumption 7.1.1 The following objects are considered as given a priori.

1. A 1-dimensional Wiener process W .

2. A scalar and strictly positive process e of the form

det = a(et)dt + b(et)dWt (7.1)

where a and b is a scalar real valued functions.

The interpretation of this is that e is a an endowment process which provides
the owner with a consumption stream at the rate et units of the consumption
good per unit time, so during the time interval [t, t + dt] the owner will obtain
etdt units of the consumption good.
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7.1.2 Endogenous objects

The endogenous object in the model are as follows.

1. A risk free asset B, in zero net supply, with dynamics

dBt = rtBtdt

where the risk free rate r is determined in equilibrium.

2. A price dividend pair (S, D) in unit net supply, where by assumption

dDt = etdt.

In other words: Holding the asset S provides the owner with the dividend
process e over the time interval [0, T ]. Since S is defined in terms of e we
can write the dynamics of S as

dSt = αtStdt + γtStdWt

where α and γ will be determined in equilibrium.

3. We stress the fact that, apart for providing the owner with the dividend
process e over [0, T ], the asset S gives no further benefits to the owner. In
equilibrium we will thus have

St =
1

Mt
EP

[∫ T

t

Msesds

∣∣∣∣∣Ft

]
,

where M is the equilibrium stochastic discount factor. In particular we
will have

ST = 0.

7.1.3 Economic agents

We consider a single representative agent who wants to maximize expected
utility of the form

EP

[∫ T

0

U(t, ct)dt

]
where c is the consumption rate (measured in dollars per time unit) and U is
the utility function.

Assumption 7.1.2 We assume that the agent has initial wealth X0 = S0. In
other words: The agent has enough money to buy the right to the dividend
process Y .

We will use the notation

ut = portfolio weight on the risky asset,
1− ut = portfolio weight on the risk free asset,

ct = rate of consumption.
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7.1.4 Equilibrium conditions

The natural equilibrium conditions are that the agent will, at all times, hold
the risky asset and that he will consume all dividends. Formally this reads as
follows.

ut = 1, ((S, D) in unit net supply),
1− ut = 0, (B in zero net supply),

ct = et, (market clearing for consumption).

7.2 Dynamic programming

As usual we start by attacking the problem using DynP and, as we will see
below, this is not completely trivial. In Section 7.3 we will analyze the same
equilibrium problem using the martingale approach, and we will see that, for
this particular model, the martingale approach is in fact much more efficient
than the dynamic programming method. The reader who wants to go directly
to the main results can therefore skip this section and go to Section 7.3.

In order to obtain a Markovian structure we make the following assumption.

Assumption 7.2.1 We assume that S, α, γ and r, have the following struc-
ture, where F below is a smooth function to be determined in equilibrium.

St = F (t, et),
αt = α(T, et),
γt = γ(t, et),
rt = r(t, et).

It would seem natural to allow the functions above to depend also on the equi-
librium wealth process X but, as we will see, this is not necessary.

7.2.1 Formulating the control problem

In equilibrium, the risky asset is in unit net supply so in equilibrium we will
have Xt = St, but the individual agent will of course feel no such restriction,
and we thus have to determine the dividend rate which will be allocated to the
agent given wealth x, the weight u on the risky asset, the price s of the risky
asset, and the value e of the dividend rate process.

This, however, is quite easy. The dollar amount invested in the risky asset
is ux and, given the asset price s, this implies that the agent is holding ux/s
units of the risky asset, and thus that he obtains a dividend of size

ux

s
· e · dt

over an infinitesimal interval [t, t + dt]. We emphasize that, here and elsewhere
in this chapter, the notation s is shorthand for F (t, e).
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The wealth dynamics are thus given by

dXt = uXt(αt − rt)dt + (rXt − ct +
ux

s
e)dt + utXtγtdWt, (7.2)

and the natural constraints for the agent are

ct ≥ 0, (7.3)
ut = 0 if Xt = 0, (7.4)
ct ≤ et if Xt = 0. (7.5)

The first conditions is obvious. The second and third conditions prohibits short-
selling of S, as well as excessive consumption, during periods with zero wealth,
thus prohibiting wealth from going negative.

The control problem of the agent is thus to maximize

EP

[∫ T

0

U(t, ct)dt

]

given the X dynamics (7.2), and the constraints (7.3)-(7.5).

7.2.2 The HJB equation

The optimal value function is of the form V (t, x, e), and the HJB equation is as
follows. 

Vt(t, x, e) + sup
u,c

{U(t, c) + Au,cV (t, x, e)} = 0

V (T, x, e) = 0

where Au,c is given by

Au,cV = ux(α−r)Vx+(rx−c+
ux

s
e)Vx+

1
2
u2x2γ2Vxx+µVe+

1
2
b2Vee+uxγbVxe,

with the constraints (7.3)-(7.5) for c and u.

Remark 7.2.1 It would perhaps seem natural that, since we have the term
ux
s e, we should study an optimal value function of the form V (t, x, e, s). This

is, however, not necessary. Since we have assumed that St = F (t, et), the asset
price S will not be a state variable, and the appearance of s in the HJB equation
is, as always, shorthand for F (t, e).

Assuming that the constraints are not binding, the first order conditions are

∂U

∂c
(t, ĉ) = Vx(t, x, e),

and
x(α− r)Vx +

x

s
eVx + ux2γ2Vxx + xγbVxe = 0.
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7.2.3 Equilibrium

In order to obtain expressions for the equilibrium risk free rate, and the market
price of risk, we would now like to introduce the proper equilibrium conditions
into the first order conditions above. The equilibrium concept for the present
model is, however, a little bit tricky, and the situation is roughly as follows.

• For our underlying economic model, we have assumed that that X0 = S0.

• This assumptions is tailor made to fit the assumption that (S, D) is in
unit net supply.

• Given X0 = S0 we expect that, in equilibrium, the agent is at all times
holding one unit of (S, D), with no money invested in B, and consuming
ct = et. This will then imply that Xt = St.

• Using DynP however, we have to study the HJB equation for all possible
combinations of x, e, and s, and not just for the case x = s.

• We thus have to extend our equilibrium concept to the case when x 6= s
and introduce this extended concept into the first order conditions above.

• Having done this, we may finally assume that X0 = S0, and study the
implications of this assumption.

The extended equilibrium conditions are easily seen to be as follows

c(t, x, e) =
x

F (t, e)
· e, (7.6)

u(t, x, e) = 1. (7.7)

The second condition is obvious. In order to understand the first condition,
assume that at time t you have wealth x. If you invest all of this into the
risky asset, then the dividend rate is x

s · e and if all this is consumed then your
consumption is given by c = x

s · e. Recalling that s = F (t, e) gives us (7.7).

Remark 7.2.2 In the case when x = s, the extended equilibrium conditions
will obviously coincide with the “naive” equilibrium conditions u = 1 and c = e.
Given an arbitrary initial conditions X0 = x0, we also expect to have

Xt =
x0

s0
St

for all t.

Inserting the extended equilibrium conditions into the wealth dynamics gives us
the (extended) equilibrium X dynamics as

dXt = αXtdt + XtγdWt,
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and from this we conclude, by comparing with the S dynamics, that

Xt =
x0

s0
St,

or in other words
Xt

F (t, et)
=

x0

s0
. (7.8)

Inserting the extended equilibrium conditions into the first order conditions
gives us

Uc

(
t,

x

F (t, e)
e

)
= Vx(t, x, e), (7.9)

r − e

s
= α + x

Vxx

Vx
γ2 +

Vxe

Vx
bγ. (7.10)

From (7.10) and standard arbitrage theory, we can now identify the Girsanov
kernel ϕ as

ϕ(t, x, e) = x
Vxx

Vx
γ +

Vxe

Vx
b. (7.11)

This is more or less expected, but we can in fact obtain a much nicer formula.

Proposition 7.2.1 For the original equilibrium, where x0 = s0, the Girsanov
kernel process ϕ is of the form ϕt = ϕ(t, et) where the function ϕ(t, e)is given
by

ϕ(t, e) =
Ucc(t, e)
Uc(t, e)

· b(e).

Proof. From (7.9) we obtain

Vxx(t, x, e) =
e

F (t, e)
Ucc ·

(
t,

xe

F (t, e)

)
,

Vxe(t, x, e) = x · Ucc

(
t,

xe

F (t, e)

){
F (t, e)− eF (t, e)

F 2(t, e)

}
.

This gives us

ϕ(t, x, e) =
xe

F
· Ucc

Uc
γ + x

Ucc

Uc

{
F − eF

F 2

}
b. (7.12)

From Ito we have
γ =

Fe

F
b,

and if we plug this, together with the equilibrium conditions x = F and c = e,
into (7.12) we obtain the stated result.

Given our experiences from previous chapters, we expect the stochastic dis-
count factor Mt to be given by

Mt =
Vx(t, Xt, et)
Vx(0, x0, e0)
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along the equilibrium trajectory, and since Xt = St = F (t, et) in equilibrium
this would implies that the normalized stochastic discount factor Z is given by

Zt = Vx(t, F (t, et), et) = Vx(t, Xt, et) = Uc(t, et)

This can in fact be proved.

Proposition 7.2.2 The normalized stochastic discount factor Z is, along the
equilibrium path generated by x0 = s0, given by

Zt = Vx(t, F (t, et), et) = Vx(t, Xt, et) = Uc(t, et).

Furthermore, the corresponding equilibrium short rate is given by

r(t, et) = −
Utc(t, et) + a(t, et)Ucc(t, et) + 1

2b2(et)Uccc(t, et)
Uc(t, et)

Proof. Ito’s formula gives us

dVx(t, Xt, et) =
{

Vtx + αXtVxx +
1
2
γ2X2

t γ2Vxxx + aVxe +
1
2
b2Vxee + XtγbVxxe

}
dt

+ {XtγVxx + bVxe} dWt

From the HJB equation we also have

Vt + U(t,
xe

F
) + αxVx +

1
2
γ2Vxx + aVe +

1
2
b2Vee + xγbVxe = 0.

Differentiating this w.r.t. the x variable, and plugging the result into the Vx

dynamics above, gives us

dVx(t, Xt, et) = −Vx

Uc(t, Xtet

F ) et

F + αVx + XtVxxγ2 + γbVxe

Vx
dt

+ Vx
XtγVxx + bVxe

Vx
dWt

Using (7.11) we can write this as

dVx(t, Xt, et) = −Vx

Uc(t, Xtet

F ) et

F + αVx + XtVxxγ2 + γbVxe

Vx
dt

+ VxϕtdWt

Using (7.9)-(7.10) and the fact that in equilibrium we have F (t, Yt) = St = Xt,
gives us

dVx = −Vxrtdt + VxϕtdWt,

and we can conclude that in equilibrium Vx(t, Xt, et) = Zt.
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Since Zt = Uc(t, et) we can now use the Ito formula to obtain

dZt =
{

Utc + aUcc +
1
2
b2Uccc

}
dt + UccσdWt,

and, using Proposition 7.2.1, we can write this as

dZt = Zt

Utc + aUcc + 1
2b2Uccc

Uc
dt + ZtϕdWt.

The short rate can now be identified form the drift term.

Remark 7.2.3 We note that the short rate and the Girsanov kernel are com-
pletely determined by the e-dynamics and by the utility function, i.e. by the
exogenous objects.

We still have to justify our assumption that S is of the form St = F (t, et)
and the similar assumptions about α and γ. This is in fact easily done. From
risk neutral valuation we have

St = EQ

[∫ T

t

e
−
∫ s

t
r(u,eu)du

esds

∣∣∣∣∣Ft

]
,

so, by the Markovian structure of Y , S is indeed of the form St = F (t, et) where
F solves the Kolmogorov backward equation Ft(t, e) + {a(e) + ϕ(t, e)b(e)}Fe(t, e) +

1
2
b2(e)Fee(t, e)− r(t, e)F (t, e) + e = 0,

F (T, e) = 0
.

By applying the Ito formula to F , we now obtain α and γ as

α(t, e) =
1

F (t, e)

[
Ft(t, e) + a(e))Fe(t, e) +

1
2
b2(e)Fee(t, e)

]
,

γ(t, e) =
b(e)Fe(t, e)

F (t, e)
.

7.3 The martingale approach

We now go on to study the model above using the martingale approach, and
this turns out to be much easier than using DynP.

7.3.1 The control problem

We assume again that the initial wealth of the agent is given by X0 = S0. The
agent’s control problem is then to maiximize

EP

[∫ T

0

U(t, ct)dt

]
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subject to the following constraints.

ct ≥ 0,

EP

[∫ T

0

Mtctdt

]
≤ S0.

As usual, M denotes the stochastic discount factor. The first constraint is
obvious and the second one is the budget constraint.

Since the asset S provides the owner with the income stream defined by e
and nothing else (see Section 7.1.2) we can apply arbitrage theory to deduce
that

S0 = EP

[∫ T

0

Mtetdt

]
.

We can thus rewrite the budget constraint as

EP

[∫ T

0

Mtctdt

]
≤ EP

[∫ T

0

Mtetdt

]
.

This optimization problem is, however, identical to the one in Section 8.3,
so the Lagrangian is again given by

EP

[∫ T

0

{U(t, ct)− λMtctdt}

]
+ λEP

[∫ T

0

Mtetdt

]
,

where λ is the Lagrange multiplier. and the optimality condition for c is thus

Uc(t, ct) = Zt, (7.13)

where
Zt = λMt.

7.3.2 Equilibrium

As in Section 8.3.2 we make the natural assumption that the processes α, γ and
r are of the form

αt = α(t, Zt, et),
γt = γ(t, Zt, et),
rt = r(t, Zt, et).

The equilibrium conditions are

ut ≡ 1, (S in unit net supply),
1− ut ≡ 0, (B in zero net supply),

ct ≡ Yt, (market clearing for consumption).
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It is now surprisingly easy to derive formulas for the equilibrium short rate
and the equilibrium Girsanov kernel. The clearing condition c = y and the
optimality condition (7.13) gives us

Zt = Uc(t, et),

so we have

dZt =
{

Uct(t, et) + a(et)Ucc(t, et) +
1
2
b2(et)Uccc(t, et)

}
dt + b(et)Ucc(t, et)dWt.

Using the formula
dZt = −rtZtdt + ZtϕtdWt.

we can thus identify the equilibrium rate and the Girsanov kernel as follows.

Proposition 7.3.1 The equilibrium short rate is given by

r(t, e) = −
Uct(t, e) + a(e)Ucc(t, e) + 1

2b2(e)Uccc(t, e)
Uc(t, e)

(7.14)

and we see that the short rate r does in fact not depend explicitly on z. Fur-
thermore, the Girsanov kernel is given by

ϕ(t, e) =
Ucc(t, e)
Uc(t, e)

· b(e). (7.15)

We have thus re-derived the results that we obtained earlier by the dynamic
programming approach, and we note that by using the martingale approach we
have a drastic simplification of the computational effort.

Remark 7.3.1 In the proof above it seems that we have only used the consump-
tion market clearing condition

ct ≡ et,

and not at all the clearing conditions for the risky and the risk free assets

1− ut ≡ 0,

ut ≡ 1.

It is, however, easy to see that the clearing condition c = e actually implies
the other two. The equilibrium consumption stream c = e discussed above, can
certainly be replicated by holding exactly one unit of (S, D) and putting zero
weight on the risk free asset. It now follows from market completeness and the
martingale representation theorem that this is the unique portfolio providing the
holder with the consumption stream e.
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7.3.3 Log utility

To exemplify we now specialize to the log utility case when the local utility
function is of the form

U(t, c) = e−δt ln(c).

In this case we have

Uc =
1
c
e−δt, Utc = −δ

c
e−δt, Ucc = − 1

c2
e−δt, Uccc =

2
c3

e−δt

Plugging this into the formula (7.14) gives us the short rate as

r(t, e) = δ +
a(e)
e

− b2(e)
e2

.

Given this expression it is natural to specialize further to the case when the e
dynamics are if the form

det = aetdt + betdWt,

where (with a slight abuse of notation) a and b in the right hand side are real
constants, so that

a(e) = a · e, b(e) = b · e.

We then obtain a constant short rate of the form

r = δ + a− b2.

7.4 Extending the model

In the previous sections we have assumed that the endowment process Y satisfies
an SDE of the form

det = a(et)dt + b(et)dWt.

A natural extension of this setup would of course be to consider a factor model
of the form

det = a(et, Yt)dt + b(et, Yt)dWt,

dYt = µ(Yt)dt + σ(Yt)dWt

where Y is an underlying factor process, and W is a two-dimensional Wiener
process. In this section we will extend our endowment theory to include a fairly
general model for the endowment process, and as a special case we will consider
the factor model above.
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7.4.1 The general scalar case

We extend the earlier model by simply assuming that the (scalar) endowment
process has the structure

det = atdt + btdWt, (7.16)

where W is a k-dimensional Wiener process, and where the scalar process a and
the k-dimensional row vector process b are adapted to some given filtration F
(which, apart from W , may include many other driving processes). This setup
will obviously include various factor models, and will also include non-Markovian
models. We assume that we have N + 1 random sources in the model.

In order to build the model we introduce as usual the asset-dividend pair
(S, D) where

dDt = etdt,

and we assume, as before, that S is in unit net supply. The interpretation is
again that S provides the holder with the endowment e (and nothing else). We
then introduce a risk free asset B and a number of derivatives F1, . . . , FN which
are defined in terms of the random sources, so that the market consisting of
S, B, F1, . . . , FN is complete.

We can now apply the usual martingale approach, and a moment of reflection
will convince you that the argument in Section 7.3.2 goes through without any
essential change. We thus conclude that for this extended model we have the
following result.

Proposition 7.4.1 If the endowment process e has dynamics according to (7.16),
then the following hold.

• The equilibrium short rate process is given by

rt = −
Uct(t, e) + atUcc(t, et) + 1

2‖bt‖2Uccc(t, et)
Uc(t, et)

. (7.17)

• The Girsanov kernel is given by

ϕt =
Ucc(t, et)
Uc(t, et)

· bt. (7.18)

Remark 7.4.1 We note that the measure transformation from P to Q only
affects the Wiener process W driving the endowment process e. The distribution
of other driving processes will thus not be changed.

7.4.2 The multidimensional case

A natural extension of the model in Section 7.4.1 would be to consider, not only
one scalar endowment process, but a finite number of endowment processes
e1, . . . ed, with dynamics

deit = aitdt + bitdWt, i = 1, . . . , d, (7.19)
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where W is k-dimensional Wiener (with k ≥ d) and we have N + 1 ran-
dom sources in the filtration. We then introduce the price dividend pairs
(S1, D1), . . . (Sd, Dd) where

dDit = eitdt.

As usual we assume that the risky S1, . . . , Sd assets are in unit net supply and
that asset i gives the owner the right to the dividend process Di. We also
assume the existence of a risk free asset B, and we assume the existence of a
sufficient number of derivative assets in zero net supply, such that the market
is complete.

This model looks, prima facie, more general than the model of Section 7.4.1,
but this is in fact not the case.

Assuming a representative agent with utility U(t, c) and denoting the aggre-
gate endowment by η so

ηt =
d∑

i=1

eit (7.20)

we see that the optimization problem of the representative agent is to maximize
expected utility

EP

[∫ T

0

U(t, ct)dt

]
subject to the (aggregate) budget constraint

EP

[∫ T

0

Mtctdt

]
≤ EP

[∫ T

0

Mtηtdt

]
The equilibrium market clearing condition is of course

ĉt = ηt.

From a formal point of view this is exactly the same problem that we studied
above apart from the fact that e is replaced by η. We may thus copy the result
from Proposition 7.4.1 to state the following result.

Proposition 7.4.2 Write the aggregate endowment process η dynamics as

dηt = atdt + bT dWt,

where

at =
d∑

i=1

ait, bt =
d∑

i=1

bit,

then the following hold.

• The equilibrium short rate process is given by

rt = −
Uct(t, ηt) + atUcc(t, ηt) + 1

2‖bt‖2Uccc(t, ηt)
Uc(t, ηt)

. (7.21)
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• The Girsanov kernel is given by

ϕt =
Ucc(t, ηt)
Uc(t, ηt)

· bt. (7.22)

We finish this section by noting that although the case of a multi-dimensional
endowment process will formally reduce to the case of a scalar endowment,
the multidimensional case may still lead to new computational and structural
problems.

Suppose, for example, that we model each ei as a Markov process of the
form

deit = ai(eit)dt + bi(eit)dWt, i = 1, . . . , d,

where ai is a deterministic real valued function, and bi is a deterministic k-
dimenisonal row vector function. Then the aggregate endowment will have
dynamics

dηt =

{
d∑

i=1

ai(eit)

}
dt +

{
d∑

i=1

bi(eit)

}
dWt,

so η is not Markov. In particular, if each ei is GBM, this does not imply that
η is GBM.

7.4.3 A factor model

We exemplify the theory of the previous section by considering a factor model
of the form

det = a(et, Yt)dt + b(et, Yt)dWt, (7.23)
dYt = µ(Yt)dt + σ(Yt)dWt. (7.24)

where W is a standard two dimensional Wiener process. For simplicity we
assume log utility, so

U(t, c) = e−δt ln(c).

In this case the equilibrium rate and the Girsanov kernel will be of the form
rt = r(et, Yt), ϕt = ϕ(et, Yt) and after some easy calculations we obtain

r(e, y) = δ +
a(e, y)

e
− ‖b(e, y)‖2

e2
,

ϕ(e, y) = −b(e, y)
e

.

Given these expressions it is natural to make the further assumption that a and
b are of the form

a(e, y) = e · a(y),
b(e, y) = e · b(y),
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which implies

r(y) = δ + a(y)− ‖b(y)‖2

ϕ(y) = −b(y).

We now specialize further to the case when

a(y) = a · y,

b(y) =
√

y · b,

and in order to guarantee positivity of Y we assume

µ(y) = β + µ · y,

σ(y) = σ · √y

where 2β ≥ ‖σ‖2. We then have the following result.

Proposition 7.4.3 Assume that the model has the structure

det = aetYtdt + etb
√

YtdWt,

dYt = {β + µYt} dt + σ
√

YtdWt.

Then the equilibrium short rate and the Girsanov kernel are given by

rt = δ +
(
a− ‖b‖2

)
Yt,

ϕt =
√

Yt · b.

We thus see that we have essentially re-derived the Cox-Ingersoll-Ross short
rate model, but now within an endowment framework.

We finish this section with a remark on the structure of the Girsanov trans-
formation. Let us assume that, for a general utility function U(t, c), the pro-
cesses e and Y are driven by independent Wiener processes, so the model has
the form

det = a(et, Yt)dt + b(et, Yt)dW e
t ,

dYt = µ(Yt)dt + σ(Yt)dWY
t .

where W e and WY are independent and where b and σ are scalar. Then the
Girsanov kernel has the vector form

ϕt =
Ucc(t, et)
Uc(t, et)

· [b(et, Yt), 0]

so the likelihood dynamics are

dLt = Lt
Ucc(t, et)
Uc(t, et)

· b(et, Yt)dW e
t ,

implying that the Girsanov transformation will only affect W e and not WY .



100 CHAPTER 7. ENDOWMENT EQUILIBRIUM 1: UNIT NET SUPPLY

7.5 Exercises

Exercise 7.1 Consider a model with log utility

U(t, c) = e−δt ln(c)

and scalar endowment following GBM

det = aetdt + betWt,

where a and b are real numbers and W is P -Wiener.

(a) Compute the P and Q dynamics of S.

(b) Use the result of (a) and let T →∞. What do you get?

Exercise 7.2 Consider a model with power utility

U(t, c) = e−δt 1
γ

cγ ,

where γ < 1, and scalar GBM endowment as in the previous exercise. Compute
the short rate and the Girsanov kernel. Compute the S-dynamics when T →∞.

Exercise 7.3 Consider a model with exponential utility

U(t, c) = e−δt 1
γ

e−γc.

and scalar endowment with dynamics

det = (b− aet)dt + σ
√

etdWt

where a, b and σ are positive real numbers such that 2b > σ2 (so that e stays
positive). Compute the short rate, the Girsanov kernel, and the S-dynamics.

7.6 Notes

Basic references for endowment models are [20] and [22]. See also [11] and [24].
In the literature, endowment models are typically analyzed using martingale
methods. The DynP treatment above seems to be new but, having seen it, you
quickly realize why the martingale approach is preferable.



Chapter 8

Endowment Equilibrium 2:
Zero Net Supply

In this chapter we will study a small variation of the endowment model discussed
in the previous chapter, the difference being that the risky assets are now as-
sumed to be in zero net supply. The zero net supply model is a little bit more
messy to analyze than the unit net supply model of the previous chapter, and
it leads to exactly the same results, so the the present chapter can be regarded
as optional reading.

8.1 The model

The model is almost identical to the one in Chapter 7, apart from the fact that
the definition of risky asset is slightly modified.

8.1.1 Exogenous objects

We start with the exogenous objects.

Assumption 8.1.1 The following objects are considered as given a priori.

1. A 1-dimensional Wiener process W .

2. A scalar and strictly positive process e of the form

det = a(et)dt + b(et)dWt (8.1)

where a and b is a scalar real valued functions.

The interpretation of this is that e is a an endowment process which provides the
owner with a consumption stream at the rate et units of the consumption good
per unit time. In other words: During an infinitesimal interval [t, t + dt], the
agent receives et ·dt units of the consumption good. So far this is exactly like in
the previous chapter. The novelty, as we will see below, is in the interpretation
of the risky asset.
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8.1.2 Endogenous objects

In this model we also have some processes which are to be determined endoge-
nously in equilibrium. They are as follows, where we use the notation

Xt = the portfolio value at time t,

to be more precisely defined below.

1. A risk free asset B, in zero net supply, with dynamics

dBt = rtBtdt

where the risk free rate r is determined in equilibrium.

2. A financial derivative process St, in zero net supply, defined in terms of
e, without dividends. More precisely we assume that S is the price of
a European derivative which, at exercise date T , will give the owner the
(positive) amount Ψ(eT ) units of the consumption good. We write the
dynamics of S as

dSt = αtStdt + γtStdWt

where α and γ will be determined in equilibrium.

We see that the difference between this model and the model in Chapter 7 is
that the risky asset is in zero net supply in the present model, while it was in
unit net supply in the model in Chapter 7. The assumption that S is the price
of a contingent claim of the form Φ(eT ) is not important. S could in fact also
have been defined as the price of the consumption stream e, thus making the
present model almost identical to the one in Chapter 7. The difference would
again be the difference between zero and unit net supply.

8.1.3 Economic agents

We consider a single representative agent, and the object of the agent is to
maximize expected utility of the form

EP

[∫ T

0

U(t, ct)dt

]

where c is the consumption rate (measured in dollars per time unit) and U is
the utility function. We assume that the agent has no initial wealth so X0 = 0.

The difference between the setting of present chapter and that of Chapter 7
is as follows.

• In Chapter 7 the agent had no initial endowment, but she had sufficient
initial wealth to buy the right to the endowment process e.

• In the present chapter, the agent is exogenously provided with the right to
the endowment process e but, apart from this, she has no initial wealth.
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The difference between the two models thus seems to be very small and one is
left with the feeling that there is perhaps only a linguistic difference between
the models. As we will see, the equilibrium results are in fact identical for both
models, so the reader may choose to skip the present chapter entirely.

As with the previous model, the martingale approach is much more efficient
than the dynamic programming approach and, in fact, the dynamic program-
ming approach turns out to be extremely difficult to implement.

8.2 Dynamic programming

We now go on to study the portfolio problem for the agent and the induced
equilibrium price system. The formulation of the portfolio problem is, however,
not trivial and requires a detailed discussion.

Remark 8.2.1 In this section on the DynP approach there is a considerable
amount of hand waving and rather loose arguments, as well as wishful thinking.
The section on the martingale approach is, however, OK.

8.2.1 Formulating the control problem

The portfolio dynamics of the agent are given by

dXt = ut(αt − rt)dt + (rXt + Yt − ct)dt + utγtdWt, (8.2)

where u is the dollar amount invested in the risky asset S, which implies that the
amount Xt − ut is invested in the risk free asset B. An obvious, but naive, way
of formulating the portfolio problem of the agent is now to maximize expected
utility

EP

[∫ T

0

U(t, ct)dt

]
given the portfolio dynamics (8.2), no constraint on the risky investment ut,
and the obvious consumption constraint

ct ≥ 0.

This, however, leads to a nonsensical problem, since there is nothing to stop the
agent from consuming an infinite amount and thus becoming infinitely happy.
The consequence of this hedonistic behavior is of course that wealth will become
negative, but since we have no positivity constraint on X and no penalty term
of the form EP [Φ(XT )] in the objective function, we cannot prohibit the agent
from consuming an arbitrarily large amount at each point in time.

This is an old predicament which we have encountered earlier, and then we
solved it in a rather elegant way by introducing th stopping time τ defined by

τ = inf {t ≥ 0 : Xt = 0}
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and we reformulated the objective criterion so as to maximize

EP

[∫ τ

0

U(t, ct)dt

]
.

In other words: When you run out of money the game is over.
This worked well for the earlier models without endowment, but for the

present model with a positive endowment process, there is no good reason why
the game should be over when the wealth hits the value zero, since we can
consume at the endowment rate, i.e. put ct = et and still keep the wealth
non-negative.

It would of course seem natural to introduce the state constraint

Xt ≥ 0, for all t,

but, as we have stated earlier, dynamic programming does not allow for state
constraints, so this approach cannot be taken. Instead we need to reformulate
the problem in such a way that we implicitly force the wealth process to stay non
negative. We can in fact achieve this by introducing the following cosntraints.

• We allow no shortselling when Xt = 0. This holds for of the risky as well
as for the risk free asset.

• When Xt > 0 we allow any positive consumption rate, but when Xt = 0
we introduce the constraint ct ≤ et.

We may thus finally formulate the control problem of the agent as that of
maximizing

EP

[∫ T

0

U(t, ct)dt

]
subject to the dynamics

dXt = ut(αt − rt)dt + (rXt + Yt − ct)dt + utγtdWt,

X0 = 0,

and the constraints

ut = 0, if Xt = 0 (8.3)
ct ≥ 0, for all t, (8.4)
ct ≤ et, if Xt = 0. (8.5)

In order to have a Markovian structure we also need to assume the following.

Assumption 8.2.1 The processes α, γ and r are of the form

αt = α(t, Xt, et),
γt = γ(t, Xt, et),
rt = r(t, Xt, et).
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8.2.2 The HJB equation

For the problem discussed above, the optimal value function is of the form
V (t, x, e), and the HJB equation is as follows.

Vt(t, x, e) + sup
u,c

{U(t, c) + Au,cV (t, x, e)} = 0

V (T, x, e) = 0

where Au,c is given by

Au,cV = u(α− r)Vx + (rx + y − c)Vx +
1
2
u2γ2Vxx + aVe +

1
2
b2Vee + uγbVxe,

and where c and u are under the the constraints (8.3) -(8.5).
Assuming (somewhat optimistically) that the constraints are not binding,

the first order conditions are

∂U

∂c
(t, ĉ) = Vx(t, x, e), (8.6)

û =
r − α

γ2

(
Vx

Vxx

)
− b

γ

(
Vxe

Vxx

)
. (8.7)

8.2.3 Equilibrium

The natural equilibrium conditions are as follows.

ut ≡ 0, (S in zero net supply),
Xt − ut ≡ 0, (B in zero net supply),

ct ≡ et, (market clearing for consumption).

From the first two conditions we get

Xt ≡ 0,

so the equilibrium is characterized by the fact that the optimal wealth is iden-
tically equal to zero, and all endowments are immediately consumed. In par-
ticular, the condition Xt = 0 implies that α , γ and r only depends on t and
y.

If we insert the equilibrium condition u = 0 into the first order condition for
u we obtain the following formula for the equilibrium interest rate

r(t, e) = α(t, y) +
(

Vxe(t, 0, e)
Vx(t, 0, e)

)
b(e)γ(t, e).

From this wee see that the Girsanov kernel ϕ for the transition from P to the
martingale measure Q is given by

ϕt =
(

Vxe(t, 0, et)
Vx(t, 0, et)

)
b(et).
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We can in fact obtain a much nicer formula for the the Girsanov kernel ϕ. From
(8.6), the market clearing condition ct = et, and the fact that in equilibrium we
have Xt = 0, we obtain

Uc(t, e) = Vx(t, 0, e), Ucc(t, e) = Vxe(t, 0, e).

We have thus proved the first item of the following result, which is identical
to the corresponding result in the previous chapter. We leave the proof of the
second item to the interested (and brave) reader.

Proposition 8.2.1 The Girsanov kernel is given by

ϕt =
Ucc(t, et)
Uc(t, Yt)

b(et).

The equilibrium short rate is given by the formula

r(t, e) = −
Uct(t, e) + a(e)Ucc(t, e) + 1

2b2(e)Uccc(t, e)
Uc(t, e)

In order to determine α and γ we apply risk neutral valuation to obtain

St = EQ

[
e
−
∫ T

t
rsdsΨ(eT )

∣∣∣∣Ft

]
,

so St = F (t, et) where F solves the Kolmogorov backward equation Ft(t, e) + {a(e) + ϕ(t, y)b(e)}Fe(t, e) +
1
2
b2(e)Fee(t, e)− r(t, e)F (t, e) = 0,

F (T, e) = Φ(e)
.

By applying the Ito formula to F , we now obtain α and γ as

α(t, e) =
1

F (t, e)

(
Ft(t, e) + a(e)Fy(t, e) +

1
2
b2(e)Fee(t, e)

)
,

γ(t, e) =
b(e)Fe(t, e)

F (t, e)
.

8.3 The martingale approach

We now go on to study the model above using the martingale approach, and
the big advantage of this approach, compared to dynamic programming, is that
there is no problem to introduce a non negativity constraint on X.

8.3.1 The control problem

The agent’s control problem now consists in maximizing

EP

[∫ T

0

U(t, ct)dt

]
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subject to the dynamics

dXt = ut(αt − rt)dt + (rXt + et − ct)dt + utγtdWt,

X0 = 0.

The natural constraint is, apart from the usual positivity constraint on con-
sumption, some sort of nonnegativity constraint on wealth to rule out unlimited
consumption. This goal can, however, easily be achieved by simply introduc-
ing the constraint that terminal wealth should equal zero. We thus have the
constraints

ct ≥ 0,

XT = 0.

We thus see that the control problem is equivalent to the problem of maximizing

EP

[∫ T

0

U(t, ct)dt

]
over the class of adapted non-negative consumption processes c, satisfying the
budget constraint

EP

[∫ T

0

Mtctdt

]
≤ EP

[∫ T

0

Mtetdt

]
,

where the stochastic discount factor M is defined as usual by

Mt = B−1
t Lt,

and where L is the likelihood process for the transition from P to Q, so that

dLt = ϕtLtdWt,

where
ϕt =

αt − rt

γt
.

The Lagrangian for the programming problem above is given by

EP

[∫ T

0

{U(t, ct)− λMtctdt}

]
+ λEP

[∫ T

0

Mtetdt

]
,

where λ is the Lagrange multiplier. The optimality condition for c is thus

Uc(t, ct) = Zt, (8.8)

where
Zt = λMt.
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8.3.2 Equilibrium

In order to study equilibrium, we now make the following natural assumption.

Assumption 8.3.1 The processes α, γ and r are of the form

αt = α(t, Zt, et),
γt = γ(t, Zt, et),
rt = r(t, Zt, et).

The equilibrium conditions are the same as before, namely

ut ≡ 0, (S in zero net supply),
Xt − ut ≡ 0, (B in zero net supply),

ct ≡ et, (market clearing for consumption).

It is now surprisingly easy to derive an expression for the equilibrium short rate.
From the clearing condition c = y and the optimality condition (8.8) we obtain

Zt = Uc(t, et),

so we have

dZt =
{

Uct(t, et) + a(et)Ucc(t, et) +
1
2
b2(et)Uccc(t, et)

}
dt + b(et)Ucc(t, et)dWt.

On the other hand, we know from general theory that the dynamics of Z are

dZt = −rtZtdt + ZtϕtdWt.

We can thus identify the equilibrium rate and the Girsanov kernel as follows.

Proposition 8.3.1 The equilibrium short rate is given by

r(t, e) = −
Uct(t, e) + a(e)Ucc(t, e) + 1

2b2(e)Uccc(t, e)
Uc(t, e)

(8.9)

and we see that the short rate r does in fact not depend explicitly on z. Fur-
thermore, the Girsanov kernel is given by

ϕ(t, e) =
b(e)Ucc(t, e)

Uc(t, e)
. (8.10)

Remark 8.3.1 We see that the formulas for the short rate and the Girsanov
kernel for the present model, with zero net supply for S, are identical to the
corresponding formulas in the model of Chapter 7, with unit net supply for S.
This is expected, given the fact that in equilibrium the agent will, in both models,
consume Yt per unit time for all t.

8.4 Notes

Basic references for endowment models are [20] and [22]. See also [11] and [24].
In the literature, endowment models are typically analyzed using martingale
methods.



Chapter 9

The Existence of a
Representative Agent

In the previous equilibrium models we have (bravely) assumed the existence of
a representative agent. As the reader will have noticed, this assumption greatly
facilitates the analysis, since the equilibrium conditions become very easy to
handle. The object of the present chapter is to show that, for a fairly general
class of models containing multiple agents with heterogeneous preferences, we
can actually prove that there exist a representative agent.

9.1 The model

For simplicity choose to study a multi-agent version of the model in Chapter 7.
We could also study a much more general model, but then the main (and very
simple) idea would be harder so see.

9.1.1 Exogenous objects

We start with the exogenous objects.

Assumption 9.1.1 The following objects are considered as given a priori.

1. An n-dimensional Wiener process W .

2. An n-dimensional strictly positive (in all components) column vector pro-
cess e = (e1, . . . , en)′ with dynamics of the form

det = atdt + btdWt (9.1)

where a isan(adapted)Rn valued process and b is an adapted process taking
values in the space of n×n matrices. With obvious notation we will write
the dynamics of ei as

deit = aitdt + bitdWt (9.2)
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The interpretation of this is again that, for each i, ei is a an endowment process
which provides the owner with a consumption stream at the rate eit units of the
consumption good per unit time.

9.1.2 Endogenous objects

The endogenous object in the model are as follows.

1. A risk free asset B, in zero net supply, with dynamics

dBt = rtBtdt

where the risk free rate r is determined in equilibrium.

2. A sequence of price dividend pairs
{
(Si, Di) : i = 1, . . . n

}
, all in in unit

net supply, where by assumption

dDi
t = eitdt.

In other words: Holding the asset Si provides the owner with the dividend
rate ei. We write the dynamics of Si as

dSi
t = αitS

i
tdt + γitS

i
tdWt, i = 1, . . . n.

where α and γ will be determined in equilibrium.

9.1.3 Economic agents

We consider d economic agent who wants to maximize expected utility of the
form

EP

[∫ T

0

Ui(t, cit)dt

]
, i = 1, . . . , d,

where ci is the consumption rate and Ui is the utility function for agent i.
We assume that Ui is strictly concave in the c variable, and we also need an
assumption on initial wealth.

Assumption 9.1.2 Denoting the wealth process of agent i by Xi we assume
that

d∑
i=1

Xi0 =
n∑

j=1

Sj
0

In other words: As a group, the agents have enough money to buy the dividend
paying assets S1, . . . Sn.

We will use the notation

uijt = portfolio weight for agent i on the risky asset Sj ,

uit = (ui1t, . . . , uint), portfolio weights process for the risky assets

1−
n∑

j=1

uijt = portfolio weight for agent i on the risk free asset,

cit = consumption rate for agent i.
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9.1.4 Equilibrium definition

The natural equilibrium conditions are

• The aggregate net demand will, at all times, be exactly one unit of each
asset S1, . . . , Sn.

• There is zero net demand of the risk free asset B.

• The consumption market will clear.

Formally this reads as follows.

Definition 9.1.1 An equilibrium is a family of portfolio vector processes {u?
it}

d
i=1,

consumption rates {c?
it}

d
i=1, and asset price processes (S1

t , . . . , Sn
t ) such that

1. Given the asset prices (S1
t , . . . , Sn

t ), the portfolio vector process u?
it and

the consumption rate process c?
it are optimal for agent i.

2. The markets for risky assets clear:

d∑
i=1

uijtXit = Sj
t , j = 1, . . . , n.

3. There is zero net demand for the risk free asset:

n∑
i=1

Xit

1−
n∑

j=1

uijt

 = 0.

4. The consumption market clears:

d∑
i=1

cit =
n∑

j=1

ejt.

9.2 The optimization problem of the individual
agent

In this chapter we do not prove existence of equilibrium, so we need the following
assumption.

Assumption 9.2.1 We assume the existence of an equilibrium, with a corre-
sponding stochastic discount factor process D?.

Using the martingale approach, the problem of the agent i is that of maximizing

EP

[∫ T

0

Ui(t, cit)dt

]
,
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subject to the budget constraint

E

[∫ T

0

M?
t citdt

]
≤ xi0.

The Lagrange function for this is∫ T

0

{Ui(t, cit)− λ?
i M

?
t cit} dt + λ?

i xi0.

where λ?
i is the Lagrange multiplier for agent i. Assuming an interior optimum,

this gives us the first order condition

U ′
ic(t, c

?
it) = λ?

i M
?
t ,

where λ?
i is determined by

E

[∫ T

0

M?
t c?

itdt

]
= xi0.

We thus see that the equilibrium is characterized by the following conditions.

U ′
ic(t, c

?
it) = λ?

i M
?
t , (9.3)

E

[∫ T

0

M?
t c?

itdt

]
= xi0, (9.4)

d∑
i=1

c?
it = ηt, (9.5)

where the aggregate endowment η is given by

ηt =
n∑

j=1

ejt. (9.6)

9.3 Constructing the representative agent

Let us consider the equilibrium of the previous chapter, with corresponding
equilibrium stochastic discount factor D?, consumption rates c?

1, . . . , c
?
d, and

Lagrange multipliers λ?
1, . . . , λ

?
d. These objects will, in particular, satisfy the

conditions (9.3)-(9.5).
We now define the utility function U for the representative agent as follows.

Definition 9.3.1 The utility function u : R+ ×R+ → R is defined by

U(t, c) = sup
c1,...,cd

d∑
i=1

1
λ?

i

Ui(t, ci)
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subject to the constraints

d∑
i=1

ci = c,

ci ≥ 0, i = 1, . . . , d.

For a given c we denote the optimal c1, . . . , cd by ĉ1(c), . . . , ĉd(c).

Using elementary optimization theory, we know that (for a given c ∈ R+) there
exists a nonnegative Lagrange multiplier q(c) such that the Lagrange function

d∑
i=1

1
λ?

i

Ui(t, ci)− q(c)

{
d∑

i=1

ci − c

}
,

is maximized by ĉ1(c), . . . , ĉd(c). Assuming an interior optimum, we thus see
that ĉ1(c), . . . , ĉd(c) are characterized by the first order conditions

U ′
ic(t, ĉi(c)) = λ?

i q(c), i = 1, . . . , d. (9.7)

From the Envelope Theorem we also know that

U ′
c(t, c) = q(c). (9.8)

9.4 The existence result

Let us again consider the multi-agent market model given above, with the corre-
sponding equilibrium, characterized by the price system (S?, B?), the stochastic
discount factor D?, consumption policies c?

1, . . . , c
?
d, and the corresponding La-

grange multipliers λ?
1, . . . , λ

?
1. Now let us consider the same market but with a

single agent, namely the representative agent of the previous section, with the
utility function specified in Definition 9.3.1, and initial wealth x0 =

∑d
i=1 xi0.

Using the martingale approach, the problem of the representative agent is that
of maximizing

EP

[∫ T

0

U(t, ct)dt

]
,

subject to the budget constraint

E

[∫ T

0

M?
t ctdt

]
≤ x0.

The Lagrange function for this is∫ T

0

{U(t, ct)− λM?
t ct} dt + λx0.
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where λ is the Lagrange multiplier for the representative agent. Assuming an
interior optimum, this gives us the first order condition

U ′
c(t, ĉt) = λM?

t , (9.9)

where λ is determined by

E

[∫ T

0

M?
t ĉtdt

]
= x0. (9.10)

We can now formulate the main result of this chapter.

Theorem 9.4.1 (i) The equilibrium price system (S?, B?), and stochastic dis-
count factor D? is also an equilibrium for the single agent defined by Def-
inition 9.3.1, so

ĉt = ηt,

where η is defined in (9.6)

(ii) In equilibrium, the multiplier λ for the representative agent is given by

λ = 1.

(iii) The multi agent equilibrium consumption processes c?
1t, . . . , c

?
dt are given

by
c?
it = ĉi(ηt),

where ĉi is given by Definition 9.3.1 and ηt =
∑n

j=1 ejt.

Proof. Since the optimization problem for the representative agent is convex,
the optimal consumption process ĉ and the Lagrange multiplier λ are uniquely
determined by the conditions (9.9)-(9.10). It is thus enough to show that

U ′
c(t, ηt) = M?

t , (9.11)

E

[∫ T

0

M?
t ηtdt

]
= x0, (9.12)

c?
it = ĉi(ηt). (9.13)

From (9.7) we have

U ′
ic(t, ĉi(ηt)) = λ?

i q(ηt), i = 1, . . . , d.

and from the equilibrium condition (9.3) we also have

U ′
ic(t, c

?
it) = λ?

i M
?
t , i = 1, . . . , d.

Since U ′
ic(t, c) is strictly decreasing in c, and since

d∑
i=1

c?
it =

d∑
i=1

ĉi(ηt) = ηt,
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it is easy to deduce that we have

q(ηt) = M?
t ,

ĉi(ηt) = c?
it, i = 1, . . . , d,

and we have thus proved (9.13).
From (9.8) we have

U ′
c(t, ηt) = q(ηt),

and since q(ηt) = M?
t we obtain

U ′
c(t, ηt) = M?

t ,

which proves (9.11).
The relation (9.13) follows from (9.4)-(9.5) and the relation x0 =

∑d
i xi0.

This result shows that every multi-agent equilibrium can be realized by
studying the (much simpler) equilibrium problem for the corresponding rep-
resentative agent. Note however, that in order to construct the representative
agent, we need to know the equilibrium Lagrange multipliers λ?

1, . . . , λ
?
1 for the

multi-agent model.
This finishes the abstract theory, but in the next chapter we will study two

concrete examples to see how the theory can be applied.
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Chapter 10

Two examples with
multiple agents

In this chapter we exemplify the theory developed in the previous chapter by
studying two concrete examples.

10.1 Log utility with different subsistence levels

In this example we consider a market with d agents, where the individual utility
functions are of the form

Ui(t, c) = e−δtUi(c), i = 1, . . . d.

where
Ui(c) = ln (c− c̄i) , i = 1, . . . , d.

The interpretation is that c̄i is the lowest acceptable level of consumption for
agent i. We also assume that there exists a scalar endowment process e with
dynamics

det = atdt + btdWt

where a and b are adapted and where W can be multi dimensional. Agent i has
an initial wealth which is a fraction βi of the total value (at time t = 0) of the
endowment, where obviously

d∑
j=1

βj = 1.

In order to determine the utility function of the representative agent we
must solve the following optimization problem where we have used the notation
αi = λ−1

i .

max
c1,...,cd

d∑
i=1

αi ln (ci − c̄i)

117
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under the constraints
d∑

i=1

ci = c,

and the positivity constraints

ci > c̄i, i = 1, . . . , d.

The Lagrangian of the problem is

L =
d∑

i=1

αi ln (ci − c̄i)− q

d∑
i=1

ci + qc

with first order conditions
αi

ci − c̄i
= q, i = 1, . . . , d.

This gives us
ĉi = c̄i +

αi

q
.

We can now determine q from the constraint
∑d

i=1 ĉi = c. We obtain

d∑
i=1

c̄i +
1
q

d∑
1

αj = c,

and, introducing the notation

c̄ =
d∑

i=1

c̄i

for aggregate minimum consumption level, we have

q =
∑d

1 αj

c− c̄
.

This gives us the optimal individual consumption as

ĉi = c̄i + αi
c− c̄∑d

1 αj

, i = 1, . . . , d, (10.1)

so the utility function for the representative agent is

U(t, c) = e−δtU(c),

where

U(c) =

(
d∑
1

αj

)
ln(c− c̄) +

d∑
i

αj lnαj −

(
d∑
1

αj

)
ln

(
d∑
1

αj

)
.
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This gives us

U ′(c) =
∑d

1 αj

c− c̄
,

which is no surprise, since we know from the Envelope Theorem, that q = U ′(c).
From Theorem 9.4.1 we know that we have

Zt = Mt = Uc(t, et).

so we obtain

Mt = e−δt

∑d
1 αj

et − c̄
.

In particular we have M0 = 1 so in equilibrium we have

d∑
1

αj = e0 − c̄.

We thus see that the equilibrium stochastic discount factor is given by

Mt = e−δt e0 − c̄

et − c̄
.

and from (10.1) we obtain the equilibrium consumption as

ĉit = c̄i + αi
et − c̄

e0 − c̄

It now remains to determine αi, . . . , αd and to this end we use the budget
constraint

EP

[∫ T

0

Mtĉitdt

]
= βiE

P

[∫ T

0

Mtetdt

]
, i = 1, . . . , d.

We obtain, after some calculations,

αi =
δ

1− e−δt
EP

[∫ T

0

Mt {βiet − c̄i} dt

]
, i = 1, . . . , d.

Using Proposition 7.4.1 we then have the following result.

Proposition 10.1.1 With notation as above, the following hold.

1. The equilibrium consumption is given by

ĉit = c̄i +
(et − c̄)
e0 − c̄

δ

1− e−δt
EP

[∫ T

0

Mt {βiet − c̄i} dt

]
, i = 1, . . . , d,

2. The stochastic discount factor is given by

Mt = e−δt e0 − c̄

et − c̄
.
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3. The equilibrium short rate is given by

rt = δ − at

et − c̄
− 1

2
‖bt‖2

(et − c̄)2
.

4. The Girsanov kernel is given by

ϕt = − bt

et − c̄
.

10.2 Log and square root utility

In this example we consider a market with only two agents, where the individual
utility functions are of the form

U1(t, c) = e−δt ln(c),
U2(c) = 2e−δt

√
c.

The endowment process e has dynamics

dee = atdt + btdWt,

and the initial wealth of agent i is a fraction βi of the total value of the endow-
ment stream e.

The utility function for the representative agent will obviously have the
form U(t, c) = e−δtU(c), where U is the optimal value function for the following
optimization problem where we have used the notation αi = λ−1

i , i = 1, 2.

max
c1,c2

α1 ln(c1) + 2α2
√

c2

subject to the constraint
c1 + c2 = c.

The Lagrangian of this is

L = α1 ln(c1) + 2α2
√

c2 − q(c1 + c2) + qc

and we obtain

ĉ1 =
α1

q
, ĉ2 =

(
α2

q

)2

. (10.2)

Plugging this into the constraint c1 + c2 = c gives us a second order equation
for q, and after some calculations we obtain

q =
α1

2c

{
1 +

√
1 + γc

}
(10.3)

where we have used the notation

γ =
(

α2

α1

)2

.
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From the Envelope Theorem we thus have

Uc(t, c) = e−δt α1

2c

{
1 +

√
1 + γc

}
and from general theory we know that

Zt = λMt = Uc(t, et).

In order to have Mt = Uc(t, et), we use the fact that M0 = 1, and normalize by
choosing α1 and α2 such that Uc(0, e0) = 1. This gives us

α1 =
2e0

1 +
√

1 + γe0
. (10.4)

The stochastic discount factor M is thus given by

Mt = e−δt e0

et

1 +
√

1 + γet

1 +
√

1 + γe0
.

We can now compute the γ by using the budget constraint for agent 1, i.e.

EP

[∫ T

0

Mtĉ1tdt

]
= β1E

P

[∫ T

0

Mtetdt

]
.

From (10.2)-(10.3) we have

ĉ1t =
2et

1 +
√

1 + γet

so the budget constraint takes the form

2e0

δ

1− e−δT

1 +
√

1 + γe0
=

β1e0

1 +
√

1 + γe0
EP

[∫ T

0

e−δt
(
1 +

√
1 + γet

)
dt

]
giving us the equation

2
δ

(
1− e−δT

)
= β1E

P

[∫ T

0

e−δt
(
1 +

√
1 + γet

)
dt

]
. (10.5)

This equation determines γ, and (10.4) will then determine α1. We summarize
as follows.

Proposition 10.2.1 WIth γ determined by (10.5), the following hold.

1. The equilibrium consumption plans are given by

ĉ1t =
2et

1 +
√

1 + γet
,

ĉ2t =
4γe2

t(
1 +

√
1 + γet

)2
2. The stochastic discount factor is given by

Mt = e−δt e0

et

1 +
√

1 + γet

1 +
√

1 + γe0
.
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Part III

Models with Partial
Information
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Chapter 11

Stating the Problem

In the previous chapters we have silently assumed that all processes, price pro-
cesses as well as underlying factor processes, are perfectly observable, but
we will now relax this assumption. To take a concrete example, let us recall
the simple CIR model from Chapter 5. We have an underlying factor process
Y with dynamics

dYt = µ(Yt)dt + σ(Yt)dWt,

and we have a constant returns to scale production technology process S with
dynamics

dSt = α(Yt)Stdt + Stγ(Yt)dWt.

Previously we also assumed the existence of a representative agent with utility
of the form

EP

[∫ T

0

U(t, Yt, ct)dt + Φ(XT )

]
.

In Chapter 5 the factor process Y was assumed to be observable, but this is
now completely changed by the following assumption.

Assumption 11.0.1 We cannot observe the process Y directly. The only in-
formation available us is the one generated by the technology process S. At time
t, the information available to us is thus given by FS

t and, in particular, our
controls must be adapted to the observable filtration FS.

Given this assumption we note the following.

• Since we cannot observe Y , a local utility function of the form U(t, Yt, ct)
no longer makes sense. Instead we have to replace it by a utility function
of the form

EP

[∫ T

0

U(t, ct)dt + Φ(XT )

]
.
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• Since we observe Y only indirectly, through observations of S, it seems
intuitively clear that we must (somehow) estimate Yt given the information
contained in FS

t .

• We are thus led to the filtering problem of determining the conditional
distribution L

(
Yt| FS

t

)
of Yt conditional on FS

t .

In the next chapters the reader will therefore find a reasonably self contained
introduction to non linear filtering theory.



Chapter 12

Non Linear Filtering
Theory

In this chapter we will present some of the basic ideas and results of non linear
filtering, which we need in oder to study equilibrium models with partial obser-
vations. For the benefit of the interested reader we present some more advanced
results in Appendix B.

12.1 The filtering model

We consider a filtered probability space (Ω,F , P,F) where as usual the filtration
F = {Ft; t ≥ 0} formalizes the idea of an increasing flow of information. The
basic model of non linear filtering consists of a pair of processes (Y, Z) with
dynamics as follows.

dYt = atdt + dMt, (12.1)
dZt = btdt + dWt. (12.2)

In this model the processes a and b are allowed to be arbitrary F-adapted
processes, M is an F-martingale, and W is an F-Wiener process. At the moment
we also assume that M and W are independent. We will below consider models
where Y and Z are multidimensional, and where there is correlation between
M , and W but for the moment we only consider this simple model.

Remark 12.1.1 Note that M is allowed to be an arbitrary martingale, so it
does not have to be a Wiener process. The assumption that W is Wiener is,
however, very important.

The interpretation of this model is that we are interested in the state pro-
cess Y , but that we cannot observe Y directly. What we can observe is instead
the observation process Z, so our main problem is to draw conclusions about
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Y , given the observations of Z. We would for example like to compute the
condition expectation

Ŷt = E
[
Yt| FZ

t

]
,

where FZ
t = σ {Zs, s ≤ t} is the information generated by Z on the time interval

[0, t] or, more ambitiously, we would like to compute L(Yt|FZ
t ), i.e. the entire

conditional distribution of Yt given observations of Z on [0, t].
A very common concrete example of the model above is given by a model of

the form

dYt = µ(t, Yt)dt + σ(t, Yt)dVt,

dZt = b(Yt)dt + dWt

where V and W are independent Wiener processes. In this case we can thus
observe Y indirectly through the term b(Yt), but the observations are corrupted
by the noise generated by W .

12.2 The innovation process

Consider again the Z-dynamics

dZt = btdt + dWt.

Our best guess of bt given FZ
t is obviously given by b̂t = E

[
bt| FZ

t

]
, and W is

a process with zero mean so, at least intuitively, we expect that we would have

E
[
dZt| FZ

t

]
= b̂tdt.

This would imply that the “detrended” process ν, defined by dνt = dZt − b̂tdt
should be an FZ-martingale. As we will see below, this conjecture is correct
and we can even improve on it, but first the formal definition.

Definition 12.2.1 The innovation process ν is defined by

dνt = dZt − b̂tdt.

We now have the following central result, which we will use repeatedly in
connection with optimal investment models under partial information.

Proposition 12.2.1 The innovation process ν is an FZ-Wiener process.

Proof. We give a sketch of the proof. According to the Levy Theorem, it is
enough to prove the following

(i) The process ν is an FZ-martingale.

(ii) The process ν2
t − t is an FZ-martingale.
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To prove (i) we use the definition of ν to obtain

EZ
s [νt − νs] = EZ

s [Zt − Zs]− EZ
s

[∫ t

s

b̂udu

]
,

where we have used the shorthand notation

EZ
s [·] = E

[
·| FZ

s

]
.

From the Z-dynamics we have

Zt − Zs =
∫ t

s

budu + Wt −Ws,

so we can write

EZ
s [νt − νs] = EZ

s

[∫ t

s

{
bu − b̂u

}
du

]
+ EZ

s [Wt −Ws] .

Using iterated expectations and the F-Wiener property of W we have

EZ
s [Wt −Ws] = EZ

s [E [Wt −Ws| Fs]] = 0.

We also have

EZ
s

[∫ t

s

{
bu − b̂u

}
du

]
=

∫ t

s

EZ
s

[
bu − b̂u

]
du =

∫ t

s

EZ
s

[
EZ

u

[
bu − b̂u

]]
du

=
∫ t

s

EZ
s

[
b̂u − b̂u

]
du = 0,

which proves (i).
To prove (ii) we use the Ito formula to obtain

dν2
t = 2νtdνt + (dνt)2.

Since dνt = (bt − b̂t) + dWt we see that (dνt)2 = dt, so we have

dν2
t − dt = 2νtdνt.

From (i) we know that ν is a martingale so the term 2νtdνt should be a mar-
tingale increment, which proves (ii).

Remark 12.2.1 Note that we have, in a sense, cheated a little bit, since the
proof of (ii) actually requires a stochastic calculus theory which covers stochastic
integrals w.r.t. general martingales and not only Wiener processes. This is the
case both when we use the Ito formula on ν2 without knowing a priori that ν is
an Ito process, and the conclusion that νtdνt is a martingale increment without
having an a priori guarantee that dνt is a stochastic differential w.r.t. a Wiener
process. Given this general stochastic calculus, the proof is completely correct.
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The innovation process ν will play a very important role in the theory and
in eh economic applications, and to highlight this role we now reformulate the
result above in a slightly different way.

Proposition 12.2.2 The Z dynamics can be written as

dZt = b̂tdt + dνt, (12.3)

where ν is an FZ-Wiener process.

Remark 12.2.2 Note that we now have two expressions for the Z dynamics.
We have the original dynamics

dZt = btdt + dWt,

and we have
dZt = b̂tdt + dνt,

it is now important to realize that the Z process in the left hand of these equations
is, trajectory by trajectory, exactly the same process. The difference is that
the first equation gives us the Z- dynamics relative to the filtration F, whereas
the second equation gives us the Z-dynamics w.r.t. the FZ-filtration.

12.3 Filter dynamics and the FKK equations

We now go on to derive an equation for the dynamics of the filter estimate
Ŷ . From the Y dynamics, and from the previous argument concerning Z, the
obvious guess is that the term dŶt − âtdt should be a martingale, and this is
indeed the case.

Lemma 12.3.1 The process m, defined by

dmt = dŶt − âtdt,

is an FZ-martingale.

Proof. We have

EZ
s [mt −ms] = EZ

s [Yt − Ys]− EZ
s

[∫ t

s

âudu

]
= EZ

s

[∫ t

s

{au − âu} du

]
+ EZ

s [Mt −Ms]

We have

EZ
s

[∫ t

s

{au − âu} du

]
= EZ

s

[∫ t

s

EZ
s [au − âu] du

]
= EZ

s

[∫ t

s

{âu − âu} du

]
= 0,
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and we also have

EZ
s [Mt −Ms] = EZ

s [E [Mt −Ms| Fs]] = 0.

We thus have the filter dynamics

dŶt = âtdt + dmt,

where m is an FZ-martingale, and it remains to see if we can say something
more specific about m. From the definition of the innovation process ν it seems
reasonable to hope that we have the equality

FZ
t = Fν

t , (12.4)

and, if this conjecture is true, the Martingale Representation Theorem for
Wiener processes would guarantee the existence of an adapted process h such
that

dmt = htdνt.

The conjecture (12.4) is known as the “innovations hypothesis” and in its time
it occupied a minor industry. In discrete time the corresponding innovations
hypothesis is more or less trivially true, but in continuous time the situation is
much more complicated. As a matter of fact, the (continuous time) innovations
hypothesis is not generally true, but the good news is that Fujisaki, Kallianpur
and Kunita proved the following result, which we quote from [16].

Proposition 12.3.1 There exists an adapted process h such that

dmt = htdνt. (12.5)

We thus have the filter dynamics

dŶt = âtdt + htdνt, (12.6)

and it remains to determine the precise structure of the gain process h. WE
have the follwoing result.

Proposition 12.3.2 The gain process h is given by

ht = Ŷtbt − Ŷtb̂t (12.7)

Proof. We give a slightly heuristic proof. The full formal proof uses the same
idea as below, but it is more technical. We start by noticing that, for s < t we
have (from iterated expectations)

E
[
YtZt − ŶtZt

∣∣∣FZ
s

]
= 0
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This leads to the heuristic identity

E
[
d(Y Z)t − d(Ŷ Z)t

∣∣∣FZ
s

]
= 0 (12.8)

From the (general) Ito formula we have, using the independence between W
and M ,

d(Y Z)t = Ytbtdt + YtdWt + Ztatdt + ZtdMt

The Ito formula applied to (12.6) and (12.3) gives us

d(Ŷ Z)t = Ŷtb̂tdt + Ŷtdνt + Ztâtdt + Zthdνt + hdt,

where the term hdt comes from the equality (dνt)2 = dt, since ν is a Wiener
process. Plugging these expressions into the formula (12.8) gives us the expres-
sion (

Ŷtbtt + Ztât − Ŷtb̂t − Ztât − ht

)
dt = 0.

form which we conclude (12.7). If we collect our findings we have the main re-

sult of nonlinear filtering, namely the Fujisaki-Kallianpur-Kunita filtering equa-
tions.

Theorem 12.3.1 (The FKK Filtering Equations) The filtering equations
are

dŶt = âtdt +
{

Ŷtbt − Ŷtb̂t

}
dνt, (12.9)

dνt = dZt − b̂tdt. (12.10)

A simple calculation shows that we can write the gain process h as

ht = E
[(

Yt − Ŷt

)(
bt − b̂t

)∣∣∣FZ
t

]
, (12.11)

so we see that the innovations are amplified by the conditional error covariance
between Y and b.

12.4 The general FKK equations

We now extend our filtering theory to a more general model.

Assumption 12.4.1 We consider a filtered probability space {Ω,F , P,F}, car-
rying a martingale M and a Wiener process W , where M and W are not as-
sumed to be independent. On this space we have the model

dYt = atdt + dMt, (12.12)
dZt = btdt + σtdWt, (12.13)

where a and b are F adapted scalar processes. The process σ is assumed to be
strictly positive and FZ adapted.
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We note that the assumption about σ being FZ adapted is not so much an
assumption as a result, since the quadratic variation property of W implies that
we can in fact estimate σ2

t without error on a arbitrary short interval. The
moral of this is that although the drift b will typically depend in some way on
the state process Y , we can not let σ be of the form σt = σ(Yt), since then the
filter would trivialize. We also note that we cannot allow σ to be zero at any
point, since then the filter will degenerate.

In a setting like this it is more or less obvious that the natural definition of
the innovation process ν is by

dνt =
1
σt
{dZt − πt(b) dt} ,

and it is not hard to prove that ν is a Wiener process. We can now more or less
copy the arguments in Section 12.3, and after some work we end up with the
following general FKK equations.

Theorem 12.4.1 (Fujisaki-Kallianpur-Kunita) With assumptions as above
we have the following filter equations.

dŶt = âtdt +
[
D̂t +

1
σt

{
Ŷtbt − Ŷtb̂t

}]
dνt,

dνt =
1
σt

{
dZt − b̂tdt

}
.

where

Dt =
d〈M,W 〉t

dt

Furthermore, the innovation process ν is an FZ Wiener process.

A proper definition of the process D above requires a more general theory for
semimartingales, but for most applications the following results are sufficient.

• If M has continuous trajectories, then

dDt = dM · dWt,

with the usual Ito multiplication rules.

• If M is a pure jump process without a Wiener component, then

dDt = 0.

12.5 Filtering a Markov process

A natural class of filtering problems to study is obtained if we consider a time
homogeneous Markov process Y , living on some state space M, with generator
G, and we are interested in estimating f(Yt) for some real valued function f :
M→ R.
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12.5.1 The Markov filter equations

If f is in the domain of G we can then apply the Dynkin Theorem and obtain
the dynamics

df(Yt) = (Gf) (Yt)dt + dMt, (12.14)

where M is a a martingale.

Remark 12.5.1 For the reader who is unfamiliar with Dynkin and general
Markov processes we note that a typical example would be that Y is governed by
an SDE of the form

dYt = µ(Yt)dt + σ(Yt)dW 0
t

where W 0 is a a Wiener process. In this case the Ito formula will give us

df(Yt) =
{

µ(Yt)f ′(Yt) +
1
2
σ2(Yt)f ′′(Yt)

}
dt + σ(Yt)f ′(Yt)dW 0

t

so in this case the generator G is given by

G = µ(y)
∂

∂y
+

1
2
σ2(y)

∂2

∂y2
.

and
dMt = σ(Yt)f ′(Yt)dW 0

t .

Let us now assume that the observations are of the form

dZt = b(Yt)dt + dWt,

where b is a function b : M → R, and W is a Wiener process which, for
simplicity, is independent of Y . The filtration F is defined as

Ft = FY
t ∨ FW

t .

We thus have the filtering model

df(Yt) = (Gf) (Yt)dt + dMt,

dZt = b(Yt)dt + dWt,

and if we introduce the notation

πt(g) = E
[
g(Yt)| FZ

t

]
. (12.15)

for any real valued function g : M → R, we can apply the FKK equations to
obtain

dπt(f) = πt(Gf) dt + {πt(fb)− πt(f) · πt(b)} dνt, (12.16)
dνt = dZt − πt(b) dt. (12.17)
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12.5.2 On the filter dimension

We would now like to consider the equation (12.16) as an SDE driven by the
innovation process ν, but the problem is that the equation is not closed, since
in the SDE for πt(f) we have the expressions πt(Gf), πt(fb), and πt(b) which all
have to be determined in some way.

The obvious way to handle, for example, the term πt(b), is of course the
following

• Use Dynkin on b to obtain

db(Yt) = (Gb) (Yt)dt + dM b
t ,

where M b is a martingale.

• Apply the FKK equations to the system

db(Yt) = (Gb) (Yt)dt + dM b
t ,

dZt = b(Yt)dt + dWt,

to obtain the filter equation

dπt(b) = πt(Gb) dt +
{
πt

(
b2
)
− (πt(b))2

}
dνt

We now have an equation for dπt(b), but this equation contains (among other
things) the term πt

(
b2
)
, so we now need an equation for this term. In order to

derive that equation, we can of course apply Dynkin to the process b2(Yt) and
again use the FKK equations, but this leads to the equation

dπt

(
b2
)

= πt

(
Gb2
)
dt +

{
πt

(
b3
)
− πt

(
b2
)
· πt(b)

}
dνt

and we now have to deal with the term πt

(
b3
)

etc.
As the reader realizes, this procedure will in fact lead to an infinite number

of filtering equations. This is in fact the generic situation for a filtering problem,
and the argument is roughly as follows.

• In general there will not exist a finite dimensional sufficient statistic for
the Y process.

• In particular, an old estimate πt(Y ), plus the new information dνt is not
sufficient to allow us to determine an updated estimate πt+dt(Y ).

• In order to be able to update, even such a simple object as the condi-
tional expectation πt(Y ), we will, in the generic case, need the entire
conditional distribution L(Yt|FZ

t ).

• The conditional distribution is typically an infinite dimensional object.

• In the generic case we can therefore expect to have an infinite dimen-
sional filter.
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An alternative way of viewing (12.16) is now to view it, not as a scalar equation
for a fixed choice of f , but rather as an infinite number of equations, with one
equation for each (say, bounded continuous) f . Viewed in this way, the filtering
equation (12.16) represents an infinite dimensional system for the determination
of the entire condition distribution L(Yt|FZ

t ). We will capitalize on this idea
later when we derive the dynamics for the conditional density.

12.5.3 Finite dimensional filters

From the discussion above it is now clear that the generic filter is infinite di-
mensional, the reason being that we need the entire conditional distribution of
Y in order to update our filter estimates, and this distribution is typically an
infinite dimensional object. This is, in some sense, bad news, but there is really
nothing we can do about the situation - it is simply a fact of life.

We can, however, also draw some more positive conclusions from the dimen-
sion argument, and after a moments reflection we have the following important
idea.

Idea 12.5.1 If we know on a priori grounds that, for all t, the conditional
distribution L(Yt|FZ

t ) belongs to a class of probability distributions which is
parameterized by a finite number of parameters, then we can expect the
have a finite dimensional filter. The filter equations should then provide us with
the dynamics of the parameters for the conditional distribution.

There are in fact two well known models when we have a priori information
of the type above. The are known as the Kalman model and the Wonham
model respectively. We will discuss them in detail later, but we introduce them
already at this point.

The Kalman model:
The simplest case of a Kalman model is given by the linear system

dYt = aYtdt + cdW 0
t ,

dZt = bYtdt + dWt,

where W 0 and W are, possibly correlated, Wiener processes. For this
model it is easy to see that the pair (Y, Z) will be jointly Gaussian. We
then recall the standard fact that if (ξ, η) is a pair of Gaussian vectors,
then the conditional distribution L{ξ | η} will also be Gaussian. This
property can be shown to extend also to the process case, so we conclude
that the conditional distribution L(Yt|FZ

t ) is Gaussian. The Gaussian
distribution is, however, determined by only two parameters - the mean
and the variance, so for this model we expect to have a two dimensional
filter with one equation for the conditional mean and another for the
conditional variance.
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The Wonham model:
In the Wonham model, the process Y is a continuous time Markov chain
which takes values in the finite state space {1, 2, . . . , n}, and where the
observation process is of the form

dZt = b(Yt)dt + dWt.

For this model it is immediately obvious that the conditional distribution
L(Yt|FZ

t ) is determined by a finite number of parameters, since it is in
fact determined by the conditional probabilities p1

t , . . . , p
n
t where pi

t =
P
(
Yt = i

∣∣FZ
t

)
. We thus expect to have an n-dimensional filter.

12.6 The Kalman filter

In this section we will discuss the Kalman filter in some detail. We will present
the full multidimensional Kalman model and provide the

12.6.1 The Kalman model

The basic Kalman model is as follows.

dYt = AYtdt + CdW 0
t ,

dZt = BYtdt + DdWt,

All processes are allowed to be vector valued with Yt ∈ Rk Zt ∈ Rk, Wt ∈ Rn,
and W 0 ∈ Rd. The matrices A, C, B and D have the obvious dimensions, and
we need two basic assumptions.

Assumption 12.6.1 We assume the following.

1. The n× n matrix D is invertible.

2. The Wiener processes W and W 0 are independent.

3. The distribution of Y0 is Gaussian with mean vector y0 and covariance
matrix R0.

The independence assumption, and also the Gaussian assumption concerning Y0,
can be relaxed, but the invertibility of D is important can cannot be omitted.

This model can of course be treated using the FKK theory, but since the
vector valued case is a bit messy we only carry out the derivation in detail for
the simpler scalar case in Section 12.6.2. In Section 12.6.3 we then state the
general result without proof.
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12.6.2 Deriving the filter equations in the scalar case

In this section we will derive the filter equations, but for the general vector
valued Kalman model this turns out to be a bit messy. We therefore confine
ourselves to driving the filter in the special case of a scalar model of the form

dYt = aYtdt + cdW 0
t ,

dZt = Ytdt + dWt,

where all processes and constants are scalar. From the discussion in Section
12.5.3 we know that the conditional distribution L

(
Yt| FZ

t

)
is Gaussian, so it

should be enough to derive filter equations for the conditional man and variance.
The FKK equation for the conditional mean is given by

dπt(Y ) = aπt(Y ) dt +
{

πt

(
Y 2
)
− (πt(Y ))2

}
dνt, (12.18)

dνt = dZt − bπt(Y ) dt. (12.19)

This would be a closed system if we did not have the term πt

(
Y 2
)
. Along

the lines of the discussion in Section 12.5.3 we therefore use Ito on the process
Y 2 to obtain

dY 2
t =

{
2aY 2

t + c2
}

dt + 2cYtdW 0
t .

This will give us the filter equation

dπt

(
Y 2
)

=
{
2aπt

(
Y 2
)

+ c2
}

dt +
{
πt

(
Y 3
)
− πt

(
Y 2
)
· πt(Y )

}
dνt. (12.20)

We now have the term πt

(
Y 3
)

to deal with, and a naive continuation of the
procedure above will produce an infinite number of filtering equations for all
conditional moments πt

(
Y k
)
, where k = 1, 2, . . . .

In this case, however, because of the particular dynamical structure of the
model, we know that the conditional distribution L

(
Yt| FZ

t

)
is Gaussian. We

therefore define the conditional variance process H by

Ht = E

[(
Yt − Ŷt

)2
∣∣∣∣FZ

t

]
= πt

(
Y 2
)
− (πt(Y ))2.

In order to obtain a dynamical equation for H we apply Ito to (12.18) to obtain

d(πt(Y ))2 =
{
2a(πt(Y ))2 + H2

t

}
dt + 2πt(Y ) Htdνt.

Using this and equation (12.20) we obtain the H dynamics as

dHt =
{
2aHt + c2 −H2

t

}
dt +

{
πt

(
Y 3
)
− 3πt

(
Y 2
)
πt(Y ) + 2(πt(Y ))3

}
dνt

We can now use the Gaussian structure of the problem and recall that for any
Gaussian variable ξ we have

E
[
ξ3
]

= 3E
[
ξ2
]
E [ξ]− 2(E [ξ])3.
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Since L
(
Yt| FZ

t

)
is Gaussian we thus conclude that

πt

(
Y 3
)
− 3πt

(
Y 2
)
πt(Y ) + 2(πt(Y ))3 = 0,

so, as expected, H is in fact deterministic and we have the Kalman filter

dŶt = aŶtdt + Htdνt,

Ḣt = 2aHt + c2 −H2
t ,

dνt = dZt − Ŷtdt.

The first equation gives us the evolution of the conditional mean. The second
equation, which is a so called Riccati equation, gives us the evolution of the
conditional variance. We also note that since the conditional distribution is
Gaussian, the Kalman filter does in fact provide us with the entire conditional
distribution, and not just the conditional mean and variance.

12.6.3 The full Kalman model

We now return to the vector model

dYt = AYtdt + CdW 0
t ,

dZt = BYtdt + DdWt.

This model can be treated very much along the lines of the scalar case in the
previous section, but the calculations are a bit more complicated. We thus
confine ourselves to stating the final result.

Proposition 12.6.1 (The Kalman Filter) With notation and assumptions
as above we have the following filter equations where ′ denote transpose.

dŶt = aŶtdt + RtB
′(DD′)−1dνt, (12.21)

Ṙt = ARt + RtA
′ −RtB

′(DD′)−1BRt + CC ′, (12.22)

dνt = dZt −BŶtdt. (12.23)

Furthermore, the conditional error covariance matrix is given by R above.

12.7 The Wonham filter

We consider again the Wonham model. In this model, the Y process is a time
homogeneous Markov chain on a finite state space D, and without loss of gen-
erality we may assume that D = {1, 2 . . . , n}. We denote the intensity matrix
of Y by H, and the probabilistic interpretation is that

P (Yt+h = j |Yt = i ) = Hijh + o(h), i 6= j,

Hii = −
∑
j 6=i

Hij .
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We cannot observe Y directly, but instead we can observe the process Z, defined
by

dZt = b(Yt) + dWt, (12.24)

where W is a Wiener process. In this model it is obvious that the conditional
distribution of Y will be determined by the conditional probabilities, so we
define the indicator processes δ1

t , . . . δn
t by

δi(t) = I {Yt = i} , i = 1, . . . , n,

where I {A} denotes the indicator for an event A, so I {A} = 1 if A occurs,
and zero otherwise. The Dynkin Theorem, and a simple calculation gives us the
equation

dδi(t) =
n∑

j=1

Hjiδj(t)dt + dM i
t , i = 1, . . . , n, (12.25)

where M1, . . . Mn are martingales. On vector form this we can thus write

dδ(t) = H ′δ(t)dt + dMt.

Applying the FKK Theorem to the dynamics above gives us the filter equations

dπt(δi) =
n∑

j=1

Hjiπt(δj) dt + {πt(δib)− πt(δi) πt(b)} dνt, i = 1, . . . , n,

dνt = dZt − πt(b) dt

We now observe that, using the notation bi = b(i), we have the obvious relations

b(Yt) =
n∑

j=1

bjδj(t), δi(t)b(Yt) = δi(t)bi.

which gives us

πt(b) =
n∑

j=1

bj δ̂j(t), πt

(
δib
)

= δ̂i(t)bi.

Plugging this into the FKK equations gives us the Wonham filter.

Proposition 12.7.1 (The Wonham Filter) With assumptions as above, the
Wonham filter is given by

dδ̂i(t) =
n∑

j=1

Hjiδ̂j(t)dt +

biδ̂i(t)− δ̂i(t) ·
n∑

j=1

bj δ̂j(t)

 dνt, (12.26)

dνt = dZt −
n∑

j=1

bj δ̂j(t)dt, (12.27)

where
δ̂i(t) = P

(
Yt = i

∣∣FZ
t

)
, i = 1, . . . , n.
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12.8 Exercises

Exercise 12.1 Consider the filtering model

dXt = atdt + dVt

dZt = btdt + σtdWt

where

• The process σ is FZ
t adapted and positive.

• W and V are, possibly correlated, Wiener processes.

Prove, along the lines in the lecture notes, that the filtering equations are given
by

dX̂t = âtdt +
[
D̂t +

1
σt

{
X̂tbt − X̂tb̂t

}]
dνt

dνt =
1
σt

{
dZt − b̂tdt

}
Dt =

d〈V,W 〉t
dt

Exercise 12.2 Consider the filtering model

dZt = Xdt + dWt

where X is a random variable with distribution function F , and W is a Wiener
process which is independent of X. As usual we observe Z. Write down the infi-
nite system of filtering equations for the determination of Πt [X] = E

[
X| FZ

t

]
.

12.9 Notes

The original paper [16] provides a very readable account of the FKK theory.
The two volume set [28] is a standard reference on filtering. It includes, apart
from the Wiener driven FKK framework, also a deep theory of point processes
and the related filtering theory. It is, however, not an easy read. A far reaching
account of Wiener driven filtering theory is given in [1].
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Chapter 13

Production Equilibrium
under Partial Information

In this chapter we will study a simple version of the CIR model, with the
difference that the factor process cannot be observed directly.

13.1 The model

We assume the existence of a scalar production technology (with the usual
interpretation) with dynamics given by

dSt = YtStdt + StσdW s
t , (13.1)

where W s is Wiener. The scalar factor process Y , determining the rate of return
on physical investment, is assumed to have dynamics given by

dYt = (AYt + B)dt + CdW y
t , (13.2)

where W y is a Wiener process. For notational simplicity we assume that W s

and W y are independent. The filtration generated by W s and W y is denoted
by F, so Ft = σ {W s

u ,W y
u ; 0 ≤ u ≤ t}.

We consider a representative agent who only has access to the information
generated by observations of the S process, so all his actions must be adapted
to the filtration FS , where FS

t = σ {Su; 0 ≤ u ≤ t}. The agent can invest in
the following assets.

• The physical production process S.

• A risk free asset B in zero net supply with dynamics

dBt = rtBtdt,

where the FS-adapted risk free rate of return r will be determined in
equilibrium.

143
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The controls available to the agent are the consumption rate c and the
portfolio weight u on physical investment and both of these are required to be
FS-adapted. The object of the agent is to maximize expected utility of the form

EP

[∫ T

0

U(t, ct)dt

]
.

13.2 Projecting the S dynamics.

We define the process Z by

dZt =
dSt

σSt
(13.3)

and we note that FZ = FS . We can write the observation dynamics as

dZt =
Yt

σ
dt + dW s

t .

and the innovations process ν is now defined as usual by

dνt = dZt −
ŷt

σ
dt, (13.4)

From proposition 12.2.1 we know that ν is an FS Wiener process. Plugging
(13.3) into (13.4) gives us the S-dynamics projected onto the observable filtra-
tion FS as

dSt = ŷtStdt + σStdνt. (13.5)

13.3 The filtering equations

Recalling the dynamics of the pair (Y, Z) we have

dYt = (AYt + B)dt + CdW y
t ,

dZt =
Yt

σ
dt + dW s

t ,

and we recognize this as a standard Kalman model. We thus have the Kalman
filter equations

dŷt = (Aŷt + B) + Htdνt,

with the innovations process ν defined by (13.4), and the gain H satisfying a
Riccati equation.

13.4 The control problem

In order to formulate the partially observed control problem, we start by deriving
the relevant portfolio dynamics, but first we introduce a Markovian assumption
concerning the risk free rate.
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Assumption 13.4.1 We assume that the risk free rate process r is of the form

rt = r(t, Xt, ŷt)

where X denotes portfolio value and r(t, x, y) is a deterministic function.

From (13.5) and from standard theory we see that the portfolio value dy-
namics are given by

dXt = utXt(ŷt − rt)dt + (rtXt − ct)dt + utXtσdνt.

where u is the weight on the risky asset.
We are thus ready to state the control problem. The object is to maximize

the expected utility

EP

[∫ T

0

U(t, ct)dt

]
.

over FS-adapted controls (c, u), given the system

dXt = utXt(ŷt − rt)dt + (rtXt − ct)dt + utXtσdνt, (13.6)
dŷt = (Aŷt + B) + Htdνt. (13.7)

and the constraint ct ≥ 0. This, however, is a standard problem with full in-
formation so we can apply DynP in a standard manner. Denoting the optimal
value function by V (t, x, y) we have the following HJB equation.

Vt(t, x, y) + sup
c,u

{U(t, c) + Ac,uV (t, x, y)} = 0,

V (T, x) = 0,
(13.8)

where the operator Ac,u is defined as

Ac,uV = u(y − r)xVx + (rx− c)Vx +
1
2
u2x2σ2Vxx

+ (Ay + B)Vy +
1
2
H2Vyy + uxσHVxy.

Assuming an interior optimum, we have the first order conditions

U ′
c = Vx,

û =
r − y

σ2

(
Vx

xVxx

)
− H

σ

(
Vxy

xVxx

)
.

13.5 Equilibrium

Since the risk free asset is in zero net supply, the equilibrium condition is û = 1.
Inserting this into the first order condition above we obtain the main result.
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Proposition 13.5.1 The risk free rate and the Girsanov kernel ϕ are given by

r(t, x, y) = y +
xVxx

Vx
σ2 +

Vxy

Vx
Hσ, (13.9)

ϕ(t, x, y) =
xVxx

Vx
σ +

Vxy

Vx
H. (13.10)

It is instructive to compare this result to the result we would have obtained
if the factor process Y had been observable. There are similarities as well as
differences. At first sight it may seem that the only difference is that Y is
replaced by ŷ, but the situation is in fact a little bit more complicated than
that.

• For the fully observable model the (S, Y ) dynamics are of the form

dSt = YtStdt + StσdW s
t ,

dYt = (AYt + B)dt + CdW y
t ,

where W s and W y are independent.

• For the partially observable model, the process Y is replaced by the filter
estimate ŷ, and the (S, ŷ) dynamics are of the form

dSt = ŷtStdt + σStdνt.

dŷt = (Aŷt + B) + Htdνt.

Firstly we note that whereas S and Y are driven by independent Wiener
processes, S and ŷ are driven by the same Wiener process, namely the in-
novation ν. Secondly we note that the diffusion term C in the Y dynamics
is replaced by H in the ŷ dynamics.

• Using Proposition 13.5.1 above, as well as Proposition 5.4.1 we see that the
formulas for the short rate in the observable and the partially observable
case are given as follows.

r(t, x, y) = y +
xVxx

Vx
σ2,

r(t, x, y) = y +
xVxx

Vx
σ2 +

Vxy

Vx
Hσ.

Apart from the fact that y refers to Y in the first formula and to ŷ in
the second one, there are two differences between these formulas. Firstly,
there is no mixed term in the completely observable model. We would
perhaps have expected a term of the form

Vxy

Vx
Cσ

but this term vanishes because of the assumed independence between W s

and W y. Secondly, the function V is not the same in the two formulas.
We recall that V is the solution to the HJB equation, and this equation
differs slightly between the two models.
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13.6 Notes

The model studied above is a slightly simplified version of the model in [17].
It is also a special case of the model in [10], where a Kalman model with non-
Gaussian inital data is analyzed.
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Chapter 14

Endowment Equilibrium
under Partial Information

In this chapter we study a partially observable version of the endowment model
of Chapter 7.

14.1 The model

The main assumptions are as follows.

Assumption 14.1.1 We assume the existence of an endowment process e of
the form

det = atdt + btdWt. (14.1)

Furthermore, we assume the following.

• The observable filtration is given by Fe, i.e. all observations are generated
by the endowment process e.

• The process a is not assumed to be observable, so it is not adapted to Fe.

• The process b is adapted to Fe.

• The process b is assumed to satisfy the non-degeneracy condition

bt > 0, P -a.s. for all t. (14.2)

Apart from these assumptions, the setup is that of Chapter 7, so we assume
that there exists a risky asset S in unit net supply, giving the holder the right
to the endowment e. We also assume the existence of a risk free asset in zero net
supply. The initial wealth of the representative agent is assumed to equal S0 so
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the agent can afford to buy the right to the endowment e. The representative
agent is as usual assumed to maximize utility of the form

E

[∫ T

0

U(t, ct)dt

]
.

14.2 Projecting the e-dynamics

As usual for partially observable models, we start by projecting the relevant
process dynamics onto the observable filtration. We thus define the process Z
by

dZt =
det

bt
(14.3)

so that
dZt =

at

bt
dt + dWt,

and define the innovation process ν as usual by

dνt = dZt −
ât

bt
dt,

where
ât = E [at| Fe

t ]

This gives us the Z dynamics on the Fe filtration as

dZt =
ât

bt
dt + dνt,

and plugging this into (14.3) gives us the e dynamics projected onto the Fe

filtration as
det = âtdt + btdνt. (14.4)

14.3 Equilibrium

Given the formula (14.4) we are now back in a completely observable model, so
we can quote Proposition 7.4.1 to obtain the main result.

Proposition 14.3.1 For the partially observed model above, the following hold.

• The equilibrium short rate process is given by

rt = −
Uct(t, e) + âtUcc(t, et) + 1

2‖bt‖2Uccc(t, et)
Uc(t, et)

. (14.5)

• The Girsanov kernel is given by

ϕt =
Ucc(t, et)
Uc(t, et)

· bt. (14.6)



14.4. A FACTOR MODEL 151

In an abstract sense we have thus completely solved the problem of equilibrium
within a partially observable endowment model. In order to obtain more con-
crete results, we need to impose some extra structure, and this will be done in
the next section.

14.4 A factor model

In this section we specialize the model above to a factor model of the form

det = a(et, Yt)dt + b(et)dW e
t ,

dYt = µ(Yt)dt + σ(Yt)dW y
t ,

where, for simplicity, we assume that W e and W y are independent. Note that
we cannot allow b to depend on the factor Y . We also assume log utility, so that

U(t, c) = e−δt ln(c).

As in Section 7.4.3 we easily obtain

rt = δ +
ât

et
− b2(et)

e2
t

,

ϕt = −b(et)
et

.

where
ât = E [a(et, Yt)| Fe

t ] .

Given these expressions it is natural to specialize to the case when

a(e, y) = e · a(y),
b(e) = b · e,

where b is a constant. This gives us

rt = δ + ât − b2,

ϕt = −b.

In order to obtain a finite filter for â = E [a(Yt)| Fe
t ] it is now natural to look

for a Kalman model and our main result is as follows.

Proposition 14.4.1 Assume a model of the form

det = aetYtdt + betdW e
t ,

dYt = BYtdt + CdW y
t ,

The risk free rate and the Girsanov kernel are then given by

rt = δ − b2 + aŷt, (14.7)
ϕt = −b. (14.8)

where ŷ is given by the Kalman filter

dŷ = Bŷt + Htdνt.
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Appendix A

Basic Arbitrage Theory

A.1 Portfolios

In this appendix we recall some central concepts and result from general ar-
bitrage theory. For details the reader is referred to [2] or any other standard
textbook on the subject.

We consider a market model consisting of N + 1 financial assets (without
dividends). We assume that the market is perfectly liquid, that there is no
credit risk, no bid-ask spread, and that prices are not affected by our portfolios.

We are given a filtered probability space (Ω,F , P,F), and by Si
t we denote

the price at time t of one unit of asset No. i, for i = 0, . . . , N . We let S
denote the corresponding N dimensional column vector process, and all asset
price processes are assumed to be adapted. The asset S0 will play a special role
below as the numeraire asset and we assume that S0 is strictly positive with
probability one. In general the price processes are allowed to be semimartingales
but in this chapter we only consider the simpler case when the prices are driven
by finite number of Wiener processes.

We now go on to define the concept of a “self financing portfolio”. Intuitively
this is a portfolio strategy whee there is no external withdrawal from, or infusion
of money to, the portfolio. It is far from trivial how this should be formalized
in continuous time, but a careful discretization argument leads to the following
formal definition, where we let hi

t denote the number of units of asset No. i
which are held in the portfolio.

Definition A.1.1 A portfolio strategy is an N +1 dimensional adapted (row
vector) process h = (h1, . . . , hN ). For a given strategy h, the corresponding
value process Xh is defined by

Xh
t =

N∑
i=o

hi
tS

i
t = htSt. (A.1)

or equivalently
Xh

t = htSt. (A.2)
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The strategy is said to be self financing if

dXh
t =

N∑
i=o

hi
tdSi

t , (A.3)

or equivalently
Xh

t = htdSt. (A.4)

For a given strategy h, the corresponding relative portfolio u = (u1, . . . , uN )
is defined by

ui
t =

hi
tS

i
t

Xh
t

, i = 0, . . . , N, (A.5)

and we will obviously have
N∑

i=0

ui
t = 1.

We should, in all honesty, also require some minimal integrability properties
for our admissible portfolios, but we will suppress these and some other technical
conditions. The reader is referred to the specialist literature for details.

As in the Wiener case, it is often easier to work with the relative portfolio
u than with the portfolio h. We immediately have the following obvious result.

Proposition A.1.1 If u is the relative portfolio corresponding to a self financ-
ing portfolio h, then we have

dXh
t = Xh

t

N∑
i=o

ui
t

dSi
t

Si
t

. (A.6)

In most market models we have a (locally) risk free asset, and the formal
definition is as follows.

Definition A.1.2 Suppose that one of the asset price processes, henceforth de-
noted by B, has dynamics of the form

dBt = rtBtdt, (A.7)

where r is some adapted random process. In such a case we say that the asset
B is (locally) risk free, and we refer to B as the bank account. The process
r is referred to as the corresponding short rate.

The term “locally risk free” is more or less obvious. If we are standing at time
tdt then,sincer is adapted, we know the value of rt. We also know Bt, which
implies that already at time t we know the value Bt+dt = Bt + rtBtdt of B
at time t + dt. The asset B is thus risk free on the local (infinitesimal) time
scale, even if the short rate r is random. The interpretation is the usual, i.e. we
can think of B as the value of a bank account where we have the short rate r.
Typically we will choose B as the asset S0.
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A.2 Arbitrage

The definition of arbitrage is standard.

Definition A.2.1 A portfolio strategy h is an arbitrage strategy on the time
interval [0, T ] if the following conditions are satisfied.

1. The strategy h is self financing

2. The initial cost of h is zero, i.e.

Xh
0 = 0.

3. At time T it holds that

P
(
Xh

T ≥ 0
)

= 1,

P
(
Xh

T > 0
)

> 0.

An arbitrage strategy is thus a money making machine which produces pos-
itive amounts of money out of nothing. The economic interpretation is that
the existence of an arbitrage opportunity signifies a serious case of mispricing
in the market, and a minimal requirement of market efficiency is that there are
no arbitrage opportunities. The single most important result in mathematical
finance is the “first fundamental theorem” which connects absence of arbitrage
to the existence of a martingale measure.

Definition A.2.2 Consider a market model consisting of N+1 assets S0, . . . , SN ,
and assume that the numeraire asset S0 has the property that S0

t > 0 with
probability one for all t. An equivalent martingale measure is a probability
measure Q with the properties that

1. Q is equivalent ot P , i.e. Q ∼ P .

2. The normalized price processes Z0
t , . . . ZN

t , defined by

Zi
t =

Si
t

S0
t

, i = 0, . . . N,

are (local) martingales under Q.

We can now sate the main abstract result of arbitrage theory.

Theorem A.2.1 (The First Fundamental Theorem) The market model is
free of arbitrage possibilities if and only if there exists a martingale measure Q.

Proof. This is a very deep result, and the reader is referred to the literature
for a proof.
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Remark A.2.1 The First Fundamental Theorem as stated above is a “Folk
Theorem” in the sense that it is not stated with all necessary technical con-
ditions. The statement above will however do nicely for our purposes. For a
precise statement and an outline of the full proof, see [2]. For the full (extremely
dififcult) proof see [9].

We note that if there exists a martingale measure Q, then it will depend
upon the choice of the numeraire asset S0, so we should really index Q as Q0.
In most cases the numeraire asset will be the bank account B, and in this case
the measure Q, which more precisely should be denoted by QB , is known as the
risk neutral martingale measure.

The following useful result is left as an exercise to the reader. It shows that
the risk neutral martingale measure Q is characterized by the fact that, under
Q, the local rate of return of any asset equals the short rate r.

Proposition A.2.1 Assume absence of arbitrage, and let Q denote a (not nec-
essarily unique) risk neutral martingale measure with B as numeraire. Let S
denote the arbitrage free price process of an arbitrary asset, underlying or deriva-
tive, and assume that the S dynamics under P are of the form

dSt = αtStdt + StσtdWt,

where W is a d-dimensional Wiener process, α is a scalar adapted process, and σ
is an adapted row vector process. The following statements are then equivalent.

• The normalized process

Zt =
St

Bt

is a Q martingale.

• The Q-dynamics of S are of the form

dSt = rtStdt + StσtdWQ
t ,

where WQ is Q-Wiener.

A.3 Girsanov and the market price for risk

Let us consider a financial market driven by a d-dimensional Wiener process W .
We assume the existence of a bank account B with dynamics

dBt = rtBtdt.

We also assume absence of arbitrage and we assume that the market uses the
(not necessarily unique) risk neutral martingale measure Q as pricing measure.
Let S denote the arbitrage free price process of an arbitrary asset, underlying
or derivative, and assume that the S dynamics under P are of the form

dSt = αtStdt + StσtdWt.
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or, in more detail,.

dSt = αtStdt + St

d∑
i=1

σitdWit.

We denote by L the likelihood process

Lt =
dQ

dP
, on Ft.

In a purely Wiener driven framework we know that the L-dynamics are of the
form

dLt = Ltϕt ∗ dWt,

where the Girsanov kernel ϕ is a d-dimensional column vector process and
where ∗ denotes transpose. From the Girssanvo Theorem we know that

dWt = ϕtdt + dWQ
t ,

where WQ is Q-Wiener, so the Q-dynamics of S takes the form

dSt = {αt + σtϕt} dt + StσtdWQ
t .

From Proposition A.2 we conclude that the martingale condition

rt = αt + σtϕt.

We may now define the so called market price of risk vector process λ by

λt = −ϕt, (A.8)

We thus have the formula
αt − rt = λtσt,

or, in more detail,

αt − rt =
d∑

i=1

λitσit.

The economic interpretation is that the excess rate of return αt − rt is the sum
of the volatilities σ1t, . . . , σdt multiplied by the associated market prices for risk.

A.4 Martingale Pricing

We now study the possibility of pricing contingent claims. The formal definition
of a claim is as follows.

Definition A.4.1 Given a a stochastic basis (Ω,F , P,F) and a specified point
in time T , often referred to as “the exercise date”) a contingent T -claim is a
random variable Y ∈ FT .
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The interpretation is that the holder of the claim will obtain the random amount
Y of money at time T . We now consider the “primary” or “underlying” market
S0, S1, . . . , SN as given a priori, and we fix a T -claim Y. Our task is that of
determining a “reasonable” price process Πt [Y] for Y, and we assume that the
primary market is arbitrage free. A main idea is the following.

The derivative should be priced in a way that is consistent with the
prices of the underlying assets. More precisely we should demand
that the extended market Π [Y] , S0, S1, · · · , SN is free of arbitrage
possibilities.

In this approach we thus demand that there should exist a martingale mea-
sure Q for the extended market Π [Y] , S0, S1, · · · , SN . Letting Q denote such a
measure, assuming enough integrability, and applying the definition of a mar-
tingale measure we obtain

Πt [Y]
S0

t

= EQ

[
ΠT [Y]

S0
T

∣∣∣∣Ft

]
= EQ

[
Y
S0

T

∣∣∣∣Ft

]
(A.9)

where we have used the fact that, in order to avoid arbitrage at time T we must
have ΠT [X] = X. We thus have the following result.

Theorem A.4.1 (General Pricing Formula) The arbitrage free price pro-
cess for the T -claim Y is given by

Πt [Y] = S0
t EQ

[
Y
S0

T

∣∣∣∣Ft

]
, (A.10)

where Q is the (not necessarily unique) martingale measure for the a priori given
market S0, S1, · · · , SN , with S0 as the numeraire .

Note that different choices of Q will generically give rise to different price pro-
cesses. In particular we note that if we assume that if S0 is the money account

S0
t = S0

0 · e
∫ t

0
r(s)ds

,

where r is the short rate, then (A.10) reduced to the familiar “risk neutral
valuation formula”.

Theorem A.4.2 (Risk Neutral Valuation Formula)
Assuming the existence of a short rate, the pricing formula takes the form

Πt [Y] = EQ

[
e
−
∫ T

t
r(s)dsY

∣∣∣∣Ft

]
. (A.11)

where Q is a (not necessarily unique) martingale measure with the money ac-
count as the numeraire.

The pricing formulas (A.10) and (A.11) are very nice, but it is clear that if there
exists more than one martingale measure (for the chosen numeraire), then the
formulas do not provide a unique arbitrage free price for a given claim Y. It
is thus natural to ask under what conditions the martingale measure is unique,
and this turns out to be closely linked to the possibility of hedging contingent
claims.



A.5. HEDGING 159

A.5 Hedging

Consider a market model S0, . . . , SN and a contingent T -claim Y.

Definition A.5.1 If there exists a self financing portfolio h such that the cor-
responding value process Xh satisfies the condition

Xh
T = Y, P − a.s. (A.12)

then we say that h replicates Y, that h is a hedge against Y, or that Y is
attained by h. If, for every T , all T -claims can be replicated, then we say that
the market is complete.

Given the hedging concept, we now have a second approach to pricing. Let
let us assume that Y can be replicated by h. Since the holding of the deriva-
tive contract and the holding of the replicating portfolio are equivalent from a
financial point of view, we see that price of the derivative must be given by the
formula

Πt [Y] = Xh
t , (A.13)

since otherwise there would be an arbitrage possibility (why?).
We now have two obvious problems.

• What will happen in a case when Y can be replicated by two different
portfolios g and h?

• How is the formula (A.13) connected to the previous pricing formula
(A.10)?

To answer these question, let us assume that the market is free of arbitrage,
and let us also assume at the T claim X is replicated by the portfolios g and
h. We choose the bank account B as the numeraire and consider a fixed mar-
tingale measure Q. Since Q is a martingale measure for the underlying market
S0, . . . , SN , it is easy to see that this implies that Q is also a martingale measure
for Xg and Xh in the sense that Xh/B and Xg/B are Q martingales. Using
this we obtain

Xh
t

Bt
= EQ

[
Xh

T

BT

∣∣∣∣FT

]
and similarly for Xg. Since, by assumption, we have Xh

T = Y we thus have

Xh
t = EQ

[
Y Bt

BT

∣∣∣∣FT

]
,

which will hold for any replicating portfolio and for any martingale measure Q.
Assuming absence of arbitrage we have thus proved the following.

• If Y is replicated by g and h, then

Xh
t = Xg

t , t ≥ 0.
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• For an attainable claim, the value of the replicating portfolio coincides
with the risk neutral valuation formula, i.e.

Xh
t = EQ

[
e
−
∫ T

t
rsdsY

∣∣∣∣FT

]
.

From (A.11) it is obvious that every claim Y will have a unique price if and
only if the martingale measure Q is unique. On the other hand, it follows from
the alternative pricing formula (A.13) that there will exist a unique price for
every claim if every claim can be replicated. The following result is therefore
not surprising.

Theorem A.5.1 (Second Fundamental Theorem) Given a fixed numeraire
S0, the corresponding martingale measure Q0 is unique if and only if the market
is complete.

Proof. We have already seen above that if the market is complete, then the
martingale measure is unique. The other implication is a very deep result, and
the reader is referred to [9].

A.6 Stochastic Discount Factors

In the previous sections we have seen that we can price a contingent T -claim Y
by using the formula

Π0 [Y] = EQ

[
e
−
∫ T

t
rsdsY

]
, (A.14)

where Q is a martingale measure with the bank account as a numeraire. In many
applications of the theory, in particular in equilibrium theory, it is very useful
to write this expected value directly under the objective probability measure P
instead of under Q. This can easily be obtained by using the likelihood process
L, where a usual L is defined on the interval [0, T ] through

Lt =
dQ

dP
, on Ft. (A.15)

We can then write (A.14) as

Π0 [Y] = EP
[
B−1

T LTY
]
,

which naturally leads us to the following definition.

Definition A.6.1 Assume the existence of a short rate r. For any fixed martin-
gale measure Q, let the likelihood process L be defined by (A.15). The stochastic
discount factor (SDF) process M , corresponding to Q, is defined as

Mt = B−1
t Lt. (A.16)
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We thus see that there is a one-to-one correspondence between martingale
measures and stochastic discount factors, and we can write the pricing formula
as

Π0 [Y] = EP [MTY]

This gives us the arbitrage free price at t = 0 as a P -expectation, but the result
can easily be generalized to arbitrary times t.

Proposition A.6.1 Assume absence of arbitrage. With notation as above, the
following hold.

• For any sufficiently integrable T -claim Y, the arbitrage free price is given
by

Πt [Y] =
1

Mt
EP [MTY|Ft] . (A.17)

• For any arbitrage free asset price process S(derivative or underlying) the
process

MtSt (A.18)

is a (local) P -martingale.

• The P -dynamics of M are given by

dMt = −rtMtdt +
1
Bt

dLt. (A.19)

Proof. Use the Abstract Bayes’ formula to prove the first two statements. The
remaining details of the proof are left to the reader.

The following easy corollary is used a lot in equilibrium theory.

Proposition A.6.2 Assume that the likelihood process L = dQ/dP has dynam-
ics

dLt = LtϕtdWt,

Then the M dynamics can be written as

dMt = −rtMtdt + MtϕtdWt. (A.20)

Proof. Exercise for the reader.

Using (A.8) we can also write the M dynamics as

dMt = −rtMtdt−MtλtdWt. (A.21)

where λ is the market price of risk vector process.
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Remark A.6.1 The point of Proposition A.6.2 is that the short rate r as well
as the Girsanov kernel can be identified from the dynamics of the stochastic
discount factor.

Although SDFs and martingale measures are logically equivalent, it is often
convenient to be able to switch from one to the other. In asset pricing and
equilibrium theory it is often natural to use the SDF formalism, whereas it seems
more convenient to use the language of martingale measures in connection with
arbitrage theory and pricing of contingent claims.

A.7 Dividends

So far we have assumed that all assets are non-dividend paying- We now extend
the theory and to that end we consider a market consisting of the usual bank
account B as well as N risky assets. The novelty is that all assets are allowed
to pay dividends so we need to formalize this idea. As usual we denote by Si

t

the price at time t of asset number i, and we denote by Di the cumulative
dividend process of asset number i. The interpretation is that Dt is the total
amount of dividends that have been paid by holding one unit of the asset over
the time period [0, t]. Intuitively this means that over an infinitesimal interval
[t, t + dt] the holder of the asset will obtain the amount dDt = Dt+dt −Dt. For
simplicity we also assume that the trajectory of Di is continuous.

A market of this kind thus consist of the bank account S0 = B and a
collection of price dividend pairs (S1, D1), . . . , (SN , DN ). We now have the
following extension of the previous theory. For details, see [2].

Definition A.7.1 A portfolio strategy is an N +1 dimensional adapted (row
vector) process h = (h0, h1, . . . , hN ). For a given strategy h, the corresponding
value process Xh is defined by

Xh
t =

N∑
i=0

hi
tS

i
t , (A.22)

The strategy is said to be self financing if

dXh
t =

N∑
i=0

hi
tdGi

t, (A.23)

where the gain process G is defined by

dGi
t = dSi

t + dDi
t,

For a given strategy h, the corresponding relative portfolio u = (u0, . . . , uN )
is defined by

ui
t =

hi
tS

i
t

Xh
t

, i = 0, . . . , N, (A.24)
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The interpretation of the self financing condition (A.23) is clear. If you hold
h units of an asset over the interval [t, t + dt] then you gain (or loose) htdSt

because of the price change and you get htdDt in dividends.

Proposition A.7.1 If u is the relative portfolio corresponding to a self financ-
ing portfolio h, then we have

dXh
t = Xh

t

N∑
i=o

ui
t

dSi
t + dDi

t

Si
t

. (A.25)

The definition of arbitrage is exactly as in the non-dividend case, but for the
concept of a martingale measure we need a small variation.

Definition A.7.2 An equivalent martingale measure is a probability mea-
sure Q with the properties that

1. Q is equivalent ot P , i.e. Q ∼ P .

2. The normalized gain processes GZ0
t , . . . GZN

t , defined by

GZi
t =

Si
t

Bt
+
∫ t

0

1
Bs

dDi
s, i = 0, . . . N,

are (local) martingales under Q.

The martingale property of Ĝ has a very natural interpretation. For a price-
dividend pair (S, D) we obtain, after some reshuffling of terms.

St = EQ

[∫ T

t

e
−
∫ s

t
rudu

dDs + e
−
∫ T

t
rsds

ST

∣∣∣∣∣Ft

]
.

This is a risk neutral valuation formula, which says that the stock price at time
t equals the arbitrage free value at t of the stock price ST plus the sum (or
rather integral) of the arbitrage free value at t of all dividends over the interval
[t, T ].

In the present setting the first fundamental theorem takes the following form.

Theorem A.7.1 (The First Fundamental Theorem) The market model is
free of arbitrage possibilities if and only if there exists a martingale measure Q.

The pricing formulas are as expected.

Proposition A.7.2 The arbitrage free price of a T -claim Y is given by

Πt [X] = EQ

[
e
−
∫ T

t
rsdsY

∣∣∣∣Ft

]
.
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A.8 Consumption

We now introduce consumption into the theory. For simplicity we will only
consider consumption programs which can be represented in terms of a con-
sumption rate process c. The interpretation is that over an infinitesimal
interval [t, t + dt] the economic agent consumes the amount ctdt, so the di-
mension of ct is “consumption per unit time”. We define portfolios h0, . . . , hN ,
portfolio value X, and martingale measure, as in the previous section.

Given a market of the form B, (S1, D1), . . . , (SN , DN ) we say that a portfolio
h is self financing for the consumption process c if

dXh
t =

N∑
i=0

hi
t

{
dSi

t + dDi
t

}
− ctdt.

or, in terms of relative weights

dXh
t = Xh

t

N∑
i=o

ui
t

dSi
t + dDi

t

Si
t

− ctdt.

The pricing theory for contingent claims can easily be extended to include con-
sumption.

Proposition A.8.1 The arbitrage free price, at time t, for the consumption
process c, restricted to the interval [t, T ] is given by

Πt [c] = EQ

[∫ T

t

e
−
∫ T

t
rsds

csds

∣∣∣∣∣Ft

]
.

Using the stochastic discount factor M = B−1L we can write this as

Πt [c] =
1

Mt
EP

[∫ T

t

Mscsds

∣∣∣∣∣Ft

]
.

Furthermore, if the market is complete, then every consumption stream can be
replicated by a self financing portfolio.

A.9 Replicating a consumption process

Consider a market B, (S1, D1), . . . , (SN , DN ) and a consumption process c. If
the market is complete, then it follows from Proposition A.8.1 that c can be
replicated with a self financing portfolio. This result, however, is an abstract
existence result, but in a concrete case it will not tell us what the replicating
portfolio looks like. We will now present a proposition which can be used to
construct the replicating portfolio.

We start with a small lemma which show that, as could be expected, the
property of being self financing is invariant under normalization.
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Lemma A.9.1 (Invariance Lemma) Consider a market as above, a consump-
tion process c, and a portfolio process h = (h0, h1, . . . , hN ). Let X denote the
corresponding value process. Then it holds that h is self financing for c if and
only if

dXZ
t =

N∑
i=1

hi
tdGZi

t − cz
t dt

where the normalized value process XZ and the normalized consumption process
cZ are defined by

XZ
t =

Xt

Bt
,

cz
t =

ct

Bt
.

Proof. The proof is left to the reader as an exercise.

Proposition A.9.1 Consider the market B, (S1, D1), . . . , (SN , DN ) and a con-
sumption process c. Define the process K by

Kt = EQ

[∫ T

0

cz
sds

∣∣∣∣∣Ft

]
,

with cz as in the Lemma above. Assume that there exist processes h1, . . . , hN

such that

dKt =
N∑

i=1

hi
tdGzi

t

Then c can be replicated by the portfolio h0, h1, . . . , hN , with h1, . . . , hN , as
above and h0 defined by

h0
t = Kt −

N∑
i=1

hi
tZ

i
t −

∫ t

0

cz
sds.

Proof. The normalized portfolio value of h0, h1, . . . , hN is, by definition, given
by

XZ
t = h0 · 1 +

N∑
i=

hi
tZ

i
t

so, using the definition of h0, we have

XZ
t = Kt −

∫ t

0

cz
sds.
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From the assumption dKt =
∑

i hi
tdGzi

t we thus obtain

dXZ
t =

∑
i

hi
tdGzi

t − cz
t dt.

This shows that h is self financing in the normalized economy, and by Lemma
A.9.1, it is also self financing in nominal terms.

A.10 Exercises

Exercise A.1 Prove Lemma A.9.1.

A.11 Notes

The martingale approach to arbitrage pricing was developed in [18], [26], and
[19]. It was then extended by, among others, [13], [8], [32], and [9]. Stochastic
discount factors are treated in most modern textbooks on asset pricing such as
[3] and [12].



Appendix B

The Conditional Density

In this chapter we will present some further results from filtering theory, such
as the stochastic PDE for the conditional density and the Zakai equation for
the un-normalized density. These results are important but also more technical
than the previous results, so this appendix can be skipped in a first reading.

B.1 The evolution of the conditional density

The object of this section is to derive a stochastic PDE describing the evolution
of the conditional density of the state process Y . This theory is, at some points,
quite technical, so we only give the basic arguments. For details, see [1]. We
specialize to the Markovian setting

dYt = a(Yt)dt + c(Yt)dW 0
t , (B.1)

dZt = b(Yt)dt + dW 1
t (B.2)

where W 0 and W 1 are independent Wiener processes. We recall from (12.16)-
(12.17) that for any real valued function f : R → R, the filter equations for
πt(f) = E

[
f(Yt)| FZ

t

]
are then given by

dπt(f) = πt(Af) dt + {πt(fb)− πt(f) · πt(b)} dνt, (B.3)
dνt = dZt − πt(b) dt. (B.4)

where the infinitesimal generator A is defined by

A = a(y)
∂

∂y
+

1
2
c2(y)

∂2

∂y2
.

We now view f as a ‘test function” varying within a large class C of test func-
tions. The filter equation (B.3) will then, as f varies over C determine the entire
conditional distribution L

(
Yt| FZ

t

)
.
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Let us now assume that Y has a conditional density process pt(y),
w.r.t. Lebesque measure, so that

πt(f) = E
[
f(Yt)| FZ

t

]
=
∫

R

f(y)pt(y)dy

In order to have a more suggestive notation we introduce a natural pairing
(“inner product”) denoted by 〈, 〉 for any smooth real valued functions g and f
(where f has compact support) . This is defined by

〈g, f〉 =
∫

R

f(y)g(y)dy.

We can thus write
πt(f) = 〈pt, f〉,

and with this notation, the filter equation takes the form

d〈pt, f〉 = 〈pt,Af〉dt + {〈pt, fb〉 − 〈pt, f〉〈pt, b〉} dνt

We can now dualize this (see the exercises) to obtain

d〈pt, f〉 = 〈A?pt, f〉dt + {〈bpt, f〉 − 〈pt, f〉〈pt, b〉} dνt

where A? is the adjoint operator:

A?p(y) = − ∂

∂y
[a(y)p(y)] +

1
2

∂2

∂y2

[
c2(y)p(y)

]
If this holds for all test functions f we are led to the following result. See [1]
for the full story.

Theorem B.1.1 (Kushner-Stratonovich) Assume that Y has a conditional
density process pt(y) w.r.t. Lebesgue measure. Under suitable technical condi-
tions, the density will satisfy the following stochastic partial differential equation
(SPDE)

dpt(y) = A?pt(y)dt + pt(y)
{

b(y)−
∫

R

b(y)pt(y)dy

}
dν(t), (B.5)

dνt = dZt −
(∫

R

b(y)pt(y)dy

)
dt. (B.6)

As we noted above, this is an SPDE for the conditional density. In order to
connect to more familiar topics, we remark that if the observation dynamics
have the form

dZt = b(Yt)dt + σdWt,

then the SPDE would have the form

dpt(y) = A?pt(y)dt +
pt(y)

σ

{
b(y)−

∫
R

b(y)pt(y)dy

}
dν(t),

dνt =
1
σ

{
dZt −

(∫
R

b(y)pt(y)dy

)
dt

}
.
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If we now let σ → +∞, which intuitively means that in the limit we only observe
noise, then the filter equation degenerates to

∂

∂t
pt(y) = A?pt(y),

which is the Fokker-Planck equation for the unconditional density.

B.2 Estimation of a likelihood process

The main result in this Section is Proposition B.2.2 and Corollary B.9, which will
be important when we on derive the Zakai equation in the next section, and the
reader who wishes to proceed directly to the Zakai equation can skip the present
section and simply accept Proposition B.2.2 and the Corollary dogmatically.
The Theorem is, however, of considerable importance also in statistics, so for
the reader with more general interests, we provide the full story.

Consider a measurable space {Ω,F} and two probability measures, P0 and
P1 on this space. Let us now consider a case of hypothesis testing in this
framework. We have two hypotheses, H0 and H1 with the interpretation

H0 : P0 holds,
H1 : P1 holds.

If P1 << P0, then we know from Neyman-Pearson that the appropriate test
variable is given by the likelihood

L =
dP1

dP0
, on F

and that the optimal test is of the form

Reject H0 if L ≥ R,

where R is a suitably chosen constant.
The arguments above hold as long as we really have access to all the infor-

mation contained in F . If, instead of F , we only have access to the information
in a smaller sigma algebra G ⊂ F, then we cannot perform the test above, since
L is not determined by the information in G (i.e. L is not G-measurable).

From an abstract point of view, this problem is easily solved by simply
applying Neyman-Pearson to the space {Ω,G} instead of {Ω,F}. It is then
obvious that the optimal test variable is given by

L̂ =
dP1

dP0
, on G,

and the question is now how L̂ is related to L.
This question is answered by the following standard result.
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Proposition B.2.1 With notation as above, we have

L̂ = E0 [L| G] , (B.7)

where E0 denotes expectation under P0.

We will now study the structure of L, when L is generated by a Girsanov
transformation and we also have a filtered space, so information increases over
time. To this end we consider a filtered probability space {Ω,F , P0,F} and two
F adapted processes Z and h. We assume the following

• Z is an F-Wiener process under P0.

• The process h is F-adapted and P0-independent of Z.

We now introduce some useful notation connected to Girsanov transformations.

Definition B.2.1 For any F-adapted process g we define the process L(g) by

Lt(g) = e

∫ t

0
gsdZs− 1

2

∫ t

0
g2

sds
. (B.8)

We see that L(g) is simply the likelihood process for a Girsanov transformation
if we use g as the the Girsanov kernel.

Assuming that L(h) is a true martingale we may now define the measure P1

by setting

Lt(h) =
dP1

dP0
, on Ft, 0 ≤ t ≤ T

where T is some fixed time horizon.
From the Girsanov Theorem we know that we can write

dZt = htdt + dW 1
t ,

where W 1 is an P1-Wiener process. We thus see that we have the following
situation.

• Under P0, the process Z is a Wiener process without drift.

• Under P1, the process Z has the drift h.

If we now interpret the process h as a signal, we have the following tho hypothe-
ses:

H0 : We have no signal. We only observe Wiener noise.
H1 : We observe the signal h, disturbed by the Wiener noise.

The task at hand is to test H0 against H1 sequentially over time, assuming that
we can only observe the process Z. From Proposition B.2.1 we know that, at
time t, the optimal test statistics is given by L̂t(h), defined by

L̂t(h) = E0
[
Lt(h)| FZ

t

]
,

and the question is how we compute this entity. The answer is given by the
following beautiful result.
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Proposition B.2.2 With notation as above we have

L̂t(h) = Lt(ĥ),

where
ĥt = E1

[
ht| FZ

t

]
.

Note that L̂t(h) is a P0-expectation, whereas ĥt is a P1-expectation. Before
going on to the proof, we remark that this is a separation result. It says that
the filtered “detector” L̂ can be separated into two parts: The (unfiltered)
detector L, and the P1-filter estimate ĥ.

Proof. From the definition of Lt(h) we have

dLt(h) = Lt(h)htdZt,

and we observe the P0 Wiener process Z. From Theorem 12.4.1 we then have

dL̂t(h) = π0
t(L(h)h) dZt,

where upper case index denotes expectation under P0. We can write this as

dL̂t(h) = L̂t(h)ηtdZt,

where

ηt =
π0

t(L(h)h)
π0

t(L(h))
,

so we have in fact
L̂t(h) = Lt(η).

On the other hand we have

ηt =
E0
[
Lt(h)ht| FZ

t

]
E0
[
Lt(h)| FZ

t

]
so from the abstract Bayes formula we obtain

ηt = E1
[
ht| FZ

t

]
= π1

t(h) .

For future use we note the following Corollary which in fact is a a part of the
proof above.

Corollary B.2.1 We have

dL̂t(h) = π1
t(h) L̂t(h)dZt. (B.9)

,
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B.3 Un-normalized filter estimates

We consider again a filtered probability space {Ω,F, P,F} and a Markovian
filter model of the form

dYt = a(Yt)dt + c(Yt)dW 0
t , (B.10)

dZt = b(Yt)dt + dWt (B.11)

where W 0 and W are independent. In Section B.1 we studied the same model,
and we derived the Kushner-Stratonovich equation (B.5) for the density pt(y).
We now present an alternative approach to the filtering problem along the fol-
lowing lines.

• Perform a Girsanov transformation from P to a new measure P0 such that
Y and Z are independent under P0.

• Compute filter estimates under P0. This should be easy, due to the inde-
pendence.

• Transform the results back to P using the abstract Bayes formula.

• This will lead to a study of the so-called un-normalized density qt(y).

• We will derive an SPDE, known as the Zakai equation, for the un-normalized
density q. This equation is, in many ways, much nicer than the Kushner-
Stratonovich equation for the density pt(y).

B.3.1 The basic construction

Consider a probability space {Ω,F, P0} as well as two independent P0-Wiener
processes Z and W 0. We define filtration F by

Ft = FZ
t ∨ FW 0

∞ ,

and we define the process Y by

dYt = a(Yt)dt + c(Yt)dW 0
t .

We now define the likelihood process L by

dLt = Ltb(Yt)dtdZt,

L0 = 1,

and we define P by

Lt =
dP

dP0
, on Ft, 0 ≤ t ≤ T

for some fixed horizon T . From the Girsanov Theorem it now follows that the
we can write

dZt = b(Yt)dt + dWt



B.3. UN-NORMALIZED FILTER ESTIMATES 173

where W is a (P,F)-Wiener process. In particular, the process W is independent
of F0 = FW 0

∞ , so W and W 0 are indenpendent under P . Since L0 = 1 we
have P = P0 on F0, and since F0 = FW 0

∞ we see that (W 0, Y ) has the same
distribution under P as under P0.

The end result of all this is that under P we have our standard model

dYt = a(Yt)dt + c(Yt)dW 0
t ,

dZt = b(Yt)dt + dWt.

B.3.2 The Zakai equation

We define πt(f) as usual by

πt(f) = EP
[
f(Yt)| FZ

t

]
,

and the abstract Bayes formula we then have

πt(f) =
E0
[
Ltf(Yt)| FZ

t

]
E0
[
Lt)| FZ

t

] .

Definition B.3.1 The un-normalized estimate σt(f) is defined by

σt(f) = E0
[
Ltf(Yt)| FZ

t

]
.

We have thus derived the Kallianpur-Striebel formula.

Proposition B.3.1 (Kallianpur-Striebel) The standard filter estimate πt(f)
and the un-normalized estimate σt(f) are related by the formula

πt(f) =
σt(f)
σt(1)

. (B.12)

It turns out that σt(f) is easier to study than πt(f), so we now go on to derive
the dynamics of σt(f).

This is in fact quite easy. From the Kallianpur-Striebel formula we have

σt(f) = πt(f) · σt(1) .

From the FKK Theorem we have

dπt(f) = πt(Af) dt + {πt(fb)− πt(f) · πt(b)} dνt,

dνt = dZt − πt(b) dt,

and from Corollary B.2.1 have

dσt(1) = σt(1)πt(b) dZt.

We can now apply the Ito formula to the product πt(f) · σt(1). This leads to
calculations which, at first sight, look rather forbidding. It turns out, however,
that there are a surprising large number of cancellations in these calculations
and in teh end we obtain teh following result.
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Theorem B.3.1 (The Zakai Equation) The un-normalized estimate σt(f)
satisfies the Zakai equation

dσt(f) = σt(Af) dt + σt(b) dZt. (B.13)

We note that the Zakaik equation has a much simpler structure than the cor-
responding FKK equation. Firstly, the Zakai equation is driven directly by the
observation process Z, rather than by the innovation process ν. Secondly, the
non-linear (product) term πt(f) ·πt(b) dνt is replaced by the term σt(b) dZt which
does not involve f .

B.3.3 The SPDE for the un-normalized density

Let us now assume that there exists an unnormalized density process qt(y), with
interpretation

σt(f) =
∫

R

f(y)qt(y)dy.

We can then dualize the Zakai equation, exactly like we did in the derivation of
the Kushner-Stratonovich equation, to obtain the following result.

Proposition B.3.2 Assuming that there exists an un-normalized density qt(y),
we have the following SPDE.

dqt(y) = A?qt(y)dt + b(y)qt(y)dZt. (B.14)

As dot the Zakai equation, we note that the SPDE above for the un-nomrmalized
density is much simpler than the Kushner-Stratonovich equation for the nor-
malized density pt(y).

B.4 Exercises

Exercise B.1 Consider a probability space (Ω,F , P ) and the filtering model

dZt = Xdt + dWt

where X is a random variable with distribution function F , and W is a Wiener
process which is independent of X. As usual we observe Z. In Exercise 12.2 we
saw that a naive application of the FKK equation produced an infinite dimen-
sional filter. The object of this exercise is to show that we can do better.

Define, therefore, the functions f : R×R+ → R and g : R×R+ → R by

f(t, z) =
∫

R

xe−
t
2 (x− z

t )
2

dF (x),

g(t, z) =
∫

R

e−
t
2 (x− z

t )
2

dF (x),
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and show that

EP
[
X| FZ

t

]
=

f(t, Zt)
g(t, Zt)

Hint: Perform a Girsanov transformation form P to a new measure Q so
that Z and X are Q-independent. You may then use (a generalization of) the
fact that if ξ and η are independent random variables where ξ has distribution
function F then, for any function H : R2 → R, we have

E [H(ξ, η)|σ {η}] = h(η),

where h is defined by

h(y) =
∫

R

H(x, y)dF (x)

B.5 Notes

A very complete account of FKK theory as well as un-normalized filtering is
given in the (advanced) book [1].
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[7] Cvitanić, J. Optimal trading under constraints. In Financial Mathemat-
ics, Springer Lecture Notes in Mathematics, Vol 1656, W. Runggaldier,
Ed. Springer Verlag, Berlin, Heidelberg, New York, 1997.

[8] Delbaen, F. Representing martingale measures when asset prices are
continuous and bounded. Mathematical Finance 2 (1992), 107–130.

[9] Delbaen, F., and Schachermayer, W. A general version of the fun-
damental theorem of asset pricing. Matematische Annalen 300 (1994),
463–520.

[10] Detemple, J. Further results on asset pricing with incomplete informa-
tion. Journal of Economics Dynamics and Control 15 (1991), 425–453.

[11] Duffie, D. Dynamic Asset Pricing Theory, 3:rd ed. Princeton University
Press, 2001.

[12] Duffie, D. Dynamic Asset Pricing Theory, 3:rd ed. Princeton University
Press, 2001.

177



178 BIBLIOGRAPHY

[13] Duffie, D., and Huang, C. Multiperiod securities markets with differen-
tial information. Journal of Mathematical Economics 15 (1986), 283–303.

[14] Fleming, W., and Rishel, R., Eds. Deterministic and Stochastic Opti-
mal Control. Springer Verlag, Berlin Heidelberg New York, 1975.

[15] Fleming, W., and Soner, M., Eds. Controlled Markov Processes and
Viscosity Solutions. Springer Verlag, New York, 1993.

[16] Fujisaki, M., Kallinapur, G., and Kunita, H. Stochastic differential
equations of the nonlinear filtering problem. Osaka Journal of Mathematics
9 (1972), 19–40.

[17] Gennotte, G. Optimal portfolio choice under incomplete information.
Journal of Finance 41 (1986), 733749.

[18] Harrison, J., and Kreps, J. Martingales and arbitrage in multiperiod
markets. Journal of Economic Theory 11 (1979), 418–443.

[19] Harrison, J., and Pliska, S. Martingales and stochastic integrals in
the theory of continuous trading. Stochastic Processes & Applications 11
(1981), 215–260.

[20] Huang, C. An intertemporal general equilibrium asset pricing model: The
case of diffusion information. Econometrica 55 (1987), 117–142.

[21] Karatzas, I., Lehoczky, J., and Shreve, S. Optimal portfolio and
consumption decision for a “small investor” on a finite horizon. SIAM
Journal of Control and Optimization 26 (1987), 1157–1186.

[22] Karatzas, I., Lehoczky, J., and Shreve, S. Existence and uniqueness
of multi-agent equilibrium in a stochastic dynamic consumption/investment
model. Mathematics of Operations Research 15 (1990), 90–128.

[23] Karatzas, I., Lehoczky, J., Shreve, S., and Xu, G. Martingale and
duality methods for utility maximization in an incomplete market. SIAM
Journal of Control and Optimization 29 (1991), 702–730.

[24] Karatzas, I., and Shreve, S. Methods of Mathematical Finance.
Springer, New York Heidelberg Berlin, 1998.

[25] Kramkov, D., and Schachermayer, W. The asymptotic elasticity of
utility functions and optimal investments in incomplete markets. Annals
of Applied Probability 9 (1999), 904–950.

[26] Kreps, D. Arbitrage and equilibrium in economies with infinitely many
commodities. Journal of Mathematical Economics 8 (1981), 15–35.

[27] Krylov, R. Controlled Diffusion Processes. Springer Verlag, New York,
1980.



BIBLIOGRAPHY 179

[28] Liptser, R., and Shiryayev, A. Statistics of Random Processes, 2 ed.,
vol. I. Springer Verlag, Berlin, 2004.

[29] Merton, R. Lifetime portfolio selection under uncertainty. the continuous
time case. Review of Economics and Statistics 51 (1969), 247–257.

[30] Merton, R. Optimum consumption and portfolio rules in a continuous
time model. Journal of Economic Theory 3 (1971), 373–413.

[31] Øksendal, B. Stochastic Differential Equations. Springer-Verlag, Berlin,
1998.

[32] Schachermayer, W. Martingale measures for discrete time processes
with infinite horizon. Mathematical Finance 4 (1994), 25–56.

[33] Schachermayer, W. Optimal investment in incomplete financial mar-
kets. In Mathematical Finance–Bachelier Congress 2000, H. Geman, Ed.
Springer-Verlag, Berlin Heidelberg New York, 2002.


