The Cross-Section of Risk and Return

Kent Daniel $^{\dagger \ddagger},$ Lira Mota $^{\dagger},$ Simon Rottke $^{\$},$ and Tano Santos $^{\dagger \ddagger}$

[†]Columbia Business School; [‡]NBER; [§]University of Amsterdam

BI-SHoF Conference in Asset Pricing & Financial Econometrics

10 June 2020

• Multifactor models of the sdf posit that:

$$m^* = a + \mathbf{b}' \mathbf{f}^*$$
 with $\mathbb{E}[m^* r_i] = 0$

for any excess return r_i and a set of traded "factors" \mathbf{f}^* that span the MVE portfolio.

• implying that

$$\mathbb{E}[r_i] = oldsymbol{eta}_i oldsymbol{\lambda}$$

where λ is the price of risk, and β_i is (the vector of) projection coefficients of r_i onto \mathbf{f}^* .

• ... which is motivation for time series regressions like: $(R_{i,t}-R_{f,t}) = \alpha_i + \beta_{i,m} \cdot (R_{m,t}-R_{f,t}) + \beta_{i,SMB} \cdot \text{SMB}_t + \beta_{i,HML} \cdot \text{HML}_t + \epsilon_t$

• Multifactor models of the sdf posit that:

$$m^* = a + \mathbf{b}' \mathbf{f}^*$$
 with $\mathbb{E}[m^* r_i] = 0$

for any excess return r_i and a set of traded "factors" \mathbf{f}^* that span the MVE portfolio.

• implying that

$$\mathbb{E}[r_i] = \boldsymbol{\beta}_i \boldsymbol{\lambda}$$

where λ is the price of risk, and β_i is (the vector of) projection coefficients of r_i onto \mathbf{f}^* .

• ... which is motivation for time series regressions like:

 $(R_{i,t}-R_{f,t}) = \alpha_i + \beta_{i,m} \cdot (R_{m,t}-R_{f,t}) + \beta_{i,SMB} \cdot SMB_t + \beta_{i,HML} \cdot HML_t + \epsilon_t$

Search for \mathbf{f}^* in in the Space of Returns

- Search in the space of returns for f^* . But how?
- Timeline:
 - Chen, Roll, and Ross (1986) economic factors:
 - Evidence of that there were premia associanted with innovations in macroeconomic variables, but the Sharpe ratios associated with these portfolios were small.
 - 2 Connor and Korajczyk (1988) statistical factors using PCA:
 - effective in explaining the covariance structure, but all but the first PC—which looks like the market—did not carry much of a premium.
 - **③** Fama and French (1993) characteristic sorted portfolios:
 - "The 3-factor model does a good job in explaining the cross-section of average returns."

CPs (Characteristic Portfolios)

- As in Fama and French (1993), sorting on characteristics to form *characteristic portfolios* (CPs) has become standard in the empirical asset pricing literature.
- That is, find a characteristic that is associated with expected returns, e.g. book-to-market, and create a corresponding characteristic portfolio by sorting on this characteristic.
 - The resulting characteristic portfolio goes long high- and short low-characteristic stocks.
- *Examples:* SMB, HML, RMW, CMA; UMD; WML; LIQ; ISU; QMJ, etc.
 - Fama and French (1993, 2015); Carhart (1997); Daniel and Moskowitz (2016); Pástor and Stambaugh (2003); Daniel and Titman (2006); Asness, Frazzini, and Pedersen (2013); Lustig, Roussanov, and Verdelhan (2011)

Motivation Preview of Results Outline

CPs are inefficient

- PCA ignores information about expected returns that comes from characteristics
- Characteristic sorts ignore information about the covariance structure that come historical individual firm's return covariances.

Motivation Preview of Results Outline

CPs are inefficient

- PCA ignores information about expected returns that comes from characteristics
- Characteristic sorts ignore information about the covariance structure that come historical individual firm's return covariances.

Can characteristic portfolios be improved?

- These characteristic portfolios can only explain the cross-section of returns if they span the mean variance efficient (MVE) portfolio
- We argue that characteristics are likely to be correlated with *un*priced factor risk
 - implying that the CPs will inefficient
 - ie., they won't span the MVE portfolio, or price the cross-section of average returns.
- We propose a methodology to hedge out *un*priced risk ...
 - ... using *hedge portfolios* formed using ex-ante forecasts of the covariance structure.
 - The combinination of the CP and the hedge portfolios are CEPs (*Characteristic Efficient Portfolios*)

Can characteristic portfolios be improved?

- These characteristic portfolios can only explain the cross-section of returns if they span the mean variance efficient (MVE) portfolio
- We argue that characteristics are likely to be correlated with *un*priced factor risk
 - implying that the CPs will inefficient
 - ie., they won't span the MVE portfolio, or price the cross-section of average returns.
- We propose a methodology to hedge out *un*priced risk
 - ... using *hedge portfolios* formed using ex-ante forecasts of the covariance structure.
 - The combinination of the CP and the hedge portfolios are CEPs (*Characteristic Efficient Portfolios*)

Motivation Preview of Results Outline

Money Industry R^2

 \mathbb{R}^2 of 126-day rolling regressions of HML on Money industry

Introduction Motivation Theory Preview of Resul apirical Results Outline

Hedging unpriced Risk Results in More Efficient CPs

[†]All portfolios are scaled to have the same annualized volatility as the market ($\sigma = 15\%$)

IntroductionMotivationTheoryPreview of ResulEmpirical ResultsOutline

Why do we care?

- Our approach significantly improves the efficiency of standard characteristic portfolios
 - SR² of optimal combination of five Fama and French (2015) factors increases from 1.16 to 2.13 (annualized).
 - Raises the hurdle for asset pricing models..
 - Suggests either much higher σ_m , or much larger frictions.
- CEPs provide a lens through which we can learn about the economic models for sources of premia in asset returns.
- CEPs can be used as efficient benchmarks for performance evaluation.
- Improved Sharpe-ratios for quant-strategies/smart-beta strategies

 Introduction
 Motivation

 Theory
 Preview of Results

 Empirical Results
 Outline

Outline

- **1** Theory:
 - A simple example
 - Generalization
- 2 Empirical Approach
 - How to construct the hedge portfolios
 - ${\it @}$ How to construct the characteristic ${\it efficient}$ portfolios
 - **3** Empirical Results

Basic Setup

Consider a standard setting with no arbitrage.

• Excess returns are determined by a two-factor structure, one priced and one unpriced factor:

$$r_i = \beta_i \left(f + \lambda \right) + \gamma_i g + \varepsilon_i \tag{1}$$

- f is a priced factor with premium λ
- g is an unpriced factor,

•
$$\mathbb{E}[f] = \mathbb{E}[g] = \mathbb{E}[\varepsilon_i] = 0$$

• $f \perp g \perp \varepsilon_i \quad \forall i, \text{ and } \varepsilon_i \perp \varepsilon_j \quad \forall i \neq j.$

Basic Setup

Consider a standard setting with no arbitrage.

• Excess returns are determined by a two-factor structure, one priced and one unpriced factor:

$$r_i = \beta_i \left(f + \lambda \right) + \gamma_i g + \varepsilon_i \tag{1}$$

- f is a priced factor with premium λ
- g is an un priced factor,

•
$$\mathbb{E}[f] = \mathbb{E}[g] = \mathbb{E}[\varepsilon_i] = 0$$

•
$$f \perp g \perp \varepsilon_i \quad \forall i, \text{ and } \varepsilon_i \perp \varepsilon_j \quad \forall i \neq j.$$

Basic Setup

Consider a standard setting with no arbitrage.

• Excess returns are determined by a two-factor structure, one priced and one unpriced factor:

$$r_i = \beta_i \left(f + \lambda \right) + \gamma_i g + \varepsilon_i \tag{1}$$

- f is a priced factor with premium λ
- g is an un priced factor,

•
$$\mathbb{E}[f] = \mathbb{E}[g] = \mathbb{E}[\varepsilon_i] = 0$$

•
$$f \perp g \perp \varepsilon_i \quad \forall i, \text{ and } \varepsilon_i \perp \varepsilon_j \quad \forall i \neq j.$$

Introduction 6 Asset Example Theory Improving the Characteristic Portfolio (CP) Empirical Results General Case

Characteristic x as a Proxy for Expected Returns

- We do not observe β_i or λ (or f or g directly).
- However, suppose there exists an observable characteristic x_i that lines up perfectly with expected returns:

$$\boldsymbol{\mu} \equiv \mathbb{E}\left[\boldsymbol{r}\right] = \boldsymbol{x}\lambda_c \tag{2}$$

- See, e.g., Fama and French (1993) & Daniel and Titman (1997).
- \Rightarrow characteristic is perfect proxy for priced factor loading:

$$\beta_i = \frac{\lambda_c}{\lambda} x_i \tag{3}$$

• Suppose that we form a characteristic portfolio by buying high x assets and selling low x assets. Will the projection of f in the space of returns be in the span of the resulting portfolio?

Introduction 6 Asset Example Theory Improving the Characteristic Portfolio (CP) Empirical Results General Case

Characteristic x as a Proxy for Expected Returns

- We do not observe β_i or λ (or f or g directly).
- However, suppose there exists an observable characteristic x_i that lines up perfectly with expected returns:

$$\boldsymbol{\mu} \equiv \mathbb{E}\left[\boldsymbol{r}\right] = \boldsymbol{x}\lambda_c \tag{2}$$

- See, e.g., Fama and French (1993) & Daniel and Titman (1997).
- $\bullet \Rightarrow$ characteristic is perfect proxy for priced factor loading:

$$\beta_i = \frac{\lambda_c}{\lambda} x_i \tag{3}$$

• Suppose that we form a characteristic portfolio by buying high x assets and selling low x assets. Will the projection of f in the space of returns be in the span of the resulting portfolio? Introduction 6 Asset Example Theory Improving the Characteristic Portfolio (CP) Empirical Results General Case

Characteristic x as a Proxy for Expected Returns

- We do not observe β_i or λ (or f or g directly).
- However, suppose there exists an observable characteristic x_i that lines up perfectly with expected returns:

$$\boldsymbol{\mu} \equiv \mathbb{E}\left[\boldsymbol{r}\right] = \boldsymbol{x}\lambda_c \tag{2}$$

- See, e.g., Fama and French (1993) & Daniel and Titman (1997).
- $\bullet \Rightarrow$ characteristic is perfect proxy for priced factor loading:

$$\beta_i = \frac{\lambda_c}{\lambda} x_i \tag{3}$$

• Suppose that we form a characteristic portfolio by buying high x assets and selling low x assets. Will the projection of f in the space of returns be in the span of the resulting portfolio?

Introduction 6 Asset Example Theory Improving the Characteristic Portfolio (CP) pirical Results General Case

6 Assets in the Space of Loadings and Characteristics

- In addition, we assume that:
 - Market capitalizations of all assets are identical
 - Assets have equal residual variance.

Introduction 6 Asset Example Theory Improving the Characteristic Portfolio (CP) pirical Results General Case

6 Assets in the Space of Loadings and Characteristics

Introduction 6 Asset Example Theory Improving the Characteristic Portfolio (CP) pirical Results General Case

6 Assets in the Space of Loadings and Characteristics

 Introduction
 6 Asset Example

 Theory
 Improving the Characteristic Portfolio (CP)

 mpirical Results
 General Case

CP is not MVE

• r_c is **not** mean-variance-efficient

- It loads on both the priced (f) and unpriced (g) factors.
- \Rightarrow cannot be the projection of the stochastic discount factor on the space of returns
- How can we improve r_c ?
 - Construct a *hedge portfolio* with weights \boldsymbol{w}_h that has
 - zero expected return $\implies \beta_h = 0$
 - strong correlation with $r_c \implies$ large γ_h , low σ_{ϵ}^2
 - Combine r_c and r_h to get
 - same expected return
 - lower volatility

 Introduction
 6 Asset Example

 Theory
 Improving the Characteristic Portfolio (CP)

 mpirical Results
 General Case

CP is not MVE

• r_c is **not** mean-variance-efficient

- It loads on both the priced (f) and unpriced (g) factors.
- \Rightarrow cannot be the projection of the stochastic discount factor on the space of returns
- How can we improve r_c ?
 - Construct a *hedge portfolio* with weights w_h that has
 - zero expected return $\implies \beta_h = 0$
 - strong correlation with $r_c \implies \text{large } \gamma_h, \text{ low } \sigma_\epsilon^2$
 - Combine r_c and r_h to get
 - same expected return
 - lower volatility

6 Asset Example Improving the Characteristic Portfolio (CP) General Case

6 Asset Example Improving the Characteristic Portfolio (CP) General Case

6 Asset Example Improving the Characteristic Portfolio (CP) General Case

6 Asset Example Improving the Characteristic Portfolio (CP) General Case

Theory

Improved CP

• Improved CP is a combination of the CP and the hedge portfolio: $r_c^* = r_c - \delta r_h$

or, rearranging:

$$r_c = \delta r_h + r_c^*$$

• Optimal hedge ratio:

$$\min_{\delta} \operatorname{var}\left(r_{c}^{*}\right) \qquad \Rightarrow \qquad \delta^{*} = \frac{\operatorname{cov}\left(r_{c}, r_{h}\right)}{\operatorname{var}\left(r_{h}\right)} = \rho_{c,h} \frac{\sigma\left(r_{c}\right)}{\sigma\left(r_{h}\right)}$$

• Sharpe ratio improvement:

$$\frac{\mathsf{SR}_c^*}{\mathsf{SR}_c} = \frac{1}{\sqrt{1-\rho_{c,h}^2}} > 1$$

• In this example, this hedge portfolio is maximally

Theory

Improved CP

• Improved CP is a combination of the CP and the hedge portfolio: $r_c^* = r_c - \delta r_h$

or, rearranging:

$$r_c = \delta r_h + r_c^*$$

• Optimal hedge ratio:

$$\min_{\delta} \operatorname{var}\left(r_{c}^{*}\right) \qquad \Rightarrow \qquad \delta^{*} = \frac{\operatorname{cov}\left(r_{c}, r_{h}\right)}{\operatorname{var}\left(r_{h}\right)} = \rho_{c,h} \frac{\sigma\left(r_{c}\right)}{\sigma\left(r_{h}\right)}$$

• Sharpe ratio improvement:

$$\frac{\mathsf{SR}_c^*}{\mathsf{SR}_c} = \frac{1}{\sqrt{1-\rho_{c,h}^2}} > 1$$

• In this example, this hedge portfolio is maximally correlated with the CP, so the resulting hedged CP is a Characteristic Efficient Portfoio (CEP).

General Case: Multiple Characteristics

Empirically relevant case with arbitrary factor structure, and with M characteristics that drive expected excess returns

• *M*-characteristics

$$\boldsymbol{\mu} = X\boldsymbol{\lambda}_c,\tag{A1}$$

- X is $(N \times M)$ matrix of characteristics
- λ_c is an $(M \times 1)$ vector of characteristic premia
- We show how to form M optimal hedge portfolios (W_H^*) which, combined with the inefficient CPs, form a set of Characteristic-Efficient Portfolios (CEPs), which span the MVE.

Benchmark Factor Model

- We use the Fama and French (2015) five factors as our benchmark factor-portfolios
 - *HML*: book-to-market
 - *RMW*: profitability
 - CMA: investment
 - SMB: size
 - $Mkt R_f$

Ingredients

- Recap hedge-portfolio:
 - Zero-expected return
 - Maximum loading on the CPs
- We do not observe:
 - $f_t, g_t, \text{ or } \beta \text{ or } \gamma$
- But, we do observe:
 - Characteristics: $x_{i,t} \left(= \frac{\lambda_{t-1}}{\lambda_c} \beta_i \right)$
 - Historical returns: ex-ante forecast of $b_m (= k_1 \beta + k_2 \gamma)$
- Thus, controlling for the characteristic, any remaining variation in $b_{m,i}$ must come from variation in δ_i .

Ingredients

- Recap hedge-portfolio:
 - Zero-expected return
 - Maximum loading on the CPs
- We do not observe:
 - $\bullet \ f_t, \, g_t, \, {\rm or} \ \beta \ {\rm or} \ \gamma$
- But, we do observe:
 - Characteristics: $x_{i,t} \left(= \frac{\lambda_{t-1}}{\lambda_c} \beta_i \right)$
 - Historical returns: ex-ante forecast of $b_m (= k_1 \beta + \boldsymbol{k}_2 \boldsymbol{\gamma})$
- Thus, controlling for the characteristic, any remaining variation in $b_{m,i}$ must come from variation in δ_i .

Sorting Procedure

Sorting Procedure

Sorting Procedure

Hedge Portfolio Formation

- To forecast betas, we use daily returns, and different horizons for estimating correlations and volatilities.
 - However, note again that we form h only once/year (on June 30).
- Each June 30th, form five hedge portfolios
- Sort stocks into 3×3 buckets according to size and characteristic (BEME, OP or INV)
 - For MktRF and SMB, we do it with all 3 characteristics
- Form a zero investment portfolio
 - going long the low-forecast-beta portfolios
 - and short the high-forecast-beta portfolios

Pricing the hedge portfolio

If the characteristics line up well with expected returns and we did a good job estimating b's, each hedge portfolio should have:

- Zero expected return (approximately)
- Strong negative loading on the corresponding factor-portfolio
- Positive α w.r.t. the FF five-factor model

Monthly Time Series Regressions (07/1963 - 06/2019)

 $r_{h,m} = \alpha + b_{MktRF}r_{MktRF} + b_{SMB}r_{SMB} + b_{HML}r_{HML} + b_{CMA}r_{CMA} + b_{RMW}r_{RMW} + \epsilon_t$

Hedge-Portfolio	Avg.	α	b_{Mkt-RF}	b_{SMB}	b_{HML}	b_{RMW}	b_{CMA}	\mathbb{R}^2
$r_{h,MktRF}$	0.10	-0.18	0.41	0.40	0.05	-0.17	-0.06	0.66
	(0.80)	(-2.44)	(22.39)	(15.18)	(1.48)	(-4.68)	(-1.15)	
$r_{h,SMB}$	0.17	0.03	0.17	0.56	-0.01	-0.15	-0.16	0.72
	(1.74)	(0.50)	(12.27)	(28.28)	(-0.33)	(-5.57)	(-3.95)	
$r_{h,HML}$	0.07	-0.11	0.03	-0.05	0.80	0.20	-0.54	0.61
	(0.74)	(-1.86)	(1.80)	(-2.34)	(28.21)	(6.68)	(-12.03)	
$r_{h,RMW}$	0.08	-0.21	-0.05	0.04	0.31	0.69	0.11	0.65
	(0.86)	(-3.66)	(-3.27)	(1.96)	(11.69)	(24.80)	(2.51)	
$r_{h,CMA}$	-0.04	-0.20	0.04	0.02	-0.31	0.09	0.96	0.43
	(-0.52)	(-3.39)	(2.60)	(1.10)	(-10.95)	(2.90)	(21.13)	
EW3	0.04	-0.17	0.01	0.00	0.27	0.32	0.17	0.70
HML,RMW,CMA	(0.64)	(-5.45)	(0.83)	(0.39)	(17.52)	(20.56)	(7.30)	
EW4	0.05	-0.18	0.11	0.10	0.21	0.20	0.12	0.58
EW3+MktRF	(1.17)	(-5.92)	(14.60)	(9.75)	(15.08)	(13.71)	(5.18)	
EW5	0.07	-0.15	0.10	0.15	0.19	0.17	0.08	0.57
EW4+SMB	(1.57)	(-5.01)	(14.08)	(14.86)	(13.60)	(11.65)	(3.83)	

Monthly Time Series Regressions (07/1963 - 06/2019)

 $r_{h,m} = \alpha + b_{MktRF}r_{MktRF} + b_{SMB}r_{SMB} + b_{HML}r_{HML} + b_{CMA}r_{CMA} + b_{RMW}r_{RMW} + \epsilon_t$

Hedge-Portfolio	Avg.	α	b_{Mkt-RF}	b_{SMB}	b_{HML}	b_{RMW}	b_{CMA}	R^2
$r_{h,MktRF}$	0.10	-0.18	0.41	0.40	0.05	-0.17	-0.06	0.66
	(0.80)	(-2.44)	(22.39)	(15.18)	(1.48)	(-4.68)	(-1.15)	
$r_{h,SMB}$	0.17	0.03	0.17	0.56	-0.01	-0.15	-0.16	0.72
	(1.74)	(0.50)	(12.27)	(28.28)	(-0.33)	(-5.57)	(-3.95)	
$r_{h,HML}$	0.07	-0.11	0.03	-0.05	0.80	0.20	-0.54	0.61
	(0.74)	(-1.86)	(1.80)	(-2.34)	(28.21)	(6.68)	(-12.03)	
$r_{h,RMW}$	0.08	-0.21	-0.05	0.04	0.31	0.69	0.11	0.65
	(0.86)	(-3.66)	(-3.27)	(1.96)	(11.69)	(24.80)	(2.51)	
$r_{h,CMA}$	-0.04	-0.20	0.04	0.02	-0.31	0.09	0.96	0.43
	(-0.52)	(-3.39)	(2.60)	(1.10)	(-10.95)	(2.90)	(21.13)	
EW3	0.04	-0.17	0.01	0.00	0.27	0.32	0.17	0.70
HML,RMW,CMA	(0.64)	(-5.45)	(0.83)	(0.39)	(17.52)	(20.56)	(7.30)	
EW4	0.05	-0.18	0.11	0.10	0.21	0.20	0.12	0.58
EW3+MktRF	(1.17)	(-5.92)	(14.60)	(9.75)	(15.08)	(13.71)	(5.18)	
EW5	0.07	-0.15	0.10	0.15	0.19	0.17	0.08	0.57
EW4+SMB	(1.57)	(-5.01)	(14.08)	(14.86)	(13.60)	(11.65)	(3.83)	

Monthly Time Series Regressions (07/1963 - 06/2019)

 $r_{h,m} = \alpha + b_{MktRF}r_{MktRF} + b_{SMB}r_{SMB} + b_{HML}r_{HML} + b_{CMA}r_{CMA} + b_{RMW}r_{RMW} + \epsilon_t$

Hedge-Portfolio	Avg.	α	b_{Mkt-RF}	b_{SMB}	b_{HML}	b_{RMW}	b_{CMA}	R^2
$r_{h,MktRF}$	0.10	-0.18	0.41	0.40	0.05	-0.17	-0.06	0.66
	(0.80)	(-2.44)	(22.39)	(15.18)	(1.48)	(-4.68)	(-1.15)	
$r_{h,SMB}$	0.17	0.03	0.17	0.56	-0.01	-0.15	-0.16	0.72
	(1.74)	(0.50)	(12.27)	(28.28)	(-0.33)	(-5.57)	(-3.95)	
$r_{h,HML}$	0.07	-0.11	0.03	-0.05	0.80	0.20	-0.54	0.61
	(0.74)	(-1.86)	(1.80)	(-2.34)	(28.21)	(6.68)	(-12.03)	
$r_{h,RMW}$	0.08	-0.21	-0.05	0.04	0.31	0.69	0.11	0.65
	(0.86)	(-3.66)	(-3.27)	(1.96)	(11.69)	(24.80)	(2.51)	
$r_{h,CMA}$	-0.04	-0.20	0.04	0.02	-0.31	0.09	0.96	0.43
	(-0.52)	(-3.39)	(2.60)	(1.10)	(-10.95)	(2.90)	(21.13)	
EW3	0.04	-0.17	0.01	0.00	0.27	0.32	0.17	0.70
HML,RMW,CMA	(0.64)	(-5.45)	(0.83)	(0.39)	(17.52)	(20.56)	(7.30)	
EW4	0.05	-0.18	0.11	0.10	0.21	0.20	0.12	0.58
EW3+MktRF	(1.17)	(-5.92)	(14.60)	(9.75)	(15.08)	(13.71)	(5.18)	
EW5	0.07	-0.15	0.10	0.15	0.19	0.17	0.08	0.57
EW4+SMB	(1.57)	(-5.01)	(14.08)	(14.86)	(13.60)	(11.65)	(3.83)	

Monthly Time Series Regressions (07/1963 - 06/2019)

 $r_{h,m} = \alpha + b_{MktRF}r_{MktRF} + b_{SMB}r_{SMB} + b_{HML}r_{HML} + b_{CMA}r_{CMA} + b_{RMW}r_{RMW} + \epsilon_t$

Hedge-Portfolio	Avg.	α	b_{Mkt-RF}	b_{SMB}	b_{HML}	b_{RMW}	b_{CMA}	R^2
$r_{h,MktRF}$	0.10	-0.18	0.41	0.40	0.05	-0.17	-0.06	0.66
	(0.80)	(-2.44)	(22.39)	(15.18)	(1.48)	(-4.68)	(-1.15)	
$r_{h,SMB}$	0.17	0.03	0.17	0.56	-0.01	-0.15	-0.16	0.72
	(1.74)	(0.50)	(12.27)	(28.28)	(-0.33)	(-5.57)	(-3.95)	
$r_{h,HML}$	0.07	-0.11	0.03	-0.05	0.80	0.20	-0.54	0.61
	(0.74)	(-1.86)	(1.80)	(-2.34)	(28.21)	(6.68)	(-12.03)	
$r_{h,RMW}$	0.08	-0.21	-0.05	0.04	0.31	0.69	0.11	0.65
	(0.86)	(-3.66)	(-3.27)	(1.96)	(11.69)	(24.80)	(2.51)	
$r_{h,CMA}$	-0.04	-0.20	0.04	0.02	-0.31	0.09	0.96	0.43
	(-0.52)	(-3.39)	(2.60)	(1.10)	(-10.95)	(2.90)	(21.13)	
EW3	0.04	-0.17	0.01	0.00	0.27	0.32	0.17	0.70
HML,RMW,CMA	(0.64)	(-5.45)	(0.83)	(0.39)	(17.52)	(20.56)	(7.30)	
EW4	0.05	-0.18	0.11	0.10	0.21	0.20	0.12	0.58
EW3+MktRF	(1.17)	(-5.92)	(14.60)	(9.75)	(15.08)	(13.71)	(5.18)	
EW5	0.07	-0.15	0.10	0.15	0.19	0.17	0.08	0.57
EW4+SMB	(1.57)	(-5.01)	(14.08)	(14.86)	(13.60)	(11.65)	(3.83)	

Monthly Time Series Regressions (07/1963 - 06/2019)

 $r_{h,m} = \alpha + b_{MktRF}r_{MktRF} + b_{SMB}r_{SMB} + b_{HML}r_{HML} + b_{CMA}r_{CMA} + b_{RMW}r_{RMW} + \epsilon_t$

Hedge-Portfolio	Avg.	α	b_{Mkt-RF}	b_{SMB}	b_{HML}	b_{RMW}	b_{CMA}	\mathbb{R}^2
$r_{h,MktRF}$	0.10	-0.18	0.41	0.40	0.05	-0.17	-0.06	0.66
	(0.80)	(-2.44)	(22.39)	(15.18)	(1.48)	(-4.68)	(-1.15)	
$r_{h,SMB}$	0.17	0.03	0.17	0.56	-0.01	-0.15	-0.16	0.72
	(1.74)	(0.50)	(12.27)	(28.28)	(-0.33)	(-5.57)	(-3.95)	
$r_{h,HML}$	0.07	-0.11	0.03	-0.05	0.80	0.20	-0.54	0.61
	(0.74)	(-1.86)	(1.80)	(-2.34)	(28.21)	(6.68)	(-12.03)	
$r_{h,RMW}$	0.08	-0.21	-0.05	0.04	0.31	0.69	0.11	0.65
	(0.86)	(-3.66)	(-3.27)	(1.96)	(11.69)	(24.80)	(2.51)	
$r_{h,CMA}$	-0.04	-0.20	0.04	0.02	-0.31	0.09	0.96	0.43
	(-0.52)	(-3.39)	(2.60)	(1.10)	(-10.95)	(2.90)	(21.13)	
EW3	0.04	-0.17	0.01	0.00	0.27	0.32	0.17	0.70
HML,RMW,CMA	(0.64)	(-5.45)	(0.83)	(0.39)	(17.52)	(20.56)	(7.30)	
EW4	0.05	-0.18	0.11	0.10	0.21	0.20	0.12	0.58
EW3+MktRF	(1.17)	(-5.92)	(14.60)	(9.75)	(15.08)	(13.71)	(5.18)	
EW5	0.07	-0.15	0.10	0.15	0.19	0.17	0.08	0.57
EW4+SMB	(1.57)	(-5.01)	(14.08)	(14.86)	(13.60)	(11.65)	(3.83)	

Optimal Hedge Ratio $\boldsymbol{\delta}_m$

• Constructing improved or hedged factor portfolios:

$$r_{c,m,t}^* = r_{c,m,t} - \boldsymbol{r}_{h,t} \hat{\boldsymbol{\delta}}_{m,t-1}$$

where $m \in \{HML, RMW, CMA, SMB, MktRF\}$

Optimal Hedge Ratio $\boldsymbol{\delta}_m$

$$r_{c,m,t}^* = r_{c,m,t} - \underbrace{r_{h,t}}_{5 imes 1} \hat{\boldsymbol{\delta}}_{m,t-1}$$

where $m \in \{HML, RMW, CMA, SMB, MktRF\}$

Optimal Hedge Ratio $\boldsymbol{\delta}_m$

$$r_{c,m,t}^* = r_{c,m,t} - \underbrace{r_{h,t}}_{5 imes 1} \hat{\boldsymbol{\delta}}_{m,t-1}$$

where $m \in \{HML, RMW, CMA, SMB, MktRF\}$

• $\hat{\delta}_{m,t-1}$ is estimated *ex-ante*, from the regression:

$$r_{c,m,t} = \boldsymbol{\delta}_{m,t-1} \boldsymbol{h}_t + \epsilon_{k,t}$$

 $r_{c,m,t}^* = \epsilon_{m,t}$

• That is, the CEP returns are the residuals from these regressions.

Same basic procedure as for estimating individual firm b's.

- Estimation is out-of-sample, using:
 - daily pre-formation return regressions
 - different horizons for correlation and volatility estimations (60 months/12 months).
 - "fixed-weight" portfolios, both for $r_{c,t}$ and $r_{h,t}$
- We also calculate *industry hedged* portfolios $r_{(c-ind)m,t}$, which uses the same estimation technique to orthogonalize the FF-portfolios to industry risk.
 - This allows us to assess the hypothesis that what we are picking up with our hedging procedure is just industry risk.

Estimating $\hat{\delta}_m$

Same basic procedure as for estimating individual firm b's.

- Estimation is out-of-sample, using:
 - daily pre-formation return regressions
 - different horizons for correlation and volatility estimations (60 months/12 months).
 - "fixed-weight" portfolios, both for $r_{c,t}$ and $r_{h,t}$
- We also calculate *industry hedged* portfolios $r_{(c-ind)m,t}$, which uses the same estimation technique to orthogonalize the FF-portfolios to industry risk.
 - This allows us to assess the hypothesis that what we are picking up with our hedging procedure is just industry risk.

CEP vs. industry-neutral portfolios

	r_c	r_c^*	$\ r_{c-ind}$
HML			
Mean	3.68	2.43	2.61
Vol	9.60	5.87	5.15
SR^2	0.15	0.17	0.26
RMW			
Mean	3.22	2.65	2.29
Vol	7.79	5.06	5.80
SR^2	0.17	0.27	0.16
CMA			
Mean	2.63	2.33	2.12
Vol	6.51	4.31	3.97
SR^2	0.16	0.29	0.28
SMB			
Mean	2.89	2.00	2.90
Vol	10.27	6.52	8.29
SR^2	0.08	0.09	0.12
MktRI	r		
Mean	6.52	5.96	- -
Vol	15.14	10.51	-
SR^2	0.19	0.32	

ex-post Optimal Combinations

	r_c	r_c^*	r_{c-ind}
In-sam	ple opt	timal c	ombination
Mean	3.49	2.82	2.57
Vol	3.23	1.92	2.20
SR^2	1.16	2.16	1.37

DANIEL, MOTA, ROTTKE AND SANTOS · RISK & RETURN BI-SHOF AP&FE CONFERENCE — 2020·06·10 27

Three Things to Keep in Mind:

- All information used is readily ex-ante available information
- We do not need to identify the unpriced common source of variation
- Conservative portfolio construction:
 - rebalanced once/year
 - components of the hedge portfolio are all value weighted.

Conclusions

- CPs formed on the basis of characteristics sorts alone are unlikely to span the MVE portfolio
 - FF5 model is easily rejected (t = -5.86)
- \bullet We improve those CPs by hedging out $un {\rm priced}$ risk
 - using ex-ante information on the covariance structure
- Presents a greater challenge to asset pricing models
 - SR^2 of optimal FF5-combination increases from 1.16 to 2.13
- Procedure should work for *any* set of CPs
- FF5 CEPs returns can be downloaded: www.kentdaniel.net/data.php.

References I

- Asness, Clifford S, Andrea Frazzini, and Lasse H Pedersen, 2013, Quality minus junk, AQR Capital Management working paper.
- Carhart, Mark M., 1997, On persistence in mutual fund performance, Journal of Finance 52, 57–82.
- Chen, Nai-Fu, Richard Roll, and Stephen A. Ross, 1986, Economic forces and the stock market, Journal of Business 59, 383–403.
- Connor, Gregory, and Robert A. Korajczyk, 1988, Risk and return in an equilibrium APT: Application of a new test methodology, *Journal of Financial Economics* 21, 255–289.
- Daniel, Kent D., and Tobias J. Moskowitz, 2016, Momentum crashes, Journal of Financial Economics 122, 221–247.
- Daniel, Kent D., and Sheridan Titman, 1997, Evidence on the characteristics of cross-sectional variation in common stock returns, *Journal of Finance* 52, 1–33.

- Fama, Eugene F., and Kenneth R. French, 1993, Common risk factors in the returns on stocks and bonds, *Journal of Financial Economics* 33, 3–56.
- _____, 2015, A five-factor asset pricing model, Journal of Financial Economics 116, 1–22.

^{, 2006,} Market reactions to tangible and intangible information, Journal of Finance 61, 1605–1643.

References II

- Lustig, Hanno N., Nikolai L. Roussanov, and Adrien Verdelhan, 2011, Common risk factors in currency markets, *Review of Financial Studies* 24, 3731–3777 NBER Working Paper.
- Pástor, Ľuboš, and Robert F. Stambaugh, 2003, Liquidity risk and expected stock returns, Journal of Political Economy 111, 642–685.