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Abstract

Most integrated models of the covid pandemic have been developed under the assumption
that the policy-sensitive reproduction number is certain. The decision to exit from the
lockdown has been made in most countries without knowing the reproduction number
that would prevail after the deconfinement. In this paper, I explore the role of uncertainty
and learning on the optimal dynamic lockdown policy. I limit the analysis to suppression
strategies. In the absence of uncertainty, the optimal confinement policy is to impose a
constant rate of lockdown until the suppression of the virus in the population. I show that
introducing uncertainty about the reproduction number of deconfined people reduces the
optimal initial rate of confinement.
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1 Introduction
Academic economists have recently spent a huge amount of energy to better understand the
science of pandemic dynamics in the face of the emergence of the covid-19. Economists are
contributing to the analysis of the covid-19 crisis by integrating economic dimensions to the
models, such as the economic cost of social distancing and the statistical value of lives lost.
These are key elements necessary for public and private decision-makers interested in shap-
ing strategies and policies that minimize the welfare cost of the crisis. My preferred reading
list on this issue as I write this paper is composed of papers by Acemoglu, Chernozhukov,
Werning and Whinston (2020), Alvarez, Argent and Lippi (2020), Brotherhood, Kircher,
Santos and Tertilt (2020), Favero, Ichino and Rustichini (2020), Fischer (2020), Greenstone
and Nigam (2020), Miclo, Spiro and Weibull (2020), Pindyck (2020) and Pollinger (2020).
This investment by the profession is impressive and highly policy-relevant. It raised critical
debates about, for example, when and how much to deconfine people, who should remain con-
fined longer, the value of testing and tracing, or whether the individual freedom of movement
should be limited.

One of the most striking feature of the crisis is the deep uncertainties that surrounded
most parameters of the model at the initial stage of the pandemic. To illustrate, here is a
short list of the sources of covid-19 uncertainties: The mortality rate, the rate of asymp-
tomatic sick people, the rate of prevalence, the duration of immunity, the impact of various
policies (lockdown, social distancing, compulsory masks,...) on the reproduction numbers, the
proportion of people who could telework efficiently, and the possibility of cross-immunization
from similar viruses. Still, all models that have been built over such a short period of time
by economists assumed no parameter uncertainty, and I am not an exception (Gollier, 2020).
This is amazing. Large discrepancies between the predictions of these models and their as-
sociated "optimal" policies do not illustrate deep disagreements about the dynamics of the
pandemic, but rather deep uncertainties about the true values of its parameters. This pa-
rameter uncertainty should be recognized and integrated in the modeling. Economists are
well aware that uncertainty is typically a key component to explain observed behaviors and
to shape efficient policies. Precautionary savings, option value to wait before investing, risk
premia on financial markets, insurance demand, risk-sharing and solidarity mechanisms, and
preventive efforts are obvious examples to demonstrate that risk and uncertainty are at the
heart of the functioning of our society. But in the cases of climate change and covid-19, we
most often assume no uncertainty to make policy recommendations in spite of the fact that
uncertainty is everywhere in these contexts. I feel this fact as an impressive failure of our
profession to be useful to make the world better.

In this paper, I go one step towards including risk in the shaping of efficient pandemic
policies. Suppose that a virus has contaminated a small fraction of the population, and that
no treatment or vaccine is available. Because of the high lethality of the virus, I suppose that
the only feasible strategy is to "crush the (infection) curve" by imposing a partial lockdown.
The intensity of the confinement can be adapted in continuous-time to the evolution of the
pandemic in order to minimize the total cost of the confinement. Following Pollinger (2020),
I show that in the absence of uncertainty, the optimal intensity of the lockdown should
be constant over time until the eradication of the virus in the population. The optimal
confinement intensity is the best compromise between the short-term cost of increasing the
confinement and the long-term benefit of reducing the duration of the confinement. Confining
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people modifies the reproduction number. Under the standard SIR pandemic model (Kermack
and McKendrick, 1927), there is a quadratic relation between the instantaneous intensity of
the confinement and the instantaneous reproduction number.

Consider the situation prevailing in the western world in April 2020, after a partial lock-
down was imposed. In this context, suppose that the reproduction number under full lock-
down is known, but the reproduction number under full deconfinement is uncertain. This
uncertainty will evaporate within a few weeks by observing the propagation of the virus under
the partial lockdown. How should this uncertainty with learning affect the initial intensity of
the lockdown? Surprisingly, I show that it tends to reduce it. To obtain this result, I assume
that the representative agent is risk-neutral. However, risk plays a role in this model because
of two non-linear interactions: the quadratic relation between the cost of confinement and
the instantaneous reproduction number, and the hyperbolic relation between the reproduc-
tion number and the duration of the pandemic. This double non-linearity makes the analysis
quite complex, and I have been able to prove the main result only in the case of small risk.
The calibration exercise suggests that my result holds for large risks too.

There is a long tradition in decision theory and finance on optimal choice under un-
certainty and learning to which this paper is related. It is closest to the literature on the
option value to wait introduced by McDonald and Siegel (1984) and popularized by Dixit and
Pindyck (1994). An important message from this literature is that risk-neutral agents could
optimally reduce their initial effort to achieve a long-term goal in order to obtain additional
information about the welfare impact of this effort. I obtain a similar result in this pandemic
model.

2 The model
My model is based on the classical SIR model developed by Kermack and McKendrick (1927)
to describe the dynamics of a pandemic. Each person is either Susceptible, Infected or
Recovered, i.e., the health status of a person belongs to {S, I,R}. This implies that St + It +
Rt = N at all dates t ≥ 0. A susceptible person can be infected by meeting an infected person.
Following the key assumption of all SIR models, this number of new infections is assumed
to be proportional to the product of the densities of infected and susceptible persons in the
population, weighted by the intensity of their social interaction. With no further justification,
this is quantified as follows:

dSt
dt

= −βtItSt. (1)

I will soon describe how βt, which measures the intensity of the risk of contagion of a sus-
ceptible person by an infected person at date t, is related to the social interactions between
these two groups and by the confinement policy. Once infected, a person quits this health
state at rate γ, so that the dynamics of the infection satisfies the following equations:

dIt
dt

= βtItSt − γIt. (2)

dRt
dt

= γIt (3)
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The pandemic starts at date t = 0 with I0 infected persons and N − I0 susceptible persons. I
assume that the virus is eradicated when the number It of infected persons goes below Imin,
in which case an aggressive tracing-and-testing strategy is implemented to eliminate the last
clusters of the epidemic.

Because on average an infected person remains contagious for a duration 1/γ, and be-
cause the instantaneous number of susceptible persons infected by a sick person is βtSt, the
reproduction number at date t equals

rt = βtSt
γ

. (4)

Herd immunity is obtained when the number of infected persons start to decrease over time.
From equation (2), this is obtained when the number of susceptible persons goes below the
herd immunity threshold S∗ = γ/βt, i.e., when the reproduction number goes below 1. In this
paper, I focus on policies aimed at "crushing the curve", where rt remains permanently below
unity. Other policies, such as the laissez-faire policy or policies aimed at "flattening the curve",
consist in building herd immunity through a rapid or gradual infection of a large fraction of
the population, implying a large health cost but a limited economic cost. When crushing
the curve, a sufficiently strong confinement is imposed to the population to maintain the
reproduction number permanently below 1, so that the virus is eradicated relatively quickly.
Under this family of scenarios, the number St of susceptible persons remain close to unity,
very far from herd immunity under the laissez-faire policy. This implies that the changes in
ItSt in equation (2) mostly comes from changes in It. Following Pollinger (2020), I therefore
simplifies the SIR dynamic described above into a single differential equation:

dIt
dt

= (βtItS − γ)It, (5)

where S is the average number of susceptible persons during the pandemic. This approxima-
tion of the SIR model is exact when the ratio of infected to susceptible is close to zero.

I examine policies of social distancing and lockdown. Let x denote the intensity of this
policy. One can interpret x as a measure of the fraction of people that are confined. For
simplicity, I assume that infected people are asymptomatic and that there is no PCR test, so
that one cannot discriminate the intensity of confinement on the basis of the health status.
This means that x is the fraction of people, both infected or susceptible, who are confined.
A free infected person has a reproduction number rf = βfS/γ. I assume that there is no
herd immunity at the start of the pandemic, i.e., that rf is larger than unity, or βfS > γ.
The confinement reduces this number to rc = βcS/γ, with βc ≤ βf . I assume that the full
confinement of the population crushes the curve in the sense that rc < 1, or βcS ≤ γ.

As said earlier, a crucial element of the SIR model is that the speed of infection is
proportional to the product of the numbers of people infected and susceptible. Confining
people reduces both the number of infected people and the number of susceptible persons,
implying a quadratic relation between the intensity x of the confinement and propagation
of the virus in the population (Acemoglu, Chernozhukov, Werning and Whinston (2020)).
From this observation, the pandemic parameter βt takes the following form:

βt = β(xt) = (βcxt + βf (1− xt))(1− xt). (6)
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The true contagion rate βcxt + βf (1 − xt) of infected people is a weighted average of the
contagion rates βc and βf of infected people who are respectively confined and let free to live
their life. They meet a reduced fraction 1 − x of susceptible people, because the remaining
fraction x is lockdown. The quadratic nature of this relation plays a crucial role in this paper.
The lockdown has also an economic cost. I assume that the instantaneous cost of confining a
fraction x of the population at date t is equal to wx, where w > 0 can be interpreted as the
sum of the wage and psychological costs of confinement. Abstracting from discounting given
the short duration of the pandemic when crushing the curve, the objective of the policy is to
minimize the total cost of the health crisis. This yields the following value function:

V (I) = min
x(.)

w

∫ T

0
x(t)dt s.t. I0 = I and IT = Imin, (7)

where I is the current rate of prevalence of the virus in the population. The termination
date corresponds to the time when the rate of prevalence of the virus attains the eradication
threshold Imin. Observe that I assume an objective that ignores the potential lethality of
the virus. But even when the virus is lethal, policies aimed at crushing the curve typically
yields economic costs that are at least one order of magnitude larger than the value of lives
lost (Gollier (2020)), thereby justifying this objective of minimizing costs.

3 Optimal suppression under certainty
Pollinger (2020) derives the solution of a more general version of this dynamic problem under
certainty. Using backward induction, problem (7) can be rewritten as follows:

V (I) = min
x

wx∆t+ V (I + (β(x)S − γ)I∆t)

≈ min
x

wx∆t+ V (I) + (β(x)S − γ)IV ′(I)∆t,

or, equivalently,
0 = min

x
wx+ (β(x)S − γ)IV ′(I). (8)

The first-order condition of this problem is

w = −βx(x∗)SIV ′(I), (9)

Under this notation, βx is the derivative of β with respect to x. Equation (9) expresses the
optimal intensity x∗(I) of confinement as a function of the rate of prevalence of the virus.
However, let us guess a constant solution x∗ independent of I. From equation (9), this would
be the case if IV ′(I) is a constant. In that case, the duration T of the pandemic will be such
that

Imin = I exp((β(x∗)S − γ)T ). (10)

This equation tells us that there is an hyperbolic relation between the reproduction number
and the duration of the pandemic. The total cost under such a constant strategy is

V (I) = wx∗T = −wx∗

β(x∗)S − γ ln
(

I

Imin

)
. (11)
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This implies that IV ′(I) is a constant, thereby confirming the guess that it is optimal to main-
tain a constant intensity of lockdown until the eradiction of the virus. Combining equations
(9) and (11) yields the following optimality condition for x∗:

x∗ = β(x∗)S − γ
βx(x∗)S . (12)

The optimal intensity of lockdown is a best compromise between the short-term benefit of
easing the lockdown and the long-term cost of a longer duration of the pandemic. Under the
quadratic specification (6) for beta, equation (9) simplifies to

x∗ =
√

βfS − γ
βfS − βcS

=
√
rf − 1
rf − rc

. (13)

Because rc < 1 < rf , the optimal intensity of confinement is between 0 and 1. For example, if
the reproduction number goes from 2 to 0.5 when moving from the laissez-faire to the 100%
lockdown, the optimal intensity of confinement is

√
2/3 = 81%. I summarize my results under

certainty in the following proposition. Its first part is a special case of Pollinger (2020).

Proposition 1. Under certainty, the optimal suppression strategy is to impose a constant
intensity of confinement until the virus is eradicated. In the quadratic case (6), the optimal
intensity of confinement is

√
(rf − 1)/(rf − rc), where rf and rc are the reproduction numbers

under respectively the laissez-faire and the full lockdown.

4 Optimal suppression under uncertainty
Suppose that some parameters of the pandemic are unknown at date 0. Suppose also that
the only way to learn the true value of these parameters is to observe its dynamics over
time. How should this parameter uncertainty affect the optimal effort to fight the virus in
the population? I have not been able to solve the continuous-time version of this dynamic
learning problem. I therefore simplified the problem as follows. I assume that parameter
βf is unknown. At date 0, a decision must be made for an intensity x0 of confinement
under uncertainty about βf . This intensity of confinement will be maintained until date τ .1
Between dates 0 and τ , the observation of the propagation of the virus will inform us about
βf . Therefore, at date τ , βf is known and the intensity of confinement is adapted to the
information. My objective is to compare the optimal x0 under uncertainty to the x0 that
would be optimal when ignoring the fact that βf is uncertain.

This is thus a two-stage optimization problem that I solve by backward induction. From
date τ on, there is no more uncertainty. As observed in the previous section, it is optimal
to revise the confinement policy to the information about the true βf . We know from the
previous section that the optimal contingent policy x∗(βf ) is constant until the eradication
of the virus. The minimal total cost of this policy is denoted V (Iτ , βf ). Combining equations
(11) and (12), it is equal to

V (Iτ , βf ) = −w
βx(x∗(βf ))S ln

(
Iτ
Imin

)
. (14)

1I assume that τ is small enough so that Iτ is larger than Imin with probability 1.
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It is a function of the rate of prevalence Iτ of the virus observed at date τ and of the pandemic
parameter βf observed during the first stage of the pandemic.

The first stage of the pandemic takes place under uncertainty about βf . I assume risk
neutrality, so that the objective is to minimize the expected total cost of the suppression
strategy:

W0 = min
x0

wx0τ + EV (Iτ , βf ), (15)

where Iτ = I0 exp((β(x0, βf )S−γ)τ) is also a function of random variable βf . The first-order
condition of this stage-1 problem can be written as follows:

E [F (x∗0, βf )] = 1, (16)

with

F (x0, βf ) = βx(x0, βf )
βx(x∗(βf ), βf ) . (17)

In the absence of uncertainty, i.e., when βf takes value βf0 with probability 1, the optimal
solution is the solution of equation (16) in that particular case, which implies

x∗0 = x∗(βf0). (18)

How does the uncertainty and learning about βf affect the optimal effort to mitigate the
pandemic? Because β is a convex function of the mitigation effort x, function F is increasing
in x0. By Jensen’s inequality, equation (16) implies that the uncertainty affecting βf reduces
the optimal initial mitigation effort if an only if F is convex in its second argument. I have
not been able to demonstrate a general result of this nature. I therefore limited my analysis
to the case of a small risk surrounding βf . More precisely, suppose that βf is distributed
as βf0 + hε, where βf0 is a known constant, ε is a zero-mean random variable and h is an
uncertainty-intensity parameter. I examine the sensitivity of the optimal confinement x∗0 as
a function of the intensity h in the neighborhood of h = 0. In the Appendix, I demonstrate
that F is locally convex in its second argument, i.e., that x∗0(h) is decreasing in h in the
neighborhood of h = 0. More precisely, I show that x∗′

0 (0) = 0 and x∗′′
0 (0) < 0. This yields

the following main result of the paper.

Proposition 2. Consider the quadratic case (6). Introducing a small risk about the trans-
mission rate βf reduces the optimal initial intensity of confinement.

Proof: See Appendix.

5 Calibration exercise
In this section, I quantify the negative impact of uncertainty on the optimal confinement
in the learning stage 1. I solve numerically the optimality condition (16) in the quadratic
context. This equation takes the following form in that case:

E

 (2βf − βc)S − 2(βf − βc)Sx∗0
(2βf − βc)S − 2

√
(βf − βc)S(βfS − γ)

 = 1 (19)
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Figure 1: Optimal confinement x∗0 in stage 1 as a function of the intensity h of the uncertainty.
I assume that rc = 0.5 and rf = 1.5 + hε, with ε ∼ (−1, π;π/(1− π), 1− π).

It yields the following solution:

x∗0 =
E

[ √
(rf−rc)(rf−1)

2rf−rc−2
√

(rf−rc)(rf−1)

]
E

[
rf−rc

2rf−rc−2
√

(rf−rc)(rf−1)

] , (20)

where rf = βfS/γ and rc = βcS/γ are the reproduction numbers in the laissez-faire and total
lockdown respectively. I first describe a simulation in the spirit of the covid-19. There has
been much debate about the reproduction number under the laissez-faire policy. Ferguson et
al. (2020) assumed that it was between 2 and 2.6 at the beginning of the pandemic. However,
I focus in this paper on a post-lockdown situation in which people have learned the benefit of
washing hands, bearing masks and basic social distancing behaviors. Therefore, the expected
reproduction number under the laissez-faire in this new situation is probably smaller than 2.
I assume an expected value of Erf = 1.5. For France, Santé Publique France2 has estimated
the reproduction number at different stages of the pandemic. It was estimated at 0.8 at
the end of the strong confinement period in May. Because the confinement was partial, this
observation is compatible with a rc equaling 0.5.

In Figure 1, I describe the optimal intensity x∗0 in stage 1 as a function of the intensity
h of the uncertainty surrounding rf , with rf = 1.5 + hε, with Eε = 0. More specifically, I
consider binary distribution with ε ∼ (−1, π;π/(1 − π), 1 − π). In order to keep rf above 1
with probability 1, I consider risk intensities h between 0 and 0.5. Under certainty (rf = 1.5
with certainty, or h = 0), the optimal intensity of confinement is a constant

√
0.5 = 70.7%.

2https://www.santepubliquefrance.fr/maladies-et-traumatismes/maladies-et-infections-
respiratoires/infection-a-coronavirus/documents/bulletin-national/covid-19-point-epidemiologique-du-11-
juin-2020
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Figure 2: Percentage reduction in the optimal confinement x∗0 in stage 1 due to uncertainty
for different values of (rc, rf ). I assume that rf is distributed as (1, 1/2; 2rf − 1, 1/2).

Suppose alternatively that rf is either 1 or 2 with equal probabilities. In that case, the
optimal confinement goes down to 66.2%. If our beliefs about the reproduction number rf
are distributed as 1 with probability 0.9 and 6 with probability 0.1, then the optimal initial
confinement goes down to 61.4%.

In Figure 2, I describe the percentage reduction in the optimal initial confinement for dif-
ferent rc and rf ∼ (1, 1/2; 2rf−1, 1/2). We see that the impact of uncertainty on the optimal
confinement is largest when the reproduction numbers in the pre- and post-confinement are
close to unity. Suppose for example that rc = 0.9 and rf = 1.1. In this context of certainty,
the optimal confinement is 70.7%. If rf is distributed as (1, 1/2; 1.2, 1/2), the optimal initial
confinement goes down to 34.7%, a 51% reduction in the initial mitigation effort.

6 Concluding remarks
The uncertainty surrounding the reproduction number when reducing the strength of the
lockdown is an argument in favor of lowering the intensity of this lockdown in the learning
phase of the pandemic. This rather surprising result is the outcome of two non-linearities of
the model. First, the duration of the pandemic is an hyperbolic function of the reproduction
number. Second, the reproduction number is a quadratic function of the cost of confinement.
These two non-linearities explain why one should be sensitive to the uncertainty when shap-
ing the confinement policy, but I confess that these observations do not explain why this
uncertainty should reduce the optimal confinement at the first stage of the pandemic. More
work should be done to explain this result.

This research opens a new agenda of research that I am glad to share with the readers of
this paper. For example, shame on me, I assume here risk neutrality, in spite of the large size
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of the risk and its correlation with aggregate consumption. Could there be a precautionary
motive for a larger initial intensity of the confinement? No doubt that my result should be
refined in that direction. Also, I limited the analysis to suppression policies. This restric-
tion was necessary to simplify the dynamic equations of the generic SIR model, so that the
assumption of an almost constant number of susceptible people in the population is a rea-
sonable approximation. This excludes the possibility to compare the optimal solution among
this family of policies to other plausible policies, in particular policies aimed at attaining a
high rate of herd immunity. Introducing uncertainty in the generic SIR model and measuring
its impact on the optimal policy is another promising and useful road for research. In my
to-do list, I also have the exploration of other sources of uncertainty, such as not knowing the
rate of prevalence, the fraction of the population already immunized, or the time of arrival
of a vaccine. Finally, because the value of lives lost associated to most suppression strategies
is typically one or two orders of magnitude smaller than the direct economic cost of the lock-
down, I assumed that the objective of the social planner is to minimize the economic cost
incurred to eradicate the virus in the population. It would be useful, as in Pollinger (2020),
to incorporate the value of lives lost in the objective function.

My view is that the benefit of sharing these preliminary results is larger than the cost
of providing incomplete – and potentially biased – theoretical results to our profession. The
urgency requires that other competent colleagues, in particular in the scientific community
of decision theorists and insurance economists, invade this terra incognita.
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Appendix: Proof of Proposition 2

In the quadratic case (6), we have that

β(x)S − γ = (βcx+ βf (1− x))(1− x)S − γ = ax2 − bx+ c,

with

a = (βf − βc)S > 0
b = (2βf − βc)S > 0
c = βfS − γ > 0

Remember that we assume that βfS > γ and that βcS < γ, so the signs of coefficients
(a, b, c), which are functions of βf . This also implies that β(x)S − γ alternates in sign,
implying b2 − 4ac > 0. We have that

x∗(βf ) =
√
c

a
=
√

βfS − γ
(βf − βc)S

Observe that βcS < γ implies that the optimal stage-2 confinement is smaller than unity.
Stage-1 optimality condition (16) is now rewritten as follows:

E

[ 2ax∗0 − b
2
√
ac− b

]
= 1. (21)

As stated in the main part of the paper, let me parametrize the uncertainty by assuming
that βf is distributed as βf0 + hε, where βf0 is a known constant, ε is a zero-mean random
variable and h is a measure of the uncertainty. The optimal stage-1 confinement is a function
of h, and is denoted x∗0(h). I examine the properties of this function in the neighborhood of
h = 0. When h equals zero, the above equation is solved with

x∗0(0) = x∗(βf0) =
√

βf0S − γ
(βf0 − βc)S

.

I now estimate x∗′
0 = ∂x∗0/∂h. To do this, I fully differentiate the optimality condition

(21) with respect to h, taking account of the fact that (a, b, c) are functions of βf = βf0 +hε.
Let d be equal to ac. I obtain

E

[
(2a′x∗0 − b′) ε+ 2ax∗′

0
2
√
d− b

− (2ax∗0 − b)ε
(2
√
d− b)2

(
d′√
d
− b′

)]
= 0. (22)

When h equals zero, coefficients a, b, c and d are constant. Because Eε equals zero, the above
equation has a single solution

x∗
′

0 (0) = 0 (23)

when evaluating it at h = 0. At the margin, introducing a zero mean risk for the reproduction
number has no effect on the optimal mitigation effort in stage 1.
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Let me now turn to x∗′′
0 = ∂2x∗0/∂h

2. Let me specifically evaluate this second derivative
at h = 0. Fully differentiating equation (22) with respect to h, and using property (23) yields

0 = (2a′′x∗0 − b′′)σ2 + 2ax∗′′
0

2
√
d− b

− 2(2a′x∗0 − b′)σ2(
2
√
d− b

)2

(
d′√
d
− b′

)
− (2ax∗0 − b)σ2

(2
√
d− b)2

(
d′′√
d
− 1

2
d′2

d
3
2
− b′′

)

+2(2ax∗0 − b)σ2

(2
√
d− b)3

(
d′√
d
− b′

)2
,

where σ2 = Eε2 is the variance of ε. This is equivalent to

2aσ−2x∗
′′

0 (0) = −
(

2a′′
√
c

a
− b′′

)
+ 2

(
2a′
√

c
a − b

′
)

2
√
d− b

(
d′√
d
− b′

)
+
(
d′′√
d
− 1

2
d′2

d
3
2
− b′′

)

− 2
2
√
d− b

(
d′√
d
− b′

)2
.

We have that a′ = S, b′ = 2S, d′ = S(b − γ) and d′′ = 2S2. This allows me to rewrite the
above equation as

2aσ−2

S2 x∗
′′

0 (0) =
4
(√

c
a − 1

)
2ac− b

√
ac

(
(b− γ)− 2

√
ac
)
+

2ac− 1
2 (b− γ)2

(ac)3/2 − 2
2(ac)3/2 − abc

(
(b− γ)− 2

√
ac
)2
.

Because b2 − 4ac is positive, we obtain that x∗′′
0 (0) is negative if and only if(

3(b− γ)2 − 4c(b− γ)− 4ac
)

(ac)1/2 − 2abc+ 4acγ + 8ac2 ≤ 1
2b (b− γ)2 , (24)

or, equivalently,(
3S2β2

c − 2S (2Sβf + γ)βc +
(
4γSβf − γ2

))2
(βf (βfS − γ)− (βfS − γ)βc)

−S(−1
2S

2β3
c +

(
5S2βf − 3Sγ

)
β2
c +

(
−4S2β2

f − 2γSβf + 7
2γ

2
)
βc + 4Sγβ2

f − 3γ2βf )2 ≤ 0.

Let me use the following notation:

v = (βcS/γ)− 1
z = βfS/γ.

After tedious manipulations, the above inequality is true if and only if

H(v, z) = 4(1− z)2 + v(8.75− 13z + 4z2) + v2(4.5− 4z)− 0.25v3 (25)

is positive in the relevant domain of (v, z), i.e., v ∈ [−1, 0] and z ≥ 1. Notice that H is clearly
non-negative at the boundaries of the relevant domain:

H(0, z) = 4(1− z)2 ≥ 0

H(−1, z) = z ≥ 0
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H(v, 1) = 0.25v(1− v)2 ≥ 0

lim
z→+∞

H(v, z) = lim
z→+∞

4(1 + v)z2 = +∞.

More generally, H is non-negative in the relevant domain D = {(v, z) | (v, z) ∈ [−1, 0] ×
[1,+∞[}. This implies that x∗′′

0 (0) is negative, or that x∗0(h) is smaller than x∗0(0) in the
neighborhood of h = 0. In other words, any small zero-mean risk surrounding βf reduces the
optimal confinement at stage 1. This concludes the proof of Proposition 2. �
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