Equality of opportunity and the distribution of long-run income in Sweden

Karin Hederos Eriksson ${ }^{1}$ Markus Jäntti ${ }^{2}$ Lena Lindahl ${ }^{2}$

${ }^{1}$ Stockholm School of Economics ${ }^{2}$ Swedish Institute for Social Research
September 1, 2014

Outline

Introduction

Data

Methods

Results - men and women

Concluding remarks

Tables and figures

The importance of family background and social justice

- much has been learnt about the importance of family background for economic status (intergenerational income persistence and mobility, sibling correlations; country differences, changes across time, gender differences in)

The importance of family background and social justice

- much has been learnt about the importance of family background for economic status (intergenerational income persistence and mobility, sibling correlations; country differences, changes across time, gender differences in)
- interest in importance of family background (vaguely) motivated by concern for equality of opportunity (who is against eq. opp?)

The importance of family background and social justice

- much has been learnt about the importance of family background for economic status (intergenerational income persistence and mobility, sibling correlations; country differences, changes across time, gender differences in)
- interest in importance of family background (vaguely) motivated by concern for equality of opportunity (who is against eq. opp?)
- a persistent question is: how much persistence is ethically acceptable? (Fishkin, 1983)

The importance of family background and social justice

- much has been learnt about the importance of family background for economic status (intergenerational income persistence and mobility, sibling correlations; country differences, changes across time, gender differences in)
- interest in importance of family background (vaguely) motivated by concern for equality of opportunity (who is against eq. opp?)
- a persistent question is: how much persistence is ethically acceptable? (Fishkin, 1983)
- liberty

The importance of family background and social justice

- much has been learnt about the importance of family background for economic status (intergenerational income persistence and mobility, sibling correlations; country differences, changes across time, gender differences in)
- interest in importance of family background (vaguely) motivated by concern for equality of opportunity (who is against eq. opp?)
- a persistent question is: how much persistence is ethically acceptable? (Fishkin, 1983)
- liberty
- meritocracy

The importance of family background and social justice

- much has been learnt about the importance of family background for economic status (intergenerational income persistence and mobility, sibling correlations; country differences, changes across time, gender differences in)
- interest in importance of family background (vaguely) motivated by concern for equality of opportunity (who is against eq. opp?)
- a persistent question is: how much persistence is ethically acceptable? (Fishkin, 1983)
- liberty
- meritocracy
- equality of opportunity

The importance of family background and social justice

- much has been learnt about the importance of family background for economic status (intergenerational income persistence and mobility, sibling correlations; country differences, changes across time, gender differences in)
- interest in importance of family background (vaguely) motivated by concern for equality of opportunity (who is against eq. opp?)
- a persistent question is: how much persistence is ethically acceptable? (Fishkin, 1983)
- liberty
- meritocracy
- equality of opportunity
- extends work by Björklund, Jäntti, and Roemer (2012) to examine both men and women

Equality of opportunity

- individual accomplishments in some space of ethical concern depend on primarily their own choices and efforts

Equality of opportunity

- individual accomplishments in some space of ethical concern depend on primarily their own choices and efforts
- inequalities due to circumstances beyond an individual's control violate eq. opp. norms

Equality of opportunity

- individual accomplishments in some space of ethical concern depend on primarily their own choices and efforts
- inequalities due to circumstances beyond an individual's control violate eq. opp. norms
- let $u=u(e, t)$ be an outcome of ethical interest (in the present paper, long-run income)

Equality of opportunity

- individual accomplishments in some space of ethical concern depend on primarily their own choices and efforts
- inequalities due to circumstances beyond an individual's control violate eq. opp. norms
- let $u=u(e, t)$ be an outcome of ethical interest (in the present paper, long-run income)
- e is an individual's effort

Equality of opportunity

- individual accomplishments in some space of ethical concern depend on primarily their own choices and efforts
- inequalities due to circumstances beyond an individual's control violate eq. opp. norms
- let $u=u(e, t)$ be an outcome of ethical interest (in the present paper, long-run income)
- e is an individual's effort
- t indexes type, defined by a unique combination of circumstances beyond an individual's control

Equality of opportunity

- individual accomplishments in some space of ethical concern depend on primarily their own choices and efforts
- inequalities due to circumstances beyond an individual's control violate eq. opp. norms
- let $u=u(e, t)$ be an outcome of ethical interest (in the present paper, long-run income)
- e is an individual's effort
- t indexes type, defined by a unique combination of circumstances beyond an individual's control
- outcome variation driven by (suitably normalized) effort variation is ethically acceptable, whereas that driven by variation in type is not

Equality of opportunity

- individual accomplishments in some space of ethical concern depend on primarily their own choices and efforts
- inequalities due to circumstances beyond an individual's control violate eq. opp. norms
- let $u=u(e, t)$ be an outcome of ethical interest (in the present paper, long-run income)
- e is an individual's effort
- t indexes type, defined by a unique combination of circumstances beyond an individual's control
- outcome variation driven by (suitably normalized) effort variation is ethically acceptable, whereas that driven by variation in type is not
- in this presentation: examine empirically the role of circumstances in inequality of long-run income for both men and women

Data

- examine inequality in long-run (total market) income

Data

- examine inequality in long-run (total market) income
- average income across ages 37-43 to capture long-run income

Data

- examine inequality in long-run (total market) income
- average income across ages 37-43 to capture long-run income
- data from numerous registers (tax data; censuses; military enlistment; formal educational degrees etc)

Data

- examine inequality in long-run (total market) income
- average income across ages 37-43 to capture long-run income
- data from numerous registers (tax data; censuses; military enlistment; formal educational degrees etc)
- several "standard" circumstances (parental/family characteritics)

Data

- examine inequality in long-run (total market) income
- average income across ages 37-43 to capture long-run income
- data from numerous registers (tax data; censuses; military enlistment; formal educational degrees etc)
- several "standard" circumstances (parental/family characteritics)
- cognitive (IQ) and non-cognitive (NC) characteristics hugely important for income, but available from military enlistment data chiefly for men

Data

- examine inequality in long-run (total market) income
- average income across ages 37-43 to capture long-run income
- data from numerous registers (tax data; censuses; military enlistment; formal educational degrees etc)
- several "standard" circumstances (parental/family characteritics)
- cognitive (IQ) and non-cognitive (NC) characteristics hugely important for income, but available from military enlistment data chiefly for men
- use brothers' characteristics to measure those of women

Data

- examine inequality in long-run (total market) income
- average income across ages 37-43 to capture long-run income
- data from numerous registers (tax data; censuses; military enlistment; formal educational degrees etc)
- several "standard" circumstances (parental/family characteritics)
- cognitive (IQ) and non-cognitive (NC) characteristics hugely important for income, but available from military enlistment data chiefly for men
- use brothers' characteristics to measure those of women
- for men: compare results using own and brothers' characteristics

Data

- examine inequality in long-run (total market) income
- average income across ages 37-43 to capture long-run income
- data from numerous registers (tax data; censuses; military enlistment; formal educational degrees etc)
- several "standard" circumstances (parental/family characteritics)
- cognitive (IQ) and non-cognitive (NC) characteristics hugely important for income, but available from military enlistment data chiefly for men
- use brothers' characteristics to measure those of women
- for men: compare results using own and brothers' characteristics
- address measurement error (only partly done)

Circumstances

6 background characteristics

- parental income quartile group (income of both bio parents when son was 13-17; 4 groups)

Combining all background charateristics yields $4 \times 3 \times 2 \times 3 \times 4 \times 4=1152$ distinct types.

Circumstances

6 background characteristics

- parental income quartile group (income of both bio parents when son was 13-17; 4 groups)
- parental education group (degree of the more highly educated bio parent; 3 groups)

Combining all background charateristics yields $4 \times 3 \times 2 \times 3 \times 4 \times 4=1152$ distinct types.

Circumstances

6 background characteristics

- parental income quartile group (income of both bio parents when son was 13-17; 4 groups)
- parental education group (degree of the more highly educated bio parent; 3 groups)
- family structure/type (live with both bio parents or not; 2 groups)

Combining all background charateristics yields $4 \times 3 \times 2 \times 3 \times 4 \times 4=1152$ distinct types.

Circumstances

6 background characteristics

- parental income quartile group (income of both bio parents when son was 13-17; 4 groups)
- parental education group (degree of the more highly educated bio parent; 3 groups)
- family structure/type (live with both bio parents or not; 2 groups)
- number of siblings (0, 1-2 or $3+$; 3 groups)

Combining all background charateristics yields $4 \times 3 \times 2 \times 3 \times 4 \times 4=1152$ distinct types.

Circumstances

6 background characteristics

- parental income quartile group (income of both bio parents when son was 13-17; 4 groups)
- parental education group (degree of the more highly educated bio parent; 3 groups)
- family structure/type (live with both bio parents or not; 2 groups)
- number of siblings (0, 1-2 or 3+; 3 groups)
- IQ quartile groups (military enlistment cog. test; 4 groups)

Combining all background charateristics yields $4 \times 3 \times 2 \times 3 \times 4 \times 4=1152$ distinct types.

Circumstances

6 background characteristics

- parental income quartile group (income of both bio parents when son was 13-17; 4 groups)
- parental education group (degree of the more highly educated bio parent; 3 groups)
- family structure/type (live with both bio parents or not; 2 groups)
- number of siblings (0, 1-2 or 3+; 3 groups)
- IQ quartile groups (military enlistment cog. test; 4 groups)
- non-cognitive skill [NC] quartile groups (military enlistment cog. test; 4 groups)

Combining all background charateristics yields $4 \times 3 \times 2 \times 3 \times 4 \times 4=1152$ distinct types.

Are these reasonable?

- other circumstances than what we capture may matter

Are these reasonable?

- other circumstances than what we capture may matter
- are IQ and NC "circumstances"?

Are these reasonable?

- other circumstances than what we capture may matter
- are IQ and NC "circumstances"?
- is the remaining variation in the outcome really due to "effort"? (e.g., luck, inherited preferences for leisure)

Conditional distribution of income among types

- Education types © Go to graph

Conditional distribution of income among types

- Education types © Go to graph
- Income types coto graph

Conditional distribution of income among types

- Education types
- Income types coto graph
- IQ types (using brothers) Go to graph

Conditional distribution of income among types

- Education types
- Income types coto graph
- IQ types (using brothers) Go to graph
- NC types (using brothers) © Go to graph

The empirical procedure

- measure inequality of outcomes by standard relative inequality measures (Gini, GE[0,1], CV2)

The empirical procedure

- measure inequality of outcomes by standard relative inequality measures (Gini, GE[0,1], CV2)
- regress income on background characteristics

The empirical procedure

- measure inequality of outcomes by standard relative inequality measures (Gini, GE[0,1], CV2)
- regress income on background characteristics
- measure the importance of a particular factor by comparing inequality of income when that factor is allowed to affect income, and when not (using estimated regression coefficients)

The empirical procedure

- measure inequality of outcomes by standard relative inequality measures (Gini, GE[0,1], CV2)
- regress income on background characteristics
- measure the importance of a particular factor by comparing inequality of income when that factor is allowed to affect income, and when not (using estimated regression coefficients)
- decompose inequality into importance of circumstances and remainder ("effort")

The regression

- denote each of the J background characteristics by X_{j}, which can take K_{j} specific values

The regression

- denote each of the J background characteristics by X_{j}, which can take K_{j} specific values
- each type t consists of a particular cell or collection of value $t \in \mathcal{T}$, where the set \mathcal{T} consists of elements $\mathbf{X}^{t}=$ $\left(X_{1}=x_{1}^{t}, X_{2}=x_{2}^{t}, X_{3}=x_{3}^{t}, X_{4}=x_{4}^{t}, X_{5}=x_{5}^{t},, X_{6}=x_{6}^{t}\right)$; the type of a particular sample member is \mathbf{X}_{i}^{t}

The regression

- denote each of the J background characteristics by X_{j}, which can take K_{j} specific values
- each type t consists of a particular cell or collection of value $t \in \mathcal{T}$, where the set \mathcal{T} consists of elements $\mathbf{X}^{t}=$ $\left(X_{1}=x_{1}^{t}, X_{2}=x_{2}^{t}, X_{3}=x_{3}^{t}, X_{4}=x_{4}^{t}, X_{5}=x_{5}^{t},, X_{6}=x_{6}^{t}\right)$; the type of a particular sample member is \mathbf{X}_{i}^{t}
- We take effort to be the the residual of a regression of $\ln Y$ on \mathbf{X}^{t} :

$$
\begin{equation*}
\ln Y_{i}^{t}=\mu+\sum_{j} \mathbf{X}_{j i}^{\prime} \boldsymbol{\beta}_{j}+\epsilon_{i}^{t} \tag{1}
\end{equation*}
$$

Heterogeneous effort

- the distribution of ϵ_{i}^{t} may vary across types, that is, it can be heterogeneous

Heterogeneous effort

- the distribution of ϵ_{i}^{t} may vary across types, that is, it can be heterogeneous
- since a person can not be held accountable for their type, "extra" variation in effort due to type can also not

Heterogeneous effort

- the distribution of ϵ_{i}^{t} may vary across types, that is, it can be heterogeneous
- since a person can not be held accountable for their type, "extra" variation in effort due to type can also not
- solution: neutralize heterogeneity (add and subtract a homogenous effort with variance $\sigma^{2}=\sum_{t} f_{t} \sigma_{t}^{2}$)

Heterogeneous effort

- the distribution of ϵ_{i}^{t} may vary across types, that is, it can be heterogeneous
- since a person can not be held accountable for their type, "extra" variation in effort due to type can also not
- solution: neutralize heterogeneity (add and subtract a homogenous effort with variance $\sigma^{2}=\sum_{t} f_{t} \sigma_{t}^{2}$)
- our empirical work horse is

$$
\begin{align*}
\ln Y_{i}^{t} & =\mu+\sum_{j} \mathbf{X}_{j i}^{\prime} \boldsymbol{\beta}_{j}+\epsilon_{i}^{t}-\underbrace{\epsilon_{i}^{t} / k \sigma_{t}}_{u_{i}}+\underbrace{\epsilon_{i}^{t} / k \sigma_{t}}_{u_{i}} \tag{2}\\
& =\mu+\sum_{j} \mathbf{X}_{j i}^{\prime} \boldsymbol{\beta}_{j}+\tilde{\epsilon}_{i}^{t}+u_{i},
\end{align*}
$$

Elimination of a factor

- to eliminate variation due to a particular factor j, we recompute income by removing it

Elimination of a factor

- to eliminate variation due to a particular factor j, we recompute income by removing it
- i.e., subtract from income $\mathbf{X}_{j i}^{\prime} \widehat{\boldsymbol{\beta}}_{j}$ and replace it with $\overline{\mathbf{X}}_{j}^{\prime} \widehat{\boldsymbol{\beta}}_{j}$

Elimination of a factor

- to eliminate variation due to a particular factor j, we recompute income by removing it
- i.e., subtract from income $\mathbf{X}_{j i}^{\prime} \widehat{\boldsymbol{\beta}}_{j}$ and replace it with $\overline{\mathbf{X}}_{j}^{\prime} \widehat{\boldsymbol{\beta}}_{j}$
- the difference in inequality before and after a factor's contribution has been replaced measures its importance

Decomposing long-run inequality

- the importance of a factor j depends on what other factors are allowed to vary (or not)

Decomposing long-run inequality

- the importance of a factor j depends on what other factors are allowed to vary (or not)
- with $6+2=8$ factors, there are $2^{8}=256$ possible combinations of factors that can be allowed to vary

Decomposing long-run inequality

- the importance of a factor j depends on what other factors are allowed to vary (or not)
- with $6+2=8$ factors, there are $2^{8}=256$ possible combinations of factors that can be allowed to vary
- the contribution to inequality of a factor depends on the exact sequence in which factors are eliminated

Decomposing long-run inequality

- solution: estimate importance of a factor by assessing all possible elimination sequences ("Shapley-value decomposition") and take effect to be the average

Decomposing long-run inequality

- solution: estimate importance of a factor by assessing all possible elimination sequences ("Shapley-value decomposition") and take effect to be the average
- e.g., the powerset of 5 factors (labeling the factors now A, ..., E) consists of 32 elements:

```
    {{}, {"A"}, {"B"}, {"C"}, {"D"}, {"E"}, {"A", "B"}, {"A", "C"}, {"A", "D"}, {"A",
"E"}, {"B", "C"}, {"B", "D"}, {"B", "E"}, {"C", "D"}, {"C", "E"}, {"D", "E"}, {"A",
    "B", "C"}, {"A", "B", "D"}, {"A", "B", "E"}, {"A", "C", "D"}, {"A", "C", "E"},
    {"A", "D", "E"}, {"B", "C", "D"}, {"B", "C", "E"}, {"B", "D", "E"}, {"C", "D",
"E"}, {"A", "B", "C", "D"}, {"A", "B", "C", "E"}, {"A", "B", "D", "E"}, {"A", "C",
    "D", "E"}, {"B", "C", "D", "E"}, {"A", "B", "C", "D", "E"}}
```


Decomposing long-run inequality

- solution: estimate importance of a factor by assessing all possible elimination sequences ("Shapley-value decomposition") and take effect to be the average
- e.g., the powerset of 5 factors (labeling the factors now A, ..., E) consists of 32 elements:

```
    {{},{"A"}, {"B"}, {"C"}, {"D"}, {"E"}, {"A", "B"}, {"A", "C"}, {"A", "D"}, {"A",
"E"}, {"B", "C"}, {"B", "D"}, {"B", "E"}, {"C", "D"}, {"C", "E"}, {"D", "E"}, {"A",
    "B", "C"}, {"A", "B", "D"}, {"A", "B", "E"}, {"A", "C", "D"}, {"A", "C", "E"},
    {"A", "D", "E"}, {"B", "C", "D"}, {"B", "C", "E"}, {"B", "D", "E"}, {"C", "D",
"E"}, {"A", "B", "C", "D"}, {"A", "B", "C", "E"}, {"A", "B", "D", "E"}, {"A", "C",
    "D", "E"}, {"B", "C", "D", "E"}, {"A", "B", "C", "D", "E"}}
```

- locate all sets that do not contain factor A (have eliminated variation due to it) and compare inequality for that set with same set that also includes A

Decomposing long-run inequality

- solution: estimate importance of a factor by assessing all possible elimination sequences ("Shapley-value decomposition") and take effect to be the average
- e.g., the powerset of 5 factors (labeling the factors now A, ..., E) consists of 32 elements:

```
    {{},{"A"}, {"B"}, {"C"}, {"D"}, {"E"}, {"A", "B"}, {"A", "C"}, {"A", "D"}, {"A",
"E"}, {"B", "C"}, {"B", "D"}, {"B", "E"}, {"C", "D"}, {"C", "E"}, {"D", "E"}, {"A",
    "B", "C"}, {"A", "B", "D"}, {"A", "B", "E"}, {"A", "C", "D"}, {"A", "C", "E"},
    {"A", "D", "E"}, {"B", "C", "D"}, {"B", "C", "E"}, {"B", "D", "E"}, {"C", "D",
"E"}, {"A", "B", "C", "D"}, {"A", "B", "C", "E"}, {"A", "B", "D", "E"}, {"A", "C",
    "D", "E"}, {"B", "C", "D", "E"}, {"A", "B", "C", "D", "E"}}
```

- locate all sets that do not contain factor A (have eliminated variation due to it) and compare inequality for that set with same set that also includes A
- yields an exact (additive) decomposition of inequality measures

Regression results

```
Regression results - part 1
```

- Regression results - part 2

Gender as a circumstance

- one obvious circumstance not included above is gender

Gender as a circumstance

- one obvious circumstance not included above is gender
- two distinct questions (asked here):

Gender as a circumstance

- one obvious circumstance not included above is gender
- two distinct questions (asked here):

1. are the circumstances, and circumstances overall, equally important among men and women?

Gender as a circumstance

- one obvious circumstance not included above is gender
- two distinct questions (asked here):

1. are the circumstances, and circumstances overall, equally important among men and women?
2. if we treat gender as a circumstance along with the others, how does gender compare with other circumstances?

Measurement challenge

- both IQ and non-cognitive [NC] characteristics important circumstances for men

Measurement challenge

- both IQ and non-cognitive [NC] characteristics important circumstances for men
- military enlistment data only available for men

Measurement challenge

- both IQ and non-cognitive [NC] characteristics important circumstances for men
- military enlistment data only available for men
- solution: use a brother's characteristics to measure IQ and NC for women \rightarrow Measurement model graph

Measurement challenge

- both IQ and non-cognitive [NC] characteristics important circumstances for men
- military enlistment data only available for men
- solution: use a brother's characteristics to measure IQ and NC for women © Measurement model graph
- remarks

Measurement challenge

- both IQ and non-cognitive [NC] characteristics important circumstances for men
- military enlistment data only available for men
- solution: use a brother's characteristics to measure IQ and NC for women © Measurement model graph
- remarks
- limit analysis to men and women with at least one brother (who has non-missing enlistment data)

Measurement challenge

- both IQ and non-cognitive [NC] characteristics important circumstances for men
- military enlistment data only available for men
- solution: use a brother's characteristics to measure IQ and NC for women - Measurement model graph
- remarks
- limit analysis to men and women with at least one brother (who has non-missing enlistment data)
- need to assume "measurement errors" similar for brother-brother and sister-brother characteristics (see Bouchard and McGue, 1981)

Measurement challenge

- both IQ and non-cognitive [NC] characteristics important circumstances for men
- military enlistment data only available for men
- solution: use a brother's characteristics to measure IQ and NC for women Measurement model graph
- remarks
- limit analysis to men and women with at least one brother (who has non-missing enlistment data)
- need to assume "measurement errors" similar for brother-brother and sister-brother characteristics (see Bouchard and McGue, 1981)
- women have on average more brother than men, so averaging across more brothers' information (less measurement error)

Measurement challenge

- both IQ and non-cognitive [NC] characteristics important circumstances for men
- military enlistment data only available for men
- solution: use a brother's characteristics to measure IQ and NC for women Measurement model graph
- remarks
- limit analysis to men and women with at least one brother (who has non-missing enlistment data)
- need to assume "measurement errors" similar for brother-brother and sister-brother characteristics (see Bouchard and McGue, 1981)
- women have on average more brother than men, so averaging across more brothers' information (less measurement error)
- evidence from young Swedes that brother-brother higher than brother-sister correlations (Grönqvist, Öckert, and Vlachos, 2010)

Results - men and women compared

1. compare importance of circumstances in inequality among women to that among men

Results - men and women compared

1. compare importance of circumstances in inequality among women to that among men
2. measure the importance of gender as a circumstance

Results - men and women compared

1. compare importance of circumstances in inequality among women to that among men
2. measure the importance of gender as a circumstance
3. include IQ and NC based on brothers' characteristics and adjust for bias in $\widehat{\beta}$ (based on men)

Results - men and women compared

1. compare results for men using own and brothers' IQ and NC - use brother IQ and NC characteristics among men

Results - men and women compared

1. compare results for men using own and brothers' $I Q$ and NC - use brother IQ and NC characteristics among men
```
- Go to table
```

2. equality of opportunity among women compared to men

Results - men and women compared

1. compare results for men using own and brothers' IQ and NC - use brother IQ and NC characteristics among men
```
- Go to table
```

2. equality of opportunity among women compared to men
3. adding gender as a circumstance co to table

Results - men and women compared

1. omit IQ and NC

Results - men and women compared

1. omit IQ and NC
2. equality of opportunity among women compared to men

Results - men and women compared

1. omit IQ and NC
2. equality of opportunity among women compared to men - Go to table
3. adding gender as a circumstance

Go to table

Next steps

- further explore (using other data sources) adequacy of measurement model assumption (compare brother-brother and sister-brother measurement models)

Next steps

- further explore (using other data sources) adequacy of measurement model assumption (compare brother-brother and sister-brother measurement models)
- further use of estimated error models to adjust for misclassification in \mathbf{X}_{i} and $\overline{\mathbf{X}}_{i}$

Concluding comments

- depending on measure, 1/3-1/4 of inequality of long-run income inequality among Swedish men due to circumstances

Concluding comments

- depending on measure, 1/3-1/4 of inequality of long-run income inequality among Swedish men due to circumstances
- IQ, NC, parental income and type heterogeneity important contributors

Concluding comments

- depending on measure, 1/3-1/4 of inequality of long-run income inequality among Swedish men due to circumstances
- IQ, NC, parental income and type heterogeneity important contributors
- circumstances account for less long-run inequality for women than men, and

Concluding comments

- depending on measure, 1/3-1/4 of inequality of long-run income inequality among Swedish men due to circumstances
- IQ, NC, parental income and type heterogeneity important contributors
- circumstances account for less long-run inequality for women than men, and
- gender is overwhelmingly the most important circumstance when both are combined

Concluding comments

- depending on measure, 1/3-1/4 of inequality of long-run income inequality among Swedish men due to circumstances
- IQ, NC, parental income and type heterogeneity important contributors
- circumstances account for less long-run inequality for women than men, and
- gender is overwhelmingly the most important circumstance when both are combined
- future research:

Concluding comments

- depending on measure, 1/3-1/4 of inequality of long-run income inequality among Swedish men due to circumstances
- IQ, NC, parental income and type heterogeneity important contributors
- circumstances account for less long-run inequality for women than men, and
- gender is overwhelmingly the most important circumstance when both are combined
- future research:
- better measures of effort? (labour force participation at extensive and intensive margins)

Concluding comments

- depending on measure, 1/3-1/4 of inequality of long-run income inequality among Swedish men due to circumstances
- IQ, NC, parental income and type heterogeneity important contributors
- circumstances account for less long-run inequality for women than men, and
- gender is overwhelmingly the most important circumstance when both are combined
- future research:
- better measures of effort? (labour force participation at extensive and intensive margins)
- upper and lower bounds on effort?

Concluding comments

- depending on measure, 1/3-1/4 of inequality of long-run income inequality among Swedish men due to circumstances
- IQ, NC, parental income and type heterogeneity important contributors
- circumstances account for less long-run inequality for women than men, and
- gender is overwhelmingly the most important circumstance when both are combined
- future research:
- better measures of effort? (labour force participation at extensive and intensive margins)
- upper and lower bounds on effort?
- sibling correlations?

Income distribution (CDF) among example types $\left(G^{t}(e)\right)$: by level of parental education

Income distribution (CDF) among example types $\left(G^{t}(e)\right)$: by level of parental income

Income distribution (CDF) among example types $\left(G^{t}(e)\right)$: by level of brothers' IQ

Income distribution (CDF) among example types $\left(G^{t}(e)\right)$: by level of brothers' $N C$

Own and brothers' IQ and NC score among Swedish men

A. IQ score

B. Non-cognitive ability

Contribution of circumstances to overall inequality of long-run average income for men

Own (Panel A) and brother's characteristics (Panel B) - heterogeneous effort controlled using smoothed residual variance

	Own char				Brothers' char			
	Gini	GE(0)	GE(1)	CV2	Gini	GE(0)	GE(1)	CV2
Index value ineqest	0.297	0.189	0.215	1.454	0.297	0.189	0.215	1.454
Relative contributions								
ParentInc	6.4	3.3	3.9	2.8	7.8	3.8	4.5	3.2
ParentEduc	1.7	1.0	1.3	0.9	3.4	1.8	2.3	1.8
Sib	0.6	0.0	0.0	0.3	0.7	0.1	0.1	0.5
Family	1.0	0.2	0.1	-0.4	1.2	0.2	0.2	-0.5
IQ	9.3	5.0	5.6	5.5	4.0	1.8	2.2	3.2
NC	8.3	4.4	5.0	4.5	4.1	1.8	2.2	2.5
Type heterogeneity	6.4	3.7	7.9	15.5	5.9	3.3	7.3	16.1
Residual	66.3	82.3	76.1	71.0	72.9	87.1	81.3	73.4

Back to Type inequality contributions

Contribution of circumstances to overall inequality of long-run average income using brothers' characteristics, correcting for coefficient attenuation bias

	Men				Women			
	Gini	GE(0)	GE(1)	CV2	Gini	GE(0)	GE(1)	CV2
Index value ineqest	0.303	0.197	0.226	1.754	0.240	0.136	0.122	0.476
Relative contributions								
ParentInc	6.2	3.2	3.7	3.3	5.3	2.1	3.0	4.0
ParentEduc	1.7	1.0	1.2	0.9	0.8	0.3	0.5	0.6
Sib	0.5	0.0	0.0	0.3	0.3	0.1	0.1	0.1
Family	0.9	0.2	0.1	-0.2	0.2	0.0	0.0	0.0
IQB	8.8	4.6	5.1	6.0	7.5	3.1	4.2	4.8
NCB	7.9	4.0	4.4	4.3	6.8	2.7	3.6	4.6
Type heterogeneity	5.1	2.9	6.5	14.8	4.1	1.0	3.1	8.6
Residual	69.0	84.1	78.9	70.6	75.0	90.7	85.5	77.2

Contribution of circumstances to overall inequality of long-run average income using brothers' characteristics, correcting for coefficient attenuation bias

	Gini	GE(0)	GE(1)	CV2
Index value ineqest	0.296	0.186	0.204	1.450
Relative contributions				
gender	13.1	7.7	8.5	8.1
ParentInc	4.9	2.6	3.3	3.4
ParentEduc	2.5	1.4	1.8	1.1
Sib	0.8	0.2	0.2	0.3
Family	1.6	0.5	0.4	0.0
IQB	5.2	2.6	3.0	3.4
NCB	4.1	1.7	1.8	1.9
Type heterogeneity	4.9	3.1	7.3	19.7
Residual	62.9	80.1	73.5	62.1

Contribution of circumstances to overall inequality of long-run average income using brothers' characteristics

	Men				Women			
	Gini	GE(0)	GE(1)	CV2	Gini	GE(0)	GE(1)	CV2
Index value ineqest	0.303	0.197	0.226	1.754	0.240	0.136	0.122	0.476
Relative contributions								
ParentInc	7.7	3.8	4.5	4.1	7.2	2.6	3.8	5.0
ParentEduc	3.3	1.8	2.2	1.8	2.6	1.0	1.5	1.8
Sib	0.8	0.1	0.1	0.4	0.4	0.1	0.1	0.1
Family	1.4	0.3	0.2	-0.2	0.6	0.1	0.1	0.0
IQB	4.0	1.8	2.2	2.9	1.9	0.6	0.9	1.3
NCB	4.3	1.9	2.2	2.5	2.5	0.8	1.2	1.9
Type heterogeneity	5.3	2.9	6.5	15.3	4.4	1.0	3.0	8.5
Residual	73.4	87.5	82.1	73.3	80.3	93.9	89.4	81.4

Contribution of circumstances to overall inequality of long-run average income using brothers' characteristics

	Gini	GE(0)	GE(1)	CV2
Index value ineqest	0.296	0.186	0.204	1.450
Relative contributions				
\quad gender	14.3	8.2	8.9	8.3
ParentInc	6.0	3.0	3.8	3.7
ParentEduc	2.4	1.3	1.7	1.6
Sib	0.5	0.1	0.1	0.2
Family	0.9	0.2	0.2	-0.1
IQB	2.4	1.1	1.4	1.9
NCB	2.9	1.2	1.6	1.9
Type heterogeneity	5.3	3.3	7.6	19.7
Residual	65.3	81.7	74.8	62.8

Contribution of circumstances to overall inequality of long-run average income (not including IQ or NC)

	Men				Women			
	Gini	GE(0)	GE(1)	CV2	Gini	GE(0)	GE(1)	CV2
Index value ineqest	0.303	0.197	0.226	1.754	0.240	0.136	0.122	0.476
Relative contributions								
ParentInc	9.6	4.5	5.4	4.6	8.4	2.9	4.3	5.9
ParentEduc	5.5	2.7	3.3	2.3	3.9	1.4	2.0	2.2
Sib	1.2	0.1	0.2	0.9	0.7	0.1	0.2	0.3
Family	1.9	0.3	0.2	-0.7	1.0	0.1	0.1	-0.1
Type heterogeneity	4.4	2.7	4.5	-1.4	3.4	1.4	3.0	6.3
Residual	77.5	89.7	86.4	94.4	82.7	94.1	90.4	85.3

Contribution of circumstances to overall inequality of long-run average income (not including IQ or NC)

	Gini	GE(0)	GE(1)	CV2
Index value ineqest	0.296	0.186	0.204	1.450
Relative contributions				
\quad gender	14.7	8.2	9.1	8.9
ParentInc	7.3	3.4	4.4	4.4
ParentEduc	3.9	1.9	2.5	2.2
Sib	0.8	0.1	0.1	0.4
Family	1.2	0.2	0.2	-0.2
Type heterogeneity	4.3	3.2	6.5	14.7
Residual	67.9	82.9	77.2	69.6

: Björklund, Anders, Markus Jäntti, and John E Roemer (2012). "Equality of opportunity and the distribution of long-run income in Sweden". In: Social Choice and Welfare 39.2-3, pp. 675-696. DOI: 10.1007/s00355-011-0609-3. URL: http://dx.doi.org/10.1007/s00355-011-0609-3.
R Bouchard, Thomas J and Matthew McGue (1981). "Familial Studies of Intelligence: A Review". In: Science 212, pp. 1055-1059.
围 Fishkin, James S (1983). Justice, equal opportunity, and the family. New Haven [Conn.]: Yale University Press.
E Grönqvist, Erik, Björn Öckert, and Jonas Vlachos (2010). "The Intergenerational transmission of cognitive and non-cognitive abilities". In: Available at SSRN 1627657.

