Equality of opportunity and the distribution of long-run income in Sweden

Karin Hederos Eriksson¹ Markus Jäntti² Lena Lindahl²

¹Stockholm School of Economics ²Swedish Institute for Social Research

September 1, 2014

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

Introduction

Data

Methods

Results - men and women

Concluding remarks

Tables and figures

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

much has been learnt about the importance of family background for economic status (intergenerational income persistence and mobility, sibling correlations; country differences, changes across time, gender differences in)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- much has been learnt about the importance of family background for economic status (intergenerational income persistence and mobility, sibling correlations; country differences, changes across time, gender differences in)
- interest in importance of family background (vaguely) motivated by concern for *equality of opportunity* (who is *against* eq. opp?)

(ロ) (同) (三) (三) (三) (○) (○)

- much has been learnt about the importance of family background for economic status (intergenerational income persistence and mobility, sibling correlations; country differences, changes across time, gender differences in)
- interest in importance of family background (vaguely) motivated by concern for *equality of opportunity* (who is *against* eq. opp?)
- a persistent question is: how much persistence is ethically acceptable? (Fishkin, 1983)

(ロ) (同) (三) (三) (三) (○) (○)

- much has been learnt about the importance of family background for economic status (intergenerational income persistence and mobility, sibling correlations; country differences, changes across time, gender differences in)
- interest in importance of family background (vaguely) motivated by concern for *equality of opportunity* (who is *against* eq. opp?)
- a persistent question is: how much persistence is ethically acceptable? (Fishkin, 1983)

(ロ) (同) (三) (三) (三) (○) (○)

liberty

- much has been learnt about the importance of family background for economic status (intergenerational income persistence and mobility, sibling correlations; country differences, changes across time, gender differences in)
- interest in importance of family background (vaguely) motivated by concern for *equality of opportunity* (who is *against* eq. opp?)
- a persistent question is: how much persistence is ethically acceptable? (Fishkin, 1983)

(ロ) (同) (三) (三) (三) (○) (○)

- liberty
- meritocracy

- much has been learnt about the importance of family background for economic status (intergenerational income persistence and mobility, sibling correlations; country differences, changes across time, gender differences in)
- interest in importance of family background (vaguely) motivated by concern for *equality of opportunity* (who is *against* eq. opp?)
- a persistent question is: how much persistence is ethically acceptable? (Fishkin, 1983)
 - liberty
 - meritocracy
 - equality of opportunity

- much has been learnt about the importance of family background for economic status (intergenerational income persistence and mobility, sibling correlations; country differences, changes across time, gender differences in)
- interest in importance of family background (vaguely) motivated by concern for *equality of opportunity* (who is *against* eq. opp?)
- a persistent question is: how much persistence is ethically acceptable? (Fishkin, 1983)
 - liberty
 - meritocracy
 - equality of opportunity
- extends work by Björklund, Jäntti, and Roemer (2012) to examine both men and women

 individual accomplishments in some space of ethical concern depend on primarily their own choices and efforts

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- individual accomplishments in some space of ethical concern depend on primarily their own choices and efforts
- inequalities due to circumstances beyond an individual's control violate eq. opp. norms

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- individual accomplishments in some space of ethical concern depend on primarily their own choices and efforts
- inequalities due to circumstances beyond an individual's control violate eq. opp. norms

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

let u = u(e, t) be an outcome of ethical interest (in the present paper, long-run income)

- individual accomplishments in some space of ethical concern depend on primarily their own choices and efforts
- inequalities due to circumstances beyond an individual's control violate eq. opp. norms

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- let u = u(e, t) be an outcome of ethical interest (in the present paper, long-run income)
 - e is an individual's effort

- individual accomplishments in some space of ethical concern depend on primarily their own choices and efforts
- inequalities due to circumstances beyond an individual's control violate eq. opp. norms
- let u = u(e, t) be an outcome of ethical interest (in the present paper, long-run income)
 - *e* is an individual's effort
 - t indexes type, defined by a unique combination of circumstances beyond an individual's control

(日) (日) (日) (日) (日) (日) (日)

- individual accomplishments in some space of ethical concern depend on primarily their own choices and efforts
- inequalities due to circumstances beyond an individual's control violate eq. opp. norms
- let u = u(e, t) be an outcome of ethical interest (in the present paper, long-run income)
 - *e* is an individual's effort
 - t indexes type, defined by a unique combination of circumstances beyond an individual's control
- outcome variation driven by (suitably normalized) effort variation is ethically acceptable, whereas that driven by variation in type is not

- individual accomplishments in some space of ethical concern depend on primarily their own choices and efforts
- inequalities due to circumstances beyond an individual's control violate eq. opp. norms
- let u = u(e, t) be an outcome of ethical interest (in the present paper, long-run income)
 - *e* is an individual's effort
 - t indexes type, defined by a unique combination of circumstances beyond an individual's control
- outcome variation driven by (suitably normalized) effort variation is ethically acceptable, whereas that driven by variation in type is not
- in this presentation: examine empirically the role of circumstances in inequality of long-run income for both men and women

examine inequality in long-run (total market) income

- examine inequality in long-run (total market) income
- average income across ages 37–43 to capture long-run income

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Introduction Data Methods Results - men and women Concluding remarks Tables and figures References

Data

- examine inequality in long-run (total market) income
- average income across ages 37–43 to capture long-run income
- data from numerous registers (tax data; censuses; military enlistment; formal educational degrees etc)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- examine inequality in long-run (total market) income
- average income across ages 37–43 to capture long-run income
- data from numerous registers (tax data; censuses; military enlistment; formal educational degrees etc)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 several "standard" circumstances (parental/family characteritics)

- examine inequality in long-run (total market) income
- average income across ages 37–43 to capture long-run income
- data from numerous registers (tax data; censuses; military enlistment; formal educational degrees etc)
- several "standard" circumstances (parental/family characteritics)
- cognitive (IQ) and non-cognitive (NC) characteristics hugely important for income, but available from military enlistment data chiefly for men

(ロ) (同) (三) (三) (三) (○) (○)

- examine inequality in long-run (total market) income
- average income across ages 37–43 to capture long-run income
- data from numerous registers (tax data; censuses; military enlistment; formal educational degrees etc)
- several "standard" circumstances (parental/family characteritics)
- cognitive (IQ) and non-cognitive (NC) characteristics hugely important for income, but available from military enlistment data chiefly for men
 - use brothers' characteristics to measure those of women

- examine inequality in long-run (total market) income
- average income across ages 37–43 to capture long-run income
- data from numerous registers (tax data; censuses; military enlistment; formal educational degrees etc)
- several "standard" circumstances (parental/family characteritics)
- cognitive (IQ) and non-cognitive (NC) characteristics hugely important for income, but available from military enlistment data chiefly for men
 - use brothers' characteristics to measure those of women
 - for men: compare results using own and brothers' characteristics

- examine inequality in long-run (total market) income
- average income across ages 37–43 to capture long-run income
- data from numerous registers (tax data; censuses; military enlistment; formal educational degrees etc)
- several "standard" circumstances (parental/family characteritics)
- cognitive (IQ) and non-cognitive (NC) characteristics hugely important for income, but available from military enlistment data chiefly for men
 - use brothers' characteristics to measure those of women

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

- for men: compare results using own and brothers' characteristics
- address measurement error (only partly done)

 parental income quartile group (income of both bio parents when son was 13-17; 4 groups)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 parental income quartile group (income of both bio parents when son was 13-17; 4 groups)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 parental education group (degree of the more highly educated bio parent; 3 groups)

- parental income quartile group (income of both bio parents when son was 13-17; 4 groups)
- parental education group (degree of the more highly educated bio parent; 3 groups)
- family structure/type (live with both bio parents or not; 2 groups)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- parental income quartile group (income of both bio parents when son was 13-17; 4 groups)
- parental education group (degree of the more highly educated bio parent; 3 groups)
- family structure/type (live with both bio parents or not; 2 groups)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

number of siblings (0, 1-2 or 3+; 3 groups)

- parental income quartile group (income of both bio parents when son was 13-17; 4 groups)
- parental education group (degree of the more highly educated bio parent; 3 groups)
- family structure/type (live with both bio parents or not; 2 groups)
- number of siblings (0, 1-2 or 3+; 3 groups)
- IQ quartile groups (military enlistment cog. test; 4 groups)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- parental income quartile group (income of both bio parents when son was 13-17; 4 groups)
- parental education group (degree of the more highly educated bio parent; 3 groups)
- family structure/type (live with both bio parents or not; 2 groups)
- number of siblings (0, 1-2 or 3+; 3 groups)
- ► IQ quartile groups (military enlistment cog. test; 4 groups)
- non-cognitive skill [NC] quartile groups (military enlistment cog. test; 4 groups)

(ロ) (同) (三) (三) (三) (○) (○)

Are these reasonable?

other circumstances than what we capture may matter

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Are these reasonable?

other circumstances than what we capture may matter

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

are IQ and NC "circumstances"?

Are these reasonable?

- other circumstances than what we capture may matter
- are IQ and NC "circumstances"?
- is the remaining variation in the outcome *really* due to "effort"? (e.g., luck, inherited preferences for leisure)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Conditional distribution of income among types

Education types Go to graph

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Conditional distribution of income among types

- Education types Go to graph
- Income types Go to graph

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conditional distribution of income among types

- Education types Go to graph
- Income types Go to graph
- IQ types (using brothers) Go to graph

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conditional distribution of income among types

- Education types Go to graph
- Income types Go to graph
- IQ types (using brothers) Go to graph
- NC types (using brothers) Go to graph

 measure inequality of outcomes by standard relative inequality measures (Gini, GE[0,1], CV2)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 measure inequality of outcomes by standard relative inequality measures (Gini, GE[0,1], CV2)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

regress income on background characteristics

- measure inequality of outcomes by standard relative inequality measures (Gini, GE[0,1], CV2)
- regress income on background characteristics
- measure the importance of a particular factor by comparing inequality of income when that factor is allowed to affect income, and when not (using estimated regression coefficients)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- measure inequality of outcomes by standard relative inequality measures (Gini, GE[0,1], CV2)
- regress income on background characteristics
- measure the importance of a particular factor by comparing inequality of income when that factor is allowed to affect income, and when not (using estimated regression coefficients)
- decompose inequality into importance of circumstances and remainder ("effort")

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The regression

denote each of the J background characteristics by X_j, which can take K_j specific values

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The regression

- denote each of the J background characteristics by X_j, which can take K_j specific values
- ► each type *t* consists of a particular cell or collection of value *t* ∈ *T*, where the set *T* consists of elements **X**^t = (X₁ = x₁^t, X₂ = x₂^t, X₃ = x₃^t, X₄ = x₄^t, X₅ = x₅^t, X₆ = x₆^t); the type of a particular sample member is **X**^t_i

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The regression

- denote each of the J background characteristics by X_j, which can take K_j specific values
- ► each type *t* consists of a particular cell or collection of value *t* ∈ *T*, where the set *T* consists of elements **X**^t = (X₁ = x₁^t, X₂ = x₂^t, X₃ = x₃^t, X₄ = x₄^t, X₅ = x₅^t, X₆ = x₆^t); the type of a particular sample member is **X**^t_i
- We take effort to be the residual of a regression of ln Y on X^t:

$$\ln Y_i^t = \mu + \sum_j \mathbf{X}'_{ji} \boldsymbol{\beta}_j + \epsilon_i^t, \tag{1}$$

(日) (日) (日) (日) (日) (日) (日)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- ► the distribution of e^t_i may vary across types, that is, it can be heterogeneous
- since a person can not be held accountable for their type, "extra" variation in effort due to type can also not

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- since a person can not be held accountable for their type, "extra" variation in effort due to type can also not

(日) (日) (日) (日) (日) (日) (日)

► solution: neutralize heterogeneity (add and subtract a homogenous effort with variance $\sigma^2 = \sum_t f_t \sigma_t^2$)

- since a person can not be held accountable for their type, "extra" variation in effort due to type can also not
- ► solution: neutralize heterogeneity (add and subtract a homogenous effort with variance $\sigma^2 = \sum_t f_t \sigma_t^2$)
- our empirical work horse is

$$\ln Y_{i}^{t} = \mu + \sum_{j} \mathbf{X}_{ji}^{\prime} \beta_{j} + \epsilon_{i}^{t} - \underbrace{\epsilon_{i}^{t} / k \sigma_{t}}_{u_{i}} + \underbrace{\epsilon_{i}^{t} / k \sigma_{t}}_{u_{i}} = \mu + \sum_{j} \mathbf{X}_{ji}^{\prime} \beta_{j} + \widetilde{\epsilon}_{i}^{t} + u_{i},$$
(2)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Elimination of a factor

to eliminate variation due to a particular factor *j*, we recompute income by removing it

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Elimination of a factor

- to eliminate variation due to a particular factor *j*, we recompute income by removing it
- ► i.e., subtract from income $\mathbf{X}'_{ij}\widehat{\boldsymbol{\beta}}_{j}$ and replace it with $\overline{\mathbf{X}}'_{j}\widehat{\boldsymbol{\beta}}_{j}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Elimination of a factor

- to eliminate variation due to a particular factor j, we recompute income by removing it
- ► i.e., subtract from income $\mathbf{X}'_{ii}\widehat{\boldsymbol{\beta}}_i$ and replace it with $\overline{\mathbf{X}}'_i\widehat{\boldsymbol{\beta}}_i$
- the difference in inequality before and after a factor's contribution has been replaced measures its importance

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Decomposing long-run inequality

 the importance of a factor *j* depends on what other factors are allowed to vary (or not)

 the importance of a factor j depends on what other factors are allowed to vary (or not)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

with 6 + 2=8 factors, there are 2⁸ = 256 possible combinations of factors that can be allowed to vary

- the importance of a factor *j* depends on what other factors are allowed to vary (or not)
- with 6 + 2=8 factors, there are 2⁸ = 256 possible combinations of factors that can be allowed to vary
- the contribution to inequality of a factor depends on the exact sequence in which factors are eliminated

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 solution: estimate importance of a factor by assessing all possible elimination sequences ("Shapley-value decomposition") and take effect to be the average

(ロ) (同) (三) (三) (三) (○) (○)

- solution: estimate importance of a factor by assessing all possible elimination sequences ("Shapley-value decomposition") and take effect to be the average
- e.g., the powerset of 5 factors (labeling the factors now A, ..., E) consists of 32 elements:

{{}, {"A"}, {"B"}, {"C"}, {"D"}, {"E"}, {"A", "B"}, {"A", "C"}, {"A", "D"}, {"A", "E"}, {"B", "C"}, {"B", "D"}, {"B", "E"}, {"C", "D"}, {"C", "E"}, {"D", "E"}, {"A", "B", "C"}, {"A", "B", "D"}, {"A", "B", "E"}, {"A", "C", "D"}, {"A", "C", "E"}, {"A", "D", "E"}, {"B", "C", "D"}, {"B", "C", "E"}, {"B", "D", "E"}, {"C", "D", "E"}, {"A", "B", "C", "D"}, {"A", "B", "C", "E"}, {"A", "B", "D", "E"}, {"A", "C", "D"}, "E"}, {"A", "B", "C", "D"}, {"A", "B", "C", "E"}, {"A", "B", "D", "E"}, {"A", "C", "D", "E"}, {"B", "C", "D", "E"}, {"A", "B", "C", "D"}, "E"}

A D F A 同 F A E F A E F A Q A

- solution: estimate importance of a factor by assessing all possible elimination sequences ("Shapley-value decomposition") and take effect to be the average
- e.g., the powerset of 5 factors (labeling the factors now A, ..., E) consists of 32 elements:

{{}, {"A"}, {"B"}, {"C"}, {"D"}, {"E"}, {"A", "B"}, {"A", "C"}, {"A", "D"}, {"A", "E"}, {"B", "C"}, {"B", "D"}, {"B", "E"}, {"C", "D"}, {"C", "E"}, {"D", "E"}, {"A", "B", "C"}, {"A", "B", "D"}, {"A", "B", "E"}, {"A", "C", "D"}, {"A", "C", "E"}, {"A", "D", "E"}, {"B", "C", "D"}, {"B", "C", "E"}, {"B", "D", "E"}, {"C", "D", "E"}, {"A", "B", "C", "D"}, {"A", "B", "C", "E"}, {"A", "B", "D", "E"}, {"A", "C", "D", "E"}, {"A", "B", "C", "D"}, {"A", "B", "C", "E"}, {"A", "B", "D", "E"}, {"A", "C", "D", "E"}, {"B", "C", "D", "E"}, {"A", "B", "C", "E"}, {"A", "B", "C", "E"}, {"A", "C", "D", "E"}, {"A", "B", "C", "D", "E"}, {"A", "B", "C", "D", "E"}, {"A", "C", "D", "E"}, {"A", "B", "C", "D", "E"}}

 locate all sets that do not contain factor A (have eliminated variation due to it) and compare inequality for that set with same set that also includes A

- solution: estimate importance of a factor by assessing all possible elimination sequences ("Shapley-value decomposition") and take effect to be the average
- e.g., the powerset of 5 factors (labeling the factors now A, ..., E) consists of 32 elements:

{{}, {"A"}, {"B"}, {"C"}, {"D"}, {"E"}, {"A", "B"}, {"A", "C"}, {"A", "D"}, {"A", "E"}, {"B", "C"}, {"B", "D"}, {"B", "E"}, {"C", "D"}, {"C", "E"}, {"D", "E"}, {"A", "B", "C"}, {"A", "B", "D"}, {"A", "B", "E"}, {"A", "C", "D"}, {"A", "C", "E"}, {"A", "D", "E"}, {"B", "C", "D"}, {"B", "C", "E"}, {"B", "D", "E"}, {"C", "D", "E"}, {"A", "B", "C", "D"}, {"A", "B", "C", "E"}, {"A", "B", "D", "E"}, {"A", "C", "D", "E"}, {"A", "B", "C", "D"}, {"A", "B", "C", "E"}, {"A", "B", "D", "E"}, {"A", "C", "D", "E"}, {"B", "C", "D", "E"}, {"A", "B", "C", "D", "E"}}

- locate all sets that do not contain factor A (have eliminated variation due to it) and compare inequality for that set with same set that also includes A
- yields an exact (additive) decomposition of inequality measures

Regression results

Regression results – part 1

Regression results – part 2

one obvious circumstance not included above is gender

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

one obvious circumstance not included above is gender

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

two distinct questions (asked here):

- one obvious circumstance not included above is gender
- two distinct questions (asked here):
 - 1. are the circumstances, and circumstances overall, equally important among men and women?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- one obvious circumstance not included above is gender
- two distinct questions (asked here):
 - 1. are the circumstances, and circumstances overall, equally important among men and women?
 - 2. if we treat gender as a circumstance along with the others, how does gender compare with other circumstances?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 both IQ and non-cognitive [NC] characteristics important circumstances for men

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

 both IQ and non-cognitive [NC] characteristics important circumstances for men

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

military enlistment data only available for men

- both IQ and non-cognitive [NC] characteristics important circumstances for men
- military enlistment data only available for men
- solution: use a brother's characteristics to measure IQ and NC for women

 Measurement model graph

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- both IQ and non-cognitive [NC] characteristics important circumstances for men
- military enlistment data only available for men
- solution: use a brother's characteristics to measure IQ and NC for women

 Measurement model graph

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

remarks

- both IQ and non-cognitive [NC] characteristics important circumstances for men
- military enlistment data only available for men
- solution: use a brother's characteristics to measure IQ and NC for women

 Measurement model graph
- remarks
 - limit analysis to men and women with at least one brother (who has non-missing enlistment data)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- both IQ and non-cognitive [NC] characteristics important circumstances for men
- military enlistment data only available for men
- solution: use a brother's characteristics to measure IQ and NC for women

 Measurement model graph
- remarks
 - limit analysis to men and women with at least one brother (who has non-missing enlistment data)

(日) (日) (日) (日) (日) (日) (日)

 need to assume "measurement errors" similar for brother-brother and sister-brother characteristics (see Bouchard and McGue, 1981)

- both IQ and non-cognitive [NC] characteristics important circumstances for men
- military enlistment data only available for men
- solution: use a brother's characteristics to measure IQ and NC for women

 Measurement model graph
- remarks
 - limit analysis to men and women with at least one brother (who has non-missing enlistment data)
 - need to assume "measurement errors" similar for brother-brother and sister-brother characteristics (see Bouchard and McGue, 1981)
 - women have on average more brother than men, so averaging across more brothers' information (less measurement error)

- both IQ and non-cognitive [NC] characteristics important circumstances for men
- military enlistment data only available for men
- solution: use a brother's characteristics to measure IQ and NC for women

 Measurement model graph
- remarks
 - limit analysis to men and women with at least one brother (who has non-missing enlistment data)
 - need to assume "measurement errors" similar for brother-brother and sister-brother characteristics (see Bouchard and McGue, 1981)
 - women have on average more brother than men, so averaging across more brothers' information (less measurement error)
 - evidence from young Swedes that brother-brother higher than brother-sister correlations (Grönqvist, Öckert, and Vlachos, 2010)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Results - men and women compared

1. compare importance of circumstances in inequality among women to that among men

Results – men and women compared

- 1. compare importance of circumstances in inequality among women to that among men
- 2. measure the importance of gender as a circumstance

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Results - men and women compared

- 1. compare importance of circumstances in inequality among women to that among men
- 2. measure the importance of gender as a circumstance
- 3. include IQ and NC based on brothers' characteristics and adjust for bias in $\hat{\beta}$ (based on men)

Results – men and women compared

1. compare results for men using own and brothers' IQ and NC – use brother IQ and NC characteristics among men ▶ Go to table

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Results - men and women compared

- compare results for men using own and brothers' IQ and NC – use brother IQ and NC characteristics among men
 Go to table
- 2. equality of opportunity among women compared to men

 Go to table

Results – men and women compared

- 1. compare results for men using own and brothers' IQ and NC – use brother IQ and NC characteristics among men ▶ Go to table
- 2. equality of opportunity among women compared to men
- 3. adding gender as a circumstance Go to table

Results - men and women compared

1. omit IQ and NC

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Results - men and women compared

- 1. omit IQ and NC
- 2. equality of opportunity among women compared to men

Results - men and women compared

- 1. omit IQ and NC
- 2. equality of opportunity among women compared to men
 Go to table
- 3. adding gender as a circumstance Go to table

Next steps

 further explore (using other data sources) adequacy of measurement model assumption (compare brother-brother and sister-brother measurement models)

Next steps

- further explore (using other data sources) adequacy of measurement model assumption (compare brother-brother and sister-brother measurement models)
- ► further use of estimated error models to adjust for misclassification in X_i and X̄_i

 depending on measure, 1/3-1/4 of inequality of long-run income inequality among Swedish men due to circumstances

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- depending on measure, 1/3-1/4 of inequality of long-run income inequality among Swedish men due to circumstances
- IQ, NC, parental income and type heterogeneity important contributors

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- depending on measure, 1/3-1/4 of inequality of long-run income inequality among Swedish men due to circumstances
- IQ, NC, parental income and type heterogeneity important contributors

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 circumstances account for less long-run inequality for women than men, and

- depending on measure, 1/3-1/4 of inequality of long-run income inequality among Swedish men due to circumstances
- IQ, NC, parental income and type heterogeneity important contributors
- circumstances account for less long-run inequality for women than men, and
- gender is overwhelmingly the most important circumstance when both are combined

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- depending on measure, 1/3-1/4 of inequality of long-run income inequality among Swedish men due to circumstances
- IQ, NC, parental income and type heterogeneity important contributors
- circumstances account for less long-run inequality for women than men, and
- gender is overwhelmingly the most important circumstance when both are combined

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

future research:

- depending on measure, 1/3-1/4 of inequality of long-run income inequality among Swedish men due to circumstances
- IQ, NC, parental income and type heterogeneity important contributors
- circumstances account for less long-run inequality for women than men, and
- gender is overwhelmingly the most important circumstance when both are combined
- future research:
 - better measures of effort? (labour force participation at extensive and intensive margins)

- depending on measure, 1/3-1/4 of inequality of long-run income inequality among Swedish men due to circumstances
- IQ, NC, parental income and type heterogeneity important contributors
- circumstances account for less long-run inequality for women than men, and
- gender is overwhelmingly the most important circumstance when both are combined
- future research:
 - better measures of effort? (labour force participation at extensive and intensive margins)
 - upper and lower bounds on effort?

- depending on measure, 1/3-1/4 of inequality of long-run income inequality among Swedish men due to circumstances
- IQ, NC, parental income and type heterogeneity important contributors
- circumstances account for less long-run inequality for women than men, and
- gender is overwhelmingly the most important circumstance when both are combined
- future research:
 - better measures of effort? (labour force participation at extensive and intensive margins)

(ロ) (同) (三) (三) (三) (○) (○)

- upper and lower bounds on effort?
- sibling correlations?

Income distribution (CDF) among example types $(G^t(e))$: by level of parental education

Income distribution (CDF) among example types $(G^t(e))$: by level of parental income

Income distribution (CDF) among example types $(G^t(e))$: by level of brothers' IQ

Income distribution (CDF) among example types $(G^t(e))$: by level of brothers' NC

Own and brothers' IQ and NC score among Swedish men

Contribution of circumstances to overall inequality of long-run average income for men

Own (Panel A) and brother's characteristics (Panel B) – heterogeneous effort controlled using smoothed residual variance

	Own char				Brothers' char				
	Gini	GE(0)	GE(1)	CV2	Gini	GE(0)	GE(1)	CV2	
Index value									
ineqest	0.297	0.189	0.215	1.454	0.297	0.189	0.215	1.454	
Relative contributions									
ParentInc	6.4	3.3	3.9	2.8	7.8	3.8	4.5	3.2	
ParentEduc	1.7	1.0	1.3	0.9	3.4	1.8	2.3	1.8	
Sib	0.6	0.0	0.0	0.3	0.7	0.1	0.1	0.5	
Family	1.0	0.2	0.1	-0.4	1.2	0.2	0.2	-0.5	
IQ	9.3	5.0	5.6	5.5	4.0	1.8	2.2	3.2	
NC	8.3	4.4	5.0	4.5	4.1	1.8	2.2	2.5	
Type heterogeneity	6.4	3.7	7.9	15.5	5.9	3.3	7.3	16.1	
Residual	66.3	82.3	76.1	71.0	72.9	87.1	81.3	73.4	

Back to Type inequality contributions

Contribution of circumstances to overall inequality of long-run average income using brothers' characteristics, correcting for coefficient attenuation bias

	Men					Women				
	Gini	GE(0)	GE(1)	CV2	Gini	GE(0)	GE(1)	CV2		
Index value										
ineqest	0.303	0.197	0.226	1.754	0.240	0.136	0.122	0.476		
Relative contributions										
ParentInc	6.2	3.2	3.7	3.3	5.3	2.1	3.0	4.0		
ParentEduc	1.7	1.0	1.2	0.9	0.8	0.3	0.5	0.6		
Sib	0.5	0.0	0.0	0.3	0.3	0.1	0.1	0.1		
Family	0.9	0.2	0.1	-0.2	0.2	0.0	0.0	0.0		
IQB	8.8	4.6	5.1	6.0	7.5	3.1	4.2	4.8		
NCB	7.9	4.0	4.4	4.3	6.8	2.7	3.6	4.6		
Type heterogeneity	5.1	2.9	6.5	14.8	4.1	1.0	3.1	8.6		
Residual	69.0	84.1	78.9	70.6	75.0	90.7	85.5	77.2		

Back to Type inequality contributions

Contribution of circumstances to overall inequality of long-run average income using brothers' characteristics, correcting for coefficient attenuation bias

	Gini	GE(0)	GE(1)	CV2
Index value				
ineqest	0.296	0.186	0.204	1.450
Relative contributions				
gender	13.1	7.7	8.5	8.1
ParentInc	4.9	2.6	3.3	3.4
ParentEduc	2.5	1.4	1.8	1.1
Sib	0.8	0.2	0.2	0.3
Family	1.6	0.5	0.4	0.0
IQB	5.2	2.6	3.0	3.4
NCB	4.1	1.7	1.8	1.9
Type heterogeneity	4.9	3.1	7.3	19.7
Residual	62.9	80.1	73.5	62.1

Contribution of circumstances to overall inequality of long-run average income using brothers' characteristics

	Men					Women				
	Gini	GE(0)	GE(1)	CV2	Gini	GE(0)	GE(1)	CV2		
Index value										
ineqest	0.303	0.197	0.226	1.754	0.240	0.136	0.122	0.476		
Relative contributions										
ParentInc	7.7	3.8	4.5	4.1	7.2	2.6	3.8	5.0		
ParentEduc	3.3	1.8	2.2	1.8	2.6	1.0	1.5	1.8		
Sib	0.8	0.1	0.1	0.4	0.4	0.1	0.1	0.1		
Family	1.4	0.3	0.2	-0.2	0.6	0.1	0.1	0.0		
IQB	4.0	1.8	2.2	2.9	1.9	0.6	0.9	1.3		
NCB	4.3	1.9	2.2	2.5	2.5	0.8	1.2	1.9		
Type heterogeneity	5.3	2.9	6.5	15.3	4.4	1.0	3.0	8.5		
Residual	73.4	87.5	82.1	73.3	80.3	93.9	89.4	81.4		

Back to Type inequality contributions

Contribution of circumstances to overall inequality of long-run average income using brothers' characteristics

	Gini	GE(0)	GE(1)	CV2
Index value				
ineqest	0.296	0.186	0.204	1.450
Relative contributions				
gender	14.3	8.2	8.9	8.3
ParentInc	6.0	3.0	3.8	3.7
ParentEduc	2.4	1.3	1.7	1.6
Sib	0.5	0.1	0.1	0.2
Family	0.9	0.2	0.2	-0.1
IQB	2.4	1.1	1.4	1.9
NCB	2.9	1.2	1.6	1.9
Type heterogeneity	5.3	3.3	7.6	19.7
Residual	65.3	81.7	74.8	62.8

Contribution of circumstances to overall inequality of long-run average income (not including IQ or NC)

	Men					Women			
	Gini	GE(0)	GE(1)	CV2	Gini	GE(0)	GE(1)	CV2	
Index value									
ineqest	0.303	0.197	0.226	1.754	0.240	0.136	0.122	0.476	
Relative contributions									
ParentInc	9.6	4.5	5.4	4.6	8.4	2.9	4.3	5.9	
ParentEduc	5.5	2.7	3.3	2.3	3.9	1.4	2.0	2.2	
Sib	1.2	0.1	0.2	0.9	0.7	0.1	0.2	0.3	
Family	1.9	0.3	0.2	-0.7	1.0	0.1	0.1	-0.1	
Type heterogeneity	4.4	2.7	4.5	-1.4	3.4	1.4	3.0	6.3	
Residual	77.5	89.7	86.4	94.4	82.7	94.1	90.4	85.3	

Back to Type inequality contributions

Contribution of circumstances to overall inequality of long-run average income (not including IQ or NC)

	Gini	GE(0)	GE(1)	CV2
Index value				
ineqest	0.296	0.186	0.204	1.450
Relative contributions				
gender	14.7	8.2	9.1	8.9
ParentInc	7.3	3.4	4.4	4.4
ParentEduc	3.9	1.9	2.5	2.2
Sib	0.8	0.1	0.1	0.4
Family	1.2	0.2	0.2	-0.2
Type heterogeneity	4.3	3.2	6.5	14.7
Residual	67.9	82.9	77.2	69.6

Back to Type inequality contributions

 Björklund, Anders, Markus Jäntti, and John E Roemer (2012). "Equality of opportunity and the distribution of long-run income in Sweden". In: Social Choice and Welfare 39.2-3, pp. 675–696. DOI: 10.1007/s00355-011-0609-3. URL: http://dx.doi.org/10.1007/s00355-011-0609-3.
 Bouchard, Thomas J and Matthew McGue (1981). "Familial Studies of Intelligence: A Review". In: Science 212, pp. 1055–1059.
 Fishkin, James S (1983). Justice, equal opportunity, and the family. New Haven [Conn.]: Yale University Press.

Grönqvist, Erik, Björn Öckert, and Jonas Vlachos (2010). "The Intergenerational transmission of cognitive and non-cognitive abilities". In: *Available at SSRN 1627657*.

(ロ) (同) (三) (三) (三) (○) (○)