Implications of Health Care Reform for Inequality and Welfare

Hitoshi Tsujiyama

Goethe University Frankfurt

September 2014

SITE Conference, Stockholm

Main Question

• What are the quantitative implications of the health care reform for welfare changes of different groups?

1 k

Main Question

- What are the quantitative implications of the health care reform for welfare changes of different groups?
- Affordable Care Act (Obamacare): increase health insurance coverage
 - 1. Penalty for the uninsured
 - 2. Premium subsidy based on income
 - 3. No rejection or price-discrimination based on health

Main Question

- What are the quantitative implications of the health care reform for welfare changes of different groups?
- Affordable Care Act (Obamacare): increase health insurance coverage
 - 1. Penalty for the uninsured
 - 2. Premium subsidy based on income
 - 3. No rejection or price-discrimination based on health
- Congressional Budget Office predicts
 - Lower uninsured rate
 - Higher distortions due to redistribution

Approach and Main Finding

This paper:

- Develop a general equilibrium model with insurance choice
- Replicate health insurance and medical service system
- Estimate structural parameters using micro data
- Explore distributional effects of Obamacare

Approach and Main Finding

This paper:

- Develop a general equilibrium model with insurance choice
- Replicate health insurance and medical service system
- Estimate structural parameters using micro data
- Explore distributional effects of Obamacare

Main finding:

The rich are better off, but the poor are worse off

The rich gain:

• Before: Save for health and income shocks

The rich gain:

- Before: Save for health and income shocks
- After: Have easier access to insurance when sick or low income
 - \Rightarrow Eat more by reducing precautionary savings

The rich gain:

- Before: Save for health and income shocks
- After: Have easier access to insurance when sick or low income

 \Rightarrow Eat more by reducing precautionary savings

The poor lose:

• Before: Enjoy free care due to limited liability

The rich gain:

- Before: Save for health and income shocks
- After: Have easier access to insurance when sick or low income

 \Rightarrow Eat more by reducing precautionary savings

The poor lose:

- Before: Enjoy free care due to limited liability
- After: Penalty forces them to buy insurance
 - \Rightarrow Eat less by losing free riding opportunity

More Findings

- Wealth inequality decreases
 - The rich reduce precautionary savings
 - The poor have stronger saving motive

More Findings

- Wealth inequality decreases
 - The rich reduce precautionary savings
 - The poor have stronger saving motive
- Overall health improves
- Size of health care spending in GDP increases

Related Literature

- Facts about uninsured population in the United States: Gruber (2008)
- Health risk in incomplete markets models with heterogeneous agents: Jeske & Kitao (2009), Hansen et al. (2012), Pashchenko & Porapakkarm (2013) (link)
- Precautionary savings in response to health risk: Kotlikoff (1989), Kopecky & Koreshkova (2011), De Nardi et al. (2010)
- Social insurance distorts savings of the poor: Hubbard et al. (1995)

Road Map

1. Data - describe stylized facts

2. Model - develop a general equilibrium life-cycle model

3. Estimation - replicate pre-reform economy

4. Policy Experiment - implement Obamacare

Data

Hitoshi Tsujiyama (Frankfurt)

Implications of Health Care Reform

Sep 2014 8 / 38

・ロト < 団ト < ヨト < ヨト < ロト

Data - Insurance Status

Insurance Status	
All Working Age	
Individual	5.0%
Uninsured	16.2%
Employer-based	66.3%
Public	12.5%
Active Participants	
Insured	23.5%
Uninsured	76.5%

Sep 2014 9 / 38

-

イロト イポト イヨト イ

三日 のへで

Data - Uninsured Rate of Active Participants

Uninsured rate of active participants along with wealth and income (link)

Image: A match a ma

Data - Uninsured Rate of Active Participants

Uninsured rate of active participants along with age and health status

Health status	Uninsured rate
Bad	83.4%
Good	71.1%

Hitoshi Tsujiyama (Frankfurt)

イロト イポト イヨト イヨ

Model

Hitoshi Tsujiyama (Frankfurt)

Implications of Health Care Reform

Sep 2014 12 / 38

三日 のへの

< ロト < 回 ト < 回 ト < 三</p>

Model with Insurance Choice

Heterogeneous-agents life-cycle model with insurance choice

Model with Insurance Choice

Heterogeneous-agents life-cycle model with insurance choice

Main ingredients:

- Health as an expenditure shock
- Three types of insurance: Public, Employer-provided, Individual
- Actuarially unfair insurance premium
- Medical services market and limited liability

Environment

• Time is discrete

Hitoshi Tsujiyama (Frankfurt)

= 990

∃ ► < ∃</p>

Environment

- Time is discrete
- Agents:
 - Households
 - Medical service sector
 - Insurance companies
 - ► Firm
 - Government

∃ ≻

ヨヨ のへで

• J overlapping generations: enter the market at j = 1, die at j = J

1 k

ELE NOR

• J overlapping generations: enter the market at j = 1, die at j = J

- Face uncertainty about
 - health status h, income z, medical expenditures x

ELE NOR

• J overlapping generations: enter the market at j = 1, die at j = J

- Face uncertainty about
 - health status h, income z, medical expenditures x
- Good health translates into:
 - Higher expected future income
 - Lower expected medical expenditures

• J overlapping generations: enter the market at j = 1, die at j = J

- Face uncertainty about
 - health status h, income z, medical expenditures x
- Good health translates into:
 - Higher expected future income
 - Lower expected medical expenditures
- Deal with the risks by health insurance *i* and savings *a*

- Public health insurance:
 - Stochastic eligibility $m \in \{0, 1\}$. Free

- Public health insurance:
 - Stochastic eligibility $m \in \{0, 1\}$. Free
- Employer-provided group health insurance:
 - Stochastic offer $g \in \{0, 1\}$. Not risk-rated, employer's contribution

- Public health insurance:
 - Stochastic eligibility $m \in \{0, 1\}$. Free
- Employer-provided group health insurance:
 - Stochastic offer $g \in \{0, 1\}$. Not risk-rated, employer's contribution
- Individual health insurance
 - Purchased from an insurance company. Risk-rated

- Public health insurance:
 - Stochastic eligibility $m \in \{0, 1\}$. Free
- Employer-provided group health insurance:
 - Stochastic offer $g \in \{0, 1\}$. Not risk-rated, employer's contribution
- Individual health insurance
 - ▶ Purchased from an insurance company. Risk-rated
- Premium *p*. Reimburse schedule $\lambda : \mathbb{R}_{++} \rightarrow [0, 1]$

- Public health insurance:
 - Stochastic eligibility $m \in \{0, 1\}$. Free
- Employer-provided group health insurance:
 - Stochastic offer $g \in \{0, 1\}$. Not risk-rated, employer's contribution
- Individual health insurance
 - Purchased from an insurance company. Risk-rated
- Premium *p*. Reimburse schedule $\lambda : \mathbb{R}_{++} \rightarrow [0, 1]$
- Access to *primary care*:
 - Better health status
 - Higher medical expenditure

1	age j	`
	medical expense x	
	health <i>h</i>	
	income <i>z</i>	
	public insurance eligibility <i>m</i>	
	group insurance offer g	

State *s* =

- (A)

글 🕨 🖌 글

= 990

Households - Problem

Choose consumption c, asset a', insurance i' to

max Utility
s.t. Budget Constraint:
 Expenditure = Income + Savings net of Medical Expenses Limited liability

Households - Problem

Hitoshi Tsujiyama (Frankfurt)

$$\begin{cases} V(a, i, s) = \max_{\substack{c, a' \ge 0, i' \in \{0, 1\} \\ s.t. \\ }} u(c) + \beta \sum \Gamma_{ss'|i'} V(a', i', s') \\ s.t. \\ + \frac{max\{(1 + r)a - [1 - \lambda(qx)i] qx, 0\}}{max\{(1 + r)a - [1 - \lambda(qx)i] qx, 0\}} \end{cases}$$

Limited liability

∃ ≻

= 990

Households - Problem

$$V(a, i, s) = \max_{\substack{c, a' \ge 0, i' \in \{0, 1\}}} u(c) + \beta \sum \Gamma_{ss'|i'} V(a', i', s')$$

s.t. $c + a' + i' p(s) = (1 - \tau) wz \varepsilon_j$
 $+ \underbrace{\max\{(1 + r)a - [1 - \lambda(qx)i] qx, 0\}}$

• After retirement age, get Social Security and insured by Medicare (link)

Medical Service Sector

- Competitive. Zero profit
- Transform one good into one medical service
- Charge qx due to limited liability where q is the mark-up

Medical Service Sector

- Competitive. Zero profit
- Transform one good into one medical service
- Charge qx due to limited liability where q is the mark-up
- Zero profit condition: (link)

$$\int \mathbb{E}_{x} \left[\underbrace{\min\{(1+r)a + i\lambda(qx)qx,qx\}}_{\text{Revenue}} - \underbrace{x}_{\text{Cost}} \right] d\mu = 0$$

Insurance Companies

- Competitive. Zero profit
- Fixed costs ϕ : administrative and screening costs

Insurance Companies

- Competitive. Zero profit
- Fixed costs ϕ : administrative and screening costs
- Premium:

$$p(j,h) = (1+r)^{-1} \mathbb{E}[\lambda(qx')qx'|j,h] + \phi$$

ullet Higher than the actuarially fair value due to ϕ

Firm

- Technology $F(K, L) = AK^{\theta}L^{1-\theta}$. Zero profit
- Pay the group insurance premium for employees with g=1

ELE SQC

米田下 米国下 米国

Firm

- Technology $F(K, L) = AK^{\theta}L^{1-\theta}$. Zero profit
- Pay the group insurance premium for employees with g=1
- Marginal profit conditions: (link)

$$r = F_{K}(K, L) - \delta$$

$$w = F_{L}(K, L) - \frac{\int p d\mu(g = 1)}{L}$$

= = ~ ~ ~

< 2 >

- Proportional tax au on labor income
- Finance Social Security, Medicaid and Medicare
- Balanced budget (link)

Stationary Equilibrium

A stationary equilibrium of this economy is a set of policies $\{c, a', i'\}$, a value function V, prices $\{w, r, p\}$, a mark-up of medical services q, government policies $\{\tau, ss\}$ and a stationary distribution μ such that

- \bullet Given prices, $\{c,a',i'\}$ and V solve the households' problem
- $\{w, r\}$ satisfy the firms' marginal profit conditions
- p satisfies the insurance companies' zero profit
- q satisfies the medical service sector's zero profit
- The government budget is balanced
- All markets clear
- The distribution is stationary

ELE SQC

Main Mechanism: Why Uninsured?

- The poor may choose to be uninsured:
 - Implicit insurance though limited liability
 - Incentive to dissave

Main Mechanism: Why Uninsured?

- The poor may choose to be uninsured:
 - Implicit insurance though limited liability
 - Incentive to dissave
- The rich may choose to be uninsured:
 - Not actuarially fair insurance premium
 - Incentive to save

Estimation

- 4 同 ト - 4 三 ト - 4 三

ELE NOR

Estimation: Data

National-Level Panel Data:

- 1. Survey of Income and Program Participation (SIPP)
- 2. Medical Expenditure Panel Survey (MEPS)

ELE NOR

Estimation: Data

National-Level Panel Data:

- 1. Survey of Income and Program Participation (SIPP)
- 2. Medical Expenditure Panel Survey (MEPS)
 - Decision making unit: Health Insurance Eligibility Unit
 - Head of HIEU of age 25-80
 - Self-reported health as the measure of health

Estimation: Shock Process

• Joint process using SIPP: (link)

- Health status h
- ► Earnings *z*
- ► Access to public and employer-provided insurance m, g

Estimation: Shock Process

- Joint process using SIPP: (link)
 - Health status h
 - ► Earnings *z*
 - Access to public and employer-provided insurance m, g
- Distribution of medical expenditures x using MEPS

Estimation: Shock Process

- Joint process using SIPP: (link)
 - Health status h
 - ► Earnings z
 - ► Access to public and employer-provided insurance *m*, *g*
- Distribution of medical expenditures x using MEPS
- Reimburse schedule λ using MEPS: for each insurance (link)

$$\log(oop) = \beta_0 + \beta_1 \log(\textit{MedEx}) + \beta_2 \left(\log(\textit{MedEx}))^2 + \varepsilon\right)$$

Estimation: Structural Parameters

- Key parameters for insurance choice:
 - Risk aversion: γ in $u(c) = \frac{c^{1-\gamma}}{1-\gamma}$
 - Fixed costs of insurance: ϕ

Estimation: Structural Parameters

- Key parameters for insurance choice:
 - Risk aversion: γ in $u(c) = \frac{c^{1-\gamma}}{1-\gamma}$
 - Fixed costs of insurance: ϕ
- Target moments:

Joint distribution of insurance coverage of active participants

- ► age j
- earnings z
- ▶ wealth a
- health status h

Estimation: Structural Parameters

- Key parameters for insurance choice:
 - Risk aversion: γ in $u(c) = \frac{c^{1-\gamma}}{1-\gamma}$
 - Fixed costs of insurance: ϕ
- Target moments:

Joint distribution of insurance coverage of active participants

- ► age j
- ► earnings z
- ▶ wealth *a*
- health status h

$$\min_{\gamma,\phi} \sum \pi_{j,z,a,h} [i_{Data}(j, z, a, h) - i_{Model}(j, z, a, h; \gamma, \phi)]^2$$

Estimation: Model Parameters

Remark	Parameter	Value	Target
max age	J	55	die at age 80
capital share	θ	0.33	-
SS replacement	SS	0.45	45% of ave. income
risk aversion	γ	1.234	joint dist. of coverage
fixed costs	φ	\$ 803	joint dist. of coverage
discount factor	β	0.958	capital-output ratio: 3
TFP	A	0.965	average income $= 1$
depreciation	δ	0.082	interest rate: 3%

(link)

< 口 > < 同

∃ ≻

= 990

Policy Experiment

Hitoshi Tsujiyama (Frankfurt)

Implications of Health Care Reform

Sep 2014 32 / 38

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

ELE DOG

Key Provisions of Obamacare

• Penalty for the uninsured:

```
max{2.5% of income, $695}
```

- ullet Premium subsidy based on income, financed by income tax au
- No rejection or price-discrimination based on health:

$$p(j) = (1+r)^{-1} \frac{\int \mathbf{1}_{i'=1} \mathbb{E} \left[\lambda(qx')qx'|j,h\right] d\mu(j)}{\int \mathbf{1}_{i'=1} d\mu(j)} + \phi$$

Premium Subsidy

I ∃ ≥

Results: Aggregate Variables

	Before	After
Uninsured Rate: working age population	19.8%	3.1%
Uninsured Rate: active participants	77.1%	11.9%
Aggregate Output	1.126	1.133
Aggregate Capital	3.31	3.32
Interest Rate	3.00%	3.06%
Income Tax Rate	25.0%	25.9%
Mark-up in the Medical Services	6.70%	1.62%
Fraction of Healthy	63.7%	70.3%
Health Care Spending in GDP (age $25+$)	9.61%	9.85%

イロト イポト イヨト イヨ

三日 のへの

Results: Welfare Effects

			Wealth	
Age	Income	Health	Bottom 25%	Top 25%
25-34	Low	Good	-0.15	1.00
		Bad	-0.21	0.97
	High	Good	-0.17	0.03
		Bad	-0.19	0.05
55-64	Low	Good	-0.21	0.98
		Bad	-0.44	1.02
	High	Good	-0.87	-0.44
		Bad	-0.88	-0.40
	Total			0.19%
Frac	tion who	gains		52.8%

Hitoshi Tsujiyama (Frankfurt)

Sep 2014 36 / 38

-

三日 のへで

<ロト <回ト < 回ト

Results: Wealth Inequality Decreases

	Before	After
Gini wealth: working age population	0.555	0.545
Gini wealth: active participants	0.653	0.634
Wealth (active participants)		
25%	\$2,820	\$4,979
50%	\$26,857	\$30,692
75%	\$106,032	\$104,182

< 口 > < 同

Image: A image: A

ELE NOR

Conclusion

- This paper investigates the implications of Obamacare
- The reform increases the insurance coverage
- The rich are better off, but the poor are worse off
- Wealth inequality decreases
- Overall health improves, but the health spending increases

Difference from Pashchenko and Porapakkarm (2013)

- Limited liability in the medical services market
- [PP] Means-tested public insurance
 ⇒ Misjudge the uninsured population
- Estimation of risk aversion using micro data
- Primary care when insured

go back

After Retirement Problem

- Insured by Medicare
- State vector s = (j, h, x)

$$\begin{cases} V(a,s) = \max_{c,a' \ge 0} u(c) + \beta \sum \Gamma_{ss'} V(a',s') \\ \text{s.t.} \quad c+a' = ss + \max\{(1+r)a - [1-\lambda(qx)] qx, 0\} \\ \text{where} \quad \Gamma_{ss'} \\ = \quad \Gamma_h(h'|h,j,i') \Pi(x'|h,j,i') \end{cases}$$

go back

E SQA

Hospital Revenue

Hospital revenue:

	Uninsured	Insured
Payment by agent	$\min\{(1+r)a,qx\}$	$\min\{(1+r)$ a, $(1-\lambda(qx))qx\}$
+	+	+
Payment by insurer	N/A	$\lambda(qx)qx$
Hospital Revenue	$\min\{(1+r)a, qx\}$	$\min\{(1+r)\mathbf{a} + \lambda(qx)qx, qx\}$

In sum

$$(1-i)\min\{(1+r)a, qx\} + i\min\{(1+r)a + \lambda(qx)qx, qx\}$$

= min{(1+r)a + i\lambda(qx)qx, qx}

go back

3 1 4 3

三日 のへで

Firm's Maximization Problem

- Randomly assign the employer-provided insurance after choosing L
- The firm's problem:

$$\max_{K,L} F(K,L) - wL - (r+\delta)K - \eta L$$

where η : expected marginal employer's contribution

• Wage rate:

$$w = F_L(K, L) - \eta$$

= $F_L(K, L) - \frac{\int p d\mu(g = 1)}{L}$

go back

Sep 2014 42 / 38

Government Budget Constraint

$$\begin{aligned} \tau \int wz \varepsilon d\mu (j < J_R) \\ &= \int ssd\mu (j \ge J_R) \\ &+ \int \mathbb{E}_x \left[x - \min\{(1+r)a + \lambda(qx)qx, qx\} \right] d\mu (m = 1, j < J_R) \\ &+ \int \mathbb{E}_x \left[x - \min\{(1+r)a + \lambda(qx)qx, qx\} \right] d\mu (j \ge J_R), \end{aligned}$$

go back

E SQA

Wealth and Income Distribution of Active Participants

Percentile	Wealth	Income
20%	\$0	\$3,809
40%	\$4,645	\$10,484
60%	\$50,040	\$16,067
80%	\$164,570	\$24,158

go back
Estimation: Process for Health Status

Conditional probability of being healthy: $\Gamma(h'|h, j, i')$

go back

Hitoshi Tsujiyama (Frankfurt)

Sep 2014 45 / 38

イロト イポト イヨト イヨ

Estimation: Reimburse Schedule

go back

Hitoshi Tsujiyama (Frankfurt)

▲ 王 ▶ 王 = 少 Q ○
Sep 2014 46 / 38

< ロト < 回 ト < 回 ト < 三</p>

Estimation: Model Performance

Replicate coverage distribution (wealth, income)

Sep 2014 47 / 38

< □ > < □ > < □ > < □ > < □

Estimation: Model Performance

Replicate coverage distribution (age, health)

Uninsured Rate	Data	Model
Age 25-44	82.3%	81.4%
Age 45-64	67.9%	72.4%
Unhealthy	83.4%	88.4%
Healthy	71.1%	70.7%

Estimation: Model Performance

Replicate income and wealth distribution of the uninsured

	Data	Model
Income Percentile		
25%	\$5,720	\$3,852
50%	\$12,792	\$12,068
75%	\$19,832	\$20,127
Wealth Percentile		
25%	\$0	\$0
50%	\$6,027	\$13,137
75%	\$71,273	\$79,286

go back

ELE NOR

∃ ⊳