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Main Idea

1. You are given a portfolio p = w>r with E[p] > 0

2. You want to hedge p’s risk for cheap

→ cheap = lose no expected return

3. The space of cheap portfolios is {v : E[v>r ] = 0}

4. You hedge the most risk by choosing maxv Corr[p, v>r ]2
(and signing it

right)
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Context

1. You are given a portfolio p = w>r with E[p] > 0

I These are characteristic-sorted portfolios (CPs) like HML, SMB,

UMD
I We hope to use them to span the MVE frontier
I They seem promising because they have sizable risk premia

2. You want to hedge p’s risk for cheap
→ cheap = lose no expected return

I But are these CPs MVE?

3. The space of cheap portfolios is {v : E[v>r ] = 0}

I If one of these portfolios is correlated with p, then p contained

unpriced risk
I If you can hedge their risk for cheap, then they aren’t MVE!

4. You hedge the most risk by choosing maxv Corr[p, v>r ]2

I The hedged portfolio gives the same expected return for lower

variance – it’s closer to MVE
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What was the problem?

Let X be the (N ×M) matrix of the N assets’ M characteristics.

Let Σ be the (N × N) return covariance matrix

Problem: CP are built looking only at X . We ignored Σ.

MVE comes from minw w>Σw and hence involves Σ.

Paper says: The efficient weights are

Σ−1X
(
X>Σ−1X

)−1



This leads to an issue

N is big and Σ is hard to estimate – the paper avoids the issue.

I Instead, it assumes a model where characteristics drive risk premia:

E[r ] = Xλc .

I Then the space of cheap portfolios is

{v : X>v = 0},

I and we pick the cheap v that

max
v

v>b

for b the regression slope of each asset on a CP p

because this maximizes the Corr(v>r , p)2.

v>b is our hedge portfolio



Punchline

“Our paper connects to the recent vintage of papers ...[taking] as

their starting point a set of characteristics that explains average

excess returns. Our focus instead is on improving the efficiency

of the characteristic portfolios by using individual asset loadings

on the CPs.

This is a general factor improvement regimen.

... Our empirical findings strongly suggest that the characteristic-

sorted portfolios employed by Kelly, Pruitt, and Su (2019), which

they refer to as latent factors, are inefficient as a result of ignoring

information about the (future) covariance structure that can be

derived from historical covariances.”

Let’s get into that...
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Model

KPS: Conditional beta

= characteristic-instrumented factor exposures

ri,t+1 = (βi,t)
>ft+1 + εi,t+1

DMRS: “exposure to f is a linear combination of the M characteristics

that describe expected excess returns”
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Model

DMRS: Max v>b for b regression coefficient of each element of r on p

⇒ detailed construction of b to predict future covariance

KPS:

ft+1 = wtrt+1

= (β>t βt)
−1βtrt+1

= (Γ>X>t XtΓ)−1Γ>X>t rt+1

vec(Γ>) =

[
T∑
t=1

Yt+1Y
>
t+1

]−1 [ T∑
t=1

Y>t+1rt+1

]
for Yt+1 ≡

(
Xt ⊗ f >t+1

)

Weight wt involves both characteristic information Xt and covariance

information Γ
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from Kelly, Moskowitz, Pruitt (2020 WP)

Predicted beta for month t βi,t = Xi,tΓ

Daily factor and stock return for days after month t ri,d , fd

Realized beta RealBetaOOS
t+1 =

(∑
d fd f

>
d

)−1∑
d fd ri,d

Is βi,t predicting RealBetaOOS
t+1 ?

Constant 0.00 −0.01 0.00 −0.00 −0.00

(t-stat) (0.45) (−2.90) (1.19) (−0.04) (−1.04)

Slope 1.00 1.02 1.01 1.00 1.01

(t-stat) (388.46) (134.51) (133.23) (136.79) (122.62)

[t : β = 1] [−0.25] [2.20] [1.22] [0.16] [1.03]

R2 (%) 25.86 7.15 4.97 7.25 4.38

Standard errors clustered by month and firm. Usual t-statistics (of the null that the

parameter equals zero) are reported in parentheses. For slope coefficients, we also report

in rows labeled “[t : β = 1]” t-statistics of the null that the parameter equals 1.

Seem to be capturing that future covariance information, not ignoring it



The regimen lives!

I KPS:
I Given characteristics,
I find f that maximally explain V(r),
I then hope (by an APT logic) that they also explain E(r).

I DMRS:
I Given f ,
I find a maximally-correlated hedge that has E(h) = 0,
I and combine it with f to get closer to MVE.

Add together

I The DMRS insight applies: for CPs but also moment-based

estimators like KPS

I Additional moment restriction to be used



Conclusion

I Empirically: their hedged portfolios are closer to MVE than CPs

I Theoretically: a factor improvement regimen

Should be quite influential


