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Abstract

We build a model in which the arrival of new technologies displaces demand for

old technologies. This disruption causes redistribution due to lack of risk sharing

both within and across investor cohorts. We model the financial industry as a costly

device to improve risk sharing, and determine its size in equilibrium. We further study

wealth dynamics, equilibrium prices, and flows into various asset classes. We show

that an increase in disruptive activity renders existing firms’ publicly traded equities

riskier and renders “alternative asset classes” as diverse as fixed income, real estate,

and private equity more attractive. The result is a decline in the real interest rate,

an expansion of the financial industry, and increased flows towards alternative asset

classes. Interestingly, alternative asset classes offer higher expected rates of return than

conventional equities despite the diversification benefits afforded by the former.



1 Introduction

Two salient trends in the financial markets over the past few decades have been the pro-

tracted decline of real interest rates and the increased portfolio allocations to alternative

classes — asset families as different as private equity, venture capital, and commercial real

estate. We link these trends to an increased incidence of “disruptive” — or, more appro-

priately, redistributive — growth. Specifically, growth leads new firms to capture a larger

portion of profits and market capitalization — at the expense of old firms, which get dis-

placed. Crucial, the creation of new firms benefits investors asymmetrically: the benefits

accrue predominantly to the firm creators (and, more generally, early investors holding large

fractions of their equity), rather than to investors simply holding the market portfolio of

public companies.

If the dispersion of wealth growth across investors increases, then investors have an

incentive to increase allocations towards asset classes that are less affected by, or can even

benefit from, disruption risk. Our model identifies private equity, real assets, and risk-free

assets as asset classes that fit that requirement, thus explaining their popularity in recent

decades. Somewhat surprisingly, the equilibrium expected rate of return of funds investing

in emerging technologies exceeds that of the market portfolio of existing equities, despite

the positive market price of risk for displacement risk and the negative exposure of these

emerging technologies to displacement risk.

We develop a general equilibrium model with the following features. The production of a

final good requires labor and intermediate products. New lines of (intermediate) products,

which are introduced in stochastic amounts, raise aggregate production, but also displace the

demand for, and hence the profits generated by, old intermediate products. The ownership

rights to the production of the new product lines are allocated either to existing publicly

traded firms or to newly arriving agents. The allocation of blueprints to new agents is

random, and highly asymmetric. A small number of these agents end up with the profitable

product lines, while the rest receive worthless allocations. As a result, the newly arriving

agents are eager to share the allocation risk with investors, by offering a fraction of their

firm’s shares for sale. This transaction is facilitated by financial intermediaries who purchase

a portfolio of the new-firm shares on behalf of investors. This diversification, however, is

costly; in particular, each intermediary optimally invests only in a subset of new firms.

There are therefore two impediments to perfect risk sharing. At the inter-cohort level,

the fraction retained by the newly arriving agents is excessive. At the intra-cohort level,

the portfolio of new firms available to a typical investor, via an intermediary, is imperfectly
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correlated with the aggregate value of all new — non-public — firms. The model nests the

perfect risk-sharing limit (Rubinstein (1976), Lucas (1978)), the Constantinides and Duffie

(1996) model, and the OLG model of Gârleanu et al. (2012) as special parametric cases.

We provide explicit closed-form solutions of the model and show the following results.

First, if risk sharing is close to perfect, then an increased arrival of new technologies is “good

news” for the marginal investor, since new technologies are good news for aggregate output

and market capitalization. However, if either intra- or inter-cohort risk sharing fails, then

increased arrival of new technologies is perceived as a negative outcome by the representative

investor, who might end up losing from the new technologies.

Second, a surprising result of the model is that the equilibrium returns of emerging, pri-

vately held firms must exceed the expected returns of publicly traded firms, even though

they offer hedging opportunities by reducing the exposure of an investor’s portfolio to dis-

placement risk. The reason is that in a world of imperfect risk sharing the diversifiable risk

of private investments commands risk compensation.

Third, an acceleration in displacement or dispersion of innovation gains across investors

increases the incentives to diversify out of public equities. The natural targets are risk-free

assets, private equities, and real assets. Real assets, such as real estate and commodities,

benefit from increased arrival of new firms because they are useful to all firms (new and

old). Private equity benefits because it helps offset the displacement risk of public equities.

Finally, the demand for the risk-free asset increases due to precautionary savings incentives,

leading to a decline in the risk free rate.

Fourth, an acceleration in displacement leads to an increase in the size of the financial

industry and a reduction in real interest rates, though possibly not to increased physical

investment. The reason is that, if investment is specific to blueprints, then increased dis-

placement raises the risk that these investments render themselves unprofitable. This may

help explain why the low real rates observed in recent decades did not lead to a substantial

increase in investment, but rather an expansion of the financial industry.

In short, the paper makes two contributions. First, it introduces multiple asset classes,

distinguished by their different relations to displacement risk, in a general equilibrium model

and provides a rationalization for the diverse average returns that these asset classes have

offered historically. Second, in a world of increased disruptive activity, the model provides a

possible unified rationalization for several patterns observed in recent decades, and especially

the simultaneous increase in demand for risk-free investments and relatively risky alternative

asset classes.
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Figure 1: Cumulative first differences in the logarithm of GDP, assets managed by the

financial industry, and alternative assets in the form of private equity, venture capital, and

commercial real estate. Source: McKinsey (2015).

1.1 Literature Review

To be written.

2 Empirical motivation

Figure 1 illustrates the growth in alternative assets over the last decade. An obvious conclu-

sion is that the alternative asset management industry in the form of private equity, venture

capital, and commercial real estate has grown much faster than either GDP or total assets

under management in the economy. This substantial growth in the size of alternative invest-

ments coincided with substantial growth in other forms of alternative investments (such as

commodities or hedge funds) and with a protracted period of declining real interest rates,

trends that have been documented repeatedly in the literature.

Our goal in this paper is to explain these trends not as isolated phenomena, but rather

as emanating from a common source, namely the increased incidence of “disruptive growth,”
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Figure 2: Total real logarithm of S&P 500 dividends per share, real log-aggregate consump-

tion and real log-aggregate dividends. The CPI is used as a deflator for all series. The line

“Index Dividends + New Cap” is equal to real log-dividends per share plus the cumulative

(log) gross growth in the shares of the index that are due to the addition of new firms.

Sources: R. Shiller’s website, FRED, Personal Dividend Income series, and CRSPSift.

or more accurately, redistributive growth.

To motivate these notions, we point to Figure 2. This figure shows that even though

aggregate dividends and aggregate consumption share a common trend, the dividends per

share of the S&P 500 follow a markedly slower growth path. (The same conclusion holds

for the CRSP value weighted portfolio). The difference in growth rates between aggregate

dividends and dividends per share is approximately 2% per year. This discrepancy can be

largely attributed to a dilution effect arising every time new companies enter the index:

Just as a corporation has to issue new shares to purchase a new company, thus diluting

the existing shareholders, the same happens at the level of an index. Mathematically, if St

is the divisor (of number of index “shares”) at time t, MV old
t+1 the market capitalization at

time t + 1 of firms that were already part of the index at time t, and MV new
t+1 the market

capitalization of firms that are added to the index at time t+1, the insensitivity of the index
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level to additions is written as

MVt+1

St+1

=
MV old

t+1 +MV new
t+1

St+1

=
MV old

t+1

St

giving

St+1

St
= 1 +

MV new
t+1

MV old
t+1

. (1)

Next, we let Dt denote total dividends, and define Dt

St
as dividends per share. The concept

of dividends per share corresponds to the cash flows generated by the self-financing strategy

of holding the market (or index) portfolio. Being the cash flows of a self-financing strategy

is helpful from an asset pricing perspective, since the standard arguments imply that the

value of the index equals to the present value of the stream Dt

St
.

Empirically, over long horizons the discrepancy of the trends between dividends-per-share

and aggregate consumption is almost exclusively due to the diluting effect of new company

additions. Figure 2 shows that if we add back
∑

t log
(
1 +MV new

t+1 /MV old
t+1

)
to the time series

of (log) dividends-per-share log(Dt/St), then the resulting series (denoted “Index Dividends

+ New Cap”) co-trends with aggregate dividends and aggregate consumption. Hence the

dillutionary effect of new company additions is the main reason for the discrepancy between

the cash flows generated by the self-financing strategy of holding the market portfolio and

aggregate consumption — a fact that our model reproduces.

Figure 3 shows that the dillutionary effect of new company additions has accelerated over

time. The figure plots 20-year moving averages of log
(
1 +MV new

t+1 /MV old
t+1

)
and documents

an upward trend.

Casual empiricism suggests that the benefits of the introduction of new firms are highly

asymmetric. It is typically the firm creators and the early investors who benefit. The data

offer some evidence in that direction. Figure 4 compares the total wealth in the hands of

billionaires that inherited their wealth with the wealth of “self-made” entrepreneurs. In 2003

(the earliest electronically available cross section in Forbes) the estimated net worth of self

made billionaires is roughly comparable to that of billionaires who inherited their wealth.

By 2016, the net worth in the hands of self-made billionaires is roughly twice as large as the

wealth of billionaires who inherited their wealth.

In addition, Table 1 shows that a billionaire who inherited her wealth has about the same

wealth as a self-made billionaire in 2016. Moreover, for ages between 45 and 65 a self-made

billionaire tends to have a higher net worth than someone who inherited their wealth. This

didn’t use to be the case. In 2003, a self-made billionaire had on average about 31% less
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Figure 3: 20-year moving average of the change in the index divisor that is due to the

addition of new firms.

wealth than a billionaire who inherited her wealth, with a t-stat of about 1.9. The difference

in the 2003 cross section is even larger for older billionaires. Figure 6 shows that it is not only

the averages that differ: in the 2016 cross-section the distribution of billionaire wealth looks

identical for the subgroups of self-made and heirs. Taken together, Table 1 and Figure 6

imply that self-made billionaires must have experienced a stronger wealth growth (compared

to heirs) in recent times.1

Figure 5 performs a related exercise: The figure fixes billionaire families in the 2003

edition of Forbes. Using a newly available database called Wealth-X, we follow the wealth

growth of each family between 2003 and 2016. This database is ideally suited for this

purpose: it is professionally maintained by 170 employees who collect data pertaining to an

individual’s publicly disclosed transactions, holdings, philanthropy, large purchases, board

1To make this statement mathematically precise, express a billionaire’s wealth growth as log(WT ) =

log(W0) + u where u captures the cumulative rate of growth in the value of a billionaire’s assets net of her

consumption-to-wealth ratio. Figure 6 shows that the distribution of log(WT ) (conditional on WT being

above a billion) is independent of log(W0). Hence, the distribution of u for self-made and non self-made

billionaires cannot be the same. Indeed, the distribution of u for self-made billionaires must contain a positive

location shift compared to the one for billionaires who inherited their wealth.
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Figure 4: Wealth of US billionaires who inherited their wealth and those who were self-made

(left figure). Number of US billionaires who inherited their wealth and number of billionaires

who are self made. Source: Forbes 2003, 2016.

memberships, professional and family ties, etc., and aggregate them into a detailed “folder”

for that individual and their family. In constructing family wealth growth we compare the

wealth of each family in 2003 to the wealth of the same family in 2016.2 The somewhat

surprising fact about Figure 5 is that the median family experienced a wealth growth rate

no different than the growth in the price-per-share of the S&P 500. Taken as group, the

wealth of these families has about doubled between 2003 and 2016, while the wealth in the

hands of billionaires has quadrupled between 2003 and 2016. This implies that the large

increase in the hands of billionaires has been the result of entry of new wealth in that

population, rather than the organic growth of the wealth of the previously rich.

Table 2 shows that the above results are unlikely to be the result of error or different

consumption-to-wealth rates between new and old rich. Using data from the Wealth-X

database, we regress an individual’s publicly known log philanthropic expenditure over her

life-time on her estimated log-net worth and a dummy variable taking the value one if the

billionaire is listed as “self-made.” This table shows two things: First the coefficient on

log net worth is essentially equal to one. Since it is reasonable to expect that philanthropy

should be proportional to an individual’s true, unobserved net worth, this is reassuring.

It suggests that net worth is measured reasonably well, and does not just capture “paper

money”; instead we see it reflected in an easily observed expenditure component. The second

2We include immediate descendants and divorced spouses as part of a family for the computation of total

wealth growth rates.
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Source: Wealth-X 2016

(1) (2) (3)

All Ages 45< Age< 65 Age> 65

Self-Made Dummy -0.029 0.049 -0.150

(0.087) (0.109) (0.155)

Number of Observations 413 165 215

R2 0.000 0.001 0.006

Source:Forbes 2016

(1) (2) (3)

All Ages 45< Age< 65 Age> 65

Self-Made Dummy -0.010 0.124 -0.148

(0.095) (0.110) (0.177)

Number of Observations 465 197 233

R2 0.000 0.005 0.004

Source: Forbes 2003

(1) (2) (3)

All Ages 45< Age< 65 Age> 65

Self-Made Dummy -0.310 -0.324 -0.492

(0.165) (0.240) (0.264)

Number of Observations 176 83 73

R2 0.027 0.028 0.062

Table 1: Regressions of billionaire’s log(net worth) on a dummy variable taking the value

one if the billionaire is characterized as self made in the respective data set. Standard errors

in parentheses
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Figure 5: logarithm of the (gross) wealth growth rates of billionaire families between 2003

and 2016. Source: Forbes 2003 and Wealth-X 2016.

conclusion from the table is that, if anything, self-made individuals spend a slightly higher

fraction of their wealth on philanthropy compared to billionaires who have inherited their

wealth. Even though this observation pertains only to philanthropy, it is suggestive that

differences in expenditure rates do not seem a likely candidate for the observed differences

in wealth growth rates.

We summarize the pieces of the empirical evidence that motivates our model as follows:

1) Recent decades have seen an increase in portfolio allocations to alternative asset classes,

real assets, and a simultaneous drop in the real interest rate. 2) The addition of new firms to

the market portfolio acts in a manner similar to dilution for existing investors and over long

periods is the dominant source of discrepancy between aggregate consumption and dividends

per share of the market porttolfio. 3) The rate of these additions has progressively increased

in recent decades. 4) This increase coincided with a strong ascension to wealth for self-made
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Figure 6: Kernel-smoothed density of log net worth for self made billionaires and billionaires

who inherited their wealth. Sources: Forbes 2016 and Wealth-X 2016

(1) (2) (3) (4) (5) (6)

lnphil lnphil lnphil lnphil lnphil lnphil

lnw 1.157*** 1.149*** 1.199*** 1.191*** 0.983*** 0.982***

(0.151) (0.149) (0.341) (0.334) (0.166) (0.164)

SelfMade 0.234 0.0953 0.278

(0.269) (0.517) (0.313)

Constant -8.312* -8.292* -9.691 -9.582 -4.160 -4.320

(3.338) (3.313) (7.424) (7.324) (3.679) (3.640)

Observations 258 258 86 86 154 154

R2 0.201 0.204 0.184 0.184 0.174 0.178

Table 2: Regressions of log(Philanthropy) on log(net worth) and a dummy variable taking

the value one if the billionaire is listed as self made. Regressions (1) and (2) pertain to the

entire sample, (3) and (4) to billionaires between 45 and 65 and (5) and (6) to billionaires

above 65.
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billionaires; by contrast the wealth growth of the 2003 billionaires (who are presumably more

sophisticated than the typical investor) have largely followed the change in the value of the

S&P, which has been far slower than the growth in the total wealth held by billionaires.

Based on these stylized facts, we build a model that departs from the standard assumption

that the gains of innovation accrue to the representative agent. Instead we take seriously

the notion that these gains are not equally shared between investors, and investigate the

implications of such a departure for finance and macroeconomics.

3 Model

3.1 Agent preferences and demographics

We consider a model with discrete and infinite time: t = {..., 0, 1, 2, ...}. The size of the

population is normalized to one. At each date a mass λ of agents are born, and a mass λ

dies so that the population remains constant. We denote by Vt,s the utility at time t of an

agent born at time s. Preferences are logarithmic:

log Vt,s = log ct,s + β (1− λ) Et log Vt+1,s =: log ct,s + β̂ Et log Vt+1,s, (2)

where β ∈ (0, 1) is the agent’s subjective discount factor, and ct,s is the agent’s consumption

at time t. We also defined β̂ = β(1 − λ) as the agent’s effective discount factor. These

preferences imply that the representative agent has an intertemporal elasticity of substitution

(IES) equal to one and a risk aversion equal to one. These preferences are convenient for

obtaining closed-form solutions. We consider extensions to allow for general risk aversion

and IES later.

3.2 Technology

There is a continuum of intermediate-good firms that own non-perishable blueprints. These

firms engage in monopolistic competition. We omit the details of the derivation, which is

standard and can be found in Gârleanu et al. (2012), and state here the relevant elements

for our asset-pricing purpose.

First, total output equals

Yt = ZtA
1−α
t , (3)

where At is the number of intermediate goods available at time t and Zt is total factor

productivity.
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Second, an intermediate-good blueprint generates time-t profits

πt =
α (1− α)Yt

At
∝ A−α

t , (4)

which implies

Atπt = α (1− α)Yt. (5)

In words, the key features of the model are that increasing the number of blueprints At

raises total output Yt (equation (3)), but the profits per blueprint decline (equation (4)). This

is the sense in which this simple production specification captures the idea of displacement

of old blueprints by new ones.

We would like to point out here that, even though we opted for a basic Romer-style

production specification, the specific production assumptions (whether they are of the Romer

type or the quality-ladder type) are irrelevant for the intuitions we develop in this paper.

3.3 New agents and products

The measure λ of newly born agents are of two types: a fraction θ are entrepreneurs and

a fraction 1 − θ are workers. Workers supply one unit of labor inelastically throughout

their life. Since workers are not the focus of the paper, we assume that they are “hand-to-

mouth” consumers, i.e., their wage income equals their consumption period-by-period. This

assumption is not essential for the results, and we relax it in a later section.

Each period a total mass

∆At+1 = At+1 − At = ηAtΓt+1 = ηAt
(
ΓNt+1 + ΓEt+1 + ΓUt+1

)
(6)

of new blueprints arrives. The proportional increment in At is captured by the random

variable Γt+1 that consists of three components, ΓEt+1, ΓNt+1, and ΓUt+1. Here, Γlt+1, l ∈
{N,E,U} are independent gamma distributed variables with shape parameters al and rate

parameters bl, and η is a constant. All new blueprints arrive exogenously. The blueprints

accounted for by ΓEt+1 are distributed to existing firms.3 The blueprints in the amount ΓNt+1

are allocated to newly born entrepreneurs who sell claims to their future cashflows, as we

describe below. Finally, the blueprints accounted for by ΓUt+1 accrue to entirely privately

held entities and as such are entirely uninvestible.

3Given our assumptions of frictionless trading of these firms, the allocations of blueprints is irrelevant.
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One should view these new blueprints as ideas for the production of new products. The

assumption that no resources are needed for the production of these blueprints or the im-

plementation of these ideas (i.e., growth is exogenous) is for simplicity only, and we discuss

how to relax it in a later section. The crucial aspect for our analysis is that the rents from

the arrival of a subset of new blueprints are allocated heterogeneously to the newly arriving

entrepreneurs, as follows.

At the time of their birth, a mass λθdi of entrepreneurs is assigned to every “location”

i ∈ [0, 1) on a circle. Since the gamma distribution is infinitely divisible, we write the total

number of blueprints distributed to entrepreneurs as ηAtΓ
N
t+1 = ηAt

∫
i∈[0,1] dΓ

N
i,t+1, where

dΓNi,t+1 denotes the independent increments of a gamma process and captures the increment

in the mass of blueprints that will be assigned to location i on the circle at time t+ 1.4

Since the gamma process is not commonly used in economics, we summarize briefly some

of its properties. To build intuition, we consider a discrete construction. We split the interval

[0, 1] into N equal intervals, and think of the gamma process at the location k
N

as a sum of

gamma-distributed increments ξ n
N
,

k∑
n=1

ξ n
N
, (7)

where the pdf of the increment ξi is given by

Pr(ξi ∈ dx) =
b

a
N

Γ
(
a
N

)x a
N
−1e−bx dx. (8)

The parameters a
N

and b are sometimes refered to as the “shape” and the “rate” of the

gamma distribution, and Γ
(
a
N

)
is the gamma function evaluated at a

N
. The increments ξi

are indepenent of each other, and the properties of the gamma distribution imply that

Pr

(
N∑
n=1

ξ n
N
∈ dx

)
=

ba

Γ (a)
xa−1e−bx dx, (9)

which is the distribution of a gamma variable with shape a and rate b.

Using the gamma process is technically attractive for our purposes, since it captures in

a stylized way the fact that entrepreneurship is very risky. This is illustrated in Figure 7.

The figure shows a sample of increments ξi for the case N = 1000. The figure illustrates

that these increments tend to be close to zero for most of the locations; however, a small

4For technical reasons, we think of new entrepreneurs as indexed by (i, j) ∈ [0, 1)× [1, 1], with, for all j,

(i, j) assigned to location i and receiving the same number of blueprints ηAtdΓ
N
i,t+1.
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Figure 7: An illustration of the increments ξi, for the case N = 1000, a = 1, and b = 2.

subset of random locations exhibit big spikes of random height. From an economic point

of view, this means that only the lucky few entrepreneurs who happen to find themselves in

the locations exhibiting the large spikes obtain valuable allocations of blueprints.

The limit of the variables given by (7) as the number of locations N goes to infinity is

a gamma process. It is a positive and increasing process, whose paths are not continuous

(they are only right continuous with left limits).5 This implies that any given location is

likely to receive a negligible allocation of blueprints. However, because the process ΓNi,t+1

is a discontinuous function of i, a zero-measure of locations receive a strictly positive mea-

sure of blueprints, and the entrepreneurs who find themselves in these locations become

spectacularly wealthy.6

Before proceeding, we would like to note that this extreme-inequality setup is mostly for

illustrative purposes and technical convenience. Less extreme distributions7 would not affect

the economic insights, as long as we preserve some notion of distributional risk.

A final crucial assumption is that no agent knows at time t the realization of the path of

5The gamma process is, however, continuous in probability. This means that, for any ε > 0,

limδ→0 Pr(|ΓN
i+δ,t+1 − ΓN

i,t+1| > ε) = 0.
6A similar outcome obtains concerning ‘the untraded blueprints.
7Something as simple as assuming that locations are finite rather than a continuum would produce less

extreme distributions without affecting the economic intuitions.
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the gamma process ΓNt+1. Everyone is trading behind the “veil of ignorance” regarding which

locations on the circle will obtain the valuable blueprints and which ones will obtain the

useless ones. Newly arriving entrepreneurs are therefore eager to share that risk by selling

shares to investors on the market before this uncertainty is resolved. These shares entitle

investors to a fraction υ of the profits that will be produced by the newly arriving firms

in perpetuity. A fraction 1 − υ is “inalienable,” a reduced form way of capturing incentive

effects of equity retention.

3.4 Markets

At each point in time, an investor can trade a zero net-supply bond. We follow Blanchard

(1985) and assume that agents can also trade annuities with competitive insurance companies

that break even. These annuity contracts entitle an insurance company to collect the wealth

W j
t of an agent j in the event that she dies at time t and in exchange provide her with an

income stream λW j
t while she is alive. We refer to Blanchard (1985) for further details.

Investors at time t can trade costlessly in the shares of all companies created prior to

time t. Per blueprint, all such companies make the same profits π. For future use, we denote

by Πt the value of the future stream of profits from the representative blueprint:

Πt = Et

[
∞∑
t+1

M i
s

M i
t

πs

]
, (10)

with M i
s the marginal-utility process of a given investor.

The shares of new firms are introduced to the market via intermediaries as follows: Every

investor at time t is assigned to a location i on the circle [0, 1). At each location i there is a

representative competitive intermediary, who purchases (from the entrepreneurs) an equally

weighted portfolio of the shares of the incipient companies located in an arc of length ∆i

centered at location i. The intermediary then offers the portfolio for purchase to the investors

in location i. Intermediation requires resources equal to ψYtf (∆i) per share. (We make the

cost proportional to Yt to ensure that the cost of intermediation is a stationary fraction of

the size of the aggregate economy.) Hence, to break even, the intermediary needs to sell each

share of the portfolio at a price 1
∆i

∫ i+∆i
2

i−∆i
2

P j
t dj +ψYtf (∆i) , where P

j
t is the price of a newly

created firm in location j. Assuming that there exist location-invariant equilibria such that

P j
t = Pt, the price of a portfolio share is simply Pt + ψYtf (∆i). To simplify notation, from

now on, we guess that there exist equilibria with P j
t = Pt, and will then verify their existence

in the next section. Likewise, we conjecture that ∆i is independent of i, and write ∆i = ∆.

For further convenience, we let P̂t = Pt + ψYtf(∆).
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Figure 8: An illustration of how intermediaries help with risk sharing. The increments are

the same as in Figure 7, and ∆ = 0.5. The intermediary in position 0.5 provides an equal

weighted portfolio of the increments in [0.25, 075]. The intermediary in position 0.75 averages

the increments in [0.5, 1], while the intermediary in position 0 averages the increments in

[0, 0.25] ∪ [0.75, 1].

Figures 8 and 9 illustrate how intermediaries can facilitate risk sharing in this economy.

By purchasing an equal-weighted portfolio of shares on an arc of length ∆, the intermediaries

are able to “smooth out” the spikes of the gamma process. Indeed, as the figure illustrates,

they can offer their investors a portfolio of blueprints that has the same mean as the num-

ber of blueprints that arrive in each location, but is second-order stochastically dominant.

Specifically, by using properties of the gamma distribution, one can show that 1
∆

∫ i+∆
2

i−∆
2

dΓNj is

gamma distributed with shape aN∆ and rate bN∆, and accordingly it has mean equal to aN

bN

and standard deviation equal to
√
aN

bN
√
∆
. Further, if ∆2 > ∆1, then

1
∆2

∫ i+∆2
2

i−∆2
2

dΓNj dominates

1
∆1

∫ i+∆1
2

i−∆1
2

dΓNj in the sense of second-order stochastic dominance.

The arc length ∆ implies a specific correlation between the blueprints obtained by any

given fund and the total growth of blueprints between t and t+1. Specifically, the correlation

between the blueprints accruing to a given fund 1
∆

∫ i+∆
2

i−∆
2

dΓNj and total new blueprints
∫ 1

0
dΓNj
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Figure 9: The distribution of equal weighted returns. The left figure depicts the blueprints

accruing to the portfolio formed by the intermediary in each location i, which is simply

an equal weighted average of the blueprints accruing to locations in an arc ∆ around the

intermediary’s location. The right figure is identical to the left figure except that the results

are now depicted in polar coordinates.

is
√
∆. Given the location invariance of the set-up, this correlation does not depend on i.

Intermediaries in each location are competitive and in an effort to attract investors they

determine ∆ in a way that maximizes investor welfare. Moreover, the assumption of perfect

competition ensures that intermediaries make no profits. Accordingly, they act as simple

pass throughs, enabling existing investors access to the newly created firms albeit at a cost.

To ensure heterogeneity in the returns of existing investors, we assume that f (1) = ∞,

implying that ∆ lies in the interior of [0, 1].

We conclude this section with two comments. First, the notion of a “location” should

not be understood geographically. It is simply a convenient device to produce heterogenous

returns across investors. Second, since the gamma process has independent increments, it is

immaterial whether investors invest in a single arc of length ∆ or a set of non-contiguous arcs

of total length ∆. Our construction only requires that these sets satisfy rotational symmetry.
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3.5 Budget constraints

With these assumptions, the dynamic budget constraint of an investor who resides in location

i can be expressed as

W i
t = SE,it AtΠt +Bi

t + SN,it P̂t + cit, (11)

W i
t+1 = SE,it At (Πt+1 + πt+1) + (1 + rft )B

i
t + SN,it

ηυ

∆

∫ i+∆
2

i−∆
2

(Πt+1 + πt+1)At dΓ
N
i,t+1 + λW i

t+1,

where SE,it is the number of shares of the (representative) firm that is already traded at time

t, Bi
t is the amount invested in bonds, rft the interest rate, and SN,it is the number of shares

purchased in the intermediary-provided portfolio of newly created firms. We note that W i
t+1

is the agent’s wealth at t + 1 conditional on survival. We normalize the supply of shares of

all firms to unity. A convenient way to express (11) is

W i
t+1

W i
t

=
1− cit

W i
t

1− λ

(
ϕiB

(
1 + rft

)
+ ϕiER

E
t+1 + ϕiNR

N,i
t+1

)
, (12)

where ϕiB ≡ Bi
t

W i
t−cit

, ϕiE ≡ SE,i
t AtΠt

W i
t−cit

, and ϕiN =
SN,i
t P̂t

W i
t−cit

are the post-consumption wealth shares

invested by investor i in bonds, existing firms, and newly arriving firms respectively, and

RE
t+1 ≡

Πt+1+πt+1

Πt
and RN,i

t+1 ≡ At

P̂t

ηυ
∆

∫ i+∆
2

i−∆
2

(Πt+1 + πt+1) dΓ
N
i,t+1 are the gross returns of existing

firms and the portfolio of newly arriving firms that investor i invests in.

An important observation about (12) is that, as long as P j
t = Pt for all j ∈ [0, 1), the

portfolio choices ϕiB, ϕ
i
E, and ϕ

i
N , as well as the choices of ∆i and of

cit
W i

t
are the same for all

investors, irrespective of their level of wealth and the location where they reside at time t,

which simplifies the solution and analysis of the model.

To ensure that P j
t = Pt for all j ∈ [0, 1) we make one final assumption, namely that

investors re-locate prior to the start of trading each period, so that the total wealth of all

the investors positioned in each location becomes equal across locations.8

This simplifying assumption is consistent with free movement of investors among lo-

cations. Conditional on all funds offering the same arc-length ∆i = ∆, and given the

location-invariant nature of the distribution of new firms across the circle, the investors have

the incentive to position themselves in locations that offer lower prices for a share to the

portfolio of new firms, thus equalizing these prices across locations. This outcome occurs

when wealth moves across locations in such a way that the total wealth in every location is

equalized.

8Mathematically, such a re-location is always possible; one of the infinitely many ways to achieve it is to

assign the investor with wealth W j
t to location F−1(W j

t ), where F (·) is the wealth distribution.
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3.6 Location-invariant equilibrium

The definition of a location-invariant equilibrium is standard. Such an equilibrium is a

collection of prices Πtand Pt, portfolio allocations ϕB, ϕE, and ϕN , a choice of ∆, and

consumption processes for all agents cjt such that a) Given prices, ϕB, ϕE, ϕN , ∆, and cjt

are choices that maximize (2) subject to (12), b) the consumption market clears:
∫
j
dcjt =

Atπt−ψZtA1−α
t f (∆), c) the markets for all shares (both new and existing) clear:

∫
j
dSE,jt =∫

j
dSN,jt = 1, and d) the bond market clears:

∫
j
dBj

t = 0.

4 Solution

Next we construct an equilibrium that is both location-invariant, time-invari symmetric, in

the sense that all agents choose the same portfolio. Specifically, we conjecture that there

exists an equilibrium whereby ϕB = 0, and the portfolio shares ϕE and ϕN , the interest rate

rf , the participation arc ∆, the valuation ratios PE ≡ Πt

πt
, PN ≡ Pt

Atπt
, and P̂N ≡ P̂t

Atπt
, and

the consumption-to-wealth ratio c ≡ cit
W i

t
are the same for all agents and constant across

time. After computing explicit values for the constants that support such an equilibrium,

we provide sufficient conditions for its existence.

For the remainder of this section we specialize the model to the case of logarithmic

preferences. Later we show how to extend the results to the case of recursive preferences

with general risk aversion, a case that we also use as basis for our quantitative evaluation.

Maintaining the supposition that the price-to-earnings ratio for existing firms Πt

πt
is a

constant, denoted by PE, the return RE
t+1 can be expressed as

RE
t+1 =

πt+1 +Πt+1

Πt

(
1 + ηΓEt+1

)
=
πt+1

πt

(
1 + PE

PE

)(
1 + ηΓEt+1

)
=
Zt+1

Zt

(
1 + PE

PE

)(
At+1

At

)−α (
1 + ηΓEt+1

)
(13)

=
Zt+1

Zt

(
1 + PE

PE

)
(1 + ηΓ)−α

(
1 + ηΓEt+1

)
. (14)

Moreover, using similar reasoning, the return on an equal-weighted portfolio of newly
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created firms over an arc of length ∆ is

RN
i,t+1 =

υAt (Πt+1 + πt+1)
η
∆

∫ i+∆
2

i−∆
2

dΓNi,t+1

AtπtP̂N
(15)

=
RE
t+1

1 + ηΓEt+1

PE

P̂N

ηυ

∆

∫ i+∆
2

i−∆
2

dΓNi,t+1 (16)

=
PE

P̂N
RE
t+1Hi,t+1, (17)

where we defined the variable Hit+1 that captures the wedge between the two returns:

Ht :=
(
1 + ηΓEt+1

)−1 ηυ

∆

∫ i+∆
2

i−∆
2

dΓNi,t. (18)

From here on we omit the dependence of the random variables RN
t+1 and Ht+1 on i, since

all the statements we make pertain to the joint distribution of this variable and aggregate

quantities, which is independent of i.

The following proposition contains an explicit description of a symmetric time- and

location-invariant equilibrium.

Proposition 1 Assuming that a location-invariant, time-invariant, and symmetric equilib-

rium exists, the unique equilibrium values of ϕB, ϕE, ϕN , and c are

ϕB = 0 (19)

ϕE =
E
[(
RE
t

)1−γ
(1 +Ht)

−γ
]

E
[
(RE

t )
1−γ

(1 +Ht)
1−γ
] (20)

ϕN = 1− ϕE (21)

c = 1− β̂. (22)

With δ = ψYt
Atπt

, the equilibrium values of PE and P̂N are given by

PE = ϕE (1− δf(∆))
β̂

1− β̂
, (23)

P̂N = (1− ϕE) (1− δf(∆))
β̂

1− β̂
, (24)

and the interest rate equals

1 + rf =
E
[(
RE
t

)1−γ
(1 +Ht)

−γ
]

E
[
(RE

t )
−γ

(1 +Ht)
−γ
] . (25)
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Finally, the equilibrium value of ∆ is given by the solution to the equation

1− β̂

β̂

δf ′(∆)

1− δf(∆)
=
∂E [log (1 +Ht)]

∂∆
(26)

if utility is logarithmic and to the equation

(γ − 1)
1− β̂

β̂

δf ′ (∆)

1− δf (∆)
= − ∂

∂∆
log
(
E
[(
RE
t

)1−γ
(1 +Ht)

1−γ
])

(27)

otherwise, i.e., for γ ̸= 1.

We analyze the properties of the equilibrium in steps. First, we derive the implications

of the equilibrium for risk sharing both within and across cohorts of entrepreneurs. Then we

discuss implications for the size of the financial industry and its relation to the equilibrium

expected excess returns of existing firms and new ventures.

4.1 Risk-sharing implications

For presentation purposes, it is convenient to start the analysis by treating ∆ not as a choice

variable, but rather as an exogenous parameter.

To derive the implications of the model for risk sharing between and across investor

cohorts, we start with the following lemma.

Lemma 1 Aggregate wealth growth is given by

Wt+1

Wt

=
Zt+1

Zt
(1 + ηΓt+1) , (28)

while an individual investor’s wealth growth (conditional on survival) is given by

W i
t+1

W i
t

=
Wt+1

Wt

(
1

1− λ

)(
1 + PE

1 + PE + PN

)(
1 + ηΓEt+1 + ηυΓNt+1

1 + ηΓt+1

)
Xi,t+1, (29)

where

Xi,t+1 ≡
1 + ηΓEt+1 + ηυΓNt+1

1
∆

∫ i+∆
2

i−∆
2

dLj,t+1

1 + ηΓEt+1 + ηυΓNt+1

(30)

dLj,t+1 ≡
dΓNj,t+1

ΓNt+1

. (31)
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Equation (29) reveals that risk is imperfectly shared both within and across cohorts. The

lack of within-cohort risk sharing is captured by the term Xi,t+1, which reflects heterogenous

investment returns experienced by existing agents. This is driven by their inability to invest

in all available ventures. Indeed, for ∆ = 1 the term Xi,t+1 becomes one, and the within-

cohort lack of risk sharing disappears.

However, this is not the only dimension along which risk is imperfectly shared. Even

if ∆ = 1, equation (29) shows that individual wealth
W i

t+1

W i
t

and aggregate wealth Wt+1

Wt
are

not perfectly correlated as long as υ is less than one. The random term
1+ηΓE

t+1+ηυΓ
N
t+1

1+ηΓE
t+1+ηΓ

N
t+1+ηΓ

U
t+1

captures the inter-cohort lack of risk sharing. It is driven by the facts that newly arriving

entrepreneurs retain a fraction 1− υ of new shares, respectively the entirety of the untraded

companies. Indeed, with υ = 1 and ΓU ≡ 0 this random term becomes one.

In summary, ∆ controls the extent of intra-cohort risk sharing, while υ that of inter-cohort

risk sharing. If ∆ = υ = 1, then risk is perfectly shared both within and accross cohorts;

individual wealth growth and aggegate wealth growth are perfectly correlated. However,

even in that case individual and aggregate wealth growth differ by a negative constant.

Indeed, aggregating the wealth growth of all investors surviving into t+ 1, we obtain

log

(
(1− λ)

∫
i
W i
t+1di

Wt

)
− log

(
Wt+1

Wt

)
= log

(
1 + PE

1 + PE + PN

)
< 0. (32)

The negative constant reflects that the wealth owned by existing investors does not

include new-firm endowments, which belong to new entrepreneurs rather than existing in-

vestors.

4.2 Implications for the SDF

Since the wealth-to-consumption ratio is constant, our conclusions on wealth changes apply

without modification to consumption changes of individual investors: an individual investor’s

consumption change is given by the right hand side of (29). With logarithmic utilities, the

SDF Mt of an individual investor is given by

M i
t+1

M i
t

= β (1− λ)

(
W i
t+1

W i
t

)−γ

(33)

∝ (1 + ηΓ)γα
(
1 + ηΓEt+1 +

ηυ

∆
ΓNt+1

∫ i+∆
2

i−∆
2

dLj,t+1

)−γ (
Zt+1

Zt

)−γ

.

For the markets where all investors are participating (in particular, the market for existing

22



stocks and the risk-free asset), any
M i

t+1

M i
t

is a valid SDF, and so is

Mt+1

Mt

≡ E

[
M i

t+1

M i
t

∣∣∣ΓNt+1

]
. (34)

By the properties of gamma distributed variables, the quantity
∫ i+∆

2

i−∆
2

dLj,t+1 is beta dis-

tributed and independent of Γt+1. For our purposes, the interesting property of Mt+1

Mt
is its

covariance with the growth shock ΓNt+1.

Proposition 2 Assume that the TFP process Z is deterministic and ΓU ≡ 0.9 When risk

sharing both across and within cohorts is perfect, i.e., ∆ = 1 and υ = 1, the SDF Mt+1

Mt
is

decreasing in ΓNt+1, and therefore Cov
(
Mt+1

Mt
, RN

t+1

)
< 0. However, Cov

(
Mt+1

Mt
,ΓNt+1

)
> 0 and

Cov
(
Mt+1

Mt
, RE

t+1

)
< 0 if either υ or ∆ is sufficiently small.

Lemma 2 shows how risk sharing imperfections can determine whether the marginal util-

ity of consumption of the representative investor (broadly) rises or declines as the displace-

ment innovation Γt+1 increases. If risk is shared perfectly both within and across cohorts,

then large realizations of Γt+1 are “good news” for the representative investor. The gains in

the value of the portfolio of new firms are enough to undo the losses on the existing assets

owned by the investor. However, away from the perfect risk-sharing limit, large realizations

of Γt+1 are “bad news.” For instance, if risk is shared perfectly within cohorts (∆ = 1) but

imperfectly across cohorts (υ < 1), then a fraction of the value of new ventures cannot be

separated from the newly arriving cohort of agents. Hence, the losses on the portfolio of

existing assets cannot be offset by the gains on the portfolio of new ventures. This is the

key insight of Gârleanu et al. (2012).

Even if risk is perfectly shared across cohorts (υ = 1), large realizations of Γt+1 may

be (unconditionally) perceived as states of high marginal utility (“bad states”) when ∆

is sufficiently small. In this situation existing investors as a group gain from increased

innovation, since they buy all the shares of the newly arriving entrepreneurs before the

realization of Γt+1. However, the investors do not know ex ante whether they will receive a

large or a small allotment of the new firms. Because of their risk aversion, they assign greater

weight to the event that they end up with a disproportionately small share of the gains from

growth, and therefore they perceive a high realization of Γt+1 as bad news. This intuition

is reminiscent of the intuition put forth by Constantinides and Duffie (1996), Kogan et al.

(2020), and Gârleanu et al. (2015).

9Both Z and ΓU add a negative component to the covariance between marginal utility and returns, just

as in the standard model. Here we wish to highlight the departures from the standard model.
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Hence our model nests models of perfect risk sharing as well as of imperfect risk sharing,

across and within cohorts, as special cases. However, the most important difference is that it

proposes a view of the financial industry as a (costly) device to improve risk sharing, yielding

joint predictions on how expected returns, the size of the financial industry, the interest rate,

etc., change as, say, displacement increases.

4.3 Equilibrium excess returns

Having derived the equilibrium SDF, we can now discuss the implications of the model for

expected excess returns. We start with a comparison of the expected returns on new ventures

as opposed to existing firms. We then discuss implications for the excess return on the stock

market. Using (14), (17), and the results of Proposition 1 leads to

E

[
RN
t

RE
t

]
=

1− ϕN
ϕN

× E [Ht] . (35)

The right-hand side of (35) contains two terms. The first term, 1−ϕN
ϕN

, is a declining

function of ϕN , the share of aggregate wealth invested in new ventures. The second term

has expectation equal to ηυ a
b

(
E[(1 + ηΓEt )

−1]
)
, an expression that features only exogenous

variables. Equation (35) shows that the expected return on new investments as compared

to existing investments is negatively related to ϕN .

Proposition 3 For any ∆ ∈ [0, 1] and any υ ∈ [0, 1] it holds that E
[
RN

t

RE
t

]
≥ 1 if γ is close

enough to 1.

Before explaining the result further, it is worthwhile to point out that, in the context

of our model, the expectation E
[
RN

t

RE
t

]
≥ 1 corresponds precisely to the Kaplan and Schoar

(2005) private-market equivalent (PME) measure. The proposition states that the value of

this measure is necessarily higher than one (at least for γ not too high), and thus an empirical

value above one is not proof of manager skill.

The result 3 may appear counterintuitive at first glance. When ϕN is small, the bulk of

investors’ wealth is invested in existing assets, whose value is declining in aggregate displace-

ment Γt+1. Accordingly, one would expect new assets to act as a partial hedge against capital

losses on existing assets, and hence to have a low expected return. To see this, rewrite (17)

as

RN
t+1 =

Zt+1

Zt

1 + PE

P̂N

υηΓNt+1(
1 + ηΓEt+1 + ηΓNt+1

)α 1

∆

∫ i+∆
2

i−∆
2

dLj,t+1.
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The properties of the gamma process imply that 1
∆

∫ i+∆
2

i−∆
2

dLj,t+1 is independent of ΓNt+1, and

thus RN
i,t+1 can be viewed as containing the component

υηΓN
t+1

(1+ηΓE
t+1+ηΓ

N
t+1)

α , which is increasing

in ΓNt+1, and the “idiosyncratic” component 1
∆

∫ i+∆
2

i−∆
2

dLj,t+1. The investor values the hedging

component of RN
t+1; absent other effects, its equilibrium excess return would be low, not

high.

The explanation of the proposition lies with the idiosyncratic risk that the investors must

take. Taking the limit as ∆ approaches zero is useful: In that limit, both the variance and

the skewness of 1
∆

∫ i+∆
2

i−∆
2

dLj,t+1 become arbitrarily large, while the expected value is always

one. In economic terms, this means that an investment in new assets results in a loss with

probability approaching one, and in a spectacularly high return with very small probability,

which makes it unattractive for a risk averse investor.

At the opposite extreme of perfect risk sharing (∆ = 1, υ = 1), the expected excess return

of new ventures continue to exceed the expected excess return of existing assets, but for a

different reason: in this case the marginal agent’s consumption is perfectly correlated with

aggregate consumption and new ventures deliver high payoffs (a large number of blueprints)

in states of the world in which the consumption growth of existing investors would be high,

not low. Differently put, the pricing kernel decreases in ΓNt+1.

In summary, for any constellation of parameters, the expected ratio of gross returns

of new ventures to existing assets exceeds unity. Interestingly, this gap exists even in cases

where the investor’s marginal utility increases in ΓNt+1, i.e., in cases where the investor desires

to hedge against fluctuations in displacement risk. Indeed, the smaller is ∆ — and hence

the higher the desire to hedge displacement risk — the larger is the gap in expected returns

between the new venture portfolio and existing firms.

4.4 Equilibrium interest rate

For small enough ∆ and υ, and provided that α is not too small — i.e., displacement is not

trivial — the equilibrium interest rate is declining in η, and is increasing in υ and ∆.

A higher value of η implies that new assets amount to a larger fraction of existing stock

market valuation. It also implies a more rapid (and more volatile and skewed) decline in the

value of existing assets. Faced with such a threat to the value of their existing asset portfolio,

investors see an increased need to invest in the risk-free asset. Since the risk-free asset is in

zero net supply, this results in a decline in the real interest rate. Interestingly, the interest

rate declines even though expected aggregate growth goes up. Clearly, this outcome is due
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to the fact that the gains from aggregate growth are unequally shared across investors, to

the point that some investors may make losses.

An increase in υ implies that existing agents can use purchases of new assets to reduce

the impact of displacement shocks on their existing assets. Hence, less precautionary savings

are required, and the interest rate increases. Finally, an increase in ∆ also helps to reduce

the idiosyncratic volatility of an investor’s wealth, and hence helps reduce precautionary

savings.

We note here that an increase in pure redistribution risk, which could be modelled as a

lengthening of the circumference of the circle, coupled with a reduction in η so as to keep

the expected arrival of new blueprints fixed, is mathematically isomorphic to a reduction in

∆ keeping the circumference of the circle at one. Hence, an increase in pure redistribution

risk has the effect of reducing the interest rate.

4.5 The participation arc ∆ and the size of the financial industry

So far we have treated the participation arc ∆ as an exogenous parameter. Now we discuss

how it is determined inside the model. Equation (26) determines the size of the participation

arc ∆, which is a monotone function of the resources devoted to the financial industry.

To gain some intuition on the determinants of the size of the financial industry, we provide

the following comparative-static results.

Lemma 2 ∆ is an increasing function of η and υ and a declining function of δ.

Lemma 2 states that, as expected displacement increases (an increase in η), it becomes

more attractive to expend resources to reduce the uncertainty associated with risky new

ventures. Similarly, the lower the fraction of shares that is retained by newly arriving agents

(υ), the larger the incentive to expend resources to risk-share with everyone else. Finally, a

higher value of δ increases the cost of the financial industry and hence the resources expended

on it.

The following proposition summarizes the impact of increased displacement on the econ-

omy, taking into account the impact of endogenizing ∆.

Proposition 4 Increased displacement (a higher η) implies a larger fraction of resources

devoted to the financial industry (a higher ∆) and a higher fraction of the aggregate portfolio

directed towards new ventures (higher ϕN).
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5 Alternative investments

We next sketch how to extend the model to allow for a discussion of private equity and so

called “real” assets such as real estate.

5.1 Private equity

To introduce private equity, we assume that each period a fraction of the existing firms

lose their eligibility to receive new blueprints. Newly arriving entrepreneurs have the ability

to purchase those firms from existing agents for a value Π per blueprint, and restore their

ability to receive an allocation of blueprints over the next period, at which point the firms

are re-introduced into the public market.

The private equity firms can sell shares to the investors with whom they share the lo-

cation. Mirroring the assumptions of the baseline model, these firms can only purchase

companies located within a distance of ∆
2
from the firm.

This version of the model would be equivalent to the baseline model. Hence, whether

the blueprints arrive to newly created firms, or to existing firms who occasionally lose the

ability to receive new blueprints, at which point they are taken private and then re-listed,

is irrelevant for this model. In either version of the model, the benefits from the arrival of

new blueprints would be asymmetrically distributed both across and within investor cohorts

leaving the economic intuitions we identified unchanged.

5.2 Real assets

So far we have studied a model where labor is the only factor of production. We now

extend the model to introduce additional factors. We distinguish between two types of

factors, namely those that are not tied to a specific blueprint but are useful for all productive

purposes, and those that are specific to a given blueprint. An example of the first factor

of production would be commercial real estate or commodities, while an example of the

second factor of production would be specialized equipment required to manufacture a given

intermediate good.

5.2.1. Land

The introduction of a factor such as land is straightforward. To be as explicit as possible

that land is not tied to any intermediate good, we assume that land is useful only in the

production of the final good.
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Land is owned by existing agents and rented out to final-good producing firms, so that

aggregate output is given by

Yt = F ζ
t

(
LFt
)1−α−ζ (∫ At

0

xαj,tdj

)
, (36)

where ζ ∈ (0, 1 − α) is the share of output that accrues to land. Total land is fixed and

normalized to one. Given the Cobb-Douglas structure of (36), it follows that the rental rate

of land is

rFt = ζYt. (37)

Once again, we construct an equilibrium where the price-to-rent ratio P F =
PF
t

rFt
is con-

stant, so that the return on land is given by RF
t+1 =

rFt+1+P
F
t+1

PF
t

= Yt+1

Yt
1+PF

PF . Repeating the

arguments of Section 4.1, the wealth evolution of an individual investor, conditional on

survival, is

W i
t+1

W i
t

=
1

1− λ

Wt+1

Wt

(
ζ
(
1 + P F

)
α (1 + PE + PN) + ζ (1 + P F )

+

α
(
1 + PE

)
α (1 + PE + PN) + ζ (1 + P F )

(
1 + ηυΓt+1

1 + ηΓt+1

)
Xi,t+1

)
, (38)

for some new constants P F , PN , and PE. Comparing (38) with (29), the only difference is

that the wealth growth of an individual investor now gains a fraction
ζ(1+PF )

α(1+PE+PN )+ζ(1+PF )
of

aggregate wealth growth. The reason is inutitive: Since land captures a constant fraction of

total output, it actually benefits from higher values of Γt+1, since those are associated with

higher output growth.

For sufficiently small ∆, υ, and ζ, it follows that the SDF is negatively related to Γt+1.

Since the return RE
t+1 is declining in Γt+1, while R

F
t+1 is increasing in Γt+1, it follows that

E
(
RF
t+1

)
< E

(
RE
t+1

)
. Indeed, in addition E

(
RF
t+1

)
< 1+rf , a result that, however, depends

critically on the absence of neutral productivity shocks in the model.

Clearly, an increase in η will render investments in land more attractive, as a hedge to

increased displacement risk.

5.2.2. Specialized equipment

If a factor of production was closely tied with a specific blueprint, its behavior would be quite

different from that of a factor of production that is not. To illustrate what would happen in
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such a case, we assume that, in addition to labor, the production of the new goods requires

a location-specific capital ki:

xi,t = kνi l
1−ν
i,t ,

where li,t is the amount of labor used in the production of intermediate good i and ki denotes

an irreversible capital investment ki that is specific to the location of a blueprint and its

vintage. Capital for the arriving vintages is produced by converting consumption goods to

capital goods with one unit of investment good requiring one unit of the consumption good.

Similar to the baseline model, the financial industry allows existing investors at time ∆

to invest in capital goods in an arc of length ∆ without knowing which locations will be

receiving blueprints in the next period. This capital is then sold to the newly arriving firms

in the respective locations once production commences at time t+1.We suspend the market

for the sale of new firm shares to existing investors prior to the resolution of the uncertainty

about their productivity; shares of new firms are tradeable only after their productivity is

known. This assumption is inessential, but it will allow us to make a simple analogy to the

baseline model.

We will only sketch the solution of this version of the model, since the key intuitions

are no different than in the baseline model. In this version of the model aggregate output

evolves according to

Yt+1

Yt
=

(
At+1

At

)1−(1−ν)α

in steady state. The owners of capital goods extract a fraction ν of the present value of

profits of the firms produced in location i, so that the return from investing in the new

capital goods is given by

RN
i,t+1 =

νAt (Πt+1 + πt+1)
η
∆

∫ i+∆
2

i−∆
2

dΓi,t+1

Atkt (1 + ψf (∆))
, (39)

which parallels closely equation (17), except that existing investors obtain a fraction ν of

total profits and the cost of their investment is given by Atkt (1 + ψf (∆)) , where Atkt is the

number of investment goods and 1 + ψf (∆) is the cost per unit of capital good. Since the

equilibrium of this model features a constant price-to-profits ratio in equilibrium, equation

(39) can alternatively be expressed in q-theoretic fashion as

RN
i,t+1 =

ν πt+1

kt

(
1 + PE

)
η
∆

∫ i+∆
2

i−∆
2

dΓj,t+1

1 + ψf (∆)
, (40)
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where ν πt+1

kt
is the marginal product of capital at firm inception and 1+ψf (∆) is the marginal

cost of converting one unit of consumption to capital. Comparing (40) with (17) shows that

ν plays a similar role to υ, in that it controls the fraction of new firm value that accrues

to existing investors. However, unlike the baseline model, the reason why existing investors

capture that fraction is that they are providing the capital goods required for production,

rather than insuring the entrepreneur.

In this version of the model the equilibrium quantity that adjusts to clear markets is

kt+1, the quantity of capital, rather than the valuation ratio PN . Hence, the intuition of

the baseline model that pertains to the magnitude of PN carry over to the determination of

kt+1. For example, a pure increase in redistribution risk or an increase in ψ (a decrease in the

efficiency of the financial industry) reduces the investment in new capital goods in steady

state. By contrast, the attractiveness (and hence the equilibrium price) of a factor like land,

which is not tied to a specific factor of production, increases under such conditions.

We conclude by noting that even though we drew a stark distinction between factors of

production that are tied to specific blueprints and those that are not, in reality the distinction

is more nuanced, with many factors being convertible between different uses at some cost.

6 Further Discussion

We discuss here how to interpret in the context of our model various other economic quan-

tities and institutions.

6.1 Labor income and pension funds

Labor income benefits from displacement in our model since the arriving firms compete for

labor services, which are in fixed supply. Indeed, total wages increase at the same rate as

aggregate output. Moreover, we have assumed that workers are hand-to-mouth consumers

who are not participating actively in financial markets. These assumptions are purely for

simplicity and can be easily relaxed.

Suppose for instance that workers are allowed to participate in financial markets. More-

over, suppose that the production of a unit of each intermediate good takes one unit of

a labor composite good, which is a Cobb-Douglas aggregate of labor inputs provided by

different cohorts of workers

lt =
∏

s=−∞..t

(lt,s)
at,s , (41)
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E[ΓE] 3.00 γ 9.00

E[ΓN ] 0.40 ∆ 0.50

E[ΓU ] 0.30 υ 0.80

σ(ΓE) 0.67 ρ 0.60

σ(ΓN) 0.10 δf(∆) 0.02

σ(ΓU) 0.15 1− λ 0.98

α 0.80 β 0.97

Table 3: Parameters used for the calibration

where lt,s is the labor input of workers born at time s and the weights at,s are given by

at,s =
∆As

At
. This specification implies that even though the aggregate wage bill grows at the

rate of aggregate output, the fraction of wages accruing to a given cohort of workers declines

over time and indeed at the same rate as the profits of existing firms.

One motivation for such a specification is skill obsolecence: As the number of blueprints

expands, the skills of a given cohort of workers becomes progressively less useful.

If one were to adopt equation (41), and allowed workers access to financial markets

on the same terms as firm owners, then all our conclusions would carry through without

modification: With such a specification, workers’ human capital would exhibit a similar

exposure to displacement to that of the value of existing firms, making workers eager to

hedge displacement risk by investing in newly arriving companies.

In particular, if one took the view that pension funds invest on behalf of workers in a

way that maximizes their welfare, then an increase in displacement activity would explain

the increased popularity amongst pension funds of investment vehicles offering (positive)

exposure to displacing firms.

7 Calibration (Preliminary)

Our goal in this section is to obtain a sense of the magnitudes of the share of the aggregate

portfolio held in the form of alternative investments and the return moments implied by this

model.

For calibration purposes, we extend the model to allow for higher risk premiums by letting

risk aversion γ be different from — in particular, higher than — one, while maintaining the

unitary intertemporal elasticity of substitution assumption. This feature doesn’t change

the model in a substantive way. The appendix describes the straightforward modifications
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Cons. growth mean 0.016

Cons. growth std. dev. 0.036

E[RE −Rf ] 0.013

σ(log(RE)) 0.038

E[RN −RE] 0.019

σi(log(RN
i )) 0.052

βRE(RN) 0.938

5-year PME 0.099

5-year displacement 0.151

ϕN 0.070

Table 4: Un-levered excess return on existing assets (E[RE]), un-levered excess return of the

new assets portfolio provided by the intermediary (E[RN ]), risk-free rate (rf ), and fraction

of assets invested in new assets (ϕN). All entries in the tables are percentages. All returns

and excess returns are annualized. Rows correspond to different calibrations changing one

parameter while keeping all others unchanged.

necessary.

We abstract from issues such as illiquidity and lock-up periods, which are quite common

in private equity investments. As a result we choose to define a period to be equal to five

years in our calibration. By lengthening the horizon, the Euler equation applies between

times when the investor may actually have a chance to make a portfolio choice in reality.

Consistent with common practice, we report returns at an annualized frequency to facilitate

comparison with the literature.

We choose 1 − λ = 0.98 to capture a birth rate of about 2% in the population, and

β = 0.98 to obtain a real risk free rate of about 2%. The risk-aversion parameter γ = 9 is

close to the top of the typical range adopted in the asset-pricing literature. The parameter

α = 0.8 corresponds to a markup of 20% and a factor-less income ratio of 16%. The quantity

δf (∆) captures the added value of the financial industry as a share of aggregate profits.

Since the financial industry for the purposes of this paper is the private-equity industry, we

choose a very low number. This number is actually quite inconsequential for any of the

quantities of interest.

Instead of fully specifying a function f (∆) we choose ∆ directly, since this is the quantity

that enters returns, interest rates and the share of the market portfolio that is invested in

alternative investments. A choice of ∆ equal to 0.5 implies that a typical investor’s portfolio
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of new firms has a correlation of
√
0.5 with the cross-sectional average of the returns of

all private equity funds. Finally, the parameter υ = 0.8 means that the founder retains

approximately 20% of a firm’s equity. Table 3 contains the parameters that we choose.

The parameters aE, aN , aU , bE, bN , and bU , which govern the shape and location of the

three types of new productive capacity, are chosen to match broadly the mean and variance

of five-year real growth rates of aggregate consumption and the dividends of the market

portfolio, as well as (i) the displacement of the market portfolio by new entrants and (ii) the

proportion of IPOs accounted by the private-equity industry. We report the means and the

standard deviations of the three gamma processes instead, for easier interpretation. Finally,

we choose the correlation parameter ρ between the neutral shock Z and ΓN to lead to a beta

of a fund’s return RN
i on the market return RE close to 1.

Table 4 reports results of the calibration. The results are for un-levered returns. To relate

un-levered to levered returns (which is what we observe in the data) one has to multiply

the excess returns reported in the table by 1.6. Note furthermore that the model does not

incorporate any predictability.

The novel quantities that the model allows to study pertain to the new-asset returns and

their effect on the existing assets. In this regard, we note that the fraction of assets invested

in new assets, ϕN = 0.07, is roughly consistent with the data. A similar conclusion holds

for the displacement of the market portfolio, which, over a period of five years, represents

on average 85% of total market capitalization. Of particular interest is the model-implied

public-market equivalent (PME), which we compute following Kaplan and Schoar (2005).

In our model, this quantity corresponds to the expectation E[RN
i /R

E]− 1. Despite the lack

of any picking skill in the model, and consistent with Proposition 3, the (excess) PME is

significantly larger than zero.

8 Conclusion

We propose a tractable framework whereby the gains of growth are asymmetrically dis-

tributed across investors. The main results can be summarized as follows: An acceleration

in displacement activity (and more generally the dispersion of the gains from growth) will

increase heterogeneity amongst investors. The benefits will accrue predominantly to arriving

entrepreneurs and lucky investors who happen to invest in profitable incipient firms. Exist-

ing equities will experience outflows in favor of asset classes such as fixed income, private

equity, venture capital, and real assets. Increased growth may co-exist with lower interest

rates. Low discount rates may not result in more physical investment but may simply result
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in an expansion of the financial industry.

Interestingly, the expected ratio of gross returns in incipient vs. existing firms, which

captures the Kaplan and Schoar (2005) PME in our model, likely exceeds one, even though

incipient firms offer hedging benefits to investors. The reason is that in a world of imperfect

risk sharing, idiosyncratic risk is priced.
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A Proofs

Proof of Proposition 1. A first-order condition for portfolio choice for an investor with

logarithmic preferences is

E
[(
ϕB
(
1 + rf

)
+ ϕER

E
t + ϕNR

N
t

)−γ (
RE
t −RN

t

)]
= 0. (42)

Using the definitions of ϕE and ϕN and imposing ϕB = 0 and market clearing in the stock

markets implies ϕE = PE

PE+P̂N
and ϕN = 1− ϕE. Accordingly, using (14) and (17),

ϕB
(
1 + rf

)
+ ϕER

E
t + ϕNR

N
t =

PE

PE + P̂N
RE
t (1 +Ht) . (43)

Using (43) and (17) inside (42) and noting that PE

P̂N
= ϕE

1−ϕE
leads to (20).

Having determined ϕE, it is straightforward to determine PE and PN . To start, we note

that with unitary IES c = 1− β (1− λ). Aggregating (11) across agents and imposing asset

market clearing implies

Wt = Atπt
(
PE + PN + 1

)
. (44)

Given goods market clearing Ct

Atπt
= (1− δf (∆)), we obtain

1 + PE + PN =
1− δf (∆)

1− β (1− λ)
. (45)

Combining (45) with ϕE = PE

PE+P̂N
results in (23)–(24).

The first-order condition for the excess return RE
t −

(
1 + rf

)
yields (25).

Finally, equations (26) and (27) follow from maximizing utility over the right-hand side

of (43), making use of the envelope theorem and recalling P̂N = PN + δf(∆).

Proof of Lemma 1. Equation (28) follows from (44) and (6). To arrive at equation (29),

we use (12), (43), (14), and the goods market clearing condition c Wt

Atπt
+ δf (∆) = 1, which

implies

1− c =
PE + PN + δf (∆))

(1 + PE + PN)
.

Proof of Proposition 2. When υ = 1 and ∆ = 1, Mt+1

Mt
∝
(
1 + ηΓEt+1 + ηΓNt+1

)γ(α−1)
, which

is decreasing in ΓNt+1.
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To prove the second claim, note first that, for υ = 0,

Mt+1

Mt

∝
(
RE
t+1

)−γ ∝ (1 + ηΓEt+1)
−γ (1 + ηΓEt+1 + ηΓNt+1

)αγ
, (46)

so that Mt+1

Mt
is obviously negatively correlated with RE

t+1 and positively correlated with

lim
υ→0

RN
t+1

υ
=
(
1 + ηΓEt+1 + ηΓNt+1

)−α
ΓNt+1

η

∆

∫ i+∆
2

i−∆
2

dLj,t+1. (47)

The last statement is due to the fact the right-hand sides of both (46) and (47) are decreasing

in ΓEt+1 and increasing in ΓNt+1. We invoke continuity in υ, to establish the desired covariance

signs for υ > 0 small enough.

Finally, for the case of small ∆, we are going to use the following result, which we

formalize as a lemma, and prove after the end of the proof to the proposition.

Lemma 3 The random variable 1
∆

∫ ∆

0
dLj,t tends to zero in probability as ∆ tends to zero.

That is, for every ε > 0

lim
∆→0

Prob

(
1

∆

∫ ∆

0

dLj,t < ϵ

)
= 1. (48)

Note now that, for any υ > 0 and ∆ > 0,

M i
t+1

M i
t

∝
(
1 + ηΓEt+1 + ηΓNt+1

)αγ (
1 + ηΓEt+1 +

ηυ

∆
ΓNt+1

∫ i+∆
2

i−∆
2

dLj,t+1

)−γ

. (49)

For ηυ
∆
ΓNt+1

∫ i+∆
2

i−∆
2

dLj,t+1 < 1, which can be ensured to obtain with probability arbitrarily

close to 1 by choosing ∆ low enough,10 the last expression decreases in ΓEt+1, while R
E
t+1

continues to increase in ΓEt+1. It only remains to note that the contribution to the covariance

of the complementary event tends to 0 as its probability does.

For the covariance with RN
t+1, we note that the right-hand side of (49) increases in ΓNt+1

on the event

α

(
1 + ηΓEt+1 +

ηυ

∆
ΓNt+1

∫ i+∆
2

i−∆
2

dLj,t+1

)
>
(
1 + ηΓEt+1 + ηΓNt+1

) υ
∆

∫ i+∆
2

i−∆
2

dLj,t+1. (50)

The probability of this event goes to 1 as ∆ → 0; the only states excluded are those in

which ΓNt+1 is larger than a bound that can be increased arbitrarily and those in which
1
∆

∫ i+∆
2

i−∆
2

dLj,t+1 > ε arbitrarily chosen.

10
∫ i+∆

2

i−∆
2

dLj,t+1 and
∫∆

0
dLj,t+1 have the same distribution and are both independent of ΓN

t+1 and ΓE
t+1.
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Furthermore, (49) decreases in ΓEt+1 for small ∆ with arbitrarily high probability, as re-

marked above. Consequently, computing the covariance on the event on which Mt+1

Mt
displays

the desired dependence on the two shocks yields in a strictly positive result for ∆ small

enough, while the contribution of the complement becomes arbitrarily small.

Proof of Lemma 3. The distribution of
∫ ∆

0
dLj,t is beta with parameters aN∆ and

aN(1−∆). We wish to estimate

Prob

(∫ ∆

0

dLj,t < ε∆

)
=

Γ(aN)

Γ(aN∆)Γ(aN(1−∆))

∫ ε∆

0

xa
N∆−1(1− x)a

N (1−∆)−1dx,

(51)

which has the same limit as ∆ → 0 as

lim
∆→0

1

Γ(aN∆)

∫ ε∆

0

xa
N∆−1dx = lim

y→0

1

Γ(y)

∫ yε

aN

0

xy−1dx = lim
y→0

(ε/aN)yyy

yΓ(y)
= 1 (52)

since both the numerator and the denominator tend to 1.

Proof of Proposition 3. E
[
RN

RE

]
can be written as

E

[
RN

RE

]
=

E
[(
RE
t

)1−γ
(1 +Ht)

−γ
]
E[Ht]

E
[
(RE

t )
1−γ

(1 +Ht)
−γ Ht

] = 1−
cov
((
RE
t

)1−γ
(1 +Ht)

−γ , Ht

)
E
[
(RE

t )
1−γ

(1 +Ht)
−γ Ht

] . (53)

(20) and (35). Since the numerator of the last fraction reduces to cov
(
(1 +Ht)

−1 , Ht

)
< 0

when γ = 1 and it is continuous in γ, the result follows.

Proof of Lemma 2. It suffices to show that

∂2E
[
log
(
1 + ηΓEt + ηΓUt + ηυ

∆

∫ i+∆
2

i−∆
2

dΓNj,t

)]
∂∆∂η

> 0. (54)

Differentiating first with respect to η gives

∂E
[
log
(
1 + ηΓEt + ηΓUt + ηυ

∆

∫ i+∆
2

i−∆
2

dΓNj,t

)]
∂η

= E

 ΓEt + ΓEt + υ
∆

∫ i+∆
2

i−∆
2

dΓNj,t

1 + ηΓEt + ηΓUt + ηυ
∆

∫ i+∆
2

i−∆
2

dΓNj,t

 .
The function x 7→ x

1+ηx
is concave. Further, since ΓEt +ΓUt and υ

∆

∫ i+∆
2

i−∆
2

dΓNj,t are indepen-

dent and υ
∆

∫ i+∆
2

i−∆
2

dΓNj,t increases in ∆ in the sense of second-order stochastic dominance, so

does ΓEt + ΓUt + υ
∆

∫ i+∆
2

i−∆
2

dΓNj,t. Inequality (54) follows.
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Proof of Proposition 4. The only result remaining to prove is the dependence of

ϕN = 1− ϕE on η and ∆. In the logarithmic utility case,

ϕE = E

(1 + (1 + ηΓEt
)−1

η
υ

∆

∫ i+∆
2

i−∆
2

dΓNj,t

)−1
 (55)

= E

(1 + (1 + ηΓEt
)−1

η
υ

∆

∫ i+∆
2

i−∆
2

dΓNj,t

)−1 ∣∣∣ΓEt
 , (56)

and the quantity inside the square brackets in (55) decreases in η for all realizations of

the (positive) random variables ΓEt and dΓNj,t. An increase in ∆, just as in the proof of

Lemma 2, results in a second-order stochastically dominant random variables in (55), so

that, for every realization of ΓEt , the conditional expectation in (56) decreases. We conclude

that ϕN increases with η.
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