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Abstract

Each month, a fraction of UK property leases are extended by 90 years or more. We

construct a new dataset using thousands of these natural experiments since 2000, and

estimate the expected long-term housing yield, y∗. After remaining steady at around

5%, y∗ starts to decline when the Great Recession hits, and reaches a low of 2.7% in

2024. The decline is steeper in inelastic markets, while y∗ remains higher in regions

more exposed to long-run climate risk. Our estimate of y∗ is updated in real time using

public data.
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1 Introduction

Expected long term yields are of natural interest in macroeconomics and finance as they

reveal market’s expectation about long-run equilibrium after medium term shocks have dis-

sipated. For instance, there is great interest in how much long term yields have declined in

recent decades, why this has happened, and whether the recent rise in yields is temporary

(Blanchard, 2023). However expected long term yields are notoriously difficult to measure —

one needs data that can separate the long term versus the medium term behavior of market

prices.

This paper exploits a natural experiment from the UK in order to estimate the expected

long term yield for housing. In the UK, most apartments are bought and sold as long duration

leases, or “leaseholds”, with initial lease terms that typically exceed 100 years. Periodically,

a fraction of leases have their duration extended by 90 years or more.1 We assemble a new

administrative data set on all such lease extensions between 2000-2024, with over 130,000

extensions in total. The data contains market prices of leaseholds both before and after

extension. We develop an empirical methodology to estimate the real-time dynamics of the

expected long term housing yield, using the gain in leasehold market value due to duration

extension. We have made our data and code public, and provide real time updates, so that

other researchers can track and estimate y∗ in real time.

Formally, y∗t is the market’s expectation of the long-term housing yield at a point in time,

i.e. y∗t = limu→∞ Et

[
Rt+u

Pt+u

]
, where R

P
is the rent-price ratio. y∗t can equivalently be written as,

y∗t ≡ r∗t + ζ∗t −g∗t , where r
∗
t is the time t expected return on safe assets in the long term, ζ∗t is

the expected long term risk premium for housing, and g∗t is the expected long term dividend

growth rate. y∗ contains information about important macroeconomic fundamentals, such

as r∗t . By measuring the expected rent-price ratio, y∗ also tracks the price at which markets

expect the housing market to clear in the long term.

Our empirical methodology for estimating y∗ starts by estimating the increase in market

value of a leasehold due to duration extension. We estimate the increase in value using a

difference-in-differences estimator that compares the price growth of a leasehold, before ver-

sus after extension, with the price growth of an otherwise similar group of control leaseholds

that do not extend at the same time. We combine the difference-in-difference estimate of the

gain in market value due to extension with a simple discounted cash-flow pricing equation,

to estimate y∗ via non-linear least squares. y∗ is measured in real terms and is unaffected

by inflation expectations.

1The typical extension is for an additional 90 years, but a large share of leases extend by 700 years or
more, offering variation at various parts of the long term yield curve.

2

https://sites.google.com/view/ystar-dynamics/home


Figure 1 plots the estimated average y∗ from 2000 to 2024, and the shaded area represents

the 95% confidence interval. There are two key findings. First, though y∗ stays stable around

5.2% between 2000 and 2006, there is a trend fall at the onset of the Great Recession,

culminating in a low of 2.7% in 2024. The magnitude of this decline is large, equivalent

to a near-doubling of the long term price-rent ratio. Second, y∗ remained relatively stable

through the pandemic and afterwards. The sample size expands over time, resulting in more

precise estimates in recent years.2

Figure 1: Time Series of the Expected Long Term Housing Yield

The figure shows estimates of y∗ over time for the full sample of lease extensions. Estimates for 2000-2003 are pooled and are
reported in the dashed black line. Yearly estimates of y∗ for 2004-2023 are plotted in the solid black line. Monthly estimates
for January 2024 through October 2024 are also reported. The shaded area shows 95% confidence intervals for the estimates.
Standard errors are heteroskedasticity robust.

An important advantage of our data set is that it is not only public, but also updated

in real time on monthly basis. Since y∗ contains information about important macroeco-

nomic parameters such as r∗, our methodology and real-time estimates should be useful for

policy-relevant questions. There are close to a thousand lease extension natural experiments

reported every month, allowing for precise real time estimates. Figure 1 illustrates real-time

estimates, plotting separately the monthly updates for 2024.3

2Our methodology allows for real-time updates to our y∗ estimates. In Figure 1 and Figure 9 we provide
the most up-to-date series. However, for the remainder of the paper, we utilize the vintage of our data
downloaded on February 1, 2024, for replicability.

3See the paper’s website for data, code, real-time estimates and replication instructions.
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Our natural experiment and microdata based approach for estimating the expected long-

term yield has three main advantages. First, the approach “differences out” the shorter

end of the yield curve. As such, we can identify the long-term yield y∗ without making

hard-to-verify assumptions about the medium run shocks affecting the economy. Intuitively,

the price before extension measures short term value, whereas the price after extension

measures both the short and long term value of the same property. Hence the difference in

prices depends almost exclusively on the long term yield — short and medium term shocks,

such as monetary tightening, do not contaminate our estimate of y∗. Our estimator uses very

long term information about prices, almost a century in the future—meaning even persistent

medium term shocks will not matter. By contrast, forward yields from financial assets are

typically available at most 10-30 years in the future.

Second, and relatedly, our method does not rely on structural assumptions about the

macroeconomy in order to estimate expected long term yields. A large literature attempts

to estimate expected long term yields for safe assets, making structural assumptions in order

to filter out short term disturbances (e.g. Laubach and Williams, 2003; Holston, Laubach

and Williams, 2017). This work is justly celebrated for tackling a difficult and important

problem. However structural methods face model mis-specification concerns that can turn

out to be important. For instance, the Holston et al. (2017) estimates were discontinued

during the pandemic due to mis-specification issues (Williams, 2023).

Third, lease-extension natural experiments generate variation in lease duration for the

same property. Thus our estimator is immune to spurious correlations between leasehold

duration and unobserved heterogeneity in the service flow of housing. Similarly, our estimate

is unaffected by short term shocks to the service flow of housing. For instance, a shock to

demand for a particular segment of London property, which raises its service flow, is also

“differenced out” by our estimator.

Our methodology relies on the “parallel trends” assumption, meaning the service flow

of housing must grow similarly for extended and control properties. This assumption could

fail if extending properties improve relative to controls, e.g., through renovations. However,

using textual analysis of listings, we find no evidence that extended properties are more likely

renovate. Additional results further validate the parallel trends assumption. In particular,

there is no difference in pre-trends of control and extended property prices. These groups

are also balanced on hedonic characteristics, and our estimator is robust to saturating vari-

ation coming from observed hedonics (Altonji, Elder and Taber, 2005; Oster, 2019). Most

importantly, rents measure housing service flow, and show no difference in growth between

extended and control properties.

In the final part of the paper, we examine the macroeconomic implications of our esti-

4



mates and draw three key conclusions. First, although our estimate of y∗ is based on UK

housing, long-term yields exhibit similar behavior across other markets. Long-term forward

bond yields closely track y∗ throughout our sample, as do long-run trends in the yields of

global housing and other assets. This suggests that the decline in expected long-term yields is

broad-based rather than housing-specific. Given this widespread decline, a plausible driver

is the fall in expected long-term safe asset yields, r∗, rather than housing-specific shifts

in dividend growth, g∗, or risk premia, ζ∗. Consistent with this view, we find suggestive

VAR-based evidence linking the decline in y∗ to falling r∗, in line with a broader literature

documenting similar trends (Holston et al., 2017).

Second, the gap between current and long-term expected yields provides a real-time

indicator of whether current housing valuations are transitory or persistent under market’s

expectations. We assess this by comparing current rent-price ratios to y∗, the expected

long-term rent-price ratio. While these ratios aligned in 2000 and from 2010 onward, they

diverged in the early 2000s, suggesting a temporary house price boom—consistent with

other evidence. However, recent comparison between rent-price ratio and y∗ suggests that

the market now anticipates housing valuations to be more persistent.

Third, cross-sectional variation in y∗ highlights the effects of inelastic land supply and

long-run risk on yields. y∗ declines more in supply-constrained areas, where rising demand

boosts valuations. The level of y∗ is higher in regions with greater long-run climate risk,

measured by flood and subsidence exposure, suggesting that y∗ embeds a significant housing

risk premium.

Related Literature. Our paper builds on the seminal work of Giglio, Maggiori and

Stroebel (2015), who observed that variation in UK apartment lease durations can be used to

estimate long-run yields.4 Giglio et al. (2015) estimate the average level of y∗ by comparing

properties with different lease durations while controlling for hedonic characteristics. In

contrast, we focus on the dynamics of y∗ and provide a new quasi-experimental design

based on lease extensions that exploit within-property variation in leasehold duration and

price. The natural experiment approach accounts for unobserved heterogeneity in housing

service flows across different properties and provides real-time monthly estimates of y∗. Our

methodology also explicitly incorporates the option value created by lease extensions, and

introduces a new bunching estimator to measure this effect.

Our paper also relates to a literature inferring the yield of capital using data from national

accounts (e.g. Gomme, Ravikumar and Rupert, 2015; Farhi and Gourio, 2018; Reis, 2022;

Vissing-Jorgensen, 2022). This literature notes that the ratio of profits to the capital stock—

4See also Badarinza and Ramadorai (2015), Giglio, Maggiori and Stroebel (2016), and Bracke, Pinchbeck
and Wyatt (2018).
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which proxies for the yield of capital when there is perfect competition and constant returns

to scale—has been stable, whereas we find that the expected long run yield of housing

and potentially other forms of capital has fallen. As Farhi and Gourio (2018) show, rising

monopoly power in goods markets can reconcile these two phenomena.

Our paper relates to existing work measuring the evolution of long term yields. Jordà,

Knoll, Kuvshinov, Schularick and Taylor (2019) study long run trends in the time series

of various asset prices across decades. Their approach is well suited to tracking gradual

evolution in expected long term asset prices, by “averaging out” shorter term factors with-

out making strong assumptions. However one cannot measure higher frequency or real

time dynamics of long-term expected forward yield this way. A second approach, taken by

Laubach and Williams (2003) and Holston, Laubach and Williams (2017), specifies a struc-

tural macroeconomic model to estimate expected long term yield on safe assets r∗.5 As we

have discussed, the structural approach may be more vulnerable to mis-specification than

our method.

Outline. The rest of the paper is structured as follows. Section 2 defines the expected

long run yield of housing. Section 3 describes the data. Section 4 presents our empirical

methodology. Section 6 discusses the implications of our estimates for the macroeconomy.

Section 7 concludes with a discussion of possible future work based on our new methodology.

2 The Expected Long Term Housing Yield

Our main object of interest is the expected long term housing yield, which is the expected

yield on housing once short and medium-run forces have subsided. Consider the price of a

unit of housing at time t, given by the expected present discounted value of its rent, Rt, as

Pt = RtEt

[∫ ∞

0

e−
∫ s
0 (rt(u)+ζt(u)−gt(u))duds

]
, (1)

where rt(u) is the risk free rate u periods forward at time t, ζt(u) is the risk premium, and

gt(u) is rental growth.6 The housing yield is defined as yt(u) ≡ rt(u) + ζt(u) − gt(u). The

long-term expected housing yield, y∗t , can be defined as

y∗t ≡ lim
u→∞

Et [yt(u)] = r∗t + ζ∗t − g∗t

5Related papers include Kiley (2015), Lubik and Matthes (2015), Johannsen and Mertens (2016), Crump
et al. (2016), Hamilton et al. (2016), Rachel and Smith (2017), Christensen and Rudebusch (2017), Del Negro
et al. (2017), Rachel and Summers (2019) and Del Negro et al. (2019).

6For simplicity this derivation omits a “rational bubble” term.
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This is also equivalent to the long-run rental-price ratio, i.e.

y∗t = lim
u→∞

Et

[
Rt+u

Pt+u

]
= R∞

t /P∞
t

The expected long term yield of housing contains important information about long term

safe asset yields r∗, long term risk premia for housing ζ∗, and long term dividend growth

for housing g∗. These are obviously very important objects for both macroeconomics and

finance. y∗ also reflects expectations about long-run equilibrium structure of the economy,

i.e. the housing yield that is expected to bring the forces of supply and demand in balance

in the long run.

The challenge in empirical identification of y∗ is that we need to strip out any effects of

short run, transient shocks on housing yields, such as monetary policy, credit booms, short

run bubbles and adjustment costs. It is also difficult to observe the true rental value, or

“service flow” for housing. Section 4 explains how our empirical approach addresses these

challenges in detail.

3 Data & Lease Extension Details

This paper builds a new administrative data set on all lease extensions in the UK from 2000

onwards. We are also making this data set public, along with its real time updates. This

section describes the construction of the dataset.

3.1 Data

Properties in the UK are divided into two categories: freeholds and leaseholds. Freeholds

are a perpetual claim to the ownership of a property. Leaseholds are long duration leases

to the property that can be bought and sold, and which typically last for many decades at

origination. Leaseholds are typically apartments, and importantly are periodically extended,

after negotiating a price for extension with the freeholder. As of 2022, there are 20 million

freehold and 5 million leasehold dwellings in England. This paper builds a new data set on

extensions in the duration of leaseholds.

Constructing Public Leasehold Extension And Transaction Price Data

We build a new administrative dataset of leasehold extensions based on historical archives of

leasehold titles from His Majesty’s Land Registry (HMLR). The key challenge in identifying

leasehold extensions is that public records only report information on current open leases.

For example, a lease record will tell us about how many years are left in the current lease of
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a particular apartment. But publicly available records do not provide information on closed

leases, i.e. the prior lease of the same property that was extended at some point in time to

create the current open lease.

Since we want to build a data set on all historical lease extensions, we need (a) data on

closed leases that were extended, and (b) to match each closed lease with the corresponding

new extended lease. In order to do this, we purchased the universe of closed lease titles asso-

ciated with transactions of flats in England and Wales before May 2023 from HMLR. These

are lease titles which have been removed from the Lease Register because they have been

overwritten or cancelled. We then identify which closed leases were subsequently extended

by matching them with publicly available data on open leases. We obtained legal permission

from the Land Registry office to make this newly compiled data on lease extensions pub-

licly available on our website. This procedure gives us information on all lease extensions

conducted prior to May 2023.

We also want to build our public lease extension data set in a way that it is automatically

updated in real time every month. Doing so enables us to estimate y∗t in real time going

forward – something that we hope will be of use to academics, central bankers and other

policy professionals. In order to track every new lease extension going forward, we start

with the full Lease Register of May 2023, and update it every month with the latest lease

register vintage to identify new lease extensions. As such our public data website keeps

getting updated with new real-time monthly estimates of y∗. As of the time of writing, we

have identified approximately 319,000 leasehold extensions since 2000. The distribution of

extension times and lengths is presented in Table A.1.

HMLR also publishes data on all property transactions in England and Wales starting

in 1995 and updated monthly. The data set includes the exact date, price and address for

each transaction. We were provided with exact transaction IDs to merge transactions to

closed lease titles. The open lease register does not include transaction IDs, so we conduct a

fuzzy merge based on provided addresses to match open leases to transactions, as we detail

in Appendix A.3.7

Private Hedonics Data

We augment our public data with two private datasets on housing characteristics and rental

prices. While we cannot make this data public, as we later show, this restricted data is not

necessary for any of our main results. We only use the private data in this paper to show

that identification based on public data is quite robust to concerns regarding unobserved

hedonics.

7We exclude 0.02% of our transactions, which have implied negative lease terms at the time of transaction.
We also exclude 0.6% of properties which are sold both as a leasehold and a freehold within our sample.
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The first proprietary data set is from Rightmove, Inc. and spans 2006 to the present.

The data includes information on the number of bedrooms, number of bathrooms, number

of living rooms, floor area, property age, parking type, heating type and property condition

(rated as Good, Average, or Poor) of listed properties. It also includes rents for rented

properties. These data must be purchased from Rightmove, however, our main analysis can

be carried out without these data.

The second data set of housing characteristics and rental prices is from Zoopla, Inc. and

is provided for free to researchers by the Urban Big Data Centre. This data set also provides

number of bedrooms and bathrooms and rents. Additionally, it includes the number of floors

and receptions of the property. We are able to match approximately 80% of transactions to

the Rightmove and Zoopla listing data. Rental data is available for about 40% of properties.

3.2 Lease Extension Details

This section provides institutional details about the process through which leases can be

extended. The distinction between freeholds and leaseholds dates to medieval England,

during which permanent ownership of land and property, known as “freehold” ownership,

was available only to feudal nobility.8 During this time, leasehold estates were granted to

serfs who would work the land for a set period of time and in exchange would pay a portion

of the harvest to the freehold landowner. During the 20th century, cash-poor landowners

began to issue long leaseholds of 99 and 125 years, providing immediate liquidity without

giving up ownership of the underlying land.

Today, leaseholds are very common in England and Wales, comprising 97% of all 2.5

million transacted apartments and 5% of houses. The freeholds underlying UK flats are

typically owned by landed estates (e.g. the Cadogan Estates) which are privately managed,

and other private landlords, developers, and investment companies. A very small proportion

of these freeholds are owned by the Crown or the Church of England.

The lease length at the time of its issuance is referred to as “initial lease term”, and the

lease length at any future time is referred to as “remaining lease term”. The distribution of

leases can be divided into two groups; about 70% of leasehold flats in our sample are short

leaseholds with remaining terms of 250 years or less and the other 30% are long leaseholds

with remaining terms of 700 years or more. There are practically no properties with remain-

ing terms between 250 and 700.9. The most common initial terms for short leaseholds are

for 99 and 125 years, which account for 77% of short leaseholds. The most common initial

8The first known use of the term “freeholder” is in the Domesday Book published in 1086 under the reign
of William the Conqueror.

9This distribution is illustrated in Appendix Figure A.1.
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term for long leaseholds is 999 years, which account for 96% of all long leaseholds. Lease

registration became mandatory in October 2003, so after this date, we capture all extensions

of leasehold properties.

In principle, the freeholder and leaseholder can mutually agree to extend the existing

length of a lease at any point in time for an agreed upon price. A 1993 Leasehold Reform,

Housing and Urban Development Act (1993 Act) granted flat leasehold owners the right

“to acquire a new lease” 90 years longer than the original lease, conditional on a one-off

negotiated payment to the freeholder that reflects the market value of the gain in leasehold

value from extension.10 The legal recourse for lease extension is seldom used as it is costly

for both parties to hire qualified surveyors, and the legal process can be lengthy. However

the law does affect the outside option of negotiating parties, in the event that negotiation

breaks down. As such, tribunals can affect the price of extensions, even though they are

rarely used.11

We introduce some notation in Figure 2 that will be useful in describing how we use

the lease extension natural experiment to estimate y∗. The figure gives the example of a

leasehold apartment that is first purchased at time t− h, sold at time t, and has its lease is

extended at time t− u between the two transactions, where u < h. These lease extensions,

which are transacted twice—once before, and once after extension—form the “treatment”

group in our estimation. We assume for illustrative purposes that the lease is extended for

90 years.

We denote the lease term to maturity, or lease duration, at purchase time as T + h and

its duration at sale time as T + 90 (notice that its duration would have been T at sale had

the lease failed to be extended). We denote the transaction price of a property i of duration

T at time t by P T
it . The transacted prices before and after lease extension, and the lease

duration before extension, will be the key inputs into our estimation. We do not observe the

extension payment paid by leaseholders to freeholders.

As we see in appendix Figure A.2, properties with a very short holding period, h, are very

likely to be “flippers” who purchase, renovate, add bedrooms, and sell properties with the

explicit intention of making a quick profit. Since such properties may violate our exclusion

restriction, as we will discuss, we exclude all lease extensions with a holding period h ≤ 2

years from our analysis.

10The 1993 Act also gives leaseholders the right to, upon extension, buy out the payment of future ground
rents, which are annual payments to the freeholder. Ground rents are very small, however, with a median
ground rent of £10 annually according to English Housing Survey data for 2009-2017.

11We download data on the universe of lease extension cases determined by tribunals since 1993, which are
published by the Leasehold Advisory Service. There are 4,420 cases since January 1, 2000, which is about
1% of extensions.
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Figure 2: Diagram of Extension Time

Holding Period (h)

Purchase Time (t-h)

Extension Time (t-u)

Sale Time (t)

Time To Extension (h-u) Time Since Extension (u)

The figure is a diagrammatic representation of the notation we will use in the paper. We say a property is purchased at time
t− h, sold at time t and held for an amount h of years. We say that a property extends at time t− u, where 0 < u < h.

We restrict our sample to properties that were extended by more than 30 years, since

leases that are extended by very short amounts may be unique. We also exclude properties

which were extended with very short remaining durations, since we are focused on the long-

end of the yield curve. Finally, we remove outliers, defined as the 1% of data that experienced

highest/lowest price growth over the extension window relative to their controls. However,

our main results are robust to including these properties.

Table 1 shows the distribution of lease extension length over time for our treatment pool

of lease extensions. These are extended leases in our sample that have a transacted market

price before and after lease extension. There are 143,614 such lease extensions. 90 years is

the most common lease extension length, accounting for about 30% of all extensions, and

there is also a high fraction of extensions that are for 700+ years. These extensions effectively

convert short leaseholds into long leaseholds.

Appendix A.4 describes how we can use the lease extension data to estimate the hazard

rate of extension for a leasehold conditional of the number of years left in its duration.

Figure A.3 plots this hazard rate, and shows that almost no property gets extended with

more than 90 years remaining in maturity. After a property hits 80 years remaining, its

extension probability jumps to a probability of extension of about 5%, and then slowly falls

back to 2% or so. Figure A.4 plots the implied cumulative hazard rate and shows that the

cumulative hazard rate approaches one as duration of a leasehold approaches zero. In other
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Table 1: Number of Extensions

Extension Amount 90 700+ Other Total
2000-2005 819 2,793 2,806 6,418
2006-2010 3,416 7,107 5,364 15,887
2011-2015 11,753 15,806 10,755 38,314
2016-2020 16,996 19,434 12,199 48,629
2021-2023 13,281 14,263 6,822 34,366
Total 46,265 59,403 37,946 143,614

The table reports the number of extended leases that have transaction data for each time period. The first column includes
90 year extensions, the next column includes 700+ year extensions, and the third column includes others, which are almost all
non-90 under 200 year extensions. The first columns denotes the time of sale after extension.

words, a very tiny fraction of leaseholds expire without getting an extension.

We report a number of other descriptive statistics in the appendix for lease extension

as well. Figure A.5 shows that the median duration before extension for leaseholds getting

extended by 90 years is around 70 years. The median time between transactions is 10 years

Figure A.6. Table A.2 and Figure A.7 show that leasehold property owners are broadly

similar to freehold property owners in terms of demographic and mortgage characteristics,

as well as price-to-rent ratio over the business cycle. Figure A.8 shows the geographical

heatmap of number of extensions by geographical region in England and Wales.

3.3 Transaction Lags

Since we also provide real-time monthly updates of y∗ on our project website, it is important

to point out that there is a natural lag between when a house price is agreed upon by

transacting parties versus when the transaction is actually recorded in our data. The date

in the Land Registry relates to when the form to transfer the property is signed by both

parties. However, the parties typically agree on a price several months earlier, and then

undergo a process of finalizing mortgage and contract details.

We can estimate the amount of time between the date in which the buyer and seller

agree on a price and the date in which the price is recorded by the Land Registry by using

property listing data from Rightmove. If we assume that sellers stop posting house listings

before agreeing on a price with a buyer, then the last date that a listing is posted must

precede the date in which the buyer and seller agree to a price. The median amount of time

elapsed between the last property listing on Rightmove and the date recorded by the Land

Registry for transactions which have an associated Rightmove listing is 3.7 months, with a

mean of about 5 months. The full distribution of the time elapsed between the listing date
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and the Land Registry date recorded is presented in Figure A.9. Therefore our real time

estimate is based on information with a lag of around 5 months.

4 Empirical Methodology

This section explains how to use the price gain from lease extension to estimate the expected

long term housing yield. We use the example of a lease that extends by 90 years as our

illustrative example. The price of a leasehold P T
t , with T years until expiration, and an

option to extend by 90 years on expiration, is

P T
t = Rt

∫ T

0

e−
∫ s
0 y(u)duds+max

[
0, (1− α)Rt

∫ T+90

T

e−
∫ s
0 y(u)duds+ ...

]
(2)

This equation starts with equation (1) that represents the present value of service flows from

housing over the first T periods before the lease expires. The second term represents the

option value of additional extensions. (1−α) is the share of the price gain from extension go-

ing to the leaseholder, after deducting the negotiated payment to the freeholder and various

costs that this negotiation entails. These terms multiply the present value of service flows

from the lease, over the 90 year period after the extension. The ellipsis refers to the value of

future extensions after T + 90, which have a similar structure. The max operator acknowl-

edges that option value is non-negative—instead of extending the lease, the leaseholder can

choose not to extend and receives zero payoff.

Equation (2) clarifies that the option value of lease extension raises the value of a lease-

hold. Consider two cases. If α = 0, the leaseholder receives the entire value of a lease

extension, and P T
t = Rt

∫∞
0

e−
∫ s
0 y(u)duds. With α = 0, the price of a finite duration lease-

hold is the same as the price of its equivalent freehold (we abstract from uncertainty in the

rate of return for simplicity).

On the other hand, if α = 1, the leaseholder receives none of the value from extension,

and the price of a leasehold is P T
t = Rt

∫ T

0
e−

∫ s
0 y(u)duds. The service flows after T have no

value to the leaseholder, since they go to the freeholder. With intermediate values α ∈ (0, 1),

the price of a T duration leasehold is between the duration T price, and the infinite duration

price.

What is the correct value of α for empirical analysis? UK law requires that leaseholders

pay freeholders the entire value of lease extensions, i.e. α = 1 from a legal standpoint. While

the leaseholder has the right to get a 90 year extension, they must pay the freeholder the

full market value of the extension. In case the two parties cannot agree on that, the matter

is settled in a tribunal. Appendix A.5 provides full details on the process.
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Appendix A.5 also presents empirical estimate of α that exploits a discontinuity in the

lease extension pricing function used by courts at T = 80. The analysis reveals that α is very

close to one, especially in the early half of our sample when y∗ is high. We also incorporate

our empirical estimate of α in the estimation of y∗ and show that it does make any material

difference. We refer the reader to Appendix A.5 for full details. Based on these results, the

rest of the paper assumes α = 1.

4.1 A DiD-NLLS Estimator of y∗

We combine difference-in-difference and non-linear least squares (DiD-NLLS) estimators to

estimate y∗. First, we embed equation (2), the formula for lease extension price into a

difference-in-differences estimator in order to identify y∗. We start with a difference-in-

differences estimate, ∆it, for the change in market value of leasehold i as a result of the lease

extension:

∆it ≡
[
logP T+90

it − logP T+h
i,t−h

]
−
[
logP T

jt − logP T+h
j,t−h

]
. (3)

logP T+90
it − logP T+h

i,t−h is the price change for property i bought h periods ago, which extends

by 90 years from a duration of T to T + 90 years. We write ∆it with a double line to

denote that it is a difference-in-difference. Property j is a suitably chosen control property,

bought and sold in the same periods, with the same duration as property i prior to extension.

Substituting the formula (2) for the price of a leasehold, with α = 1, into the difference-in-

differences estimator gives us,

∆it = log

(∫ T+90

0

e−
∫ s
0 y(u)duds

)
− log

(∫ T

0

e−
∫ s
0 y(u)duds

)
+∆t,t−h (logRit − logRjt) (4)

In this equation, the first two terms represent discounting of the extended lease versus its

control property. The final term is the difference between the growth rate of the service flow

of housing, for the treatment versus the control group, over the length of the holding period.

Using equation (4) we can state our identification assumption. Estimating y from the

difference-in-differences estimate ∆it requires a “parallel trends” assumption: the growth in

service flows for the treatment and control properties, before versus after extension, must be

the same—meaning prices for treated and control properties would have evolved similarly

absent extension. If so, then the final term from equation (4) vanishes. The parallel trend

assumption will fail if, for instance, properties that extend their lease are more likely to

renovate than control properties. More generally, extending properties cannot have had

different price growth from their controls, had they not extended. Section 4.4 presents

placebo tests that probe the identification assumption.
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In order to use equation (4) to estimate y∗, we need to parameterize the shape of the yield

curve y(s). We make the simple assumption that the yield curve is horizontal with y(s) = y∗.

This assumption might appear extreme at first. However, as we show below, a key advantage

of our difference-in-differences estimator is that it “differences out” differences in the yield

curve at shorter maturities. The reason is that when T is large, the difference-in-differences

estimator is primarily identified from long duration flows between T and T + 90. Thus the

y(s) = y∗ assumption practically translates into the assumption that y(s) asymptotes to y∗

eventually. With this parameterization and the parallel trends assumption, our estimating

equation becomes,

∆it = log
(
1− e−y∗(T+90)

)
− log

(
1− e−y∗T

)
. (5)

Equation (5) can be estimated using non-linear least squares (NLLS) to estimate y∗.

4.2 Properties of the DiD-NLLS estimator

There are two important advantages of the DiD-NLLS estimator. First, it differences out

the service flow of housing under the parallel trends assumption. As such none of the

terms related to service flow appear in the estimation equation (5). This is a significant

advantage because in practice it is extremely difficult to observe the true service flow of

housing especially for owner occupied housing. Service flow of housing includes various hard

to observe terms like taxes, depreciation and utility from consuming housing. The service

flow may also vary across time and space for unobserved reasons. For instance, consider a

temporary increase in demand for a narrow segment of London property. This shock does

not affect the long-run return but does affect service flows and prices for certain properties

in the short run—our estimator eliminates this variation.12

The second advantage of our estimator is that it differences out the effect of short term

yields on asset prices, and hence isolates the long-end forward of interest. We illustrate this

feature of our estimator by numerically simulating a wide range of yield curves that all have

the same long-term y∗, but differ greatly in the shape of yield curve over short to medium

run horizon. The black solid line in Figure 3 presents one possible parameterization of the

forward yield y(s), where the forward yield curve y(s) flattens out to y∗ for s ≥ 40 years,

with y∗ equal to around 4.0 pp.13

12As we show in Appendix Section A.6, the estimator also differences out multiplicative taxes on property
value, including the Stamp Duty Land Tax.

13We choose a flexible functional form y(s) = β1−β2 ·β−β4(s−β5)
3 and estimate the β parameters such that

y(0) is equal to spot rate on 1-year bonds, y(10) is equal to the 10-year gilt yield, and the average of y(s)
for 10 ≤ s ≤ 25 is equal to the 10 Year 15 Year gilt forward yield, averaged for the 2010-2020 period. For all
the bond yields, we use the mean yield for our sample period. We present other possible parameterizations
of y(s) in Appendix A.7.
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Figure 3: A Parameterization of the Housing Yield Curve

The black line presents one parameterization of the forward yield curve, y(s), which is chosen so that its shape matches the
forward curve implied by the 1 year gilts, the 10 year gilts and the 25 year gilts, averaged over the 2010-2020 period. ŷ∗(s) is
our estimator of y∗ for each T , described below.

Given our parameterization of y(s), we can solve for logP T+90
it − logP T

it for all T . Then,

for each T , we can solve for our estimator of y∗ as a function of T numerically. The resulting

values of our estimator, which we term ŷ∗(T ), are plotted in blue in Figure 3. Our estimator

ŷ∗(T ) closely approximates the true long-run rate y∗ for durations T after which the forward

curve has flattened. We also plot the point estimate of ŷ∗ at T = 70, which is approximately

the median duration of leaseholds at extension. However there remains a small gap between

ŷ∗(T ) and y∗ even at long horizons. The reason is that in our difference-in-differences estimate

(4), the effect of yields on price is nonlinear, and shorter term yields do not entirely “cancel

out” of the difference-in-difference estimator. However the effect of these shorter term yields

is small.

In fact, our estimator produces tight estimates for a wide range of yield curves. In Fig-

ure 4a we present a time-varying yield curve for which the short-end fluctuates tremendously

over time but the long end (y∗) is constant. For instance, the yield curve labelled d is very

downward sloping, whereas yield curve g is very upward sloping. Then, the solid line in

Figure 4b shows how our estimator ŷ∗ reacts to changes in the short-end of the yield curve,

where ŷ∗ is estimated for a lease with 70 years remaining. The points corresponding to

each instance of the yield curve in Figure 4a are labelled accordingly. For instance, point

d in Figure 4b corresponds to estimates of y∗ for the downward sloping yield curve d of

Figure 4a. Our estimator is relatively stable despite the fluctuations in the short end of
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the yield curve, and remains within 0.1% of y∗. This logic suggests that our estimator can

successfully estimate the dynamics of y∗, even in the presence of volatile shocks to short

term rates.14

The reason why our estimator is able to provide a close approximation of y∗ is because

T is large, which effectively differences out most of the yield curve y(s) for s < T . As T

becomes smaller, the effect of the short-end on ŷ∗(T ) increases, meaning estimates of y∗

become increasingly biased. To see this, consider an alternative estimator: the rent-to-price

ratio of a freehold property, Rit

P∞
it
. Like our estimator, the price-to-rent estimator cancels out

the flow value of housing; it does not, however, difference out the short-end of the yield curve

and is therefore far more susceptible to changes in short-term forward rates. The dashed

line in Figure 4b indicates the value of the rent-to-price ratio, as the short-end of the yield

curve shifts. Changes in the short-end of the yield curve affect the rent-to-price ratio by

almost an order of magnitude more than they affect ŷ∗(70). These results demonstrate that

to effectively capture y∗, we must take the difference between two long duration assets; one

does not suffice.

Figure 4: “Differencing Out” the Short End

(a) y(s) (b) ŷ∗ and Rent-to-Price

The figure illustrates the effect of fluctuations at the low-end of the yield curve on ŷ∗ and the rent-to-price rate, the rent-to-
price ratio. Panel (a) presents several instances of the yield curve, y(s) over time. Panel (b) indicates the estimates ŷ∗ and
the rent-to-price ratio at each of these instances. For instance, point d on the right panel corresponds to the true value of y∗,
the estimated value of y∗, and the rent-to-price ratio; given a yield curve d on the left panel. The the rent-to-price ratio is

estimated such that P∞
it /Rit =

∫∞
t e−

∫ s
t y(u)duds ≡ 1

R/P
.

One important assumption in our simulations is that the yield curve is flat after 40

years. Therefore there is a unique expected housing yield at all sufficiently long horizons.

Alternatively, the yield curve could be upward or downward sloping, even at long horizons

14In Appendix A.7 we show that we can use ŷ∗(s) to bound the approximation error of our estimator, and
therefore get a lower and upper bound for y∗.
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in excess of 70 years. In the coming section, we present several pieces of evidence consistent

with a flat long term yield curve for housing.

Our approach does not require a particular structural model of why short run yields

vary. Short run yields may fluctuate due to cyclical movements in housing risk premia, safe

interest rates or liquidity conditions. Bubbles of the form studied by Harrison and Kreps

(1978) also manifest in short run yields, provided that these bubbles disproportionately

affect short duration valuations. Regardless, our approach differences out this short run

volatility in order to estimate the expected long-term yield. Therefore our estimator does

not require us to commit to a structural model of the economy, which might raise concerns

about misspecification. Our estimator also differences out any variation due to “rational

bubbles”.15

4.3 Implementing the Estimator and Selecting a Control Group

We now describe how to implement our estimator via nonlinear least squares and select con-

trols. According to equation (5), for each individual property i our difference-in-differences

estimator is

∆it = log
(
1− e−y∗t (Tit+90)

)
− log

(
1− e−y∗t Tit

)
. (6)

Here, we have generalized the expression of the estimator to allow a time varying expected

long term yield, and to acknowledge that the duration of the property before extension,

Tit, can vary. Equation (6) shows that we can estimate y∗t by nonlinear least squares. The

estimator is valid at any point in time, hence we can estimate the dynamics of y∗t . Two

statistics inform y∗t in the estimator. First, the difference-in-difference ∆it can be calculated

for every property i, as the difference in price growth between the extending property and

its control. Second, the covariance between ∆it and the duration before extension Tit also

helps to identify y∗. Regarding inference, we cluster standard errors at the level at which

treatment is assigned, following standard practice (Abadie et al., 2023). Since treatment is

assigned at the level of each extending property i, heteroskedasticity-robust standard errors

without clustering suffice.

We select a control group separately for each extending property, from neighboring prop-

erties of a similar duration that did not extend during the purchase and sale transaction

window of the treated property. Selecting controls presents a challenge. Ideally, one se-

lects a control that is bought and sold at the same time as the treated property. However

this procedure reduces the effective sample size, because many extending properties do not

15Our approach is related to how forward yields are calculated on financial assets such as zero coupon
bonds, but is available at far longer horizons than are normally available for financial assets.
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have neighboring controls that are bought and sold simultaneously. We therefore use repeat

sales methods to expand our set of controls. For each extending property, we measure its

counterfactual price growth using a repeat sales index of similar duration neighboring prop-

erties that are bought and sold at similar times to the extender. The repeat sales index is

calculated separately for every extending property, using the individual property’s sample

of control observations. We only select control properties that do not extend, avoiding the

“forbidden comparisons” problem (Borusyak et al., 2021).

To construct the repeat sales control, we consider a treated property i, which was pur-

chased at time t−h, sold at time t, and extended for 90 years at some time t−h < t−u ≤ t.16

Suppose this property has duration T +h at purchase and duration T +90 at sale. The set of

control properties, specific to property i, is those properties that (i) do not extend between

t − h and t; (ii) have a duration within 5 years of property i; and (iii) are within d km of

property i. d is the smallest possible Haversine distance such that it is feasible to construct a

repeat sales index for the counterfactual price of property i between t−h and t. We discard

property i if there are not enough controls within a 20 km radius.17 This procedure auto-

matically adjusts for the different density of housing in urban and rural areas. In Appendix

Figure A.11 we verify this by showing that the control radius is strongly correlated with local

population density, and is always small for very dense areas. Finally, we produce a repeat

sales index for property i’s control group, using a three-part procedure similar to Case and

Shiller (1989) (see Appendix A.8 for details). In Appendix A.9, we show that these controls

are similar to their extended counterparts on all of the main hedonic measures we observe

in the Rightmove and Zoopla data. We sometimes denote the set including property i and

its control properties as experiment i.

There are two advantages from using repeat sales methods. First, the identification

assumption underlying our difference-in-differences estimator is essentially unchanged. Be-

tween t− h and t, the growth of service flows for the treated property must be the same as

for the control properties that constitute the treated property’s repeat sales index. Second,

the repeat sales index method lets us construct controls for many more extending proper-

ties. With this method, we are able to construct controls for 130,971 of our 143,614 lease

extension experiments.18,19

16In our primary analysis, we measure t at a quarterly frequency. We show robustness to using other
frequencies in Figure A.23.

17In Appendix Figure A.10 we show the distribution of radii. Nearly 80% of experiments have a radius
under 5km. In Appendix Figure A.11 we show that the radius is typically smallest in dense urban areas.

18To provide intuition for why a repeat sales index expands the available controls, consider an extending
property bought at t− 10 and sold at t, with two neighboring properties: the first bought at t− 10 and sold
at t− 5; the second bought at t− 5 and sold at t. Using both properties one can create counterfactual price
growth for the extending property.

19In robustness, we will also estimate y∗ using only the subset of extending properties with controls that

19



4.4 Validating the Identification Assumption

Our identification assumption is parallel trends: growth in the service flow of housing should

not differ for extending properties and controls on average. This assumption fails if those

who extend the lease are also more likely to improve other characteristics of the property,

for instance through renovations. We provide some indirect tests of the parallel trends

assumption in this section.

Why are leaseholds extended in practice? It should be kept in mind that as we have

shown, the cumulative hazard rate calculation tells us that ultimately all leaseholds are

extended before expiring. So our D-in-D estimator is taking advantage of the fact that some

happen to be extended earlier than others. The main reason why people extend leases is

that it is a way to accumulate savings in the property, and resell the property at a higher

value. For example, according to Leasehold Advisory Service, a government-funded source

of legal advice, the main reason to extend is that “as the lease gets shorter and the number

of years goes lower, the value of the lease decreases and it becomes more expensive when

you extend the lease. This is why it is often a good idea to increase the term of the lease

especially if you want to sell the property.” This motive for extending leases is consistent

with parallel trends.

In any event, we take the endogenous renovation concern seriously and provide two

different tests for checking the parallel trends assumption.20 As a first test of parallel trends,

which directly focuses on renovations, we show that extending properties are no more likely

to make home improvements than controls. First, we identify properties that were recently

renovated based on textual analysis of Rightmove listing descriptions. In particular, we

create a renovation dummy that is equal to one if a property’s listing contains certain key

words associated with renovation such as “renovated,” “refurbished”, or “improved.” About

9% of all listings make reference to renovation. To verify that this is a valid measure of

home improvement, we regress it against change in bedroom count for the renovated flat

from the listing before renovation to the listing after renovation. The regression coefficient

is positive and statistically significant; the probability that a property’s bedroom count

increases is more than twice as high if the property was marked as renovated in that year.

Moreover, properties that were purchased and immediately resold (“flippers”), have much

higher renovation rates and are far more likely to increase their bedroom count, as shown in

Figure A.2. This is suggestive that both our text-based measure and the change in bedroom

are bought and sold at the same time.
20Additionally, in Appendix A.9 we provide evidence that extended and control properties are similar on

observable characteristics.
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count are good indicators of renovations.21 Our other main hedonic measures—bathroom

count, living room count, and floor area—experience nearly zero growth across all flats,

which is consistent with the UK’s strict regulation of construction.

In Table 2, we present the difference in the renovation rate of extended properties relative

to the average renovation rate for their controls. The outcome variable in Column (1) is

our text-based measure of renovation. The outcome variables in Columns (2)-(5) are the

change in hedonic characteristics for properties that have two distinct listings before and

after extension time. We exclude cases where the implied change in housing characteristics

is negative, which are most likely data entry errors. In all specifications, we find no evidence

that extended properties renovate at a different rate than other properties around extension

episodes.

Table 2: Renovation in Extended vs Non-Extended Flats

(1) (2) (3) (4) (5)
Renovation Rate ∆ Bedrooms ∆ Bathrooms ∆ Living Rooms ∆ Floor Area

Extension -0.001 -0.002 0.000 -0.001 -0.002
(0.001) (0.001) (0.000) (0.000) (0.001)

Experiment FE ✓ ✓ ✓ ✓ ✓
Control Mean .091 .04 .002 .001 .022
N 153,398 43,612 33,078 31,934 34,564
N. Experiment 76,699 21,806 16,539 15,967 17,282

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The table reports renovation rates for extended properties relative to their non-extended counterparts for all experiments.
For each experiment we have two observations indexed with j: the renovation rate for the extended property, and the mean
renovation rate across all control properties. We run the following regresion, Xij = αi + β1(Extendedj) + ϵij , for renovation
measures Xj where αi are experiment fixed effects. The renovation rate for treated properties in Column (1) is based on the
post-extension sale listing. The renovation rate for Columns (2)-(5) is based on change in hedonic characteristics before and
after extension time. Standard errors are heteroskedasticity robust.

As a second test of parallel trends, we study the behavior of market rents before and after

extension. Rents are only available for a subset of properties, however they are an observ-

able proxy for the service flow, which allows us to assess parallel trends relatively directly.

Consistent with our identification assumption and with the absence of excess renovations for

treated properties, we find that rents evolve similarly for the control and treatment group.

For each experiment i, we consider treated and control properties for which there are at

least two rental transactions recorded by Rightmove or Zoopla between the purchase date

21Both of these measures are also positively correlated with change in both sale and rental price. Therefore,
if extended properties were more likely to renovate, our identification assumption would not hold. Fortu-
nately, as we will see below, extended properties are no more likely to renovate by either measure, and so
our identification assumption holds.
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t− h and the sale date t of the property. We study a regression

∆ logRi,j,t′,t′′ = αi,t′,t′′ + β1× Extensionj + ϵi,j,t′,t′′ (7)

where ∆ logRi,j,t′,t′′ is growth in rents for property j between periods t′ and t′′ for which

there are observed rents for both the treatment and control, αi,t′,t′′ are experiment × rental

transaction years fixed effects. We control for whether the property was transacted between

rental listings, since properties are more likely to experience greater rental price growth when

they change owners. The regression measures whether rental growth was higher for extended

properties than for control properties that have rental transactions in the same years. Table 3

presents the results and finds small and insignificant differences in the behavior of rents

between the treatment and control group. The first column is the baseline regression.

Column (2) of Table 3 collapses the rental growth comparison between extended and

non-extended properties at the experiment level, as in Table 2. We relax the restriction that

control and extended properties must have listings in the same years, and compare mean

annualized rent growth for extended properties and their non-extended controls for each

experiment. Thus each experiment has two observations and receives equal weight.

Column (3) re-estimates regression equation (7), where growth in control rents is now

given by a repeat sales index of rent growth in each extending property’s control group. Each

observation is a rental cycle for which we have two extended property rental transactions,

and we are able to construct a control repeat sales rent growth index. On average, there are

approximately two rental cycles within each purchase-sale window. The resulting estimates

are small and statistically insignificant.22

The analysis above confirms that rental growth is no different between extended proper-

ties and non-extended properties over the experiment window. However, the identification

assumption in equation (4) also requires that rent growth for extended and control properties

is expected to be the same beyond the the experiment window. We therefore further test if

the long-run growth rate of rents, g∗, is the same for treatment and control properties.

We assess the assumption regarding long-run rental growth by expanding the window over

which we study rent growth. Figure 5 plots annual rent growth for extension and control

properties against time. We plot annual rent growth starting from the midpoint between

the purchase and sale time of the extending property. We construct rent growth for the

control properties associated with each extending property, using our baseline repeat sales

method. We interpolate across years with missing rent data.23 The results show that rent

22There may be concern that the rental data is stale. However, we find that over 80% of our rental pairs
experienced a change in the rental price.

23For instance, suppose we observe rents Rt−5 and Rt for a property in years t− 5 and t, without data in
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Table 3: Within-Experiment Window Rent Growth

∆ log(Rent)

(1) (2) (3)
Extension 0.0007 -0.0006 -0.0003

(0.0006) (0.0006) (0.0007)
Experiment × Rent Years FE ✓ ✓
Experiment FE ✓
Annualized ✓
RSI ✓
N 3,943,451 36,410 74,270
N. Experiment 16,569 18,205 18,888

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The table reports rent growth during the experiment window of t−h to t for extended properties relative to control properties.
The first column is the estimated coefficient from equation (7). We use mean annualized rent growth as the LHS variable, and
do not control for time fixed effects. The third column uses a rent repeat sales index. Standard errors are heteroskedasticity
robust.

growth is similar for extending and control properties at all horizons including the long term,

and is never statistically different. The results in this section should be reassuring regarding

the identification assumption: extended properties do not have a higher propensity to get

renovated, and their rental growth is no different from control properties.

Figure 5: Rent Growth At Long Horizons

The figure presents annual rent growth at all horizons for treated properties relative to a repeat sales index of rental prices
for controls. We interpolate across years when rental listings are not consecutive and plot rent growth against time since the
experiment window. The x-axis variable is the mid-point between the purchase and sale of the treated property, (t+(t+h))/2.
Error bars represent 95% confidence intervals.

between. We assume that rent growth equals (1/5)× (Rt−5/Rt) in all intervening years.
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5 Empirical Results

5.1 Event Study Analysis of The Effect Of Lease Extension

We develop intuition for our estimator of y∗ through an event study representation of the

methodology. Consider the modal leasehold extension in our sample that extends its duration

from T to T+90 years. These leaseholds have a median duration at sale of 157 years, meaning

that had they not extended, they would have had a duration of 67 years at sale.24 The

difference-in-differences estimate ∆it, from equation (3), represents the gain in log market

value at time t, of a leasehold that extends u periods earlier.

In Figure 6, we plot in blue the estimate ∆it against time between extension and sale, u.

For instance, the first entry on the positive x axis is the mean DiD estimate of the increase

in market value for leaseholds that sell one year after extension. One year after extension,

the difference in log price between extended properties and their controls jumps by about 0.1

log points. Afterwards, the difference continues to grow exactly as predicted by asset pricing

equation (2), so that leaseholds that sell 10 years after extension increase their market value

by almost 0.2 log points. The increase in market value rises with the time since extension

because (1) the value of the control leasehold that did not get extended falls more for each

passing year due to its shorter duration, which varies non-linearly with log price, and (2)

y∗ falls over our sample period. The dashed grey presents the post-extension price gain at

each value of u predicted by our simple asset pricing model, given the mean duration and

estimated y∗ level for properties transacted in that period. The predicted trend aligns closely

with the observed estimates of ∆it.

We also use the event study to investigate pre-trends. On the negative x-axis, we apply

the difference-in-differences estimator to the pre period—that is, to the price growth of

treated vs. control properties over the two transactions prior to the extension. In doing

so, we can estimate whether there are pre-trends in price growth before extension. We

plot the difference-in-differences estimate in the pre period against the number of years

between the final transaction before the extension, and the extension itself. There are small

and statistically insignificant pre-trends — extended properties experience similar growth

to controls in the pre-period before extension, regardless of the number of years between

transaction and extension.25

24Appendix Figure A.13 displays the histogram of remaining lease term at sale for the extended and control
properties.

25Figure A.17 presents the event study for only 90-year extensions.
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Figure 6: Event Study Representation of Lease Extension

The figure presents an event study representation of a lease extension. On the positive x-axis we plot in blue diamonds the
mean difference in price change between time t−h and t, ∆it, against time since extension, u. On the negative x-axis we plot in
black circles the mean difference in price change between time t−h−h′ and t−h for extended vs. control properties. t−h−h′

is the time of the nearest transaction before t− h. The dotted line plots the predicted price gain based on mean duration and
y∗ at each time. The sample includes all extended properties. 95% confidence intervals are shown.

5.2 Estimating Average y∗

The difference-in-differences estimate, ∆it, of the gain in market value as a result of dura-

tion extension is used in the non-linear equation (6) to estimate y∗. Figure 7 graphically

illustrates how the estimation procedure works, using 90-year extensions as example. The

figure binscatters ∆it estimates for various durations Ti. The dashed black line is the best-fit

prediction from our NLLS estimation of equation (6). Figure 7 shows that the DiD estimate

of the increase in market value after extension aligns remarkably well with the predicted

increase according to the simple asset pricing formula of equation (6). Our simple asset

pricing formula predicts that the percent valuation gain from a 90 year extension should

be larger for extensions with shorter duration at the time of extension. Consistent with

the formula, the percent gain in property value as a result of extension is decreasing in the

duration before extension—ranging from only 7% for properties with 90 years remaining at

extension, to more than 30% for properties with duration of 40 years at extension.

More generally, there are three sources of variation used to identify y∗ according to our

NLLS DiD estimation procedure. First, for a given remaining duration T at extension, and

a given extended duration T + k, the valuation gain ∆it is larger when y∗ is lower. Second,

as shown in Figure 7, the gain from extension increases as the duration before extension
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Figure 7: Duration Before Extension vs. Price Gain After Extension

The figure is a binscatter of our difference-in-difference estimator against duration before extension, T , with 100 bins. The
sample includes leases that were extended for 90 years. The black line shows fitted estimates of equation (6).

T falls. Moreover this increase is stronger when y∗ is lower.26 Third, the valuation gain is

larger when the size of the lease extension amount amount k is bigger, with a larger gain

when y∗ is lower.

Table 4 presents the y∗ estimates implied by Figure 7. Column (1) shows that y∗ estimate

for properties extended by 90 years is 3.5% over the full sample period. As discussed in

Section 4.2, our estimator assumes that the long term forward yield curve for housing is flat,

meaning a unique value of y∗. We now test if the assumption of a flat long term forward

yield curve is accurate, using two sources of variation: in the duration T at which a leasehold

is extended, and the size k of the increase in lease duration at extension.

We estimate the degree to which estimates of the long term yield vary with duration,

by parameterizing the estimate of y∗ as y(T ) = α + β · T , where T is the duration of the

leasehold before extension. If the long term yield curve is sloped, then β will be different

from zero. We exploit variation in duration after extension to estimate both α and β. We

control for time of experiment by residualizing ∆it on year fixed effects before estimating

y∗, to make sure spurious variation in when certain extensions are popular does not drive

our result. Columns (2) through (5) of Table 4 present estimates of y(T ) under this more

flexible form. The results show that y(T ) varies little over the range we observe it, even at

26We can explicitly reject a linear relationship between ∆it and Tit by running the following quadratic
regression: ∆it = β0 + β1Tit + β2T

2
it + ϵit. The estimated βi’s are all statistically significantly different from

zero.
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Table 4: Estimated y∗

Constant y∗ Flexible y∗ Constant y∗

(1) (2) (3) (4) (5) (6)
k = 90 T = 50 T = 60 T = 70 T = 80 k ≥ 700

y∗ 3.51∗∗∗ 3.55 3.52 3.48 3.44 3.50∗∗∗

(0.023) (0.019)
N 42,429 54,580
t-stat (700+ vs. 90) -.33

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Column (1) presents estimates of y∗ from equation (6) for all extensions. Column (2)-(6) present estimates of y∗(T + k) for the
range of durations in our sample, where we parameterize y∗ linearly as a function of T + k, y∗(T + k) = α + β · (T + k). We
estimate y∗ using a version of ∆it that has been residualiz Standard errors are heteroskedasticity robust.

very long durations, suggesting a flat long term yield curve.27

As another test of the slope of forward yield curve, we estimate y∗ using the sample of

leaseholds that extend by more than 700 years. These leaseholds are affected by much longer

horizon yields than the baseline sample, which extend by 90 years. Column (6) of Table 4

presents estimates of y∗ using only extensions of more than 700 years. Estimates of y∗ are

remarkably similar for both groups, and statistically indistinguishable according to a t-test,

the t-stat of which is presented at the bottom of Column (6). Therefore y∗ seems to vary

little at very long horizons, consistent with a flat yield curve.28,29

One concern about our estimate may be that short duration leaseholds have an additional

liquidity premium, because banks might be less willing to issue a mortgage against shorter

duration leaseholds. Appendix A.10 investigates this concern formally and finds little ev-

idence of liquidity effects in our sample. For example, data from English Housing Survey

shows that shorter duration leaseholds are as likely to have a mortgage, with similar mort-

gage characteristics in terms of maturity, LTV and interest rate. Shorter duration leaseholds

in our sample are also no different in terms of trading liquidity (e.g. time on the market).

Finally, incorporating discontinuities around the leasehold durations where mortgage lending

might change does not affect our estimates of y∗.30,31

27In Figure A.18 we estimate the event study of Figure 6 separately for above and below median duration
properties, which also documents the lack of pre-trends for both.

28In Figure A.16 we present a binscatter using properties that were extended for more than 700 years.
29The estimate of y∗ is not affected by “buy to let” properties. Appendix Figure A.14 shows that y∗ is

similar for buy to let and owner occupied properties; Appendix Figure A.15 shows that at the local authority
level, y∗ is uncorrelated with the share of second homes.

30In Appendix A.11, we find that our estimate of y∗ is not seasonal, consistent with its interpretation as
a long run object.

31Since our estimator constructs a repeat sales index control for every treated observation, there is variance
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5.3 Estimating Dynamics of y∗

Figure 8: Price Change From Extension, Over Time

The figure shows the mean difference-in-difference estimate for various durations in the pre-2008, 2008-2016 and post-2016
periods. The bars show the level of ∆it for each bin and the dashed lines shows fitted estimates. The sample includes only
90-year extensions. Bars are shaded proportionally to the number of observations that make up the bar.

A key advantage of our data and methodology is that we have new leasehold extension

natural experiments every month — in recent years close to one thousand per month. We

can thus estimate the dynamics of y∗ over a period of more than two decades. Long-run

dynamics of y∗ should be of particular interest to scholars studying questions such as secular

stagnation, movements in r∗, and similar.

There is a clear decline in y∗ over our sample period. Figure 8 illustrates this by plotting

the average gain in market value, ∆it, for 90-year extensions against duration at extension,

T , for three different time periods. The opacity of bars in the bar graph reflects the number

of observations behind each bar. The gain in market value due to 90-year extension of a

leasehold has increased by about 10pp between the beginning and end of our sample on

average. This is a large increase, which reflects a significant fall in y∗ over our sample

period.32

We now move to the full data, with all extensions, so we can estimate the full dynamics of

y∗t with precision. In total, we have 130,971 leasehold extension natural experiments between

due to “generated regressors” that our baseline standard errors do not account for. In Appendix Section
A.12 we correct the standard errors using a bootstrap procedure and find that the effect is small.

32In Figure A.19 we plot the event study of Figure 6 separately for each period, which also documents the
lack of pre-trends at all times.
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2000 and December 2023. Since there are fewer natural experiments in the beginning of our

sample period, we pool the experiments together for the first 4 years and estimate a single y∗t

for 2000-2003. From then on, we estimate y∗t separately for each year. Since lease registration

became mandatory after 2003, we capture all lease extensions after this time.

Figure 1 in the introduction presents the estimates of y∗t at annual frequency. The

shaded region reflects 95% confidence interval. The estimates get more precise over time

as the sample size gets larger.33 y∗ is relatively stable around 5.2% from 2000 until 2006,

when it starts to fall persistently. In total y∗ falls from around 5.2% to 2.7% in 2024, an

almost 50% decline. The magnitude of this decline is large, corresponding to a doubling of

the long run expected price-rent ratio. Notably, y∗ estimate remains stable during the 2020

pandemic, despite considerable volatility in shorter term asset prices during this period.34

5.4 Real Time Dynamics of y∗

As mentioned earlier, one useful feature of our methodology is that it can be implemented

in real-time, with publicly available data. Figure 9 plots our estimate of the expected long-

term yield of housing, at monthly frequency until December 2023, the last month for which

UK housing data are currently available. The shaded area represents the 95% confidence

interval of our estimate of long-run rates and shows how precise our standard errors are, even

when estimating y∗t at a monthly frequency. The tight standard errors result from having

a reasonably large sample size of around 900 lease extensions per month. As discussed in

Section 3.3, y∗t estimates include new information with a lag of about 5 months.

Two observations from the monthly time-series are worth mentioning. First, there is a

barely noticeable change in y∗ during the Pandemic Recession, despite considerable volatility

in housing markets over this period. This behavior is consistent with the Pandemic repre-

senting a large but short term shock to housing markets—which, reassuringly, our measure

of long term expectations is able to “look through”. In the future, our estimates should help

policymakers to understand in real time whether other shocks have also affected long run

expectations.

Second, the recent post-pandemic tightening cycle of monetary policy starting in January

2022 has had a large effect on real yields on safe assets—even at relatively long durations—

but has not affected y∗. The dashed line in Figure 9 indicates that the 10-year-20 real

forward rate on government bonds has risen by about 350 basis points since the beginning

33Appendix Figure A.20 plots the time varying estimate y∗t , separately for short and long extensions.
34After 2017, various governments have proposed reducing leasehold extension costs. How would reform

affect our estimate of y∗? In Appendix Section A.5.7 we show that expectations of a leasehold reform would
lead our estimate of y∗ to rise, meaning the true decline in y∗ may have been greater than our estimate.
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Figure 9: Monthly estimates of y∗ and rate of return on government bonds

The solid line presents y∗t estimated at a monthly frequency using all extensions. The line is plotted from January 2016 to
October 2024. 95% confidence interval is shaded.

of 2022. In contrast, y∗t has remained stable, though it is important to remember that these

estimates include a lag of about 5 months.

5.5 Robustness Checks

We have made our data public, and presented the estimate of y∗ in as transparent a manner as

possible in the graphical analysis above. The market is remarkably precise in estimating the

very long forward that y∗ represents. For example, the market increasingly values the gain

from extension when lease extension happens with fewer years until maturity. There is also

a clear rise in market value gain due to extension in the second half of our sample, reflecting

a sharp fall in y∗. This section provides additional robustness checks for our estimates.

The DiD estimator uses a weighted repeat sales index as in Case and Shiller (1989) to

estimate price growth for control properties. An alternative would be to use the simple

repeat sales index introduced by Bailey et al. (1963) (BMN). Appendix Figure A.23 presents

in the black line our baseline estimates and in the dashed grey line the estimates produced

with a BMN repeat sales index. The dotted blue line presents estimates when we include

control properties with holding periods under two years (“flippers”). The main repeat sales

index is produced at a quarterly frequency. The dotted green line presents estimates when

we calculate the repeat sales index at a yearly frequency. All four lines are very similar and

a suggest an overall decline in y∗ of about 2.4pp.
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Instead of estimating price growth of control properties between time t − h and t via

a repeat sales method, another option is to use controls that are also purchased and sold

at times t − h and t. We denote this the “exact control” method. The main disadvantage

of the exact control method is that it imposes a much stricter criteria, so fewer extensions

are matched, and the controls which are matched tend to be further away from the treated

properties. Appendix Figure A.24 presents estimates of y∗ using the exact control method

in the dashed grey line. The black line presents estimates using the baseline methodology

on the sample of experiments for which we identify exact controls. The two lines are again

very similar.35

Finally, we may worry that the observed time-trend is driven by changes in regional

composition of extensions over the sample period. To show that this is not the case, we

recalculate y∗ using weights that fix the composition of the Local Authorities in the data at

(1) the average over the full period, and (2) the end of period distribution. The results are

presented in Appendix Figure A.26 and are similar to the baseline estimates.36

5.6 The Advantage of Within-Property Variation in Duration

Our microdata-based approach to estimating y∗ builds on Giglio et al. (2015), who first

noted that the varying durations of UK properties make them ideal for estimating long-

term housing yields. They use cross-sectional comparisons of freeholds and leaseholds to

estimate the level of y∗. We extend this insight by leveraging the quasi-experiment nature of

lease extensions to estimate the dynamics of y∗. The quasi-experimental approach has some

statistical advantages over the approach that uses cross-sectional variation.

A key distinction between the cross-sectional and quasi-experimental approaches is the

source of variation in duration. The former relies on differences across properties, while

the latter exploits within-property variation. Long-duration properties may have different

service flows— for instance as freehold flats might be of higher construction quality. The

cross-sectional method depends on hedonic controls to account for price differences due

to potential differences in service flow. The quasi-experimental approach uses variation in

duration within the same property due to lease extensions, and relies on the “parallel trends”

assumption highlighted earlier.

35Further, in Figure A.25 we repeat this analysis but restrict to treated properties for which a control
can be found within 1km. We do this because under the exact control method, the average control radius
increases, since it is more difficult to find neighboring controls. Again, the results are similar when we restrict
to controls within 1km.

36One question is whether the tax treatment of different kinds of properties interacts with our result.
In Appendix Figure A.14, we show that estimates of y∗ are similar for “buy-to-let” and owner-occupied
properties; and in Appendix Figure A.15 we show that estimates of y∗ are uncorrelated with the ownership
of second homes.
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To gauge how unobserved heterogeneity affects the quasi-experimental and the cross sec-

tional estimates, we study a test in the spirit of Altonji et al. (2005) and Oster (2019).

According to these papers, one sign of bias from unobserved heterogeneity is that different

ways of controlling for observed heterogeneity matters. We therefore estimate y∗ using both

the quasi-experimental and the cross-sectional approach, and control for observed hetero-

geneity in different ways. We therefore estimate y∗ using both the quasi-experimental and

the cross-sectional approach, controlling for over 100 different variations of hedonic charac-

teristics. In one variation we do not include any controls. In another, we allow price to

vary linearly with number of bedrooms and floor area, and in another we allow price to vary

quadratically with these same controls.37 In the most extreme case, we control for fixed ef-

fects of the following seven characteristics: number of bedrooms, number of bathrooms, floor

area, year built, heating type, property condition rating, and availability of parking.38 The

other variations include all possible subsets of these seven characteristics. Note that certain

specifications, such as the one without any controls, are unlikely to yield plausible estimates

of y∗ when using a cross-sectional methodology. Nevertheless, we include them deliberately to

transparently document the full sensitivity of the estimators to variations in observed hetero-

geneity. Importantly, substantial variation is also observed among specifications considered

plausible—such as comparing linear controls with fixed effects specifications—highlighting

the estimator’s sensitivity even within realistic modeling choices.

We then plot our estimates of y∗ for each specification in Figure 10, for both the quasi-

experimental and cross-sectional methodologies. Under the cross-sectional approach, the es-

timates vary tremendously from 1.78% (in the case of the Giglio et al. (2015) specification) to

more than 10% in the case of controlling for fixed effects. In contrast, our quasi-experimental

estimates of y∗ are stable around the baseline estimate. Therefore the form of observed

heterogeneity is not very important for the quasi-experimental approach—suggesting that

estimates are somewhat robust to unobserved heterogeneity only with this approach.39,40

Since the quasi-experimental methodology utilizes within-property price change, the he-

37Figure A.21 indicates that most hedonic controls vary relatively linearly with log price.
38The fixed effects controls are the same as the main specification Giglio et al. (2015). Giglio et. al. add

an indicator variable for properties with missing hedonics and includes them in the main sample — whereas
the current exercise restricts the sample with controls to properties that have hedonic characteristics. We
remove properties without hedonics because these properties will not be affected by different ways of adding
controls. Moreover, if controls are important, then including properties with missing control information
may lead to omitted variable bias.

39The standard errors for the cross-sectional estimates range from 0.002 to 75.84, and the standard errors
for the quasi-experimental estimates range from 0.013 to 0.028. Therefore in a statistical sense, the cross-
sectional estimates are significantly less stable.

40The Giglio et al. (2015) specification and the fixed effects specification differ because including observa-
tions with missing hedonics is similar to leaving out hedonic controls entirely.
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Figure 10: Stability of y∗, Controlling for Observables

The figure presents estimates of y∗ under various choices of hedonic controls. For the cross-sectional estimates, we estimate
logPT

it − logP∞
it = log(1 − e−y∗T ) by NLLS, where P∞

it is the price of a freehold transacted in the same quarter and Local
Authority as a T duration leasehold. For the quasi-experimental estimates, we follow the methodology described in Section 4.
For each methodology, we perform over 100 estimations, controlling for different combinations of hedonic characteristics. We
indicate in various shades of blue four important sets of controls: no controls, linear controls, quadratic controls, and the full
set of hedonic fixed effects. The gold cross presents the y∗ estimate from Giglio et al. (2015), and the red cross presents our
replication of their estimate, using the full data from 2000-2023.

donics controls from Figure 10 affect our results only to the degree that either (1) they are

not time-invariant, for instance if the property has renovated, or (2) there is a change in

the sample of properties for which there is data. A stronger test is to control for hedonic

characteristics interacted with time. We present these results in Figure A.22, which again

indicate that the effect of hedonic controls on the quasi-experimental design is minimal.

Nevertheless, there are limits to this exercise for testing the quasi-experimental method. For

instance, the test may not detect certain failures of the parallel trend assumption, due to

changing characteristics within the same property that we do not observe in our dataset.

6 Macroeconomic Implications of y∗

The primary object of our paper is to introduce the new real time public data set on leasehold

extensions, and develop a methodology that uses this data to estimate the expected long

run housing yield, y∗. In this section we illustrate how y∗ can be useful in informing us

about movement in long-term yields in broader class of assets, as well as the natural rate

of interest on safe assets. We also illustrate how our data can be used to estimate y∗ at a

granular geographic level, and show how dynamics of y∗ depend on housing risk premia and
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supply-side elasticity.

6.1 The Secular Decline in Expected Long Term Yields

Our estimate of expected long-term yield comes from the UK housing market. Are these

estimates useful for other asset classes? Obviously one cannot estimate expected long term

forward yields on other assets since other assets do not have the unique natural experiment

that we use. However, we can approximate the dynamics of expected long term yields

for other assets at low frequency, using the long run trend of yields. The long run trend

“averages out” short term shocks to yields, and therefore tracks low frequency movements

in the long-term expected yield.41 If long run trends for other forms of capital match y∗,

then the dynamics long run expected yields are similar for UK housing and other assets, at

low frequency.

Figure 11: Comparing Other Asset Yields to y∗

(a) Real Risk-Free Forward Rate (b) Rent-to-Price Ratio

The figures present yields for other assets over the 2003-2023 period. Panel (a) plots the 10 year 15 real forward rate for the
UK, using data on real forward curves from the Bank of England. It also plots the weighted average 10 year 20 forward rate
for 9 OECD countries for which data from Global Financial Data is available. The average is weighted by each country’s GDP.
Since data on inflation-linked bonds is not available for many countries, we define the real forward rate as the nominal forward
rate minus 3% expected inflation. Panel (b) plots the UK rent-to-price ratio and the weighted average rent-to-price ratio for 22
OECD countries for which it is available. The rent-to-price ratio is calculated from a rent-to-price index published by OECD,
and normalized to the 2023 y∗ level.

Figure 11 shows that the long run trend of various other yields has been similar to

y∗, particularly prior to 2020. In panel (a) we plot long run safe asset yields for the UK

and worldwide. In Panel (b) we plot rent-price ratios for the UK and a subset of OECD

41Formally, consider the yield of an asset zt, which follows a driftless ARIMA process. We are interested
in the expected long–term yield z∗t = limj→∞ Etzt+j , which is also the Beveridge and Nelson (1981) trend of
zt. Beveridge and Nelson show that zt = z∗t + τt, where τt is a stationary and mean zero “transitory shock”.

Therefore, time series averages of actual yields,
∑J

j=0 zt/J , and expected long run yields,
∑J

j=0 z
∗
t /J , are

similar over long horizons J , because the long horizon average of τt converges to zero.
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countries. The series is produced from rent-to-price index ratios published by the OECD,

and normalized in 2023 to have the same level as y∗. The long run trend decline for these

other asset yields is quantitatively similar to y∗, particularly before 2020. For instance, in

Panel (a), UK and global real forward rates experience a decline of roughly 4pp between

2000 and 2022, compared to a roughly 3pp fall in y∗ for UK housing over the same period.

In Panel (b), peak-to-trough fall in rent to price ratios, either in the UK or globally, has been

virtually identical to y∗. We tentatively conclude that the dynamics of long run expected

yields are similar for housing and other assets. Many previous papers study long run trends

in asset yields, and find declines before 2020 (e.g. Farhi and Gourio, 2018; Reis, 2022).

However our measure of expected long term yields is also available at high frequency and in

real time.

Therefore the decline in y∗ ≡ r∗ + ζ∗ − g∗ seems to be common across various assets,

and not specific to housing. This finding suggests in turn that the fall in y∗ was caused by

a fall in r∗, the expected long term safe asset yield. The reason is that r∗ is common to all

assets, whereas movements in risk premia ζ∗ and dividend growth g∗ are specific to housing.

Consistent with this logic, in Appendix A.13, we present suggestive evidence that the decline

in y∗ is due to a decline in r∗. In particular, we estimate long run housing risk premia and

expected dividend growth using a standard Vector Autoregression approach, and show that

neither long run UK housing risk premia, nor dividend growth for housing, can account for

the trend decline of y∗ for housing. Instead, the cause seems to be a fall in long run expected

safe asset yields, r∗. Our finding is consistent with the large literature that has identified

declines in r∗ through different methods (Holston et al., 2017). We stress that this exercise

is tentative due to the uncertainty of the VAR based procedure.

In Appendix Section A.15, we review available evidence on the behavior of very long

term safe interest rates, with durations of 100 years or more. The data come from the single

sovereign debt issuer with 100 year bonds, Austria; as well as very long term corporate bonds

issued by various high credit quality corporates. The evidence is somewhat uncertain, due to

liquidity issues with the bonds and a short time series. However on the whole the evidence

suggests low and stable r∗, consistent with our findings.

6.2 Comparing Current Yields to y∗

One can usefully compare expected long term yields to current asset yields. This exercise

reveals whether shorter or longer term factors have been the determinant of current asset

price fluctuations, as we illustrate in two applications.
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6.2.1 Dynamics of r∗ after 2020

One important question is whether r∗, the expected long term yield of safe assets, has risen

since 2020 or stayed at its prior low level. Meanwhile, as Figure 11, Panel (a) shows, medium

term asset yields have risen sharply after 2020. Our estimates help to answer whether these

medium term yields have risen due to longer-term factors, indicating rising r∗; or, due to

shorter term factors. The answer has several implications. For instance, the behavior of r∗

affects the conduct of monetary policy. Moreover the behavior of r∗ is a key indicator of

whether the economy will return to the low interest rates of the “secular stagnation” era

(Blanchard, 2023).

The stability of y∗ after 2020 suggests that r∗ has also been stable, despite the rise in

medium term yields. We stress that y∗ ≡ r∗ + ζ∗ − g∗ and r∗ are different objects. However,

y∗ contains a great degree of information about r∗, since a large rise in r∗ would likely lead

to a large rise in y∗.42

The different behavior of medium- and long- term yields suggests that, since 2020, the

yield curve has flattened, with short and medium-run forward yields rising relative to long-

run yields. Our estimate of y∗ suggests that medium-run interest rates will fall because the

current rise in the medium term forward rate is a temporary deviation from r∗, which has

remained low. Alternatively, y∗ must ultimately rise to meet the short-end of the yield curve.

Our real-time estimates of y∗ will allow us to track this convergence process on a monthly

basis.

However the convergence between medium term yields in Figure 11 and y∗ may be slow,

for at least two reasons. First, the duration of the medium- and long-term yields is different.

The medium term yields in the figure are 10 year interest rates starting in 15 years’ time. y∗

is pinned down by 90 year yields start in 70 years’ time. As such, the gap between the two

series could last for quite some time. Second, y∗ as estimated in the paper could be a slower

moving variable than the correct measure of r∗. In housing markets, trading is relatively

infrequent, and factors such as norms and advice by real estate agents could be important.

If so, then y∗ may evolve slowly. On the other hand, measures of r∗ inferred from financial

market prices might evolve more quickly.

6.2.2 Dynamics of House Prices During the Early 2000s

The gap between current rent-price ratios and y∗, the expected long term rent-price ratio,

can be a useful diagnostic for understanding whether current housing valuations are likely to

42An alternative, and in our view less likely possibility, is that r∗ has risen but a second shock has caused
ζ∗ or g∗ to change in an offsetting direction at exactly the same time.
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persist, or may be more transitory. As an example, consider Figure 11b. Current rent-price

ratio tracks y∗ roughly over the long-run. However, there can be sustained periods where

the two diverge, as in the period from 2000 to 2006.

The divergence during 2000-06 suggests that the housing boom during this period was

driven by a decline in the short-end of the housing forward curve, while the long-end yield

remained high. Since risk-free yields remained relatively largely stable during this period as

well, once could conclude that the divergence between y∗ and R/P is driven by a medium-

term shift in expectations about the housing risk premium or housing dividend growth, which

might prove to be transient. In contrast, the decline in rent-to-price ratios after 2012 tracks

the decline in y∗ very closely, suggesting that the recent increase in house prices has been

driven by a shift in the long-end, and hence might be more persistent.

Through this perspective, the high housing valuations of 2000-06 and 2015 onward are

quite different. In 2000-06, valuations were temporarily higher than their long run values,

and likely to fall; whereas current housing valuations seem to be more persistent and less

likely to revert. Put differently, the rent-to-price ratio were at the same level in 2006 and

at the end of the 2010s. However long term yields were much lower in the later part of the

sample—suggesting that rent-to-price ratios at the end of the 2010s were more likely to last.

Going forward, our estimates can be used to understand whether movements in house prices

are driven by transitory or more persistent factors.

6.3 Cross-Sectional Variation in y∗

The long-run housing yield y∗ ≡ r∗ + ζ∗ − g∗ contains housing-specific components: the

risk-premium ζ∗ and the rate of rent growth, g∗. We now investigate which factors affect ζ∗

and g∗ by exploiting cross-sectional variation in y∗.

6.3.1 y∗ And Climate Risk

One source of variation in regional long-run housing risk may be exposure to climate change

related hazards. In the United Kingdom, two major climate risks that will worsen as global

temperatures rise are floods and subsidence. There is substantial variation in expected

exposure to these risks depending on proximity to bodies of water, temperature, and soil

type. We obtain data on flood risk from the UK Environment Agency and data on predicted

long-run damage from subsidence from the British Geological Survey GeoClimate project.

We aggregate these measures at the Local Authority (LA) level, creating measures of the

share of each LA that is exposed to each risk. We then correlate these shares with our local

estimates of y∗ in the first two columns of Table 5. Areas with larger climate risk exposure
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have higher levels of y∗, consistent with them having higher long-run risk premia.

Table 5: Determinants of Long-Run Risk

y∗

(1) (2)

Flood Risk 0.19∗∗

(0.07)

Subsidence Risk 0.32∗∗

(0.11)

N 224 224

R2 0.05 0.10

Standard errors in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

6.3.2 ∆y∗ and supply elasticity

The expected long term housing yield also encodes whether the supply of housing is elastic.

Suppose that demand for housing rises, perhaps because of a fall in long-term interest rates

r∗. If supply is inelastic, then valuations of housing will rise, increasing the price-rent ratio

and lowering y∗. However, elastic land supply will accommodate the growth in demand, and

mitigate rising valuations and falling y∗.

Formally, recall the definition y∗ ≡ r∗ + ζ∗ − g∗, and suppose that housing demand rises

due to falling r∗. If housing supply is elastic, then new construction leads to slower rent

growth, meaning g∗ falls and y∗ does not change. If housing supply is inelastic, then g∗ does

not change and falling r∗ passes through to falling y∗.

Consistent with this logic, we find that y∗ falls by more in areas with more inelastic

housing supply. We define areas as Local Authorities (LAs) and use two measures of supply

constraints from Hilber and Vermeulen (2016). The first is the share of major construction

applications refused by that Local Authority, averaged over a nearly 30-year period. The

second is the share of developable land developed in 1990.

One problem is that the refusal rate of construction applications is endogenous; developers

are less likely to submit construction applications in more restrictive LAs that are unlikely

to accept them, which in turn reduces the refusal rate of more restrictive LAs. For example,

as we discuss in Appendix A.14, the application refusal rate in places like Central London

is surprisingly low, most likely because construction firms know that applications will be

refused and do not submit them. This implies that the measured application refusal rate is
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an underestimate of what the refusal rate would be if the application submission rate was

randomly assigned.

To address this endogeneity concern, Hilber and Vermeulen (2016) develop an instru-

ment based on a 2002 policy reform, which incentivized LAs to make decisions on major

construction project applications in a timely fashion. This policy should have especially

lowered the application delay rate for inelastic LAs, which were more likely to delay con-

struction applications before the reform. Column (5) of Table 6 presents the first stage for

this instrument, indicating that LAs which lowered their application delay rate after 2002

on average had higher refusal rates.43 In Appendix A.14 we elaborate further on the validity

of this instrument.

Table 6: Cross-Sectional Heterogeneity in ∆y∗

∆y∗ Refusal Rate ∆y∗

(1) (2) (3) (4) (5) (6) (7)
OLS OLS OLS OLS 1st Stage IV IV

Refusal Rate -4.28∗∗∗ -6.35∗∗∗ -6.87∗∗∗ -17.84 -13.69∗

(1.25) (1.27) (1.36) (11.11) (5.41)
Share Developed -1.64∗∗∗ -1.82∗∗∗ -2.37∗∗∗

(0.32) (0.54) (0.71)
Change in Delay Rate 2.51∗∗∗ -0.17∗∗∗

(0.64) (0.04)
Region FE ✓
N 224 224 224 224 224 224 224
R2 0.11 0.30 0.34 0.11 0.08 -1.03 0.00

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The table presents cross-sectional regressions of the long-run change in y∗ against Local Authority level measures of supply-side
constraints in the UK. The long-run change in y∗ is defined as the difference between post-2022 y∗ and pre-2009 y∗ (inclusive).
Columns (1) through (4) present OLS regressions of ∆y∗ against three measures of supply elasticity: the average refusal rate
of major construction applications, the share of developable land developed, and the change in delay rate following the 2002
policy reform, all of which are discussed in the main text. In Column (3) we also include region fixed effects. Column (5) and
(6) present IV regressions, where the refusal rate is instrumented using the change in delay rate after 2002.

Table 6 shows that Local Authorities with more inelastic housing supply have greater

declines in y∗. We measure the decline, ∆y∗, as the long-difference between the pre-2009

period to the post-2022 period, although our results are robust to choosing other cutoff

years. Regressions are weighted by the inverse of the sum of the variances of the pre and

post y∗ estimates.44 Column (1) of Table 6 presents an OLS regression of ∆y∗ on the Local

43Appendix Figure A.27 presents a binscatter of the first stage.
44In all the regressions, we utilize the variation of ∆it built using an annual repeat sales index (RSI), as

opposed to a quarterly repeat sales index. This is because we can match the annual RSI to more experiments,
which therefore yields a larger sample size. Figure A.23 verifies that estimates using the annual RSI are very
similar to the quarterly RSI.
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Authority major construction application refusal rate. In Column (2), we also include the

share of developable land developed. In Column (3), we control for fixed effects for the

9 regions of the England. In Column (4), we present a reduced-form regression of ∆y∗

against the delay rate instrument from Hilber and Vermeulen (2016). In Column (5) we

instrument for the refusal rate using the delay rate instrument and in Column (6) we repeat

this regression, but also include the share developed as a co-variate. After instrumenting for

the refusal rate, the share developed control has a smaller effect on the refusal rate coefficient,

consistent with the refusal rate measure being endogenous. In all cases, the results indicate

that more regulated and land-constrained Local Authorities experience greater declines in

y∗. Based on the Column (2) and holding the share of land developed constant, the decline

in y∗ is more than 1pp greater in magnitude for Local Authorities at the 90th percentile of

refusal rate, relative to those at the 10th percentile. Figure 12 presents a binscatter of the

predicted values from the first stage of Column (6) against ∆y∗, controlling for the share of

land developed, again indicating that more restrictive LAs experienced greater declines in

y∗.

Figure 12: The Decline in y∗ Depends on Housing Supply Elasticity

The figure presents a binscatter with 20 bins of the long-run change in y∗, ∆y∗, against the predicted values from the first
stage of the IV in Column (6) of Table 6.

Our finding is not surprising: as demand for housing rises, valuations increase by more in

areas with inelastic supply. However our estimates have implications for the overall economy.

The large decline in y∗ indicates that housing supply is inelastic in the UK in aggregate.

Previous work has established similar results at higher frequency (e.g. Miles and Monro,
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2019). We show that inelastic housing supply matters even at long run frequencies for the

UK economy.

7 Concluding Remarks

This paper estimates the expected long-term yield of housing and its dynamics from 2000

to present for the UK property market. We exploit a natural experiment — extensions of

long duration property leases in the British property market. Our findings show that y∗ fell

from 5.2% before the Great Recession to 2.7% in 2024. An important goal of this paper was

to assemble an administrative data set on lease extensions and make it publicly available for

free. Our data will be updated in real time going forward. We hope that both policy makers

and academics will find the data and empirical methodology useful to estimate the market’s

expectation of long-term yield in real time.

Long-run yields are valuable because they “look through” the short term factors affecting

asset prices in real time. Our results show that there has been a growing gap between long-

run yields and real forward yields in 2022-24. This gap will narrow either by a fall in spot

real yields, as the “secular stagnation view” suggest, or a rise in long-run yields if post-covid

era reflects a structural regime shift. The consequences of these two scenarios for asset prices

and the real economy could of course be very different. In recent months, y∗ has remained

stable. The real time estimates of y∗ should be helpful to determine the trajectory of long-run

yields going forward.

The focus of this paper has been the measurement of the expected long-run housing

yield, which as we have discussed, is difficult to do with precision and minimal assumptions.

However, our paper introduces several questions for future research: Why has y∗ fallen? And

what does this imply about the state of the economy? Although these questions are out of

the scope of this paper, we believe that there is much that can be learned about the economy

from studying y∗ in the cross section. We have argued that the dynamics of y∗ encode useful

information about the elasticity of housing—future work may be able to generalize these

results to housing in other countries, and to other forms of capital.
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A Appendix

A.1 Additional Figures

Figure A.1: Distribution of Lease Term for Leasehold Flats

The figure is a histogram of the remaining lease term at the time of transaction. The sample is all leasehold flats that transact
at least once in the Land Registry Transaction Data Set.

Figure A.2: Renovations By Holding Period

(a) Renovation Rate (b) Change in Bedrooms

The figure shows the renovation rate and change in number of bedrooms reported relative to property holding period. The
renovation rate is measured as the share of properties which have Rightmove listings that mention renovation. We see that very
short holds have a disproportionately high renovation rate according to both measures. We take this as evidence that many of
these are “flippers” who buy properties to re-sell them. The sample is all flats for which we observe two different Rightmove or
Zoopla listings associated with two different property transactions.
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Figure A.4: Cumulative Hazard Rate

The figure shows the cumulative probability of extending over a property’s lifetime. The sample includes all leases with at least
one transaction and covers the 2003-2020 period. We exclude the pandemic period due to abnormally low extension rates.

Figure A.3: Hazard Rate of Lease Extension

(a) Raw (b) Corrected

The figure shows the conditional probability of extension, θ(T ) given that a property has duration T . In the first panel, the

conditional probability of extension is given by θ1(T ) =
NExt

T
NT

where NExt
T is the number of properties which extended with

duration T and NT is the number of properties that reached duration T . In the second panel, the conditional probability of

extension is θ2(T ) = γ
NExt

T
NT

where γ = 1.16 adjusts for the fact that our primary method does not identify properties which

never transact before extension. The shaded area shows the 95% confidence interval.
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Figure A.5: Histogram of Duration Before Extension

The figure presents a histogram of lease duration immediately before extension. The sample is extended flats.

Figure A.6: Histogram of Years Between Transaction

The figure shows a histogram of the holding period, h, for lease extensions which have a recorded transaction before and after
extension. The dotted line shows the h = 2 cutoff; properties below the cutoff are not included in our primary sample. The
sample is all extended flats.
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Figure A.7: Rent to Price (Freeholds vs Leaseholds)

The figure shows the property-level price to rent ratio for leasehold and freehold flats. Leaseholds are subdivided into those
which extend during our sample and those which do not. Property-level rental price data is collected from Rightmove and
Zoopla.
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Figure A.8: Heat Map of Extension Rate

The figure shows a heatmap of the number of properties extended in each Local Authority in England and Wales.
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Figure A.9: Time Elapsed Between Rightmove Listing and Land Registry Transaction
Date

The figure shows a histogram of the amount of time (in days) between the last property listing on Rightmove and the date in
which the transaction is recorded by the Land Registry. Each bin refers to one week. The sample is transactions for properties
which have Rightmove listings within two years of the Land Registry transaction date.

Figure A.10: Cumulative Density
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Figure A.11: Control Radius Relative to Population Density

Figure A.12: Binscatter of Repeat-Sales Residuals

(a) Holding Period (b) Haversine Distance

The figures are binscatters of the squared residuals from the first step of the repeat-sales methodology against two variables
which may be correlated with the variance of the estimate: (1) the time between transactions and (2) the distance between the
treated and control property.
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Figure A.13: Histogram of Remaining Lease Term At Sale

The figure shows a histogram of remaining duration at sale time t for the approximately 40 thousand experiments which were
extended for 90 years. The blue-shaded histogram includes the sale duration for the controls in the experiment and the grey-
shaded histogram includes the sale duration for the extensions.

Figure A.14: Y-star Estimates for Buy-to-Let and Owner Occupied Properties

53



Figure A.15: y∗ and Second Homes

Figure A.16: Duration vs. Price Gain After Extension, Leases with 700+ Years

The figure is a binscatter of our difference-in-difference estimator against duration before extension, T , with 100 bins. The
sample includes leases that were extended for more than 700 years. The black line shows fitted estimates of equation (6).
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Figure A.17: Event Study Representation of Lease Extension, 90-Year Extensions

The figure replicates Figure 6 for properties extended by 90 years.

Figure A.18: Event Study By Duration

(a) T < 70 (b) T ≥ 70

The figure replicates Figure 6 for properties that were extended with below and above median durations.
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Figure A.19: Event Study By Time Period

(a) Pre 2012 (b) Post 2012

The figure replicates Figure 6 for two different sub-periods: pre 2012 (inclusive) and post 2012.

Figure A.20: y∗t Estimates For Various Extension Amounts

The figure presents estimates of y∗t for every year of our sample period for lease extensions that were extended for 90 years, for
more than 700 years, or for another amount, separately. The estimate of y∗ for 90-year extensions in 2008 is excluded, because
the mean estimated difference-in-difference is negative due to low sample size and volatility from the housing crisis, which leads
to an extreme y∗ estimate.
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Figure A.21: Binscatter Log(Price) on Hedonics

(a) Bedrooms (b) Bathrooms (c) Living Rooms

(d) Floor Area (e) Year Built (f) Log(Rent)

The figures are binscatters of log transaction price against the following hedonic characteristics: number of bedrooms, number of
bathrooms, number of living rooms, floor area (sq. meters), year that the property was built, and log yearly rental price. Both

the x and y-axis variables are residualized by Local Authority fixed effects, Γit. In particular, the y-axis variable is log(Pit)+ϵit
where log(Pit) is the mean log transaction price and ϵit is the residual from the following specification: log(Pit) = Γit + ϵit.
The x-axis variable for each hedonic characteristic Xit is Xit + ηit where Xit is the mean level of Xit and ηit is the residual
from the following specification: Xit = Γit + ηit. The sample is leasehold flats which appear at least once in the Land Registry
Transaction Data Set.

Figure A.22: Stability of y∗, Controlling for Observables Interacted with Time

The figure replications Figure 10 controlling for hedonic interacted with time fixed effects.
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Figure A.23: Robustness Checks

The figure presents robustness for our estimates of y∗t . The solid black line presents our baseline estimates from Figure 1. The
dashed grey line presents estimates when using the methodology from Bailey et al. (1963) to produce the repeat sales index
of control properties. The dash-dot blue line presents estimates if we include “flipper” properties that were held for 2 years
or less. The dotted green line presents estimates when constructing the repeat sales index at an annual rather than quarterly
frequency.

Figure A.24: Exact Control Method

The figure presents estimates of y∗ when we pick controls that transact in the same purchase and sale years as the treated
property. Our difference-in-difference then becomes ∆it = (logPT+90

it − logPT+h
i,t−h)− (logPT

jt − logPT+h
j,t−h), where i is a treated

property and j is a neighboring control property of similar duration. The black line presents our baseline estimates on the
sample for which we are able to find exact controls. The dashed grey line presents estimates using exact controls. A 95%
confidence interval is shaded. The sample is all lease extensions.
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Figure A.25: Exact Control Method, Under 1km

The figure presents replicates Figure A.24 but presents estimates when we restrict the sample to properties for which the control
is within 1km of the treated property.

Figure A.26: Fixed Regional Composition

The figure presents estimates of y∗ controlling for the geographic composition of the data. The solid black line presents our
baseline estimates. In the dashed grey line, we fix the composition to the mean composition of Local Authorities over the sample
period. In particular, we produce weights, wit = N̄i/Nit, where N̄i is the average number of observations in Local Authority i
over the entire period and Nit is the number of observations in i in year t. We then run a weighted NLLS regression using the
weights wit. The dotted blue line presents estimates where we fix the composition of the data to its 2022 level using the same
method. The 95% confidence interval of the baseline estimates is shaded. The sample is all lease extensions.
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Figure A.27: Refusal Rate Instrument, First Stage

The figure presents the first stage binscatter for the IV regression in Table 6. The x-axis variable is the change in application
delay rate after the 2002 policy discussed in Section 6.3. The y-axis variable is the mean refusal rate of major construction
applications. The slope coefficient is -0.22, with standard error of 0.05. The binscatter has 20 bins.

A.2 Additional Tables

Table A.1: Total Number of Extensions

Extension Amount 90 700+ Other Total
2000-2005 4,071 13,316 10,289 27,676
2006-2010 14,171 25,435 13,478 53,084
2011-2015 33,452 38,947 20,242 92,641
2016-2020 46,565 49,609 23,466 119,640
2021-2023 10,366 11,942 4,099 26,407
Total 108,625 139,249 71,574 319,448

The table reports the number of extended leases that have transaction data before extension time and may or may not have
transaction data after extension time. The first column includes 90 year extensions, the next column includes 700+ year
extensions, and the third column includes others, which are almost all non-90 under 200 year extensions. The first column
denotes the time of extension.
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Table A.2: Freehold vs Leasehold Statistics (English Housing Survey)

Freehold Leasehold

Income 29,628.73 25,653.20

(52.95) (138.48)

Age 53.95 51.49

(0.03) (0.10)

% Have Mortgage 54.82 59.07

(0.10) (0.28)

LTV 72.17 76.16

(0.14) (0.39)

N 305,135

This table reports the mean characteristic for freehold owners, in Column (1), and leasehold owners, in Column (2). The
standard error of the mean is in parentheses.

A.3 Details on Merge Between Lease and Transaction Data

This section briefly describes our procedure to merge Land Registry data on lease lengths,

and house price transaction data. In the UK, every property can be uniquely identified by

three items: the first address number, the second address number and the 6-digit postcode.

Therefore, we merge according to the following procedure: First, we conduct a perfect merge

using address as our merge key. This method accounts for 93% of our matches. Second, we

conduct a fuzzy merge on all observations not matched by step 1. The fuzzy merge matches

observations in which (1) all numeric elements of the address are the same, (2) all single

letters (e.g. A, B, C, etc.) are the same, (3) a select set of identifying terms (e.g. first

floor, second floor, basement, etc.) are the same and (4) the postcode is the same in both

addresses. For example, this allows for the property “3 Swan Court 59-61 TW13 6PE” in

the transaction data set to be matched to “Flat 3 Swan Court 59-61 Swan Road Feltham

TW13 6PE” in the lease term data set. This method accounts for 7% of our matches.

Additionally, we purchase the leasehold titles from the Land Registry for approximately

20 thousand transactions for which we are unable to identify a lease term based on the fuzzy

merge. These include cases where the lease term address has typos, or has been accidentally

omitted from the main public data set.
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A.4 Calculating the Extension Hazard Rate

In this section, we explain how we calculate the extension hazard rate, shown in Figure A.3

and Figure A.4. We define the conditional probability that a property i extends given that

it has duration T as θi(T ) = P (Extended At S|Duration = S). To get the total cumulative

probability that a T duration property i will extend over the course of its lifetime, we must

convert our conditional probabilities to unconditional probabilities as follows,

πi(S) = Pi(Extended At S)

= Pi(Extended At i|Duration = S)Pi(Duration = i)

= θi(S)
T∏

U=S+1

(1− θi(U))

The cumulative probability that property i extends over its lifetime is then given by Πi(T ) =∑T
S=1 πi(S). In Figure A.4, we scale the hazard rate up by a factor of 1.16. This is because

our method to identify lease extensions does not capture extensions that have no transactions

before extension. We estimate that there are about 17% more extensions that have been

extended but do not have pre-extension transaction data.45

Then, the price of a T duration property at time t is given by the following recursive

formula,

P T
i,t =

Ri,t+1 + θi(T )(P
T+90−1
i,t+1 − κT−1

t+1 ) + (1− θi(T ))P
T−1
t+1

1 + r∗ + ζ∗
(8)

Intuitively, the price of a T duration asset is the discounted dividends it yields next period,

plus with probability 1 − θi(T ), the price of a P T−1
i,t+1 asset, and with probability θi(T ), the

price of a P T+90−1
i,t+1 duration asset minus the cost of extending, all appropriately discounted.

A.5 Measuring the Option Value of Lease Extension

So far, we have assumed that there is no option value from lease extension, because leasehold-

ers pay the market value of extension to freeholders when they extend. This section studies

option value and its consequences for estimates of y∗, in three steps. First, we present a

simple framework that encompasses a key feature of the UK law on extensions, namely dis-

continuities in the cost of lease extensions when leaseholds have 80 years remaining. Second,

45To obtain this estimate, we utilize the fact that the most common lease extension amount is for 90
years and the most common initial lease terms are for 99 and 125 years. Therefore, almost all leases with
recorded terms of 189(=99+90) and 215(=125+90) have almost certainly been extended. As such, we infer
that the share of extensions missing pre-transaction data is equal to the share of 189/215 leases missing
pre-transaction data.
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we use this framework to derive discontinuity based tests about whether there is option value

from lease extension. These tests indicate that the baseline estimate of the fall in y∗, which

ignores option value, is a lower bound for the true fall in y∗. Third, we generalize our the

difference-in-differences estimator to point identify the size of option value. We find that our

baseline estimate of y∗, which ignores option value, is an excellent approximation.

A.5.1 A Framework for Lease Extension Costs

We now summarize the institutional framework of lease extensions and develop a simple

model of this framework.

Tribunals. Leaseholders are legally entitled to a 90-year extension by the 1993 Leasehold

Reform, Housing and Urban Development Act. According to the act, lease extensions ought

to be priced at their market value, the present value of service flows from the lease. However

the leaseholder and freeholder negotiate the size of the market value, by independently hiring

surveyors. If there is no agreement, a Residential Property Tribunal determines the value of

the extension after a costly legal process. Tribunals require that the extension is 90 years

long, and price extensions using a two part formula, which requires an estimate of reversion

value and marriage value.

Reversion value. The reversion value is the value of the lease extension according to a

yield assumed by the tribunal. Formally, the reversion value of property i at time t satisfies

the formula

RV T
t =

Rit

rRV

(
e−rRV T − e−rRV (T+90)

)
. (9)

This equation is the value of the lease extension according to a Gordon Growth model, with

a discount rate of rRV and a current service flow Rit. The first term in the brackets on the

right hand side is the value of an infinite duration property, and the second term is the value

of an infinite duration property 90 years hence—meaning the difference is the value of the

lease extension. In practice, the service flow Rit is imputed from the price of an observably

similar freehold property. The discount rate is fixed by the tribunal at rRV = 5%.

Marriage value. We will define the market value of the extension as V T
it ≡ P T+90

it −P T
it ,

which is the difference in price between property to be extended, with duration T , and

the price of the same property with duration T + 90. The marriage value is the tribunal’s

estimate of the gap between the market value and the reversion value of the lease. That

is, the marriage value is MV T
it ≡ V T

it − RV T
it . To calculate the marriage value, the tribunal

imputes market values from the transacted prices of observably similar properties. Provided
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that the tribunal imputes correctly, the market value satisfies

V T
it =

Rit

y∗t

(
e−y∗t T − e−y∗t (T+90)

)
. (10)

Here, we have written the marriage value as the market value of a lease extension according

to a Gordon Growth model, where the natural rate expected by the market, y∗t , enters the

equation for market value. The first term in brackets on the right hand side is the market

value of an infinite duration property, and the second term is the market value of an infinite

duration property 90 years later—the difference is the market value of extension.

Reversion value vs. marriage value. Our approach makes extensive use of the

following observation. Compare equation (9) and equation (10) for reversion and market

value. Reversion value calculated by the tribunal is greater than market value, if and only

if y∗ is greater than the 5% yield assumed by the tribunal.

Discontinuity at 80 years duration. There is a discontinuity in the tribunal assessed

cost of the lease extension when 80 years remain on the lease. For leases with more than 80

years remaining, the tribunal dictates that only the reversion value must be paid, whereas

for leases with less than 80 years remaining, the cost is the average of the reversion value

and the market value; or equivalently, the reversion value plus half of the marriage value.

Tribunal costs to leaseholder. There are significant costs to the leaseholder of ap-

pealing to the tribunal. These costs include time and information costs, uncertainty from

the outcome of the tribunal, costs of hiring a survey to value the lease, and legal costs as-

sociate with the tribunal. Moreover the law dictates that leaseholders must cover all of the

freeholder’s legal and surveyor fees associated with extension. We will denote these costs for

property i by γRit, which we assume for simplicity scales with the current service flow Rit.

Leaseholder’s participation constraint. The leaseholder also has a participation

constraint—if the tribunal assessed costs of extending are greater than the value of extending,

the leaseholder can opt not to extend. Therefore the freeholder should reduce costs down

to the market value of extension, so that a transaction can occur. The converse is not true:

if the tribunal associated costs are less than the market value of extending, the leaseholder

will choose the tribunal costs instead of paying the freeholder the market value of extension.

Total extension costs. We can summarize the cost of extension κT
it, of a property i

with T years remaining at time t, as

κT
it =

min
{
RV T

it + γRit, V
T
it

}
T ≥ 80

min
{

RV T
it +V T

it

2
+ γRit, V

T
it

}
T < 80

(11)
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Equation (11) recognizes that the cost of extension κT
it is the minimum of the market value

of extension from the present value of rents; and the tribunal recommended value of exten-

sion plus the costs of a tribunal settlement. The tribunal recommended settlement varies

discontinuously at 80 years, provided that the market value and the reversion value are not

equal.46

Price of a T duration property. We assume property prices satisfy a simple no

arbitrage assumption. Therefore the price of a property P T
it , that has not extended, must

equal the price of an otherwise similar property that has extended, after deducting lease

extension costs. That is, prices satisfy

P T
it = P T+90

it − κT
it. (12)

Intuitively, suppose that the cost of buying a property and extending is less than the price

of an extended property—then demand would fall for the extended property until prices

equalize. We denote αT
t = κT

it/V
T
it ≤ 1 as the share of the extension value that is paid by the

leaseholder to the freeholder, noting that under our assumptions α does not depend on the

service flow i.

Remark on option value. When αT
t = 1 we say there is zero option value and when

αT
t < 1 there is positive option value. This terminology acknowledges that when αT

t = 1 for

all T , then all of the gains of lease extension are paid to the freeholder. As a result, the

option to extend the lease has no value to the leaseholder ex ante.

A.5.2 A Discontinuity Based Test for Option Value

We now use our framework for lease extension costs to derive a discontinuity based test

of whether there is positive option value—that is, we provide a simple test of whether the

baseline assumption in the main text, of no option value, is correct. Using this test, we show

that there was no option value in the early part of the data, before 2010, and positive option

value afterwards. Given the behavior of option value, our estimates of the fall in y∗ will be

smaller than the true fall in y∗.

We summarize our predictions in the following proposition.

Proposition A.1. There exists some value r̄K ≤ rRV such that:

1. If y∗ satisfies y∗t ≥ r̄K then: (i) there is zero option value at all years of duration

remaining, that is, αT
t = 1 for all T ; (ii) the price of a leasehold is continuous in

duration as the property’s duration falls below 80 years, so limT→80− P T
it = limT→80+ P T

it .

46For exposition, we assume that the tribunal, the leaseholder and the freeholder all agree on the market
value of the extension. Our qualitative and quantitative results are not affected by this assumption.
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2. If y∗ satisfies y∗t < r̄K then: (i) there is positive option value above 80 years in duration,

that is, αT
t < 1 for all T > 80 and option value discontinuously falls at 80 years, so that

αT
t discontinuously increases at T = 80; (ii) the price of a leasehold discontinuously

falls as the property’s duration falls below 80 years, so limT→80− P T
it < limT→80+ P T

it .

This proposition, which we prove in Appendix A.17, has two implications. First, we

should expect zero option value at all durations, including above 80 years remaining, only if

y∗ is relatively high. Second, we can test for the presence of zero option value by searching

for discontinuities in the price of leaseholds at 80 years.

Part (1) of the proposition shows that when y∗ is high, there is zero option value at all

durations. Intuitively, suppose that y∗ is greater than the yield assumed by the tribunal to

calculate the reversion value of the extension. Then, the reversion value of the lease extension

calculated by the tribunal is greater than the market value. The freeholder will only require

the leaseholder to pay the market value—given participation constraints the freeholder can-

not force the leaseholder to pay more than the market value of extension. Beneath 80 years,

the tribunal assessed value remains above the market value of the lease extension—again, by

the participation constraint, the freeholder can only force the leaseholder to pay the market

value. Part (1) of the proposition also shows how to detect whether the economy has zero

option value everywhere—in that case prices are continuous around 80 years of duration.

Note that we can extrapolate from the 80 year threshold to conclude that there is no option

value at any durations, because we know the functional form of lease extension costs.

Part (2) of the proposition shows that when y∗ is low, there will be positive option value

when lease durations are greater than 80 years. Suppose that y∗ is significantly lower than

the yield used by the tribunal to calculate the reversion value of the lease extension. Then

the cost paid by leaseholders to extend via the tribunal, if more than 80 years remain, is less

than the market value of extension plus time and legal costs—meaning positive option value.

Beneath 80 years, the tribunal assessed cost of lease extension discontinuously increases, since

the tribunal assessed extension cost is now a weighted average of the reversion value and

market value plus additional costs, and market value is greater than reversion value. As a

result, the price of leases must discontinuously fall. Importantly, Part (2) of the proposition

does not rule out zero option value for leases with less than 80 years remaining.

We use Proposition A.1 to test for whether there is option value. The long-term housing

yield seems to have been declining over time. As a result, our proposition suggests that there

should be zero option value at all durations, only in the early part of the sample. Later on,

there should be positive option value, at least for long duration leases. Our discontinuity

based test confirms these predictions.

We test for holdup by estimating whether there is a discontinuity in prices at 80 years,
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before and after 2010. To determine whether there is a discontinuity in property price at

T = 80, we can estimate,

∆h logP
T
it

h
= α + β · 1Crossed 80 + Γi,t,t−h (13)

where the left hand side variable is the annualized log change in price of a property i between

time t − h and t and the right hand side variable is a dummy which checks whether i fell

below 80 between time t − h and t. More precisely, we say that a property crossed 80 if at

time t, T < 80 and at time t − h, T > 82. We choose a cutoff of 82 because leaseholders

cannot extend through the tribunals during the first two years of ownership, so any property

purchased with less than 82 years remaining must pay discontinuously larger costs upon

extension. Γi,t,t−h are Purchase Year x Sale Year x Local Authority fixed effects. We restrict

the sample to properties with duration between 70 and 90, to get the local effect around 80.

Table A.3 reports the estimated coefficient from equation (13). The first column presents

estimates before 2010. There is no statistically significant discontinuity in price at 80. In

fact, Appendix Figure A.28 shows that in the pre-2010 period, the estimated coefficient is

approximately in the middle of a distribution of “placebo” experiments using 30 placebo

cutoffs between 70-100. Column (2) of Table A.3 presents estimates after 2010. There is a

significant discontinuity in the price of properties that fall below 80 years duration remaining.

This fall is much greater in magnitude than any placebo test with cutoffs ranging from 70-

100, shown in Appendix Figure A.28. Taken together, the price discontinuity results show

that there is zero option value at all durations before 2010, and positive option value for

long duration leases after 2010. However the results do not pin down whether there is zero

option value for leases with less than 80 years remaining.
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Table A.3: Test for Discontinuity at 80

(1) (2)

Crossed Cutoff -0.04 -0.83∗∗∗

(0.09) (0.14)

Sale Year x Purchase Year x LA FE ✓ ✓

Period Pre 2010 Post 2010

N 55,325 10,153

Standard errors in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The table provides an estimate of the discontinuity in log price at T = 80. The sample includes properties with duration
between 70 and 90. The first column is run on the pre-2010 data, and the second column is run on post-2010 data. Standard
errors are clustered at the purchase year, sale year and Local Authority (LA) level.

Proposition A.1 also suggests there should be time varying bunching of lease extensions.

When y∗ is relatively high, there is no gain to extending slightly before 80 years remaining;

whereas when the yield is low there can be large gains to extending before 80 years. Therefore

lease extensions should bunch in a time varying fashion—leases should be more likely to

extend shortly before 80 years remain, only if y∗ is relatively low.

Figure A.28: Test for Discontinuity at 80 Years (Placebos)

The figure presents the estimates from Table A.3 in red. In grey, we run 30 placebo tests using alternative cutoffs between
70-100. In each case, the sample includes properties within 10 years above and below each cutoff.

Figure A.29 shows precisely this pattern of bunching. In the figure, we plot the likelihood

68



that a lease extends when it has T years remaining, separately before and after 2010. Before

2010, the likelihood that a lease extends smoothly increases as leases cross the 80 year thresh-

old. After 2010, the likelihood jumps just before 80 years, and there is a missing mass after

80 years. This time varying bunching strongly suggests that there is a difference in option

value above versus below 80 years, only when y∗ is low—consistent with Proposition A.1.

Figure A.29: Hazard Rate of Extension, Before and After 2010

The figure shows the conditional probability of extension for each T . The black line shows the probability before 2010 and
the blue line shows the probability after 2010. We exclude the post-2020 pandemic period due to disruptions to the lease
registration process, which resulted in lower extension rates than usual.

Our results on option value so far imply an informative bound—the estimates of the fall

in y∗ from the main analysis of Section 5 , which assumes zero option value at all durations

and times, are a lower bound on the magnitude of the true fall. Intuitively, if there is

positive option value then the true duration of non-extended leases is higher than their

notional duration. As such the price gain from lease extension is associated with a smaller

increase in duration after lease extension. Therefore incorrectly assuming zero option value

biases estimates of y∗ upward. Given that option value emerges later in the sample, this bias

increases over time, meaning the estimates that ignore this source of bias will under-estimate

the fall in y∗. We now introduce more structure to show that this bias is small.

A.5.3 A Difference-in-Differences Estimator of Option Value

This subsection directly estimates the degree of option value before and after 2010, both

above and below the 80 year threshold, and explores the implications for y∗. To do so, we

introduce more structure by embedding the framework for lease extension costs into our
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difference-in-differences estimator of y∗. Doing so lets us point identify option value, using

a different source of variation from the discontinuity based tests of the previous subsection.

With this estimator, we find that the effects of option value are small.

In order to incorporate option value and the threshold in a simple fashion, we take as given

the probability that a lease of duration T extends at time t. We also assume that the share

of extension value lost by leaseholders is piecewise constant in duration and discontinuous at

80 years remaining, which captures the discontinuities imposed by the tribunal. Therefore

we have αT
t = αH

t if T > 80 and αT
t = αL

t otherwise. In this case, Appendix A.16 shows that

the difference-in-differences estimator of the price gain upon lease extension becomes

∆T
it = log

(
1− e−y∗t (Tit+90)

)
− log

( (
1− e−y∗t T

)
+
[
ΠH

Tt

(
1− αH

t

)
+ΠL

Tt

(
1− αL

t

)]
e−y∗t Tit

(
1− e−y∗t 90

))
(14)

For simplicity, this derivation makes the additional assumption that leases extend only

once.47 In this equation, ΠH
Tt is the probability that a lease with T > 80 years remain-

ing extends with more than 80 years remaining. ΠL
Tt is the probability that a lease extends

with less than 80 years remaining. The cumulative probability of extension is derived from

the observed extension hazard rate, as shown in Figure A.29. Equation (14) is the same as

the baseline estimator equation (5) either when αH = αL = 1, or ΠT
H = ΠL = 0. In either

case, there is no option value from lease extension and the final term in square brackets

vanishes.

We jointly estimate y∗t , α
H
t and αL

t , by using the difference-in-differences estimator with

option value, equation (14), as an input into a non-linear least squares estimation similar to

the baseline procedure. The two additional parameters, αH
t and αL

t are estimated from the

covariance between Tit and ∆T
it, i.e. between the length of time remaining before extension

and the difference-in-difference estimate of the price increase from extension. Relative to the

baseline estimation, we also add information on the probabilities of extension ΠT
H and ΠL,

which helps to identify αH
t and αL

t .

The estimated y∗, αH
t and αL

t parameters are presented in Table A.4. In the estimation,

we constrain the α parameters to lie between zero and one. The results suggest, once again,

that α = 1 for all T in the pre-2010 period. In the post-2010 period, there is positive option

value when leases have more than 80 years remaining, but there is zero option value below

80 years remaining.

Our difference-in-difference estimates of option value in this subsection are consistent

47The value of subsequent extensions, in the very far future, is quantitatively small but complicates the
algebra.
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Table A.4: Estimating Alpha

(1) (2)
y∗ 4.78∗∗∗ 3.25∗∗∗

(0.08) (0.01)
αH
t 1.00∗∗∗ 0.58∗∗∗

(0.00) (0.05)
αL
t 1.00∗∗∗ 1.00∗∗∗

(0.02) (0.01)
Period Pre 2010 Post 2010
N 18,871 110,540

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The table presents estimates of αH
t and αL

t , estimated jointly with y∗ from a nonlinear least squares estimate of equation (14).
Estimates of αL

t and αH
t are constrained to lie within [0,1]. Standard errors are bootstrapped.

with the discontinuity-based results from the previous subsections—even though the two

subsections use different sources of variation. In both subsections, there is zero option value

for leases with less than 80 years remaining, at all times; and positive option value after 2010

for leases that extend with more than 80 years remaining. Our estimates of the change in

option value before versus after 2010 for leases above 80 years, is also similar across the two

subsections. In this section, we estimate a change in option value, before versus after 2010

for leases above 80 years, of 0.5. In the previous subsection we estimate a change of 0.47.48

A.5.4 Estimates of y∗ Corrected for Option Value

Finally, we present estimates of y∗ that correct for option value using the estimates of option

value. Figure A.30 presents a version of our y∗ timeseries which corrects for αH
t = 50% in

the post-2010 period. The solid line is the estimate of y∗ from Section 5, using our baseline

assumption of zero option value at all times and durations. The dashed line is the estimate

of y∗ using our estimates of the degree of option value.

The estimate of y∗ that corrects for option value is very similar to the baseline estimates

that assume no option value. The reason is that most leases do not extend with more than

80 years remaining, as Figure A.29 shows. Therefore the possibility of extending with more

than 80 years remaining has a small effect on equilibrium prices, meaning departures from

zero option value are quantitatively small.

48The details of this calculation are presented in Appendix A.5.5.
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Figure A.30: Estimate of y∗ Correcting for Option Value

The figure presents a corrected y∗ timeseries, adjusting for the fact that αH
t = 0.69 for the post-2010 period. The black line

presents the unadjusted estimates from Section 5.3.

A.5.5 Estimating Change in Option Value Using Discontinuities

This subsection briefly presents our estimates of how option value changes, after 2010 and

for leases with more than 80 years remaining, using the discontinuity based estimator from

Section A.5.2.

As before, assume that αH
t = αT

t for T ≥ 80 and αL
t = αT

t for T < 80, such that the

option value in a given time period t is fixed above and below 80, separately. In this section,

we aim to estimate αL
t − αH

t for the post-2010 period, using the discontinuity in prices at

T = 80 observed in Table A.3. From the preceding subsection, the price of a property i with

duration T is

P T
it =

Rit

y∗
(
1− e−y∗T +

[
ΠH

Tt

(
1− αH

t

)
+ΠL

(
1− αL

t

)]
e−y∗t Tit

(
1− e−y∗t 90

))
(15)

To condense notation, denote the option value term

Ω(T ) ≡
[
ΠH

Tt

(
1− αH

t

)
+ΠL

(
1− αL

t

)]
e−y∗t Tit

(
1− e−y∗t 90

)
.
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Then, the difference in change in price between time t− h and t of properties i and j is,

∆ logP T
it −∆ logP T

jt = log(1− e−y∗Ti + Ω(Ti))− log(1− e−y∗(Ti+h) + Ω(Ti + h))

− (log(1− e−y∗Tj + Ω(Tj))− log(1− e−y∗(Tj+h) + Ω(Tj + hj))).

This equation acknowledges that option value will discontinuously change around the 80

year threshold, via changes in the Ω terms. We can then estimate αH
t by nonlinear least

squares on the same sample as for regression equation (13), by setting αL
t = 1, which is what

we estimate in Table A.4, and y∗ to its mean for that period. We obtain an estimate of

αH
t = 0.53 in the post-2010 period. Overall, using discontinuities for variation, we identify

a similar change in option value to the difference-in-differences estimator of Section A.5.3.

A.5.6 The 2006 Sportelli Case

In Appendix A.5, we have presented the asset pricing formula used by British property

tribunal courts to price lease extensions, which utilizes a court-determined discount rate

that we denote rRV . Following the September 2006 Cadogan v. Sportelli case, and the

subsequent October 2007 appeals case in the Court of Appeals, British property courts

decided to set a fixed discount rate of rRV = 5%. Therefore, the decline in our estimator

in the subsequent period cannot be attributed to arbitrary changes in the tribunal discount

rate, and instead reflects changes in the market’s expectations of long-run interest rates.

Before the Sportelli decision, freeholders and leaseholders would negotiate the discount rate

rRV in court, which was not fixed at any particular value, but on average was approximately

6% in years immediately before the Sportelli case. Given our estimates of αT
t = 1 from

Appendix A.5, which imply that there was no option-value from extending for leaseholders

during this period, the Sportelli case should not have had an effect on leasehold market

prices, and should therefore have no effect on our estimates.

We can verify this empirically by examining the price and extension rate of leaseholds be-

fore and after the 2006 Sportelli case. In particular, we will compare the price and extension

rate around the cutoff of T = 80, which as we saw in Appendix A.5, is informative as to the

difference between the market value of lease extension and the court dictated outside option.

First, in Figure A.31, we plot the extension hazard rate before and after 2006. There is no

bunching around 80 in either of these two periods, suggesting that the Sportelli case had

no effect on the option-value from extension for leaseholders. Moreover, Table A.5 indicates

that there is no significant discontinuity in price around T = 80 both before and after 2006,

again implying that the Sportelli case did not significantly affect the actual cost of extension.

In both Figure A.31 and Table A.5, we include the post-2010 period for reference, which
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does experience significant bunching and a discontinuity in price at T = 80.

Figure A.31: Hazard Rate of Extension, Three Periods

The figure shows the conditional probability of extension for each T . The purple line shows the probability from 2003-2006, the
black line shows the probability from 2006-2010 and the blue line shows the probability after 2010. We exclude the post-2020
pandemic period due to disruptions to the lease registration process, which resulted in lower extension rates than usual.

Table A.5: Test for Discontinuity at 80, Three Periods

(1) (2) (3)

Crossed Cutoff -0.09 0.18 -0.83∗∗∗

(0.08) (0.12) (0.14)

Sale Year x Purchase Year x LA FE ✓ ✓ ✓

Period 2003-2006 2006-2010 2010-2023

N 41,854 13,471 10,153

Standard errors in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The table provides an estimate of the discontinuity in log price at T = 80. The sample includes properties with duration
between 70 and 90. The first column is run on 2003-2006 data, the second column is run on 2006-2010 data, and the third
column is run on 2010-2023 data. Standard errors are clustered at the purchase year, sale year and Local Authority (LA) level.

The small effect of the Sportelli case on leasehold prices and extension rates around

the T = 80 cutoff provides additional evidence that in the pre-2010 period, the full value of

extension was held by the freeholder. The tribunal discount rate fell from an average of about

6% before the Sportelli decision to 5% after. Therefore, by equation (9) and equation (11),
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we would expect for the Sportelli case to increase αT
t , resulting in a shift in bunching and

prices, if and only if αT
t < 1. The only scenario in which bunching and prices would not

change as a result of a decline in rRV is if leaseholds were already priced at their market

value in the first place. The lack of a significant change in either bunching or prices in the

aftermath of Cadogan v. Sportelli therefore suggests that αT
t = 1 for this entire period.

A.5.7 Leasehold Reform

In recent years, there have been some efforts in England and Wales to reform the process

of purchasing and extending leaseholds. In 2017, the government published a white paper

promising to “promote fairness and transparency for the growing number of leaseholders.”

Here the focus was primarily on ground rent fees that leaseholders must pay to freeholders,

which as we have discussed are for the most part negligible, but in some rare instances may be

onerous. More recently, there has also been a movement to reduce the legally recommended

cost of extension. In 2024, the Leasehold and Freehold Reform Act expressed a commitment

to reduce the cost of lease extension. However, the most significant provisions of the act have

not yet been implemented “will need to be commenced through an extensive programme of

secondary legislation.” Due to legislative inertia and freeholder backlash, it is unclear when

and to what degree reform will be implemented.

We now show that expectations of leasehold reform bias our estimate of y∗ upwards.

Recall that we assume a no arbitrage condition, that

P T+90
it = P T

it + κT
it.

That is, the price of an extended property P T+90
it must equal the price of a property that

has not extended, P T
it , plus extension costs that leaseholders expect to pay, κT

it. The no

arbitrage condition is natural: if it were cheaper to buy a property and extend, than to

own an extended property, then demand would be higher for properties that have not been

extended. Rearranging the no arbitrage condition, we have

P T+90
it − P T

it = κT
it.

We can now investigate leasehold reform. Leasehold reform proposes to lower extension

costs κT
it, which by the no arbitrage condition leads the price increase from extension P T+90

it −
P T
it to fall as well. Our estimate of y∗ increases when P T+90

it − P T
it falls. If the price increase

from extension has fallen, our procedure infers that the value of duration has fallen, meaning

that the estimate of y∗ goes up. Altogether, leasehold reform implies lower extension costs,
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meaning a smaller price gain from extension and as a result a higher estimate of y∗.

A.6 DiD Estimator with Stamp Duty Land Tax

This section shows that multiplicative taxes on value, such as the Stamp Duty Land Tax,

do not affect the difference in difference estimate. In the data, we observe prices paid for

properties, which do not contain stamp duty. However, the relevant price for agents is the

price including tax. We will now show that because the tax is multiplicative, the estimating

equation (3) identifies price growth including taxes—i.e. the relevant economic concept.

Suppose that prices including taxes are P̃ T+h
it = (1+Tt)P

T+h
it , where Tt is the stamp duty

tax and P t+H
it is the price excluding tax. We would like to estimate the growth in prices

including taxes for the extending property versus its control, i.e.

∆it ≡
[
log P̃ T+90

it − log P̃ T+h
i,t−h

]
−
[
log P̃ T

jt − log P̃ T+h
j,t−h

]
.

Substituting the definition of prices including taxes into the formula implies

∆it ≡
[
log P̃ T+90

it − log P̃ T+h
i,t−h

]
−

[
log P̃ T

jt − log P̃ T+h
j,t−h

]
=

[
log (1 + Tt)P

T+90
it − log (1 + Tt−h)P

T+h
i,t−h

]
−
[
log (1 + Tt)P

T
jt − log (1 + Tt−h)P

T+h
j,t−h

]
=

[
logP T+90

it − logP T+h
i,t−h

]
−

[
logP T

jt − logP T+h
j,t−h

]
+ (log (1 + Tt)− log (1 + Tt−h))− (log (1 + Tt)− log (1 + Tt−h))

=
[
logP T+90

it − logP T+h
i,t−h

]
−

[
logP T

jt − logP T+h
j,t−h

]
.

The final line is the difference-in-differences estimate from the data, i.e. price growth ex-

cluding taxes. As such, price growth excluding taxes identifies the object of interest, that

is, price growth including taxes. The reason is that the stamp duty tax is multiplicative.

Therefore in log terms, the price change for the treatment versus control “differences out”

the effect of the tax.

A.7 Simulation Results For Flexible Forward Curve

In Section 4.2 we presented one possible parameterization of y(T ). In this section, we explore

other parameterizations and present several insights from our simulation. We assume that

for T ≥ 40, y(T ) = y∗ is constant. Hence, for T < 40 we assume y(·) can have any shape as

long as it asymptotes to y∗ as T → 40.

Figure A.32a shows several possible choices of y(T ), all of which asymptote to the same

value. Figure A.32b presents the yield curves associated with each of these forward curves,
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which we denote by ρ(T ); and Figure A.32c shows the corresponding ŷ∗(T ) curves that we

estimate by equation (6) using simulation data. We also plot the point estimate of ŷ∗ we

obtain at the median of our true distribution.

Figure A.32: Long Run Discount Rates Using Simulation Data

(a) y(T ) (b) ρ(T ) (c) y∗(T )

Panel (a) presents multiple possible parameterizations of y(T ), all of which asymptote to 3% by T = 40. Panel (b) presents the
corresponding yield curve, ρ(T ), for each choice of y(T ). Panel (c) presents estimates of y∗(T ′) obtained by NLLS corresponding
to each choice of y(T ), where T ′ is the average between the control and extension sale duration. The point presents the estimate
of y∗ we would obtain at the median of our distribution.

These simulation results yield several key insights. First, when the yield curve is flat,

y(T ) = ρ(T ) = ŷ∗(T ) = y∗, as exemplified with the by the dark blue line in Figure A.32.

When the yield curve is not flat, however, our estimate will differ from the true asymptotic

value of y(T ) by some amount η ≡ y∗ − ŷ∗. When the yield curve is upwards sloping, η > 0

and when the yield curve is downwards sloping, η < 0.

Notice that for T ≥ 40, ŷ∗(T ) converges to y∗ much more quickly than ρ(T ). The reason

for this is that our difference-in-difference estimate differences out a large portion of the

short-end of the yield curve. To see this, consider a property with duration T that extends

by k years to a total of 160 years (T + k = 160). The shorter T is, the less of the short-

end that will be differenced out by our estimate. We present simulation evidence for this

in Figure A.33. For this reason, it is important that our experiments take the difference

between two long-duration properties, as opposed to one long duration property and one

short duration property.

A.8 Repeat Sales Index Methodology

This subsection explains the details of how we estimate the repeat sales index for the control

group associated with a given extending property i.

First, we estimate a Bailey, Muth and Nourse (1963) repeat sales index for the control
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Figure A.33: Estimated y∗ When Extending From T to 160

The figure indicates the point estimate of ŷ∗ we obtain by NLLS for an extension from duration T to duration 160. As the
duration before extension increases, the estimate of ŷ∗ approaches the limit of the forward curve. We repeat this for each
example forward curve, y(T ), from Figure A.32a.

group of each treated property i. We fit a regression

logPjt′ − logPjt = α +

t1∑
s=t0+1

γsDs + εj,t,t′ (16)

for each property j in i’s control group, where Ds is a dummy variable that is equal to 1 if

s = t′, -1 if s = t, and 0 otherwise. t0 is the first date for which a control property is available

and t1 is the last date. The coefficients γs capture the estimated change in log price since

time t0. We include a constant, α, in the estimation equation as in Goetzmann and Spiegel

(1995).

As in Case and Shiller (1989), we correct for the effects of heteroskedasticity by allowing

the error term to be related to the interval of time between sales, t′ − t, and also to the

(Haversine) distance, dj, between the treated property i and the control j. We estimate,

ε̂2j,t,t′ = β0 + β1(t
′ − t) + β2dj + µj,t,t′ (17)

where ε̂j,t,t′ are the predicted residuals from the regression in equation (16). Figure A.12

presents binscatters of ε̂j,t,t′ against t
′− t and dj, showing that both are positively correlated.

We estimate equation (17) for all properties together to reduce noise. Then, we calculate

weights, wj,t,t′ = 1/(β̂0 + β̂1(t
′ − t) + β̂2dj), equal to the inverse predicted values from

equation (17). The last step is to rerun equation (16) using these weights.
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A.9 Balance Test

In this subsection, we show that extended and control properties are balanced on observable

characteristics. First, we regress our main hedonic variables—bedroom number, bathroom

number, living room number, floor area, age, and rental price—on an experiment × year of

listing fixed effect. We plot the density distribution of the residuals for extended and control

properties separately in Figure A.34. The distributions are visually very similar.

Figure A.34: Hedonics Residuals Density Curve for Extended and Non-Extended Proper-
ties

(a) Bedrooms (b) Bathrooms (c) Living Rooms

(d) Floor Area (e) Age (f) Log(Rent)

The figures show the distribution of residuals for extended and non-extended flats after regressing hedonic characteristics on
a experiment × year of listing fixed effect. The sample is leasehold flats which appear at least once in the Land Registry
Transaction Data Set.

The average differences between treatment and control are also very small. For instance,

the mean difference in number of bedrooms between extended and control properties is 0.08

bedrooms, a tiny difference to the average bedroom count of 1.8. The mean difference in

floor area is 3.5 sq. meters, compared to an average floor area of 67 sq. meters. As a whole,

rental prices, which ought to measure the quality of the property, are about 2% higher

in extended properties, or about £20 per month. These differences are even smaller if we

consider properties extended for 90 years. Importantly, what matters for our identification

assumption is whether extended properties change their hedonic characteristics more than

their controls, which we test for in Section 4.4. Therefore, even if there were economically
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significant in differences in the level of these hedonic variables across extended and control

properties, our identification assumption still holds.

A.10 Liquidity Premium

One institutional factor which could raise concerns about our estimator is the difficulty for

owners of short leases to obtain a mortgage. If short leases have more limited access to

financing than longer leases, we might worry that part or all of the observed price gain upon

extension is a result of increased access to financing opportunities; in other words, we may

wonder if the effect is driven by a “liquidity premium.” Indeed, important lenders, such as

Barclays, Halifax and The Co-Operative Bank, refuse to lend to leaseholds with less than

70 years remaining. Others have different thresholds, such as 55 years, and some have a

preference for longer leases but allow for case-by-case exceptions.49

Reassuringly, using detailed micro-data from the English Housing Survey 1993-2019,

we find that mortgage access and conditions are not vastly different for shorter and longer

leaseholds, especially for those with more than 30 years remaining, as indicated in Table A.6.

Approximately 60% of short (under 80) duration leaseholds were purchased with a mortgage,

relative to 58% of longer (over 80) duration leaseholds. The typical mortgage length and

Loan-To-Value (LTV) ratios are similar across the duration spectrum, at around 23 years and

75-80%, respectively. Additionally, short leaseholds have similar interest rate types as long

leaseholds, with around 30% choosing adjustable rate mortgages (as opposed to mortgages

with a fixed interest rate for a number of years, or tracker mortgages which are indexed to

the Bank of England bank rate). These results suggest that financing constraints are unlikely

to drive the very large extension price changes we observed in Section 5.

Another common way to test for the existence of a liquidity premium resulting from

financing frictions is to use the amount of time a property was listed on the market (i.e. sale

time minus the time of the first listing) as a proxy for its liquidity (Lippman and McCall,

1986; Lin and Vandell, 2007; Genesove and Han, 2012). The intuition is that properties for

which the buyer cannot obtain a mortgage have a smaller pool of potential buyers, which

ought to increase the amount of time that the property is on the market. We find limited

evidence of this in the data, as illustrated in Figure A.35. After controlling for quarter ×
3-digit postcode fixed effects and hedonics, the typical listing time for a 50-70 year lease is

only 3-4 days longer than for a long lease of more than 100 years. This is negligible given that

the average listing time is 5 months. For shorter leases, the listing period actually decreases

further; all else equal, a leasehold with less than 50 years remaining will sell about a week

49A comprehensive list of lease length policies for banks in England can be found in the UK Finance
Lenders’ Handbook For Conveyancers.
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Table A.6: Mortgage Statistics For Short Leaseholds

Less Than 50 Years 50-60 Years 60-70 Years 70-80 Years 80-99 Years 100+ Years Total
Mortgage Length 22.1 22.1 23.9 23.0 23.9 23.1 23.3

(0.6) (0.5) (0.5) (0.3) (0.2) (0.1) (0.1)
LTV 76.3 80.8 81.4 77.7 73.3 76.5 76.2

(3.3) (2.6) (1.8) (1.7) (1.0) (0.6) (0.5)
% Have Mortgage 59.9 60.4 62.1 58.1 63.9 55.6 58.2

(2.4) (2.4) (1.6) (1.4) (0.8) (0.5) (0.4)
% Adjustable Rate 24.2 40.0 38.3 32.8 25.3 31.0 30.2

(5.3) (5.2) (4.1) (3.4) (1.5) (1.0) (0.8)
N 18,292

mean reported; standard error of mean in parentheses

The table reports several summary statistics for leases of various durations. The first row presents the average mortgage length;
the second presents the average Loan-To-Value (LTV) ratio for the mortgage, calculated as the initial mortgage value divided
by the market price of the property; the third row presents the percent of properties of that duration which have a mortgage;
the fourth row presents the percent of properties with a mortgage that have a fully adjustable rate mortgage.

faster than a leasehold with more than 50 years.

Figure A.35: Time on Market by Lease Duration

The figure shows the mean time on market for every duration under 125, de-meaned by quarter × Local Authority fixed effects
and controls for bedroom count, floor area and property age.

To further test for the existence of a liquidity premium, we are able to model the case

of discontinuous financing frictions and reject the existence of a liquidity premium using the

data. Consider that under the threshold of 70 years–which is the most prominent bank mort-

gage cutoff duration—it becomes significantly more difficult to finance a leasehold property.
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Then the price of a T > 70 duration leasehold is given by,

P T
t = Rt

[∫ t+(T−70)

t

e−(y∗)(s−t)ds+ e−(y∗)(T−70)

∫ t+T

t+(T−70)

e−(y∗+σ)(s−(t+(T−70)))ds

]

= Rt

[
1− e−(y∗)(T−70)

y∗
+

(1− e−(y∗+σ)·70)

y∗ + σ
(e−(y∗)(T−70))

]
where rents below the cutoff of 70 are discounted at an additional rate σ. One way to think

about σ is as the difference between the return on housing and outside investment options.

Therefore, our difference in difference will yield the following equation:

logP T+90
t − logP T

t = log

[
1− e−(y∗)(T+90−70)

y∗
+

1− e−(y∗+σ)70

y∗ + σ
(e−(y∗)(T+90−70))

]
− log

[
1− e−(y∗)(max{0,T−70})

y∗
+

1− e−(y∗+σ)(min{70,T})

y∗ + σ
(e−(y∗)(max{0,T−70}))

]
(18)

When σ > 0, the price change for extending a lease will have a kink at 70 as shown in

Figure A.36. The reason for this is that as T → 70, there are two incentives to extend:

first is the value of 90 additional years of discounted rents and the second is the value of

postponing the liquidity discount, σ. Once T < 70, the first incentive continues to grow, as

we have discussed in earlier sections, but the second incentive becomes increasingly weaker,

since there are less periods at which rents will be discounted at rate σ. Moreover, as T → 0,

T + 90 grows closer to 70, so the value of the extended lease also starts to decrease as it

approaches the liquidity premium cutoff. This kink is not present in the data, which can be

verified visually in Figure 7. The existence of a discontinuous liquidity premium at T = 70

can be formally rejected by estimating equation (18) by NLLS, which uses variation in ∆T
it

for different values of T to test for the existence of a liquidity premium.
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Figure A.36: Liquidity Premium Example

The figure shows the effect of a liquidity premium on the value of extending for 90 years (PT+90
t − PT

t ). The dark line plots
equation (18) when σ = 1% and the dashed light line plots the same equation absent a liquidity premium, i.e. σ = 0%. The
liquidity premium is assumed to start at T = 70. We can see that when there is a liquidity premium, the value of extension
will exhibit a kinked shape, with a kink at T = 70.

A.11 House Price Seasonality

An important feature of the UK housing market, as well as in other countries including

the United States, is that it is highly seasonal, with systematically higher sale prices in

the second and third quarter (the “hot months”) and lower prices in the first and fourth

quarters (Ngai and Tenreyro, 2014). This may be associated with a number of factors,

including mortgage conditions and market tightness, which we would not expect to affect

the long-run and therefore ought to be differenced out by our estimator.

To determine whether our estimates are seasonal, we must select control properties which

transact in the same quarter as extended properties. Then, we can estimate y∗t at a quarterly

frequency, as described in the main text. We then test for seasonality by regressing our time

series of y∗t on quarter dummy variables, controlling for year fixed effects. The regression

results are presented in Table A.7, which indicate that there is no statistically significant

difference in the level of y∗t across quarters.

A.12 Bootstrap Standard Errors

Our results report heteroskedasticity consistent standard errors. One concern is that our

difference-in-difference estimator uses a repeat sales index. The repeat sales index is in
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Table A.7: Test for Estimate Seasonality

(1)
2nd Quarter -0.13

(0.17)
3rd Quarter 0.04

(0.21)
4th Quarter -0.08

(0.15)
Year FE ✓
N 84

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The table indicates the regression results for a regression of quarter dummies on y∗t . We control for year fixed effects. Standard
errors are heteroskedasticity robust.

effect a “generated regressor”, and our standard errors do not account for the extra variance.

To incorporate the variance of the repeat sales index, this section implements a Bayesian

bootstrap procedure. We find the increase in the standard errors is minimal.

In our setting, there are some complications to implementing a traditional bootstrap. As

we resample for the bootstrap, the composition of the repeat sales index changes, and we

cannot always build a repeat sales index for all extending properties. To elaborate on the

challenge, let i be an extended property and let Ci be the set of controls for this property

according to the baseline methodology. The controls are within radius di of the property.

Let C = ∪iCi be the union of all the controls and let Cb be a bootstrap sample of C, where

we sample with replacement. Then the bootstrap set of controls for i, Cb
i , will necessarily

have weakly fewer distinct properties than Ci. To generate a repeat sales index for i, we need

Ci to contain properties that are sold at connected dates, as we described in the main text.

For example, if i is transacted in 2000 and 2010, a set of connected dates would be controls

that sell at a = (2000, 2003), b = (2003, 2007) and c = (2007, 2010), where Ci = {a, b, c}.
However, if when we resample b /∈ Cb

i , then the experiment dates are no longer connected

and so we cannot build a repeat sales index for i using the same control properties.

To address this, we utilize a Bayesian bootstrap procedure (Rubin, 1981). Instead of

resampling with replacement, which is effectively equal to assigning integer weights to an

operation, the Bayesian bootstrap assigns non-integer weights sampled from a Dirichlet dis-

tribution. The Bayesian bootstrap has the same asymptotic behavior as the traditional

bootstrap but has the added advantage that no observations receive zero weight. This al-

lows us to circumvent the problem described above.
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In particular, we conduct a two-stage Bayesian bootstrap, bootstrapping independently

over the treated and control properties in our sample. We conduct 100 bootstrap iterations,

in each of which we resample the weights on the OLS regressions used to estimate the repeat

sales index as well as the weights on the NLLS regression used to estimate y∗. Thus, we

can capture variation across experiments and within the experiment, across components of

the repeat sales index. The bootstrap standard error is 0.016pp, compared to 0.013pp under

our baseline methodology. Therefore, our estimates of y∗ continue to be highly precise, even

adjusting for the variability in the repeat sales methodology.

A.13 Components of y∗ for UK Housing—A VAR Analysis

This section uses a VAR to estimate long run risk premia and expected dividend growth

for UK housing, in order to show that neither of these can account for the trend fall in the

long-term yield for UK housing that we have documented. We stress that this exercise is

tentative, given the inherent uncertainty of any VAR based procedure.

To estimate risk premia and dividend growth, we follow the standard VAR approach,

with growth rate of rents, the rent to price ratio, and the GDP growth rate as inputs. To

estimate long run expected dividend growth, in every quarter, we estimate forecasts of the

rental growth for the subsequent 30 years and take the mean, recalling that long run expected

rent growth is equal to long run expected dividend growth. To estimate long run housing risk

premia, we calculate the 30-year ahead predicted Rent-to-Price ratio (again using forecasts

from the VAR). Then ζ = [Predicted RTP]+g−r, where r is the 10 year 15 year real forward

rate.

Figure A.37 displays the results. The estimates for long run expected dividend growth,

g∗P , are stable. Estimates of the long run housing risk premium, ζ∗ have been rising in the

post-Great Recession era. Therefore the estimates suggest that neither dividend growth nor

risk premia for UK housing can account for the trend fall in the long-term housing yield,

y∗ ≡ r∗ + ζ∗ − g∗P , that we have documented.

A.14 Housing Supply Elasticity Instrument

In this section, we provide more details on the housing supply elasticity instrument devel-

oped by Hilber and Vermeulen (2016). As described in the main text, Hilber and Vermeulen

(2016)’s primary measure of supply inelasticity is the average refusal rate of major construc-

tion applications for each Local Authority, average over a nearly thirty year period. The

problem with this measure is that the housing application rate is endogenous. More restric-

tive Local Authorities will on average receive less applications if developers expect that their
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Figure A.37: Risk Premia and Dividend Growth for UK Housing in the Long Run

The figure presents estimates of long-run housing risk premia and dividend growth estimated using a VAR. Estimates are
produced using data on the UK rent-to-price ratio from the OECD Housing Price Index, as well as the mean level of house
prices from Land Registry data and the mean level of rents from the Valuation Office Agency. UK GDP data is obtained from
the St. Louis Fed, Federal Reserve Economic Data and long-run UK interest rates are obtained from the Bank of England.

applications will be refused. This in turn lowers the measured refusal rate.

Figure A.38: Endogeneity of Application Refusal Rate

(a) Not Instrumented (b) Instrumented

This problem is evident in Figure A.38a, where we plot average price growth over the

period of 1974-2022, a measure which we expected to be very correlated with housing supply

elasticity, against the average refusal rate measures. In blue, we mark the Local Authorities

for which more than 80% of land is developed, all of which are in the three most central

Tube zones of London. More than 60% of these LAs are in “Central Activities Zone,”

London’s very dense touristic and cultural center. The application refusal rates in these
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LAs are somewhat below average, probably because many developers in these areas do not

take the time to file applications which almost certainly will be refused. On aggregate, the

implied relationship between the refusal rate and house price growth is weakly positive and

statistically insignificant. However, if we instrument the refusal rate using the delay rate

instrument introduced by Hilber and Vermeulen (2016), the slope coefficient is nearly an

order of magnitude larger and statistically significant.

A.15 Dynamics of Long Term Bond Yields

This subsection shows that very long term safe interest rates measured from other sources

seem to have fallen. However there is uncertainty due to liquidity issues with the bonds. We

study two data sources.

First, we study long-term Austrian bonds. These data begin in 2017, meaning they are

not informative about the long-run decline in yields. The data do provide information about

the recent rise in rates. In particular, the Austrian government has issued two 100 year

bonds, the first expiring in 2117 and the other in 2120. The Austrian government has also

issued several other long-term bonds with terms of 20-70 years, in addition to traditional

shorter-term bonds. The yields for some of these bonds are plotted in Figure A.39a. A

discrepancy emerges — the yield for the bond expiring in 2120 has risen much less than that

expiring in 2117. This gap is surprising. Taken literally, there must have been enormous

movements in the 3 year forward rate starting in 2117, which seems unlikely.

Figure A.39: Yield on Long-Run Austrian Bonds

(a) Yields (b) Forward Rates

We attempt to calculate r∗ for Austrian bonds, that is, the long run expected forward

rate. We use observed prices for bonds of different maturities and assume the spot curve

is piecewise linear between each maturity, while taking into account differences in coupon

rates across bonds. The implied rise in 50 to 90 year forward rate depends on whether we

include or exclude the 2117 bond.
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We plot r∗ for Austrian bonds in Figure A.39b. If we use data for the 2120 bond, long-run

forwards have not changed much relative to 2020. Using data from the 2117 bond suggests

that yields are close to their 2017 level. Even using the 2117 data, the increase in the yield

is much less than at shorter horizons. For example, at the end of 2024 the US 10 year bond

rate was over 2pp higher than its 2017 level.

Overall, we believe the behavior of Austrian bonds are broadly consistent with our ev-

idence that r∗, at the very long end of the yield curve, has risen by less than at shorter

horizons.

Second, we investigate data on over 70 corporate bonds with 100-year terms. These

bonds include the MIT bond that you identify, but also long-run bonds for Coca Cola, IBM,

HBSC, and a variety of other firms across several industries. Nearly all of the bonds we

surveyed experienced consistent declines in yields between 2010-2021 of magnitudes similar

to what we observe for y∗. For example, Figure A.40a presents yields for the four 100-year

bonds MIT has issued in the last two decades, which expire in 2096 through 2116. The Nov.

2096 bond was first issued in 1996, and we have data on yields starting in 2002. We can see

that since 2010, yields have declined by 2-3pp, similar to what we see for y∗. We see similar

patterns for other bonds, as shown in Figure A.40b.

Figure A.40: Yield on Long-Run Bonds

(a) MIT Bonds (b) Other Corporate Bonds

One important shortcoming of this approach relative to our y∗ estimates is that there

is typically not sufficient variation in bond terms within firms to calculate spot or forward

curves. Therefore, we cannot make claims about long-run forward rates without making

additional assumptions.

A.16 Difference-in-Differences Estimator with Option Value

This section derives our differences-in-differences estimator of y∗ in the presence of option

value from lease extensions. Let ΠH
Tt be the likelihood that a lease, with T > 80 years of
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duration remaining, extends before its duration reaches 80 years. Let ΠL
Tt be the likelihood

that a lease with T ≤ 80 years of duration remaining is extended at some point before

expiration. Assume a constant discount rate y∗, and also assume that the event of extending

is uncorrelated with the stochastic discount factor of the extender. Then the price of a

leasehold is the present value of its cashflows, i.e.

P T
t =

∫ T

0

e−y∗sRt+sds+ΠH
Tt

(
1− αH

t

) ∫ T+90

T

e−y∗sRt+sds+ΠL
Tt

(
1− αL

t

) ∫ T+90

T

e−y∗sRt+sds.

In this equation, the first term is the present value of the first T years of service flow. The

second term is the next 90 years of service flow, scaled by the share going to the leasholder,(
1− αH

)
; and the likelihood that the lease extends at any time before it falls below 80 years

remaining, ΠT
H . The third term is the analogous option value if the lease extends with less

than 80 years remaining. Rearranging this expression implies

P T
t =

∫ T

0

e−y∗t Rt+sds+ΠH
Tt

(
1− αH

t

) ∫ T+90

T

e−y∗t sRt+sds+ΠL
Tt

(
1− αL

t

) ∫ T+90

T

e−y∗t sRt+sds

=

∫ T

0

e−y∗t sRtds+ΠH
Tt

(
1− αH

t

)
e−y∗t TRt

∫ 90

0

ey
∗
t sds+ΠL

Tt

(
1− αL

t

)
e−y∗t TRt

∫ 90

0

e−y∗t sds

=

∫ T

0

e−y∗t sRtds+ e−y∗t TRt

∫ 90

0

ey
∗
t sds

[
ΠH

Tt

(
1− αH

t

)
+ΠL

Tt

(
1− αL

t

)]
=

∫ T

0

e−y∗t sRtds+ e−y∗t TRt

∫ T+90

T

ey
∗
t sds

[
ΠH

Tt

(
1− αH

t

)
+ΠL

Tt

(
1− αL

t

)]
=

1− e−y∗t T

y∗t
Rt + e−y∗t TRt

1− e−y∗t 90

y∗t

[
ΠH

Tt

(
1− αH

t

)
+ΠL

Tt

(
1− αL

t

)]
.

Then for two properties i and j with identical service flow growth, where property i extends

and j does not, we have

∆T
it = log

(
1− e−y∗t (T+90)

y∗t

)
− log

(
1− e−y∗t T

y∗t
+ e−y∗t T

1− e−y∗t 90

y∗t

[
ΠH

Tt

(
1− αH

t

)
+ΠL

Tt

(
1− αL

t

)])
= log

(
1− e−y∗t (T+90)

)
− log

((
1− e−y∗t T

)
+ e−y∗t T

(
1− e−y∗t 90

) [
ΠH

Tt

(
1− αH

t

)
+ΠL

Tt

(
1− αL

t

)])
,

which is the expression in the main text.

A.17 Proofs

Proposition A.2. There exists some value r̄K < rRV such that:

1. If y∗ satisfies y∗t ≥ r̄K then
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(a) There is zero option value at all years of duration remaining, that is, αT
t = 1 for

all T .

(b) The price of a leasehold is continuous in duration as the property’s duration falls

below 80 years, so

lim
T→80−

P T
it = lim

T→80+
P T
it .

2. If y∗ satisfies y∗t < r̄K then

(a) There is positive option value above 80 years in duration, that is, αT
t < 1 for all

T > 80 and option value discontinuously falls at 80 years, so that αT
t discontinu-

ously increases at T = 80.

(b) The price of a leasehold discontinuously falls as the property’s duration falls below

80 years, so

lim
T→80−

P T
it < lim

T→80+
P T
it .

Proof. From equation (11) and equation (12), the price of a property is

P T
it =

P T+90
it −min

[
RV T

it + γRit, V
T
it

]
T ≥ 80

P T+90
it −min

[
RV T

it +V T
it

2
+ γRit, V

T
it

]
T < 80.

(19)

Recall the definitions of reversion value and market value

V T
it =

Rit

y∗t

(
e−y∗t T − e−y∗t (T+90)

)
(20)

RV T
it =

Rit

rRV

(
e−rRV T − e−rRV (T+90)

)
(21)

We will define r̄K as the value of y∗t such that RV T
it + γRit = V T

it , that is, the tribunal costs

for a lease above 80 years are exactly the market value. The value of r̄K satisfies

Rit

rRV

(
e−rRV T − e−rRV (T+90)

)
+ γRit =

Rit

r̄K

(
e−r̄KT − e−r̄K(T+90)

)
=⇒ e−rRV T − e−rRV (T+90)

rRV

+ γ =
e−r̄KT − e−r̄K(T+90)

r̄K
(22)

where in the first line we have substituted in the definitions of marriage value (equation (20))

and reversion value (equation (21)). The right hand side of equation (22) is strictly decreasing

in r̄K . Therefore there is a unique value of r̄K satisfying the equation.

Now we will prove part (1) of the proposition, in which y∗t ≥ r̄K . equation (22) implies
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that for all y∗t ≥ r̄K we must have

RV T
it + γRit ≥ V T

it . (23)

equation (23) implies

RV T
it + γRit ≥ V T

it

=⇒ RV T
it + γRit + V T

it ≥ 2V T
it

=⇒ RV T
it + γRit + V T

it

2
≥ V T

it

=⇒ RV T
it + V T

it

2
+ γRit ≥ V T

it (24)

Therefore for y∗t ≥ r̄K , prices satisfy

P T
it =

P T+90
it − V T

it T ≥ 80

P T+90
it − V T

it T < 80,
(25)

where we have substituted equation (23) and equation (24) into equation (19) for y∗t ≥ r̄K .

Recall the definition of αT
t as the ratio of the lease extension cost to V T

it . equation (25) shows

that αT
t = 1 for all t, which proves part (1a) of the proposition. Since the top and bottom of

equation (25) are equal at T = 80, prices are continuous at T = 80, which proves part (1b)

of the proposition.

Now we will prove part (2) of the proposition, in which y∗t < r̄K . equation (22) implies

that for all y∗t < r̄K we must have

RV T
it + γRit < V T

it . (26)

Then by equation (19), the price of a property with more than 80 years duration remaining

is

P T
it = P T+90

it −
(
RV T

it + γRit

)
.

The price of a property with less than 80 years remaining is

P T
it = P T+90

it −min

[
RV T

it + V T
it

2
+ γRit, V

T
it

]
. (27)

Also, note that

RV T
it + γRit < min

[
RV T

it + V T
it

2
+ γRit, V

T
it

]
, (28)
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since RV T
it + γRit < V T

it by inequality equation (26) and also by inequality equation (26) we

have

RV T
it + γRit < V T

it

=⇒ RV T
it < V T

it

=⇒ 2RV T
it < RV T

it + V T
it

=⇒ RV T
it <

RV T
it + V T

it

2

=⇒ RV T
it + γRit <

RV T
it + V T

it

2
+ γRit.

equation (27) and equation (28) imply that for T < 80

P T
it < P T+90

it −
(
RV T

it + γRit

)
Therefore prices discontinuously fall when T falls below 80 which proves part (2b) of the

proposition. Since lease extension costs rise when T falls below 80, αT
t also discontinuously

rises when T falls below 80, which is part (2a) of the proposition.
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